1
|
Chen H, Wang YD, Blan AW, Almanza-Fuerte EP, Bonkowski ES, Bajpai R, Pruett-Miller SM, Mefford HC. Patient derived model of UBA5-associated encephalopathy identifies defects in neurodevelopment and highlights potential therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577254. [PMID: 38328212 PMCID: PMC10849720 DOI: 10.1101/2024.01.25.577254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in ER homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures and identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and microcephaly phenotypes in patient-derived organoids. Mechanistically, we show that ER homeostasis is perturbed along with exacerbated unfolded protein response pathway in cells and organoids expressing UBA5 pathogenic variants. We also assessed two gene expression modalities that augmented UBA5 expression to rescue aberrant molecular and cellular phenotypes. Our study provides a novel humanized model that allows further investigations of UBA5 variants in the brain and highlights novel systemic approaches to alleviate cellular aberrations for this rare, developmental disorder.
Collapse
Affiliation(s)
- Helen Chen
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Aidan W. Blan
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Edith P. Almanza-Fuerte
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily S. Bonkowski
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Heather C. Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
2
|
Bae S, Lim HK, Jeong Y, Kim SG, Park SM, Shon YM, Suh M. Deep brain stimulation of the anterior nuclei of the thalamus can alleviate seizure severity and induce hippocampal GABAergic neuronal changes in a pilocarpine-induced epileptic mouse brain. Cereb Cortex 2022; 32:5530-5543. [PMID: 35258078 DOI: 10.1093/cercor/bhac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) has been widely used as an effective treatment for refractory temporal lobe epilepsy. Despite its promising clinical outcome, the exact mechanism of how ANT-DBS alleviates seizure severity has not been fully understood, especially at the cellular level. To assess effects of DBS, the present study examined electroencephalography (EEG) signals and locomotor behavior changes and conducted immunohistochemical analyses to examine changes in neuronal activity, number of neurons, and neurogenesis of inhibitory neurons in different hippocampal subregions. ANT-DBS alleviated seizure activity, abnormal locomotor behaviors, reduced theta-band, increased gamma-band EEG power in the interictal state, and increased the number of neurons in the dentate gyrus (DG). The number of parvalbumin- and somatostatin-expressing inhibitory neurons was recovered to the level in DG and CA1 of naïve mice. Notably, BrdU-positive inhibitory neurons were increased. In conclusion, ANT-DBS not only could reduce the number of seizures, but also could induce neuronal changes in the hippocampus, which is a key region involved in chronic epileptogenesis. Importantly, our results suggest that ANT-DBS may lead to hippocampal subregion-specific cellular recovery of GABAergic inhibitory neurons.
Collapse
Affiliation(s)
- Sungjun Bae
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.,IMNEWRUN Inc., N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyun-Kyoung Lim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoonyi Jeong
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sung-Min Park
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, South Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.,IMNEWRUN Inc., N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
3
|
Cai X, Qiu L, Wang C, Yang H, Zhou Z, Mao M, Zhu Y, Wen Y, Cai W, Zhu W, Sun J. Hippocampal Inhibitory Synapsis Deficits Induced by α5-Containing GABA A Receptors Mediate Chronic Neuropathic Pain-Related Cognitive Impairment. Mol Neurobiol 2022; 59:6049-6061. [PMID: 35849280 DOI: 10.1007/s12035-022-02955-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Chronic neuropathic pain often leads to cognitive impairment, but the exact mechanism remains unclear. Gamma-aminobutyric acid A receptors (GABAARs) are the major inhibitory receptors in the brain, of which the α5-containing GABAARs (GABAARs-α5) are implicated in a range of neuropsychiatric disorders with cognitive deficits. However, whether GABAARs-α5 are involved in chronic neuropathic pain-related cognitive impairment remains unknown. In this study, the rats with chronic neuropathic pain induced by right sciatic nerve ligation injury (SNI) exhibited cognitive impairment with declined spontaneous alternation in Y-maze test and discrimination index in novel object recognition test. The GABAARs-α5 expressing on parvalbumin and somatostatin interneurons increased remarkably in hippocampus, resulting in decreased mean frequency of spontaneous inhibitory postsynaptic currents in hippocampal pyramidal neurons. Significantly, antagonizing the GABAARs-α5 by L655708 rescued weakened inhibitory synaptic transmission and cognitive impairment induced by chronic neuropathic pain. Taken together, these data suggest that the GABAARs-α5 play a crucial role in chronic neuropathic pain-induced cognitive impairment by weakening inhibitory synaptic transmission, which may provide insights into the pharmacologic treatment of chronic neuropathic pain-related cognitive impairment.
Collapse
Affiliation(s)
- Xuechun Cai
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Lili Qiu
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Chaoran Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hang Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zhenhui Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Meng Mao
- Department of Anesthesiology, Department of Anesthesiology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yunqing Zhu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yazhou Wen
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Wenlan Cai
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Zhu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
ATM rules neurodevelopment and glutamatergic transmission in the hippocampus but not in the cortex. Cell Death Dis 2022; 13:616. [PMID: 35842432 PMCID: PMC9288428 DOI: 10.1038/s41419-022-05038-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Interest in the function of ataxia-telangiectasia-mutated protein (ATM) is extensively growing as evidenced by preclinical studies that continuously link ATM with new intracellular pathways. Here, we exploited Atm+/- and Atm-/- mice and demonstrate that cognitive defects are rescued by the delivery of the antidepressant Fluoxetine (Fluox). Fluox increases levels of the chloride intruder NKCC1 exclusively at hippocampal level suggesting an ATM context-specificity. A deeper investigation of synaptic composition unveils increased Gluk-1 and Gluk-5 subunit-containing kainate receptors (KARs) levels in the hippocampus, but not in the cortex, of Atm+/- and Atm-/- mice. Analysis of postsynaptic fractions and confocal studies indicates that KARs are presynaptic while in vitro and ex vivo electrophysiology that are fully active. These changes are (i) linked to KCC2 activity, as the KCC2 blockade in Atm+/- developing neurons results in reduced KARs levels and (ii) developmental regulated. Indeed, the pharmacological inhibition of ATM kinase in adults produces different changes as identified by RNA-seq investigation. Our data display how ATM affects both inhibitory and excitatory neurotransmission, extending its role to a variety of neurological and psychiatric disorders.
Collapse
|
5
|
Ahmed MM, Wang ACJ, Elos M, Chial HJ, Sillau S, Solano DA, Coughlan C, Aghili L, Anton P, Markham N, Adame V, Gardiner KJ, Boyd TD, Potter H. The innate immune system stimulating cytokine GM-CSF improves learning/memory and interneuron and astrocyte brain pathology in Dp16 Down syndrome mice and improves learning/memory in wild-type mice. Neurobiol Dis 2022; 168:105694. [PMID: 35307513 PMCID: PMC9045510 DOI: 10.1016/j.nbd.2022.105694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) is characterized by chronic neuroinflammation, peripheral inflammation, astrogliosis, imbalanced excitatory/inhibitory neuronal function, and cognitive deficits in both humans and mouse models. Suppression of inflammation has been proposed as a therapeutic approach to treating DS co-morbidities, including intellectual disability (DS/ID). Conversely, we discovered previously that treatment with the innate immune system stimulating cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF), which has both pro- and anti-inflammatory activities, improved cognition and reduced brain pathology in a mouse model of Alzheimer's disease (AD), another inflammatory disorder, and improved cognition and reduced biomarkers of brain pathology in a phase II trial of humans with mild-to-moderate AD. To investigate the effects of GM-CSF treatment on DS/ID in the absence of AD, we assessed behavior and brain pathology in 12-14 month-old DS mice (Dp[16]1Yey) and their wild-type (WT) littermates, neither of which develop amyloid, and found that subcutaneous GM-CSF treatment (5 μg/day, five days/week, for five weeks) improved performance in the radial arm water maze in both Dp16 and WT mice compared to placebo. Dp16 mice also showed abnormal astrocyte morphology, increased percent area of GFAP staining in the hippocampus, clustering of astrocytes in the hippocampus, and reduced numbers of calretinin-positive interneurons in the entorhinal cortex and subiculum, and all of these brain pathologies were improved by GM-CSF treatment. These findings suggest that stimulating and/or modulating inflammation and the innate immune system with GM-CSF treatment may enhance cognition in both people with DS/ID and in the typical aging population.
