1
|
Handschuh PA, Reed MB, Murgaš M, Vraka C, Kaufmann U, Nics L, Klöbl M, Ozenil M, Konadu ME, Patronas EM, Spurny-Dworak B, Hahn A, Hacker M, Spies M, Baldinger-Melich P, Kranz GS, Lanzenberger R. Effects of gender-affirming hormone therapy on gray matter density, microstructure and monoamine oxidase A levels in transgender subjects. Neuroimage 2024; 297:120716. [PMID: 38955254 DOI: 10.1016/j.neuroimage.2024.120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024] Open
Abstract
MAO-A catalyzes the oxidative degradation of monoamines and is thus implicated in sex-specific neuroplastic processes that influence gray matter (GM) density (GMD) and microstructure (GMM). Given the exact monitoring of plasma hormone levels and sex steroid intake, transgender individuals undergoing gender-affirming hormone therapy (GHT) represent a valuable cohort to potentially investigate sex steroid-induced changes of GM and concomitant MAO-A density. Here, we investigated the effects of GHT over a median time period of 4.5 months on GMD and GMM as well as MAO-A distribution volume. To this end, 20 cisgender women, 11 cisgender men, 20 transgender women and 10 transgender men underwent two MRI scans in a longitudinal design. PET scans using [11C]harmine were performed before each MRI session in a subset of 35 individuals. GM changes determined by diffusion weighted imaging (DWI) metrics for GMM and voxel based morphometry (VBM) for GMD were estimated using repeated measures ANOVA. Regions showing significant changes of both GMM and GMD were used for the subsequent analysis of MAO-A density. These involved the fusiform gyrus, rolandic operculum, inferior occipital cortex, middle and anterior cingulum, bilateral insula, cerebellum and the lingual gyrus (post-hoc tests: pFWE+Bonferroni < 0.025). In terms of MAO-A distribution volume, no significant effects were found. Additionally, the sexual desire inventory (SDI) was applied to assess GHT-induced changes in sexual desire, showing an increase of SDI scores among transgender men. Changes in the GMD of the bilateral insula showed a moderate correlation to SDI scores (rho = - 0.62, pBonferroni = 0.047). The present results are indicative of a reliable influence of gender-affirming hormone therapy on 1) GMD and GMM following an interregional pattern and 2) sexual desire specifically among transgender men.
Collapse
Affiliation(s)
- P A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - C Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - U Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Austria
| | - L Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Ozenil
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M E Konadu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - E M Patronas
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - B Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - A Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - M Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - P Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria; Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, China
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
2
|
Li R, Foland-Ross LC, Jordan T, Marzelli MJ, Ross JL, Reiss AL. Associations between brain network, puberty, and behaviors in boys with Klinefelter syndrome. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02501-y. [PMID: 38904702 DOI: 10.1007/s00787-024-02501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Klinefelter syndrome (KS), also referred to as XXY syndrome, is a significant but inadequately studied risk factor for neuropsychiatric disability. Whether alterations in functional brain connectivity or pubertal delays are associated with aberrant cognitive-behavioral outcomes in individuals with KS is largely unknown. In this observational study, we investigated KS-related alterations in the resting-state brain network, testosterone level, and cognitive-behavioral impairment in adolescents with Klinefelter syndrome. METHODS We recruited 46 boys with KS, ages 8 to 17 years, and 51 age-matched typically developing (TD) boys. All participants underwent resting-state functional magnetic resonance imaging scans, pubertal, and cognitive-behavioral assessments. Resting-state functional connectivity and regional brain activity of the participants were assessed. RESULTS We found widespread alterations in global functional connectivity among the inferior frontal gyrus, temporal-parietal area, and hippocampus in boys with KS. Aberrant regional activities, including enhanced fALFF in the motor area and reduced ReHo in the caudate, were also found in the KS group compared to the TD children. Further, using machine learning methods, brain network alterations in these regions accurately differentiated boys with KS from TD controls. Finally, we showed that the alterations of brain network properties not only effectively predict cognitive-behavioral impairment in boys with KS, but also appear to mediate the association between total testosterone level and language ability, a cognitive domain at particular risk for dysfunction in this condition. CONCLUSION Our results offer an informatic neurobiological foundation for understanding cognitive-behavioral impairments in individuals with KS and contribute to our understanding of the interplay between pubertal status, brain function, and cognitive-behavioral outcome in this population.