Collapse
Affiliation(s)
- Md Mahiuddin Ahmed
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Athena Ching-Jung Wang
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mihret Elos
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Heidi J Chial
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA
| | - D Adriana Solano
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leila Aghili
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paige Anton
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neil Markham
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vanesa Adame
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy D Boyd
- University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; University of Colorado Alzheimer's and Cognition Center, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Bortoletto R, Balestrieri M, Bhattacharyya S, Colizzi M. Is It Time to Test the Antiseizure Potential of Palmitoylethanolamide in Human Studies? A Systematic Review of Preclinical Evidence. Brain Sci 2022; 12:brainsci12010101. [PMID: 35053844 PMCID: PMC8773576 DOI: 10.3390/brainsci12010101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 01/25/2023] Open
Abstract
Antiseizure medications are the cornerstone pharmacotherapy for epilepsy. They are not devoid of side effects. In search for better-tolerated antiseizure agents, cannabinoid compounds and other N-acylethanolamines not directly binding cannabinoid receptors have drawn significant attention. Among these, palmitoylethanolamide (PEA) has shown neuroprotective, anti-inflammatory, and analgesic properties. All studies examining PEA’s role in epilepsy and acute seizures were systematically reviewed. Preclinical studies indicated a systematically reduced PEA tone accompanied by alterations of endocannabinoid levels. PEA supplementation reduced seizure frequency and severity in animal models of epilepsy and acute seizures, in some cases, similarly to available antiseizure medications but with a better safety profile. The peripheral-brain immune system seemed to be more effectively modulated by subchronic pretreatment with PEA, with positive consequences in terms of better responding to subsequent epileptogenic insults. PEA treatment restored the endocannabinoid level changes that occur in a seizure episode, with potential preventive implications in terms of neural damage. Neurobiological mechanisms for PEA antiseizure effect seemed to include the activation of the endocannabinoid system and the modulation of neuroinflammation and excitotoxicity. Although no human study was identified, there is ground for testing the antiseizure potential of PEA and its safety profile in human studies of epilepsy.
Collapse
Affiliation(s)
- Riccardo Bortoletto
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital of Verona, 37126 Verona, Italy;
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
| | - Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- Correspondence:
| |
Collapse
|
7
|
Pizzamiglio L, Focchi E, Cambria C, Ponzoni L, Ferrara S, Bifari F, Desiato G, Landsberger N, Murru L, Passafaro M, Sala M, Matteoli M, Menna E, Antonucci F. The DNA repair protein ATM as a target in autism spectrum disorder. JCI Insight 2021; 6:133654. [PMID: 33373327 PMCID: PMC7934840 DOI: 10.1172/jci.insight.133654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Impairment of the GABAergic system has been reported in epilepsy, autism, attention deficit hyperactivity disorder, and schizophrenia. We recently demonstrated that ataxia telangiectasia mutated (ATM) directly shapes the development of the GABAergic system. Here, we show for the first time to our knowledge how the abnormal expression of ATM affects the pathological condition of autism. We exploited 2 different animal models of autism, the methyl CpG binding protein 2-null (Mecp2y/-) mouse model of Rett syndrome and mice prenatally exposed to valproic acid, and found increased ATM levels. Accordingly, treatment with the specific ATM kinase inhibitor KU55933 (KU) normalized molecular, functional, and behavioral defects in these mouse models, such as (a) delayed GABAergic development, (b) hippocampal hyperexcitability, (c) low cognitive performances, and (d) social impairments. Mechanistically, we demonstrate that KU administration to WT hippocampal neurons leads to (a) higher early growth response 4 activity on Kcc2b promoter, (b) increased expression of Mecp2, and (c) potentiated GABA transmission. These results provide evidence and molecular substrates for the pharmacological development of ATM inhibition in autism spectrum disorders.
Collapse
Affiliation(s)
- Lara Pizzamiglio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Elisa Focchi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | | | - Silvia Ferrara
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Francesco Bifari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Genni Desiato
- Humanitas Clinical and Research Center – IRCCS, Rozzano, Milan, Italy
| | - Nicoletta Landsberger
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Luca Murru
- Institute of Neuroscience, IN-CNR, Milan, Italy
| | | | | | - Michela Matteoli
- Institute of Neuroscience, IN-CNR, Milan, Italy
- Humanitas Clinical and Research Center – IRCCS, Rozzano, Milan, Italy
| | - Elisabetta Menna
- Institute of Neuroscience, IN-CNR, Milan, Italy
- Humanitas Clinical and Research Center – IRCCS, Rozzano, Milan, Italy
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| |
Collapse
|
8
|
Bolshakov AP, Stepanichev MY, Dobryakova YV, Spivak YS, Markevich VA. Saporin from Saponaria officinalis as a Tool for Experimental Research, Modeling, and Therapy in Neuroscience. Toxins (Basel) 2020; 12:toxins12090546. [PMID: 32854372 PMCID: PMC7551693 DOI: 10.3390/toxins12090546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/06/2023] Open
Abstract
Saporin, which is extracted from Saponaria officinalis, is a protein toxin that inactivates ribosomes. Saporin itself is non-selective toxin but acquires high specificity after conjugation with different ligands such as signaling peptides or antibodies to some surface proteins expressed in a chosen cell subpopulation. The saporin-based conjugated toxins were widely adopted in neuroscience as a convenient tool to induce highly selective degeneration of desired cell subpopulation. Induction of selective cell death is one of approaches used to model neurodegenerative diseases, study functions of certain cell subpopulations in the brain, and therapy. Here, we review studies where saporin-based conjugates were used to analyze cell mechanisms of sleep, general anesthesia, epilepsy, pain, and development of Parkinson’s and Alzheimer’s diseases. Limitations and future perspectives of use of saporin-based toxins in neuroscience are discussed.
Collapse
Affiliation(s)
- Alexey P. Bolshakov
- Laboratory of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Correspondence:
| | - Mikhail Yu. Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Yulia V. Dobryakova
- Laboratory of Neurophysiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.V.D.); (V.A.M.)
| | - Yulia S. Spivak
- Laboratory of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Vladimir A. Markevich
- Laboratory of Neurophysiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.V.D.); (V.A.M.)
| |
Collapse
|
9
|
Zhu L, Chen L, Xu P, Lu D, Dai S, Zhong L, Han Y, Zhang M, Xiao B, Chang L, Wu Q. Genetic and molecular basis of epilepsy-related cognitive dysfunction. Epilepsy Behav 2020; 104:106848. [PMID: 32028124 DOI: 10.1016/j.yebeh.2019.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a common neurological disease characterized by recurrent seizures. About 70 million people were affected by epilepsy or epileptic seizures. Epilepsy is a complicated complex or symptomatic syndromes induced by structural, functional, and genetic causes. Meanwhile, several comorbidities are accompanied by epileptic seizures. Cognitive dysfunction is a long-standing complication associated with epileptic seizures, which severely impairs quality of life. Although the definitive pathogenic mechanisms underlying epilepsy-related cognitive dysfunction remain unclear, accumulating evidence indicates that multiple risk factors are probably involved in the development and progression of cognitive dysfunction in patients with epilepsy. These factors include the underlying etiology, recurrent seizures or status epilepticus, structural damage that induced secondary epilepsy, genetic variants, and molecular alterations. In this review, we summarize several theories that may explain the genetic and molecular basis of epilepsy-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Di Lu
- Biomedicine Engineering Research Center, Kunming Medical University, 1168 Chun Rong West Road, Kunming, Yunnan 650500, PR China
| | - Shujuan Dai
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiang Ya Road, Changsha, Hunan 410008, PR China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China.
| |
Collapse
|
10
|
Cui LJ, Chen WH, Liu AL, Han X, Jiang SX, Yuan F, Zhong YM, Yang XL, Weng SJ. nGnG Amacrine Cells and Brn3b-negative M1 ipRGCs are Specifically Labeled in the ChAT-ChR2-EYFP Mouse. Invest Ophthalmol Vis Sci 2020; 61:14. [PMID: 32049344 PMCID: PMC7326507 DOI: 10.1167/iovs.61.2.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Experimental access to specific cell subtypes is essential for deciphering the complexity of retinal networks. Here, we characterized the selective labeling, caused by ectopic transgene expression, of two atypical retinal neurons in the ChAT-Channelrhodopsin-2 (ChR2)-EYFP mouse. Methods Retinal sections and flat-mounts were prepared for double-staining immunohistochemistry with antibodies against EYFP and various neuronal markers. Sagittal/coronal brain slices were made to visualize EYFP signals in central nuclei. Whole-cell recordings were conducted to test the functionality of ChR2. Results Two populations of EYFP-positive retinal cells were observed. The inner nuclear layer (INL)-located one (type I cell) distributed regularly throughout the entire retina, whereas the ganglion cell layer (GCL)-residing one (type II cell) was restricted ventrally. None of them was cholinergic, as evidenced by the complete absence of ChAT immunoreactivity. Type I cells were immunolabeled by the amacrine marker syntaxin. However, the vast majority of them were neither positive to GABA/GAD65, nor to GlyT1/glycine, suggesting that they were non-GABAergic non-glycinergic amacrine cells (nGnG ACs), which was confirmed by double-labeling with the nGnG AC marker PPP1R17. Type II cells were immunopositive to melanopsin, but not to Brn3a or Brn3b. They possessed dendrites stratifying in the outermost inner plexiform layer (IPL) and axons projecting to the suprachiasmatic nucleus (SCN) rather than the olivary pretectal nucleus (OPN), suggesting that they belonged to a Brn3b-negative subset of M1-type intrinsically photosensitive retinal ganglion cells (ipRGCs). Glutamatergic transmission-independent photocurrents were elicited in EYFP-positive cells, indicating the functional expression of ChR2. Conclusions The ChAT-ChR2-EYFP retina exhibits ectopic, but functional, transgene expression in nGnG ACs and SCN-innervating M1 ipRGCs, thus providing an ideal tool to achieve efficient labeling and optogenetic manipulation of these cells.
Collapse
|
11
|
Chronic exercise buffers the cognitive dysfunction and decreases the susceptibility to seizures in PTZ-treated rats. Epilepsy Behav 2019; 98:173-187. [PMID: 31377659 DOI: 10.1016/j.yebeh.2019.07.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 02/02/2023]
Abstract
Epilepsy is a serious neurological disorder posing a severe burden to our society. Cognitive deficits are very common comorbidities of epilepsy. It is known that enhanced cognition has been demonstrated as an indicator for successful treatment of epilepsy. Physical exercise shows a positive consequence on cognition in healthy individuals and improves health and life conditions in people with epilepsy. However, there is no direct evidence to determine the role and the potential mechanism of physical exercise on the cognitive impairment and the relationship of susceptibility to seizures. The goal of the current investigation was to explore whether sustained physical exercise improves the cognitive dysfunction and simultaneously decreases the susceptibility to seizures in rats with epilepsy. Rats were treated with pentylenetetrazole (PTZ) (35 mg/kg, i.p. [intraperitoneally]) for 36 days to induce chronic epilepsy. During the induction period, rats were exposed to voluntary wheel running or forced swimming 30 min prior to each PTZ injection from the 16th day. The cognition of rats was evaluated by object recognition test and passive avoidance test. The susceptibility to seizures was evaluated by seizure frequency and duration. The levels of synaptic-related proteins including PSD95 (postsynaptic density 95), Synapsin, GluA1, and BDNF (brain-derived neurotrophic factor) were measured to evaluate the hippocampal synaptic plasticity. Furthermore, the GAD67 (glutamic acid decarboxylase) levels and GABA (γ-aminobutyric acid)ergic function in PTZ-treated rats were also determined. Finally, antagonist of GABAAR (GABAA receptors) bicuculline was used to explore the reversal effects of physical activity on seizures and cognition. The results showed that rats subjected to voluntary wheel running or forced swimming showed a significant reduction of seizure frequency and duration in PTZ-treated group relative to rats without running or swimming. In addition, both running and swimming improved cognitive function as measured by enhanced performance in object recognition test and passive avoidance test. Furthermore, the reduced levels of synaptic-related proteins and GABAergic function were reversed by exercise compared with rats without exercise. Moreover, antagonism of hippocampal CA3 (cornu ammonis 3) GABAergic neurons blocks the reversal effects of physical activity on seizures and cognition in PTZ-treated rats. These data showed that chronic physical exercise reduced the frequency of seizures and improved the cognitive function in a rat model of chronic epilepsy through normalization of CA3 synaptic plasticity and GABAergic function. Our findings suggest that chronic physical exercise has beneficial effects on controlling seizure through enhancement of cognition and highlights the possibility to translate into reduced seizure recurrence in people with epilepsy.
Collapse
|
12
|
Chun E, Bumanglag AV, Burke SN, Sloviter RS. Targeted hippocampal GABA neuron ablation by Stable Substance P-saporin causes hippocampal sclerosis and chronic epilepsy in rats. Epilepsia 2019; 60:e52-e57. [PMID: 30963545 DOI: 10.1111/epi.14723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/24/2019] [Accepted: 03/15/2019] [Indexed: 11/29/2022]
Abstract
Cryptogenic temporal lobe epilepsy develops in the absence of identified brain injuries, infections, or structural malformations, and in these cases, an unidentified pre-existing abnormality may initiate febrile seizures, hippocampal sclerosis, and epilepsy. Although a role for GABAergic dysfunction in epilepsy is intuitively obvious, no causal relationship has been established. In this study, hippocampal GABA neurons were targeted for selective elimination to determine whether a focal hippocampal GABAergic defect in an otherwise normal brain can initiate cryptogenic temporal lobe epilepsy with hippocampal sclerosis. We used Stable Substance P-saporin conjugate (SSP-saporin) to target rat hippocampal GABA neurons, which selectively and constitutively express the neurokinin-1 receptors that internalize this neurotoxin. Bilateral and longitudinally extensive intrahippocampal microinjections of SSP-saporin caused no obvious behavioral effects for several days. However, starting ~4 days postinjection, rats exhibited episodes of immobilization, abnormal flurries of "wet-dog" shakes, and brief focal motor seizures characterized by facial automatisms and forepaw clonus. These clinically subtle behaviors stopped after ~4 days. Convulsive status epilepticus did not develop, and no deaths occurred. Months later, chronically implanted rats exhibited spontaneous focal motor seizures and extreme hippocampal sclerosis. These data suggest that hippocampal GABAergic dysfunction is epileptogenic and can produce the defining features of cryptogenic temporal lobe epilepsy.
Collapse
Affiliation(s)
- Eugene Chun
- Graduate Education in Biomedical Sciences Program, Morehouse School of Medicine, Atlanta, Georgia
| | | | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, Florida
| | - Robert S Sloviter
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia.,Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia.,Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
13
|
Wang W, Zinsmaier AK, Firestone E, Lin R, Yatskievych TA, Yang S, Zhang J, Bao S. Blocking Tumor Necrosis Factor-Alpha Expression Prevents Blast-Induced Excitatory/Inhibitory Synaptic Imbalance and Parvalbumin-Positive Interneuron Loss in the Hippocampus. J Neurotrauma 2018; 35:2306-2316. [PMID: 29649942 DOI: 10.1089/neu.2018.5688] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of neurological disorder and death in civilian and military populations. It comprises two components-direct injury from the traumatic impact and secondary injury from ensuing neural inflammatory responses. Blocking tumor necrosis factor-alpha (TNF-α), a central regulator of neural inflammation, has been shown to improve functional recovery after TBI. However, the mechanisms underlying those therapeutic effects are still poorly understood. Here, we examined effects of 3,6'-dithiothalidomide (dTT), a potentially therapeutic TNF-α inhibitor, in mice with blast-induced TBI. We found that blast exposure resulted in elevated expression of TNF-α, activation of microglial cells, enhanced excitatory synaptic transmission, reduced inhibitory synaptic transmission, and a loss of parvalbumin-positive (PV+) inhibitory interneurons. Administration of dTT for 5 days after the blast exposure completely suppressed blast-induced increases in TNF-α transcription, largely reversed blasted-induced synaptic changes, and prevented PV+ neuron loss. However, blocking TNF-α expression by dTT failed to mitigate blast-induced microglial activation in the hippocampus, as evidenced by their non-ramified morphology. These results indicate that TNF-α plays a major role in modulating neuronal functions in blast-induced TBI and that it is a potential target for treatment of TBI-related brain disorders.
Collapse
Affiliation(s)
- Weihua Wang
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Alexander K Zinsmaier
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Ethan Firestone
- 2 Department of Otolaryngology-Head and Neck Surgery and Department of Communication Sciences and Disorders, School of Medicine, Wayne State University , Detroit, Michigan
| | - Ruizhu Lin
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona.,3 Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, China
| | - Tatiana A Yatskievych
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Sungchil Yang
- 4 Department of Biomedical Sciences, City University of Hong Kong , Kowloon, Hong Kong, China
| | - Jinsheng Zhang
- 2 Department of Otolaryngology-Head and Neck Surgery and Department of Communication Sciences and Disorders, School of Medicine, Wayne State University , Detroit, Michigan
| | - Shaowen Bao
- 1 Department of Physiology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
14
|
Talman WT, Dragon DN, Lin LH. Reduced responses to glutamate receptor agonists follow loss of astrocytes and astroglial glutamate markers in the nucleus tractus solitarii. Physiol Rep 2017; 5:5/5/e13158. [PMID: 28270593 PMCID: PMC5350171 DOI: 10.14814/phy2.13158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 02/01/2023] Open
Abstract
Saporin (SAP) or SAP conjugates injected into the nucleus tractus solitarii (NTS) of rats kill astrocytes. When injected in its unconjugated form, SAP produces no demonstrable loss of or damage to local neurons. However bilateral injections of SAP significantly attenuate responses to activation of baroreceptor reflexes that are mediated by transmission of signals through glutamate receptors in the NTS We tested the hypothesis that SAP would reduce cardiovascular responses to activation of NTS glutamate receptors despite its recognized ability to spare local neurons while killing local astrocytes. In animals treated with SAP and SAP conjugates or, as a control, with the toxin 6-hydroxydopamine (6-OHDA), we sought to determine if dose-related changes of arterial pressure (AP) or heart rate (HR) in response to injection into NTS of N-methyl-d-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were attenuated. Also we quantified changes in immunoreactivity (IR) for EAAT2, EAAC1, and VGluT2 in NTS after SAP and SAP conjugates. Our earlier studies showed that IR for NMDA and AMPA receptors was not changed after injection of SAP We found that EAAT2 and EAAC1, both found in astrocytes, were reduced by SAP or its conjugates but not by 6-OHDA In contrast, VGluT2-IR was increased by SAP or conjugates but not by 6-OHDA AP and HR responses to NMDA and AMPA were attenuated after SAP and SAP conjugate injection but not after 6-OHDA Results of this study are consistent with others that have shown interactions between astroglia and neurons in synaptic transmission mediated by glutamate receptor activation in the NTS.