Collapse
Affiliation(s)
- Rihui Li
- Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macao S.A.R., China.
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 74305, USA.
| | - Lara C Foland-Ross
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 74305, USA
| | - Tracy Jordan
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 74305, USA
| | - Matthew J Marzelli
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 74305, USA
| | - Judith L Ross
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Nemours duPont Hospital for Children, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 74305, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 74305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 74305, USA
| |
Collapse
|
3
|
Sakaguchi K, Tawata S. Giftedness and atypical sexual differentiation: enhanced perceptual functioning through estrogen deficiency instead of androgen excess. Front Endocrinol (Lausanne) 2024; 15:1343759. [PMID: 38752176 PMCID: PMC11094242 DOI: 10.3389/fendo.2024.1343759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Syndromic autism spectrum conditions (ASC), such as Klinefelter syndrome, also manifest hypogonadism. Compared to the popular Extreme Male Brain theory, the Enhanced Perceptual Functioning model explains the connection between ASC, savant traits, and giftedness more seamlessly, and their co-emergence with atypical sexual differentiation. Overexcitability of primary sensory inputs generates a relative enhancement of local to global processing of stimuli, hindering the abstraction of communication signals, in contrast to the extraordinary local information processing skills in some individuals. Weaker inhibitory function through gamma-aminobutyric acid type A (GABAA) receptors and the atypicality of synapse formation lead to this difference, and the formation of unique neural circuits that process external information. Additionally, deficiency in monitoring inner sensory information leads to alexithymia (inability to distinguish one's own emotions), which can be caused by hypoactivity of estrogen and oxytocin in the interoceptive neural circuits, comprising the anterior insular and cingulate gyri. These areas are also part of the Salience Network, which switches between the Central Executive Network for external tasks and the Default Mode Network for self-referential mind wandering. Exploring the possibility that estrogen deficiency since early development interrupts GABA shift, causing sensory processing atypicality, it helps to evaluate the co-occurrence of ASC with attention deficit hyperactivity disorder, dyslexia, and schizophrenia based on phenotypic and physiological bases. It also provides clues for understanding the common underpinnings of these neurodevelopmental disorders and gifted populations.
Collapse
Affiliation(s)
- Kikue Sakaguchi
- Research Department, National Institution for Academic Degrees and Quality Enhancement of Higher Education (NIAD-QE), Kodaira-shi, Tokyo, Japan
| | - Shintaro Tawata
- Graduate School of Human Sciences, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
4
|
Siqueiros-Sanchez M, Rai B, Chowdhury S, Reiss AL, Green T. Syndrome-Specific Neuroanatomical Phenotypes in Girls With Turner and Noonan Syndromes. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:146-155. [PMID: 36084900 PMCID: PMC10305746 DOI: 10.1016/j.bpsc.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 08/25/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Turner syndrome (TS) and Noonan syndrome (NS) are distinct genetic conditions with highly similar physical and neurodevelopmental phenotypes. TS is caused by X chromosome absence, whereas NS results from genetic mutations activating the Ras-mitogen-activated protein kinase signaling pathway. Previous neuroimaging studies in individuals with TS and NS have shown neuroanatomical variations relative to typically developing individuals, a standard comparison group when initially examining a clinical group of interest. However, none of these studies included a second clinical comparison group, limiting their ability to identify syndrome-specific neuroanatomical phenotypes. METHODS In this study, we compared the behavioral and brain phenotypes of 37 girls with TS, 26 girls with NS, and 37 typically developing girls, all ages 5 to 12 years, using univariate and multivariate data-driven analyses. RESULTS We found divergent neuroanatomical phenotypes between groups, despite high behavioral similarities. Relative to the typically developing group, TS was associated with smaller whole-brain cortical surface area (p ≤ .0001), whereas NS was associated with smaller whole-brain cortical thickness (p = .013). TS was associated with larger subcortical volumes (left amygdala, p = .002; right hippocampus, p = .002), whereas NS was associated with smaller subcortical volumes (bilateral caudate, p ≤ .003; putamen, p < .001; pallidum, p < .001; right hippocampus, p = .015). Multivariate analyses also showed diverging brain phenotypes in terms of surface area and cortical thickness, with surface area outperforming cortical thickness at group separation. CONCLUSIONS TS and NS have syndrome-specific brain phenotypes, despite their behavioral similarities. Our observations suggest that neuroanatomical phenotypes better reflect the different genetic etiologies of TS and NS and may be superior biomarkers relative to behavioral phenotypes.