Collapse
Affiliation(s)
- William T Talman
- Laboratory of Neurobiology, Department of Neurology, Carver College of Medicine, Iowa City, Iowa .,Department of Veterans Affairs Health Care System, Iowa City, Iowa
| | - Deidre Nitschke Dragon
- Laboratory of Neurobiology, Department of Neurology, Carver College of Medicine, Iowa City, Iowa.,Department of Veterans Affairs Health Care System, Iowa City, Iowa
| | - Li-Hsien Lin
- Laboratory of Neurobiology, Department of Neurology, Carver College of Medicine, Iowa City, Iowa.,Department of Veterans Affairs Health Care System, Iowa City, Iowa
| |
Collapse
|
15
|
Attention-deficit/hyperactivity disorder associated with KChIP1 rs1541665 in Kv channels accessory proteins. PLoS One 2017; 12:e0188678. [PMID: 29176790 PMCID: PMC5703492 DOI: 10.1371/journal.pone.0188678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is an early onset childhood neurodevelopmental disorder with high heritability. A number of genetic risk factors and environment factors have been implicated in the pathogenesis of ADHD. Genes encoding for subtypes of voltage-dependent K channels (Kv) and accessory proteins to these channels have been identified in genome-wide association studies (GWAS) of ADHD. We conducted a two-stage case–control study to investigate the associations between five key genes (KChIP4, KChIP1, DPP10, FHIT, and KCNC1) and the risk of developing ADHD. In the discovery stage comprising 256 cases and 372 controls, KChIP1 rs1541665 and FHIT rs3772475 were identified; they were further genotyped in the validation stage containing 328cases and 431 controls.KChIP1 rs1541665 showed significant association with a risk of ADHD at both stages, with CC vs TT odds ratio (OR) = 1.961, 95% confidence interval (CI) = 1.366–2.497, in combined analyses (P-FDR = 0.007). Moreover, we also found rs1541665 involvement in ADHD-I subtype (OR (95% CI) = 2.341(1.713, 3.282), and Hyperactive index score (P = 0.005) in combined samples.Intriguingly, gene-environmental interactions analysis consistently revealed the potential interactionsof rs1541665 collaboratingwith maternal stress pregnancy (Pmul = 0.021) and blood lead (Padd = 0.017) to modify ADHD risk. In conclusion, the current study provides evidence that genetic variants of Kv accessory proteins may contribute to the susceptibility of ADHD.Further studies with different ethnicitiesare warranted to produce definitive conclusions.
Collapse
|
16
|
Spampanato J, Dudek FE. Targeted Interneuron Ablation in the Mouse Hippocampus Can Cause Spontaneous Recurrent Seizures. eNeuro 2017; 4:ENEURO.0130-17.2017. [PMID: 28785726 PMCID: PMC5520752 DOI: 10.1523/eneuro.0130-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/30/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
The death of GABAergic interneurons has long been hypothesized to contribute to acquired epilepsy. These experiments tested the hypothesis that focal interneuron lesions cause acute seizures [i.e., status epilepticus (SE)] and/or chronic epilepsy [i.e., persistent spontaneous recurrent seizures (SRSs)]. To selectively ablate interneurons, Gad2-ires-Cre mice were injected unilaterally in the CA1 area of the dorsal hippocampus with an adeno-associated virus containing the diphtheria toxin receptor (DTR). Simultaneously, an electrode, connected to a miniature telemetry device, was positioned at the injection site for chronic recordings of local field potentials (LFPs). Two weeks after virus transfection, intraperitoneal injection of DT consistently caused focal, specific, and extensive ablation of interneurons. Long-term, continuous monitoring revealed that all mice with DT-induced interneuron lesions had SRSs. Seizures lasted tens of seconds and interseizure intervals were several hours (or days); therefore, these interneuron lesions did not induce SE. The SRSs occurred 3-5 d after DT treatment, which is the estimated time required for DT-induced cell death; therefore, induction of SRSs occurred without the latent period typical of acquired epilepsy. In five of six DT-treated mice, SRSs stopped within days, suggesting that the DT-induced interneuron lesions did not usually cause epilepsy. In one mouse, however, SRSs occurred for ≥34 d after interneuron ablation, similar to epilepsy after experimental SE. Sham control mice had no detectable seizures, confirming that the SRSs were due to ablation of interneurons. These data show that selective interneuron ablation consistently caused SRSs but not SE; and, at least under the conditions used here, interneuron lesions rarely led to persistent SRSs (i.e., epilepsy).
Collapse
Affiliation(s)
- Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84108
| |
Collapse
|
17
|
Marks WD, Paris JJ, Schier CJ, Denton MD, Fitting S, McQuiston AR, Knapp PE, Hauser KF. HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations. J Neurovirol 2016; 22:747-762. [PMID: 27178324 PMCID: PMC5107352 DOI: 10.1007/s13365-016-0447-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/02/2016] [Accepted: 04/10/2016] [Indexed: 02/08/2023]
Abstract
Memory deficits are characteristic of HIV-associated neurocognitive disorders (HAND) and co-occur with hippocampal pathology. The HIV-1 transactivator of transcription (Tat), a regulatory protein, plays a significant role in these events, but the cellular mechanisms involved are poorly understood. Within the hippocampus, diverse populations of interneurons form complex networks; even subtle disruptions can drastically alter synaptic output, resulting in behavioral dysfunction. We hypothesized that HIV-1 Tat would impair cognitive behavior and injure specific hippocampal interneuron subtypes. Male transgenic mice that inducibly expressed HIV-1 Tat (or non-expressing controls) were assessed for cognitive behavior or had hippocampal CA1 subregions evaluated via interneuron subpopulation markers. Tat exposure decreased spatial memory in a Barnes maze and mnemonic performance in a novel object recognition test. Tat reduced the percentage of neurons expressing neuronal nitric oxide synthase (nNOS) without neuropeptide Y immunoreactivity in the stratum pyramidale and the stratum radiatum, parvalbumin in the stratum pyramidale, and somatostatin in the stratum oriens, which are consistent with reductions in interneuron-specific interneuron type 3 (IS3), bistratified, and oriens-lacunosum-moleculare interneurons, respectively. The findings reveal that an interconnected ensemble of CA1 nNOS-expressing interneurons, the IS3 cells, as well as subpopulations of parvalbumin- and somatostatin-expressing interneurons are preferentially vulnerable to HIV-1 Tat. Importantly, the susceptible interneurons form a microcircuit thought to be involved in feedback inhibition of CA1 pyramidal cells and gating of CA1 pyramidal cell inputs. The identification of vulnerable CA1 hippocampal interneurons may provide novel insight into the basic mechanisms underlying key functional and neurobehavioral deficits associated with HAND.
Collapse
Affiliation(s)
- William D Marks
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Kontos Medical Sciences Building, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA
| | - Jason J Paris
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Kontos Medical Sciences Building, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA
| | - Christina J Schier
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Kontos Medical Sciences Building, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA
| | - Melissa D Denton
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Kontos Medical Sciences Building, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, USA
| | - A Rory McQuiston
- Department of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0709, USA
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Kontos Medical Sciences Building, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA
- Department of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, 23298-0059, USA
| | - Kurt F Hauser
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Kontos Medical Sciences Building, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA.