Collapse
Affiliation(s)
- Monica Siqueiros-Sanchez
- Brain Imaging, Development and Genetics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Bhavana Rai
- Brain Imaging, Development and Genetics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Samir Chowdhury
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Brain Dynamics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Allan L Reiss
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Radiology, Stanford University School of Medicine, Stanford University, Stanford, California; Department Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, California
| | - Tamar Green
- Brain Imaging, Development and Genetics Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
5
|
Lozano Wun V, Foland‐Ross LC, Jo B, Green T, Hong D, Ross JL, Reiss AL. Adolescent brain development in girls with Turner syndrome. Hum Brain Mapp 2023; 44:4028-4039. [PMID: 37126641 PMCID: PMC10258525 DOI: 10.1002/hbm.26327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/08/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
Turner syndrome (TS) is a common sex chromosome aneuploidy in females associated with various physical, cognitive, and socio-emotional phenotypes. However, few studies have examined TS-associated alterations in the development of cortical gray matter volume and the two components that comprise this measure-surface area and thickness. Moreover, the longitudinal direct (i.e., genetic) and indirect (i.e., hormonal) effects of X-monosomy on the brain are unclear. Brain structure was assessed in 61 girls with TS (11.3 ± 2.8 years) and 55 typically developing girls (10.8 ± 2.3 years) for up to 4 timepoints. Surface-based analyses of cortical gray matter volume, thickness, and surface area were conducted to examine the direct effects of X-monosomy present before pubertal onset and indirect hormonal effects of estrogen deficiency/X-monosomy emerging after pubertal onset. Longitudinal analyses revealed that, whereas typically developing girls exhibited normative declines in gray matter structure during adolescence, this pattern was reduced or inverted in TS. Further, girls with TS demonstrated smaller total surface area and larger average cortical thickness overall. Regionally, the TS group exhibited decreased volume and surface area in the pericalcarine, postcentral, and parietal regions relative to typically developing girls, as well as larger volume in the caudate, amygdala, and temporal lobe regions and increased thickness in parietal and temporal regions. Surface area alterations were predominant by age 8, while maturational differences in thickness emerged by age 10 or later. Taken together, these results suggest the involvement of both direct and indirect effects of X-chromosome haploinsufficiency on brain development in TS.
Collapse
Affiliation(s)
- Vanessa Lozano Wun
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
- Department of PsychologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lara C. Foland‐Ross
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - Booil Jo
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - David Hong
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
| | - Judith L. Ross
- Department of PediatricsThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Nemours Children's HospitalWilmingtonDelawareUSA
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesStanford UniversityStanfordCaliforniaUSA
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Department of RadiologyStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
6
|
Terrin F, Tesoriere A, Plotegher N, Dalla Valle L. Sex and Brain: The Role of Sex Chromosomes and Hormones in Brain Development and Parkinson's Disease. Cells 2023; 12:1486. [PMID: 37296608 PMCID: PMC10252697 DOI: 10.3390/cells12111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Sex hormones and genes on the sex chromosomes are not only key factors in the regulation of sexual differentiation and reproduction but they are also deeply involved in brain homeostasis. Their action is crucial for the development of the brain, which presents different characteristics depending on the sex of individuals. The role of these players in the brain is fundamental in the maintenance of brain function during adulthood as well, thus being important also with respect to age-related neurodegenerative diseases. In this review, we explore the role of biological sex in the development of the brain and analyze its impact on the predisposition toward and the progression of neurodegenerative diseases. In particular, we focus on Parkinson's disease, a neurodegenerative disorder that has a higher incidence in the male population. We report how sex hormones and genes encoded by the sex chromosomes could protect from the disease or alternatively predispose toward its development. We finally underline the importance of considering sex when studying brain physiology and pathology in cellular and animal models in order to better understand disease etiology and develop novel tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| |
Collapse
|
7
|
Guma E, Beauchamp A, Liu S, Levitis E, Clasen LS, Torres E, Blumenthal J, Lalonde F, Qiu LR, Hrncir H, MacKenzie-Graham A, Yang X, Arnold AP, Lerch JP, Raznahan A. A Cross-Species Neuroimaging Study of Sex Chromosome Dosage Effects on Human and Mouse Brain Anatomy. J Neurosci 2023; 43:1321-1333. [PMID: 36631267 PMCID: PMC9987571 DOI: 10.1523/jneurosci.1761-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
All eutherian mammals show chromosomal sex determination with contrasting sex chromosome dosages (SCDs) between males (XY) and females (XX). Studies in transgenic mice and humans with sex chromosome trisomy (SCT) have revealed direct SCD effects on regional mammalian brain anatomy, but we lack a formal test for cross-species conservation of these effects. Here, we develop a harmonized framework for comparative structural neuroimaging and apply this to systematically profile SCD effects on regional brain anatomy in both humans and mice by contrasting groups with SCT (XXY and XYY) versus XY controls. Total brain size was substantially altered by SCT in humans (significantly decreased by XXY and increased by XYY), but not in mice. Robust and spatially convergent effects of XXY and XYY on regional brain volume were observed in humans, but not mice, when controlling for global volume differences. However, mice do show subtle effects of XXY and XYY on regional volume, although there is not a general spatial convergence in these effects within mice or between species. Notwithstanding this general lack of conservation in SCT effects, we detect several brain regions that show overlapping effects of XXY and XYY both within and between species (cerebellar, parietal, and orbitofrontal cortex), thereby nominating high priority targets for future translational dissection of SCD effects on the mammalian brain. Our study introduces a generalizable framework for comparative neuroimaging in humans and mice and applies this to achieve a cross-species comparison of SCD effects on the mammalian brain through the lens of SCT.SIGNIFICANCE STATEMENT Sex chromosome dosage (SCD) affects neuroanatomy and risk for psychopathology in humans. Performing mechanistic studies in the human brain is challenging but possible in mouse models. Here, we develop a framework for cross-species neuroimaging analysis and use this to show that an added X- or Y-chromosome significantly alters human brain anatomy but has muted effects in the mouse brain. However, we do find evidence for conserved cross-species impact of an added chromosome in the fronto-parietal cortices and cerebellum, which point to regions for future mechanistic dissection of sex chromosome dosage effects on brain development.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Antoine Beauchamp
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Liv S. Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Erin Torres
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Francois Lalonde
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| | - Lily R. Qiu
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Haley Hrncir
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Arthur P. Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California 90095
| | - Jason P. Lerch
- Mouse Imaging Centre, Toronto, Ontario M5T 3H7, Canada