- Department of Anatomy & Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, 23298-0059, USA.
| |
Collapse
|
18
|
Pizzamiglio L, Focchi E, Murru L, Tamborini M, Passafaro M, Menna E, Matteoli M, Antonucci F. New Role of ATM in Controlling GABAergic Tone During Development. Cereb Cortex 2016; 26:3879-88. [PMID: 27166172 DOI: 10.1093/cercor/bhw125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The capacity to guarantee the proper excitatory/inhibitory balance is one of the most critical steps during early development responsible for the correct brain organization, function, and plasticity. GABAergic neurons guide this process leading to the right structural organization, brain circuitry, and neuronal firing. Here, we identified the ataxia telangiectasia mutated (ATM), a serine/threonine protein kinase linked to DNA damage response, as crucial in regulating neurotransmission. We found that reduced levels of ATM in the hippocampal neuronal cultures produce an excitatory/inhibitory unbalance toward inhibition as indicated by the higher frequency of miniature inhibitory postsynaptic current events and an increased number of GABAergic synapses. In vivo, the increased inhibition still persists and, even if a higher excitation is also present, a reduced neuronal excitability is found as indicated by the lower action potential frequency generated in response to high-current intensity stimuli. Finally, we found an elevated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in heterozygous hippocampi associated with lower expression levels of the ERK1/2 phosphatase PP1. Given that the neurodegenerative condition associated with genetic mutations in the Atm gene, ataxia telangiectasia, presents a variable phenotype with impairment in cognition, our molecular findings provide a logical frame for a more clear comprehension of cognitive defects in the pathology, opening to novel therapeutic strategies.
Collapse
Affiliation(s)
- Lara Pizzamiglio
- Department of Biology and Biotechnology, Lazzaro Spallanzani, University of Pavia, 27100 Pavia, Italy Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Elisa Focchi
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy Humanitas Clinical and Research Center, IRCCS Rozzano, Rozzano (Milan), Italy
| | - Luca Murru
- Institute of Neuroscience, C.N.R., 20129 Milan, Italy
| | - Matteo Tamborini
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | | | - Elisabetta Menna
- Humanitas Clinical and Research Center, IRCCS Rozzano, Rozzano (Milan), Italy Institute of Neuroscience, C.N.R., 20129 Milan, Italy
| | - Michela Matteoli
- Humanitas Clinical and Research Center, IRCCS Rozzano, Rozzano (Milan), Italy Institute of Neuroscience, C.N.R., 20129 Milan, Italy
| | - Flavia Antonucci
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy Institute of Neuroscience, C.N.R., 20129 Milan, Italy
| |
Collapse
|
19
|
Citraro R, Russo E, Leo A, Russo R, Avagliano C, Navarra M, Calignano A, De Sarro G. Pharmacokinetic-pharmacodynamic influence of N-palmitoylethanolamine, arachidonyl-2'-chloroethylamide and WIN 55,212-2 on the anticonvulsant activity of antiepileptic drugs against audiogenic seizures in DBA/2 mice. Eur J Pharmacol 2016; 791:523-534. [PMID: 27663280 DOI: 10.1016/j.ejphar.2016.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
Abstract
We evaluated the effects of ACEA (selective cannabinoid (CB)1 receptor agonist), WIN 55,212-2 mesylate (WIN; non-selective CB1 and CB2 receptor agonist) and N-palmitoylethanolamine (PEA; an endogenous fatty acid of ethanolamide) in DBA/2 mice, a genetic model of reflex audiogenic epilepsy. PEA, ACEA or WIN intraperitoneal (i.p.) administration decreased the severity of tonic-clonic seizures. We also studied the effects of PEA, WIN or ACEA after co-administration with NIDA-41020 (CB1 receptor antagonist) or GW6471 (PPAR-α antagonist) and compared the effects of WIN, ACEA and PEA in order to clarify their mechanisms of action. PEA has anticonvulsant features in DBA/2 mice mainly through PPAR-α and likely indirectly on CB1 receptors, whereas ACEA and WIN act through CB1 receptors. The co-administration of ineffective doses of ACEA, PEA and WIN with some antiepileptic drugs (AEDs) was examined in order to identify potential pharmacological interactions in DBA/2 mice. We found that PEA, ACEA and WIN co-administration potentiated the efficacy of carbamazepine, diazepam, felbamate, gabapentin, phenobarbital, topiramate and valproate and PEA only also that of oxcarbazepine and lamotrigine whereas, their co-administration with levetiracetam and phenytoin did not have effects. PEA, ACEA or WIN administration did not significantly influence the total plasma and brain levels of AEDs; therefore, it can be concluded that the observed potentiation was only of pharmacodynamic nature. In conclusion, PEA, ACEA and WIN show anticonvulsant effects in DBA/2 mice and potentiate the effects several AEDs suggesting a possible therapeutic relevance of these drugs and their mechanisms of action.
Collapse
Affiliation(s)
- Rita Citraro
- Science of Health Department, Clinical Pharmacology Unit, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, Clinical Pharmacology Unit, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Antonio Leo
- Science of Health Department, Clinical Pharmacology Unit, School of Medicine, University "Magna Graecia" of Catanzaro, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Carmen Avagliano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Michele Navarra
- Department of Experimental Pharmacology, University of Messina, Messina, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Giovambattista De Sarro
- Science of Health Department, Clinical Pharmacology Unit, School of Medicine, University "Magna Graecia" of Catanzaro, Italy.
| |
Collapse
|
20
|
Abstract
Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.
Collapse
Affiliation(s)
- Hong Geun Park
- Burke Medical Research Institute, White Plains, NY, USA.
| | - Jason B Carmel
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute and Departments of Neurology and Pediatrics, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
21
|
Lalanne T, Oyrer J, Mancino A, Gregor E, Chung A, Huynh L, Burwell S, Maheux J, Farrant M, Sjöström PJ. Synapse-specific expression of calcium-permeable AMPA receptors in neocortical layer 5. J Physiol 2015; 594:837-61. [PMID: 26537662 PMCID: PMC4753277 DOI: 10.1113/jp271394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/01/2015] [Indexed: 01/26/2023] Open
Abstract
Key points In the hippocampus, calcium‐permeable AMPA receptors have been found in a restricted subset of neuronal types that inhibit other neurons, although their localization in the neocortex is less well understood. In the present study, we looked for calcium‐permeable AMPA receptors in two distinct populations of neocortical inhibitory neurons: basket cells and Martinotti cells. We found them in the former but not in the latter. Furthermore, in basket cells, these receptors were associated with particularly fast responses. Computer modelling predicted (and experiments verified) that fast calcium‐permeable AMPA receptors enable basket cells to respond rapidly, such that they promptly inhibit neighbouring cells and shut down activity. The results obtained in the present study help our understanding of pathologies such as stroke and epilepsy that have been associated with disordered regulation of calcium‐permeable AMPA receptors.
Abstract AMPA‐type glutamate receptors (AMPARs) lacking an edited GluA2 subunit are calcium‐permeable (CP) and contribute to synaptic plasticity in several hippocampal interneuron types, although their precise role in the neocortex is not well described. We explored the presence of CP‐AMPARs at pyramidal cell (PC) inputs to Martinotti cells (MCs) and basket cells (BCs) in layer 5 of the developing mouse visual cortex (postnatal days 12–21). GluA2 immunolabelling was stronger in MCs than in BCs. A differential presence of CP‐AMPARs at PC‐BC and PC‐MC synapses was confirmed electrophysiologically, based on measures of spermine‐dependent rectification and CP‐AMPAR blockade by 1‐naphtyl acetyl spermine using recordings from synaptically connected cell pairs, NPEC‐AMPA uncaging and miniature current recordings. In addition, CP‐AMPAR expression in BCs was correlated with rapidly decaying synaptic currents. Computer modelling predicted that this reduces spike latencies and sharpens suprathreshold responses in BCs, which we verified experimentally using the dynamic clamp technique. Thus, the synapse‐specific expression of CP‐AMPARs may critically influence both plasticity and information processing in neocortical microcircuits. In the hippocampus, calcium‐permeable AMPA receptors have been found in a restricted subset of neuronal types that inhibit other neurons, although their localization in the neocortex is less well understood. In the present study, we looked for calcium‐permeable AMPA receptors in two distinct populations of neocortical inhibitory neurons: basket cells and Martinotti cells. We found them in the former but not in the latter. Furthermore, in basket cells, these receptors were associated with particularly fast responses. Computer modelling predicted (and experiments verified) that fast calcium‐permeable AMPA receptors enable basket cells to respond rapidly, such that they promptly inhibit neighbouring cells and shut down activity. The results obtained in the present study help our understanding of pathologies such as stroke and epilepsy that have been associated with disordered regulation of calcium‐permeable AMPA receptors.