- The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, 20892, Maryland
| |
Collapse
|
8
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
9
|
Modenato C, Martin-Brevet S, Moreau CA, Rodriguez-Herreros B, Kumar K, Draganski B, Sønderby IE, Jacquemont S. Lessons Learned From Neuroimaging Studies of Copy Number Variants: A Systematic Review. Biol Psychiatry 2021; 90:596-610. [PMID: 34509290 DOI: 10.1016/j.biopsych.2021.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/06/2023]
Abstract
Pathogenic copy number variants (CNVs) and aneuploidies alter gene dosage and are associated with neurodevelopmental psychiatric disorders such as autism spectrum disorder and schizophrenia. Brain mechanisms mediating genetic risk for neurodevelopmental psychiatric disorders remain largely unknown, but there is a rapid increase in morphometry studies of CNVs using T1-weighted structural magnetic resonance imaging. Studies have been conducted one mutation at a time, leaving the field with a complex catalog of brain alterations linked to different genomic loci. Our aim was to provide a systematic review of neuroimaging phenotypes across CNVs associated with developmental psychiatric disorders including autism and schizophrenia. We included 76 structural magnetic resonance imaging studies on 20 CNVs at the 15q11.2, 22q11.2, 1q21.1 distal, 16p11.2 distal and proximal, 7q11.23, 15q11-q13, and 22q13.33 (SHANK3) genomic loci as well as aneuploidies of chromosomes X, Y, and 21. Moderate to large effect sizes on global and regional brain morphometry are observed across all genomic loci, which is in line with levels of symptom severity reported for these variants. This is in stark contrast with the much milder neuroimaging effects observed in idiopathic psychiatric disorders. Data also suggest that CNVs have independent effects on global versus regional measures as well as on cortical surface versus thickness. Findings highlight a broad diversity of regional morphometry patterns across genomic loci. This heterogeneity of brain patterns provides insight into the weak effects reported in magnetic resonance imaging studies of cognitive dimension and psychiatric conditions. Neuroimaging studies across many more variants will be required to understand links between gene function and brain morphometry.
Collapse
Affiliation(s)
- Claudia Modenato
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Sandra Martin-Brevet
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Clara A Moreau
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique UMR 3571, Department of Neuroscience, Université de Paris, Institut Pasteur, Paris, France
| | - Borja Rodriguez-Herreros
- Service des Troubles du Spectre de l'Autisme et Apparentés, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Kuldeep Kumar
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland; Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ida E Sønderby
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Sébastien Jacquemont
- Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Björlin Avdic H, Butwicka A, Nordenström A, Almqvist C, Nordenskjöld A, Engberg H, Frisén L. Neurodevelopmental and psychiatric disorders in females with Turner syndrome: a population-based study. J Neurodev Disord 2021; 13:51. [PMID: 34706642 PMCID: PMC8554886 DOI: 10.1186/s11689-021-09399-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/14/2021] [Indexed: 01/15/2023] Open
Abstract
Background Turner syndrome is the result of the partial or complete absence of an X chromosome in phenotypic girls. This can cause an array of medical and developmental difficulties. The intelligence quotient in females with Turner syndrome has previously been described as uneven, but considered within normal range. Although their social, intellectual, and psychiatric profile is described, it is unclear to what extent these females meet the clinical criteria for neurodevelopmental or psychiatric diagnoses. The aim of this study was to examine the prevalence of neurodevelopmental and psychiatric disorders in females with Turner syndrome. Methods A retrospective cohort study was performed with a total of 1392 females with Turner syndrome identified through the Swedish National Patient Register and compared with 1:100 age- and sex-matched controls from the general population. The associations between Turner syndrome and diagnoses of neurodevelopmental and/or psychiatric disorders were calculated using conditional logistic regression and is presented as estimated risk (odds ratio, OR, 95% confidence interval, CI) in females with Turner syndrome compared with matched controls. Results Females with Turner syndrome had a higher risk of neurodevelopmental or psychiatric disorder (OR 1.37, 95% CI 1.20–1.57), an eightfold increased risk of intellectual disability (OR 8.59, 95% CI 6.58–11.20), and a fourfold increased risk of autism spectrum disorder (OR 4.26, 95% CI 2.94‑6.18) compared with the controls. In addition, females with Turner syndrome had twice the risk of a diagnosis of schizophrenia and related disorders (OR 1.98, 95% CI 1.36–2.88), eating disorders (OR 2.03, 95% CI 1.42–2.91), and behavioral and emotional disorders with onset in childhood (OR 2.01, 95% CI 1.35–2.99). Conclusions Females with Turner syndrome have an increased risk of receiving a diagnosis of neurodevelopmental or psychiatric disorder. This warrants extensive assessment of intellectual and cognitive functions from early age, and increased psychiatric vigilance should be a part of lifelong healthcare for females with Turner syndrome.