Collapse
Affiliation(s)
- Txomin Lalanne
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Julia Oyrer
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Adamo Mancino
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Erica Gregor
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Andrew Chung
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Louis Huynh
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Sasha Burwell
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Jérôme Maheux
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
22
|
Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MF. GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury. Exp Neurol 2015; 273:11-23. [DOI: 10.1016/j.expneurol.2015.07.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 01/07/2023]
|
23
|
Ji MH, Qiu LL, Tang H, Ju LS, Sun XR, Zhang H, Jia M, Zuo ZY, Shen JC, Yang JJ. Sepsis-induced selective parvalbumin interneuron phenotype loss and cognitive impairments may be mediated by NADPH oxidase 2 activation in mice. J Neuroinflammation 2015; 12:182. [PMID: 26416717 PMCID: PMC4587802 DOI: 10.1186/s12974-015-0401-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/17/2015] [Indexed: 01/24/2023] Open
Abstract
Background Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction caused by many pathological events, including neuroinflammation and oxidative stress damage. Increasing evidence suggests that parvalbumin (PV) interneurons play a key role in the cognitive process, whereas the dysfunction of these interneurons has been implicated in a number of major psychiatric disorders. Here, we aimed to investigate whether enhanced inflammation and oxidative stress-mediated PV interneuron phenotype loss plays a role in sepsis-induced cognitive impairments. Methods Male C57BL/6 mice were subjected to cecal ligation and puncture or sham operation. For the interventional study, the animals were chronically treated with a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, apocynin, at 5 mg/kg. The mice were euthanized at the indicated time points, and the brain tissues were harvested for determination of the PV, membrane subunit of NADPH oxidase gp91phox, and markers of oxidative stress (4-hydroxynonenal and malondialdehyde) and inflammation (tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, and IL-10). A separate cohort of animals was used to evaluate the behavioral alterations by the open field and fear conditioning tests. Primary hippocampal neuronal cultures were used to investigate the mechanisms underlying the dysfunction of PV interneurons. Results Sepsis resulted in cognitive impairments, which was accompanied by selective phenotype loss of PV interneurons and increased gp91phox, 4-hydroxynonenal, malondialdehyde, IL-1β, and IL-6 expressions. Notably, these abnormalities could be rescued by apocynin treatment. Conclusion Selective phenotype loss of PV interneurons, as a result of NADPH oxidase 2 (Nox2) activation, might partly contribute to cognitive impairments in a mouse model of SAE.
Collapse
Affiliation(s)
- Mu-Huo Ji
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Li-Li Qiu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Hui Tang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Ling-Sha Ju
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Xiao-Ru Sun
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Hui Zhang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Min Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Zhi-Yi Zuo
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA.
| | - Jin-Chun Shen
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|
24
|
Epilepsy and hippocampal neurodegeneration induced by glutamate decarboxylase inhibitors in awake rats. Epilepsy Res 2015; 116:27-33. [PMID: 26354164 DOI: 10.1016/j.eplepsyres.2015.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
Abstract
Glutamic acid decarboxylase (GAD), the enzyme responsible for GABA synthesis, requires pyridoxal phosphate (PLP) as a cofactor. Thiosemicarbazide (TSC) and γ-glutamyl-hydrazone (PLPGH) inhibit the free PLP-dependent isoform (GAD65) activity after systemic administration, leading to epilepsy in mice and in young, but not in adult rats. However, the competitive GAD inhibitor 3-mercaptopropionic acid (MPA) induces convulsions in both immature and adult rats. In the present study we tested comparatively the epileptogenic and neurotoxic effects of PLPGH, TSC and MPA, administered by microdialysis in the hippocampus of adult awake rats. Cortical EEG and motor behavior were analyzed during the next 2h, and aspartate, glutamate and GABA were measured by HPLC in the microdialysis-collected fractions. Twenty-four hours after drug administration rats were fixed for histological analysis of the hippocampus. PLPGH or TSC did not affect the motor behavior, EEG or cellular morphology, although the extracellular concentration of GABA was decreased. In contrast, MPA produced intense wet-dog shakes, EEG epileptiform discharges, a >75% reduction of extracellular GABA levels and remarkable neurodegeneration of the CA1 region, with >80% neuronal loss. The systemic administration of the NMDA glutamate receptor antagonist MK-801 30 min before MPA did not prevent the MPA-induced epilepsy but significantly protected against its neurotoxic effect, reducing neuronal loss to <30%. We conclude that in adult awake rats, drugs acting on PLP availability have only a weak effect on GABA neurotransmission, whereas direct GAD inhibition produced by MPA induces hyperexcitation leading to epilepsy and hippocampal neurodegeneration. Because this degeneration was prevented by the blockade of NMDA receptors, we conclude that it is due to glutamate-mediated excitotoxicity consequent to disinhibition of the hippocampal excitatory circuits.
Collapse
|
25
|
Reichel JM, Nissel S, Rogel-Salazar G, Mederer A, Käfer K, Bedenk BT, Martens H, Anders R, Grosche J, Michalski D, Härtig W, Wotjak CT. Distinct behavioral consequences of short-term and prolonged GABAergic depletion in prefrontal cortex and dorsal hippocampus. Front Behav Neurosci 2015; 8:452. [PMID: 25628548 PMCID: PMC4292780 DOI: 10.3389/fnbeh.2014.00452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/17/2014] [Indexed: 11/13/2022] Open
Abstract
GABAergic interneurons are essential for a functional equilibrium between excitatory and inhibitory impulses throughout the CNS. Disruption of this equilibrium can lead to various neurological or neuropsychiatric disorders such as epilepsy or schizophrenia. Schizophrenia itself is clinically defined by negative (e.g., depression) and positive (e.g., hallucinations) symptoms as well as cognitive dysfunction. GABAergic interneurons are proposed to play a central role in the etiology and progression of schizophrenia; however, the specific mechanisms and the time-line of symptom development as well as the distinct involvement of cortical and hippocampal GABAergic interneurons in the etiology of schizophrenia-related symptoms are still not conclusively resolved. Previous work demonstrated that GABAergic interneurons can be selectively depleted in adult mice by means of saporin-conjugated anti-vesicular GABA transporter antibodies (SAVAs) in vitro and in vivo. Given their involvement in schizophrenia-related disease etiology, we ablated GABAergic interneurons in the medial prefrontal cortex (mPFC) and dorsal hippocampus (dHPC) in adult male C57BL/6N mice. Subsequently we assessed alterations in anxiety, sensory processing, hyperactivity and cognition after long-term (>14 days) and short-term (<14 days) GABAergic depletion. Long-term GABAergic depletion in the mPFC resulted in a decrease in sensorimotor-gating and impairments in cognitive flexibility. Notably, the same treatment at the level of the dHPC completely abolished spatial learning capabilities. Short-term GABAergic depletion in the dHPC revealed a transient hyperactive phenotype as well as marked impairments regarding the acquisition of a spatial memory. In contrast, recall of a spatial memory was not affected by the same intervention. These findings emphasize the importance of functional local GABAergic networks for the encoding but not the recall of hippocampus-dependent spatial memories.
Collapse
Affiliation(s)
- Judith M Reichel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Research Group "Neuronal Plasticity" Munich, Germany
| | - Sabine Nissel
- Paul Flechsig Institute for Brain Research, University of Leipzig Leipzig, Germany
| | - Gabriela Rogel-Salazar
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Research Group "Neuronal Plasticity" Munich, Germany
| | - Anna Mederer
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Research Group "Neuronal Plasticity" Munich, Germany
| | - Karola Käfer
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Research Group "Neuronal Plasticity" Munich, Germany
| | - Benedikt T Bedenk
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Research Group "Neuronal Plasticity" Munich, Germany
| | | | - Rebecca Anders
- Paul Flechsig Institute for Brain Research, University of Leipzig Leipzig, Germany
| | - Jens Grosche
- Paul Flechsig Institute for Brain Research, University of Leipzig Leipzig, Germany ; Effigos AG Leipzig, Germany
| | | | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig Leipzig, Germany
| | - Carsten T Wotjak
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Research Group "Neuronal Plasticity" Munich, Germany
| |
Collapse
|
26
|
Gabrielli M, Battista N, Riganti L, Prada I, Antonucci F, Cantone L, Matteoli M, Maccarrone M, Verderio C. Active endocannabinoids are secreted on extracellular membrane vesicles. EMBO Rep 2015; 16:213-20. [PMID: 25568329 DOI: 10.15252/embr.201439668] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N-arachidonoylethanolamine (AEA), which is able to stimulate type-1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids.