Collapse
Affiliation(s)
- Hanna Björlin Avdic
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, CAP Research Centre, Gävlegatan 22, SE-113 30, Stockholm, Sweden.
| | - Agnieszka Butwicka
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Anna Nordenström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Endocrinology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit, Astrid Lindgren Children's Hospital, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Hedvig Engberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Louise Frisén
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, CAP Research Centre, Gävlegatan 22, SE-113 30, Stockholm, Sweden
| |
Collapse
|
11
|
Foland-Ross LC, Gil M, Shrestha SB, Chromik LC, Hong D, Reiss AL. Cortical gray matter structure in boys with Klinefelter syndrome. Psychiatry Res Neuroimaging 2021; 313:111299. [PMID: 34038819 PMCID: PMC8321133 DOI: 10.1016/j.pscychresns.2021.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022]
Abstract
Klinefelter syndrome (KS, 47,XXY) is a common sex chromosome aneuploidy in males that is associated with a wide range of cognitive, social and emotional characteristics. The neural bases of these symptoms, however, are unclear. Brain structure in 19 pre- or early-pubertal boys with KS (11.5 ± 1.8 years) and 22 typically developing (control) boys (8.1 ± 2.3 years) was examined using surface-based analyses of cortical gray matter volume, thickness and surface area. Boys in the KS group were treatment-naïve with respect to testosterone replacement therapy. Reduced volume in the insula and dorsomedial prefrontal cortex was observed in the KS relative to the TD group, as well as increased volume in the parietal, occipital and motor regions. Further inspection of surface-based metrics indicated that whereas KS-associated increases in volume were driven by differences in thickness, KS-associated reductions in volume were associated with decreases in surface area. Exploratory analyses additionally indicated several correlations between brain structure and behavior, providing initial support for a neural basis of cognitive and emotional symptoms of this condition. Taken together, these data add support for a neuroanatomical phenotype of KS and extend previous studies through clarifying the precise neuroanatomical structural characteristics of that give rise to volumetric alterations.
Collapse
Affiliation(s)
- Lara C Foland-Ross
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States.
| | - Maureen Gil
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Sharon Bade Shrestha
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Lindsay C Chromik
- Division of Child Neurology, Stanford University School of Medicine, Stanford, CA, United States
| | - David Hong
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
12
|
Otter M, Crins PML, Campforts BCM, Stumpel CTRM, van Amelsvoort TAMJ, Vingerhoets C. Social functioning and emotion recognition in adults with triple X syndrome. BJPsych Open 2021; 7:e51. [PMID: 33583482 PMCID: PMC8058878 DOI: 10.1192/bjo.2021.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Triple X syndrome (TXS) is caused by aneuploidy of the X chromosome and is associated with impaired social functioning in children; however, its effect on social functioning and emotion recognition in adults is poorly understood. AIMS The aim of this study was to investigate social functioning and emotion recognition in adults with TXS. METHOD This cross-sectional cohort study was designed to compare social functioning and emotion recognition between adults with TXS (n = 34) and an age-matched control group (n = 31). Social functioning was assessed with the Adult Behavior Checklist and Social Responsiveness Scale for Adults. Emotion recognition was assessed with the Emotion Recognition Task in the Cambridge Neuropsychological Test Automated Battery. Differences were analysed by Mann-Whitney U-test. RESULTS Compared with controls, women with TXS scored higher on the Adult Behavior Checklist, including the Withdrawn scale (P < 0.001, effect size 0.4) and Thought Problems scale (P < 0.001, effect size 0.4); and higher on the Social Responsiveness Scale for Adults, indicating impaired social functioning (P < 0.001, effect size 0.5). In addition, women with TXS performed worse on the Emotion Recognition Task, particularly with respect to recognising sadness (P < 0.005, effect size 0.4), fear (P < 0.01, effect size 0.4) and disgust (P < 0.02, effect size 0.3). CONCLUSIONS Our findings indicate that adults with TXS have a higher prevalence of impaired social functioning and emotion recognition. These results highlight the relevance of sex chromosome aneuploidy as a potential model for studying disorders characterised by social impairments such as autism spectrum disorder, particularly among women.