Collapse
Affiliation(s)
- Martina Gabrielli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Loredana Riganti
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | | | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Laura Cantone
- Department of Clinical Sciences and Community Health, University of Milano, Milano, Italy
| | - Michela Matteoli
- CNR Institute of Neuroscience, Milano, Italy IRCCS Humanitas, Rozzano, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
| | - Claudia Verderio
- CNR Institute of Neuroscience, Milano, Italy IRCCS Humanitas, Rozzano, Italy
| |
Collapse
|
27
|
Merriman JD, Aouizerat BE, Cataldo JK, Dunn LB, Kober K, Langford DJ, West C, Cooper BA, Paul SM, Miaskowski C. Associations between catecholaminergic, GABAergic, and serotonergic genes and self-reported attentional function in oncology patients and their family caregivers. Eur J Oncol Nurs 2014; 19:251-9. [PMID: 25524657 DOI: 10.1016/j.ejon.2014.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/19/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE OF THE RESEARCH Evaluate for associations between variations in genes involved in catecholaminergic, gamma-aminobutyric acid (GABA)-ergic, and serotonergic mechanisms of neurotransmission and attentional function latent classes. PATIENTS AND METHODS This descriptive, longitudinal study was conducted at two radiation therapy departments. The sample included three latent classes of individuals with distinct trajectories of self-reported attentional function during radiation therapy, who were previously identified using growth mixture modeling among 167 oncology patients and 85 of their family caregivers. Multivariable models were used to evaluate for genotypic associations of neurotransmission genes with attentional function latent class membership, after controlling for covariates. RESULTS Variations in catecholaminergic (i.e., ADRA1D rs4815675, SLC6A3 rs37022), GABAergic (i.e., SLC6A1 rs2697138), and serotonergic (i.e., HTR2A rs2296972, rs9534496) neurotransmission genes were significant predictors of latent class membership in multivariable models. CONCLUSIONS Findings suggest that variations in genes that encode for three distinct but related neurotransmission systems are involved in alterations in attentional function. Knowledge of both phenotypic and genetic markers associated with alterations in attentional function can be used by clinicians to identify patients and family caregivers who are at higher risk for this symptom. Increased understanding of the genetic markers associated with alterations in attentional function may provide insights into the underlying mechanisms for this significant clinical problem.
Collapse
Affiliation(s)
- John D Merriman
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Bradley E Aouizerat
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA; Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Avenue, Box 0794, San Francisco, CA 94143-0794, USA.
| | - Janine K Cataldo
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Laura B Dunn
- School of Medicine, University of California, San Francisco, 513 Parnassus Avenue, Box 0410, San Francisco, CA 94143-0410, USA.
| | - Kord Kober
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Dale J Langford
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Claudia West
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Bruce A Cooper
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Christine Miaskowski
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| |
Collapse
|
28
|
Deidda G, Allegra M, Cerri C, Naskar S, Bony G, Zunino G, Bozzi Y, Caleo M, Cancedda L. Early depolarizing GABA controls critical-period plasticity in the rat visual cortex. Nat Neurosci 2014; 18:87-96. [PMID: 25485756 PMCID: PMC4338533 DOI: 10.1038/nn.3890] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/03/2014] [Indexed: 12/16/2022]
Abstract
Hyperpolarizing and inhibitory GABA regulates critical periods for plasticity in sensory cortices. Here we examine the role of early, depolarizing GABA in the control of plasticity mechanisms. We report that brief interference with depolarizing GABA during early development prolonged critical-period plasticity in visual cortical circuits without affecting the overall development of the visual system. The effects on plasticity were accompanied by dampened inhibitory neurotransmission, downregulation of brain-derived neurotrophic factor (BDNF) expression and reduced density of extracellular matrix perineuronal nets. Early interference with depolarizing GABA decreased perinatal BDNF signaling, and a pharmacological increase of BDNF signaling during GABA interference rescued the effects on plasticity and its regulators later in life. We conclude that depolarizing GABA exerts a long-lasting, selective modulation of plasticity of cortical circuits by a strong crosstalk with BDNF.
Collapse
Affiliation(s)
- Gabriele Deidda
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Manuela Allegra
- 1] Scuola Normale Superiore, Pisa, Italy. [2] CNR Neuroscience Institute, Pisa, Italy
| | | | - Shovan Naskar
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Guillaume Bony
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Giulia Zunino
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yuri Bozzi
- 1] CNR Neuroscience Institute, Pisa, Italy. [2] Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Laura Cancedda
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
29
|
Sheridan GK, Wdowicz A, Pickering M, Watters O, Halley P, O'Sullivan NC, Mooney C, O'Connell DJ, O'Connor JJ, Murphy KJ. CX3CL1 is up-regulated in the rat hippocampus during memory-associated synaptic plasticity. Front Cell Neurosci 2014; 8:233. [PMID: 25161610 PMCID: PMC4130185 DOI: 10.3389/fncel.2014.00233] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/25/2014] [Indexed: 11/13/2022] Open
Abstract
Several cytokines and chemokines are now known to play normal physiological roles in the brain where they act as key regulators of communication between neurons, glia, and microglia. In particular, cytokines and chemokines can affect cardinal cellular and molecular processes of hippocampal-dependent long-term memory consolidation including synaptic plasticity, synaptic scaling and neurogenesis. The chemokine, CX3CL1 (fractalkine), has been shown to modulate synaptic transmission and long-term potentiation (LTP) in the CA1 pyramidal cell layer of the hippocampus. Here, we confirm widespread expression of CX3CL1 on mature neurons in the adult rat hippocampus. We report an up-regulation in CX3CL1 protein expression in the CA1, CA3 and dentate gyrus (DG) of the rat hippocampus 2 h after spatial learning in the water maze task. Moreover, the same temporal increase in CX3CL1 was evident following LTP-inducing theta-burst stimulation in the DG. At physiologically relevant concentrations, CX3CL1 inhibited LTP maintenance in the DG. This attenuation in dentate LTP was lost in the presence of GABAA receptor/chloride channel antagonism. CX3CL1 also had opposing actions on glutamate-mediated rise in intracellular calcium in hippocampal organotypic slice cultures in the presence and absence of GABAA receptor/chloride channel blockade. Using primary dissociated hippocampal cultures, we established that CX3CL1 reduces glutamate-mediated intracellular calcium rises in both neurons and glia in a dose dependent manner. In conclusion, CX3CL1 is up-regulated in the hippocampus during a brief temporal window following spatial learning the purpose of which may be to regulate glutamate-mediated neurotransmission tone. Our data supports a possible role for this chemokine in the protective plasticity process of synaptic scaling.
Collapse
Affiliation(s)
- Graham K Sheridan
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland ; Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| | - Anita Wdowicz
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Mark Pickering
- School of Medicine and Medical Science, Health Sciences Centre, University College Dublin Dublin, Ireland
| | - Orla Watters
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Paul Halley
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Claire Mooney
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - David J O'Connell
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - John J O'Connor
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| | - Keith J Murphy
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin Dublin, Ireland
| |
Collapse
|
30
|
Wu Y, Liu D, Song Z. Neuronal networks and energy bursts in epilepsy. Neuroscience 2014; 287:175-86. [PMID: 24993475 DOI: 10.1016/j.neuroscience.2014.06.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/16/2022]
Abstract
Epilepsy can be defined as the abnormal activities of neurons. The occurrence, propagation and termination of epileptic seizures rely on the networks of neuronal cells that are connected through both synaptic- and non-synaptic interactions. These complicated interactions contain the modified functions of normal neurons and glias as well as the mediation of excitatory and inhibitory mechanisms with feedback homeostasis. Numerous spread patterns are detected in disparate networks of ictal activities. The cortical-thalamic-cortical loop is present during a general spike wave seizure. The thalamic reticular nucleus (nRT) is the major inhibitory input traversing the region, and the dentate gyrus (DG) controls CA3 excitability. The imbalance between γ-aminobutyric acid (GABA)-ergic inhibition and glutamatergic excitation is the main disorder in epilepsy. Adjustable negative feedback that mediates both inhibitory and excitatory components affects neuronal networks through neurotransmission fluctuation, receptor and transmitter signaling, and through concomitant influences on ion concentrations and field effects. Within a limited dynamic range, neurons slowly adapt to input levels and have a high sensitivity to synaptic changes. The stability of the adapting network depends on the ratio of the adaptation rates of both the excitatory and inhibitory populations. Thus, therapeutic strategies with multiple effects on seizures are required for the treatment of epilepsy, and the therapeutic functions on networks are reviewed here. Based on the high-energy burst theory of epileptic activity, we propose a potential antiepileptic therapeutic strategy to transfer the high energy and extra electricity out of the foci.