Collapse
Affiliation(s)
- Maarten Otter
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands; Department of Forensic Psychiatry & Mild Intellectual Disabilities, STEVIG, The Netherlands; and Department of Community Mental Health in Mild Intellectual Disabilities, Trajectum, The Netherlands
| | - Peter M L Crins
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Bea C M Campforts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Centre, The Netherlands
| | - Thérèse A M J van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, The Netherlands; Heeren Loo Zorggroep, The Netherlands; and Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centre, The Netherlands
| |
Collapse
|
13
|
Mordaunt CE, Jianu JM, Laufer BI, Zhu Y, Hwang H, Dunaway KW, Bakulski KM, Feinberg JI, Volk HE, Lyall K, Croen LA, Newschaffer CJ, Ozonoff S, Hertz-Picciotto I, Fallin MD, Schmidt RJ, LaSalle JM. Cord blood DNA methylome in newborns later diagnosed with autism spectrum disorder reflects early dysregulation of neurodevelopmental and X-linked genes. Genome Med 2020; 12:88. [PMID: 33054850 PMCID: PMC7559201 DOI: 10.1186/s13073-020-00785-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex heritability and higher prevalence in males. The neonatal epigenome has the potential to reflect past interactions between genetic and environmental factors during early development and influence future health outcomes. METHODS We performed whole-genome bisulfite sequencing of 152 umbilical cord blood samples from the MARBLES and EARLI high-familial risk prospective cohorts to identify an epigenomic signature of ASD at birth. Samples were split into discovery and replication sets and stratified by sex, and their DNA methylation profiles were tested for differentially methylated regions (DMRs) between ASD and typically developing control cord blood samples. DMRs were mapped to genes and assessed for enrichment in gene function, tissue expression, chromosome location, and overlap with prior ASD studies. DMR coordinates were tested for enrichment in chromatin states and transcription factor binding motifs. Results were compared between discovery and replication sets and between males and females. RESULTS We identified DMRs stratified by sex that discriminated ASD from control cord blood samples in discovery and replication sets. At a region level, 7 DMRs in males and 31 DMRs in females replicated across two independent groups of subjects, while 537 DMR genes in males and 1762 DMR genes in females replicated by gene association. These DMR genes were significantly enriched for brain and embryonic expression, X chromosome location, and identification in prior epigenetic studies of ASD in post-mortem brain. In males and females, autosomal ASD DMRs were significantly enriched for promoter and bivalent chromatin states across most cell types, while sex differences were observed for X-linked ASD DMRs. Lastly, these DMRs identified in cord blood were significantly enriched for binding sites of methyl-sensitive transcription factors relevant to fetal brain development. CONCLUSIONS At birth, prior to the diagnosis of ASD, a distinct DNA methylation signature was detected in cord blood over regulatory regions and genes relevant to early fetal neurodevelopment. Differential cord methylation in ASD supports the developmental and sex-biased etiology of ASD and provides novel insights for early diagnosis and therapy.