Collapse
Affiliation(s)
- Y Wu
- The Neurology Department of Third Xiangya Hospital, Medical School of Central South University, Changsha, China
| | - D Liu
- The Neurology Department of Third Xiangya Hospital, Medical School of Central South University, Changsha, China
| | - Z Song
- The Neurology Department of Third Xiangya Hospital, Medical School of Central South University, Changsha, China.
| |
Collapse
|
31
|
Gáti G, Lendvai D. [The "dress" makes the neuron -- different forms of the extracellular matrix in the central nervous system of vertebrates]. Orv Hetil 2013; 154:1067-73; quiz 1078-9. [PMID: 23816895 DOI: 10.1556/oh.2013.29646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Extracellular matrix is a key component of most connective tissues. For decades, the presence of this chemically heterogeneous interface has been largely ignored or even denied in the central nervous system. It was not until the end of the last century that scientists turned their attention to this enigmatic substance and unravelled its versatile roles in the developing as well as the adult nervous system. AIM The aim of the authors was to characterize different parts of the human central nervous system: the hippocampus, the lateral geniculate nucleus and the spinal cord. In addition they looked for connections between brain plasticity and extracellular matrix indifferent animal models. METHOD The authors used two perfusion fixed human brain and spinal cord samples, 23 further human brain samples for disease-related investigations, 16 adult rat brains and 18 chicken brains of hatchlings, 13 days or three months of age. They visualized the extracellular matrix via lectin- and immunohistochemistry. RESULTS It was demonstrated that the human central nervous system shows a bewildering phenotypic versatility in its various parts. The human spinal cord harbours perineuronal nets around long-range projection neurons whilst peri-synaptic coats are enriched in the dorsal horn. Periaxonal coats protect functional synapses in neurodegeneration. In the rat thalamus, perineuronal matrix is enriched in less plastic territories and develops in accordance with its linked cortical region. In the chicken, perineuronal matrix is well established already at birth and its further development is not functionally dependent. CONCLUSIONS In human, the perineuronal matrix shows a large diversity depending on regional distribution and function. The authors argue that the development and differentiation of extracellular matrix is strongly linked to those of neurons. This observation was based on findings in the domestic chick which exhibits an immediate maturity after hatching as well as on observations in rat thalamic nuclei which reflect the plasticity of their corresponding cortical fields.
Collapse
Affiliation(s)
- Georgina Gáti
- Semmelweis Egyetem, Általános Orvostudományi Kar, Anatómiai, Szövet- és Fejlődéstani Intézet, Budapest.
| | | |
Collapse
|
32
|
Bitzenhofer SH, Hanganu-Opatz IL. Oscillatory coupling within neonatal prefrontal-hippocampal networks is independent of selective removal of GABAergic neurons in the hippocampus. Neuropharmacology 2013; 77:57-67. [PMID: 24056266 DOI: 10.1016/j.neuropharm.2013.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/13/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022]
Abstract
GABAergic neurons have been proposed to control oscillatory entrainment and cognitive processing in prefrontal-hippocampal networks. Co-activation of these networks emerges already during neonatal development, with hippocampal theta bursts driving prefrontal oscillations via axonal projections. The cellular substrate of neonatal prefrontal-hippocampal communication and in particular, the role of GABAergic neurons, is still unknown. Here, we used saporin-conjugated anti-vesicular GABA transporter antibodies to cause selective immunotoxic lesion of GABAergic neurons in the CA1 area of the hippocampus during the first postnatal week. Without affecting the somatic development of rat pups, the lesion impaired the generation of hippocampal sharp waves, but not of theta bursts during neonatal development. Moreover, the oscillatory entrainment and firing of neonatal prefrontal cortex as well as the early prefrontal-hippocampal synchrony were largely independent of GABAergic neurotransmission in the hippocampus. Thus, hippocampal interneurons are critical elements for the ontogeny of hippocampal sharp waves, but seem to not control the directed oscillatory coupling between the neonatal prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Sebastian H Bitzenhofer
- Developmental Neurophysiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany.
| |
Collapse
|
33
|
Stensrud M, Chaudhry F, Leergaard T, Bjaalie J, Gundersen V. Vesicular glutamate transporter-3 in the rodent brain: Vesicular colocalization with vesicular γ-aminobutyric acid transporter. J Comp Neurol 2013; 521:3042-56. [DOI: 10.1002/cne.23331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 01/12/2023]
Affiliation(s)
- M.J. Stensrud
- Department of Anatomy; Institute of Basic Medical Sciences, and Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo; 0317 Oslo; Norway
| | - F.A. Chaudhry
- The Biotechnology Centre of Oslo and The Centre for Molecular Biology and Neuroscience (CMBN); University of Oslo; 0317 Oslo; Norway
| | - T.B. Leergaard
- Department of Anatomy; Institute of Basic Medical Sciences, and Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo; 0317 Oslo; Norway
| | - J.G. Bjaalie
- Department of Anatomy; Institute of Basic Medical Sciences, and Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo; 0317 Oslo; Norway
| | | |
Collapse
|
34
|
Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity. EMBO J 2013; 32:1730-44. [PMID: 23685357 DOI: 10.1038/emboj.2013.107] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/15/2013] [Indexed: 12/13/2022] Open
Abstract
Actin-based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin-regulating protein, Eps8, is recruited to the spine head during chemically induced long-term potentiation in culture and that inhibition of its actin-capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin-capping activity in spine morphogenesis and plasticity and indicate that reductions in actin-capping proteins may characterize forms of intellectual disabilities associated with spine defects.
Collapse
|
35
|
Díaz-Alonso J, Guzmán M, Galve-Roperh I. Endocannabinoids via CB₁ receptors act as neurogenic niche cues during cortical development. Philos Trans R Soc Lond B Biol Sci 2013; 367:3229-41. [PMID: 23108542 DOI: 10.1098/rstb.2011.0385] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During brain development, neurogenesis is precisely regulated by the concerted action of intrinsic factors and extracellular signalling systems that provide the necessary niche information to proliferating and differentiating cells. A number of recent studies have revealed a previously unknown role for the endocannabinoid (ECB) system in the control of embryonic neuronal development and maturation. Thus, the CB(1) cannabinoid receptor in concert with locally produced ECBs regulates neural progenitor (NP) proliferation, pyramidal specification and axonal navigation. In addition, subcellularly restricted ECB production acts as an axonal growth cone signal to regulate interneuron morphogenesis. These findings provide the rationale for understanding better the consequences of prenatal cannabinoid exposure, and emphasize a novel role of ECBs as neurogenic instructive cues involved in cortical development. In this review the implications of altered CB(1)-receptor-mediated signalling in developmental disorders and particularly in epileptogenesis are briefly discussed.
Collapse
Affiliation(s)
- Javier Díaz-Alonso
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | | |
Collapse
|
36
|
Hippocampal excitability is increased in aged mice. Exp Neurol 2013; 247:710-9. [PMID: 23510762 DOI: 10.1016/j.expneurol.2013.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 12/22/2022]
Abstract
Aging is known to be associated with a high risk of developing seizure disorders. Currently, the mechanisms underlying this increased seizure susceptibility are not fully understood. Several previous studies have shown a loss of subgroups of GABAergic inhibitory interneurons in the hippocampus of aged rodents, yet the network excitability intrinsic to the aged hippocampus remains to be elucidated. The aim of this study is to examine age-dependent changes of hippocampal network activities in young adult (3-5 months), aging (16-18 months), and aged (24-28 months) mice. We conducted intracranial electroencephalographic (EEG) recordings in free-moving animals and extracellular recordings in hippocampal slices in vitro. EEG recordings revealed frequent spikes in aging and aged mice but only occasionally in young adults. These EEG spikes were suppressed following diazepam administration. Spontaneous field potentials with large amplitudes were frequently observed in hippocampal slices of aged mice but rarely in slices from young adults. These spontaneous field potentials originated from the CA3 area and their generation was dependent upon the excitatory glutamatergic activity. We therefore postulate that hippocampal network excitability is increased in aged mice and that such hyperactivity may be relevant to the increased seizure susceptibility observed in aged subjects.
Collapse
|
37
|
Abstract
Neuropeptides are found in many mammalian CNS neurons where they play key roles in modulating neuronal activity. In contrast to amino acid transmitter release at the synapse, neuropeptide release is not restricted to the synaptic specialization, and after release, a neuropeptide may diffuse some distance to exert its action through a G protein-coupled receptor. Some neuropeptides such as hypocretin/orexin are synthesized only in single regions of the brain, and the neurons releasing these peptides probably have similar functional roles. Other peptides such as neuropeptide Y (NPY) are synthesized throughout the brain, and neurons that synthesize the peptide in one region have no anatomical or functional connection with NPY neurons in other brain regions. Here, I review converging data revealing a complex interaction between slow-acting neuromodulator peptides and fast-acting amino acid transmitters in the control of energy homeostasis, drug addiction, mood and motivation, sleep-wake states, and neuroendocrine regulation.
Collapse
|
38
|
Naegele JR. SAVAs: Molecular Snipers for Silencing GABAergic Interneurons. Epilepsy Curr 2012; 12:216-7. [PMID: 23447714 PMCID: PMC3577123 DOI: 10.5698/1535-7511-12.6.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|