Collapse
Affiliation(s)
- Charles E. Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Julia M. Jianu
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Benjamin I. Laufer
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Yihui Zhu
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Keith W. Dunaway
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Jason I. Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Heather E. Volk
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Kristen Lyall
- A. J. Drexel Autism Institute, Drexel University, Philadelphia, PA USA
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA USA
| | - Craig J. Newschaffer
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA USA
| | - Sally Ozonoff
- Psychiatry and Behavioral Sciences and MIND Institute, University of California, Davis, CA USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - M. Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| |
Collapse
|
14
|
Karipidis II, Hong DS. Specific learning disorders in sex chromosome aneuploidies: Neural circuits of literacy and mathematics. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:518-530. [DOI: 10.1002/ajmg.c.31801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Iliana I. Karipidis
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesSchool of Medicine, Stanford University Stanford California USA
| | - David S. Hong
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral SciencesSchool of Medicine, Stanford University Stanford California USA
| |
Collapse
|
15
|
O’Donoghue S, Green T, Ross JL, Hallmayer J, Lin X, Jo B, Huffman LC, Hong DS, Reiss AL. Brain Development in School-Age and Adolescent Girls: Effects of Turner Syndrome, Estrogen Therapy, and Genomic Imprinting. Biol Psychiatry 2020; 87:113-122. [PMID: 31561860 PMCID: PMC6925344 DOI: 10.1016/j.biopsych.2019.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND The study of Turner syndrome (TS) offers a unique window of opportunity for advancing scientific knowledge of how X chromosome gene imprinting, epigenetic factors, hormonal milieu, and chronologic age affect brain development in females. METHODS We described brain growth trajectories in 55 girls with TS and 53 typically developing girls (258 magnetic resonance imaging datasets) spanning 5 years. Using novel nonparametric and mixed effects analytic approaches, we evaluated influences of X chromosome genomic imprinting and hormone replacement therapy on brain development. RESULTS Parieto-occipital gray and white matter regions showed slower growth during typical pubertal timing in girls with TS relative to typically developing girls. In contrast, some basal ganglia, cerebellar, and limited cortical areas showed enhanced volume growth with peaks around 10 years of age. CONCLUSIONS The parieto-occipital finding suggests that girls with TS may be particularly vulnerable to altered brain development during adolescence. Basal ganglia regions may be relatively preserved in TS owing to their maturational growth before or early in typical pubertal years. Taken together, our findings indicate that particular brain regions are more vulnerable to TS genetic and hormonal effects during puberty. These specific alterations in neurodevelopment may be more likely to affect long-term cognitive behavioral outcomes in young girls with this common genetic condition.
Collapse
Affiliation(s)
- Stefani O’Donoghue
- Center for Interdisciplinary Brain Sciences Research, Stanford University,Department of Psychiatry and Behavioral Sciences, Stanford University
| | - Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Stanford University,Department of Psychiatry and Behavioral Sciences, Stanford University
| | | | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University
| | - Xiaoyan Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University
| | - Booil Jo
- Center for Interdisciplinary Brain Sciences Research, Stanford University,Department of Psychiatry and Behavioral Sciences, Stanford University
| | | | - David S. Hong
- Center for Interdisciplinary Brain Sciences Research, Stanford University,Department of Psychiatry and Behavioral Sciences, Stanford University
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Stanford University,Department of Psychiatry and Behavioral Sciences, Stanford University,Department of Pediatrics, Stanford University,Department of Radiology, Stanford University
| |
Collapse
|
16
|
Sigurdardottir HL, Lanzenberger R, Kranz GS. Genetics of sex differences in neuroanatomy and function. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:179-193. [PMID: 33008524 DOI: 10.1016/b978-0-444-64123-6.00013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Sex differences are observed at many distinct biologic levels, such as in the anatomy and functioning of the brain, behavior, and susceptibility to neuropsychiatric disorders. Previously, these differences were believed to entirely result from the secretion of gonadal hormones; however, recent research has demonstrated that differences are also the consequence of direct or nonhormonal effects of genes located on the sex chromosomes. This chapter reviews the four core genotype model that separates the effects of hormones and sex chromosomes and highlights a few genes that are believed to be partly responsible for sex dimorphism of the brain, in particular, the Sry gene. Genetics of the brain's neurochemistry is discussed and the susceptibility to certain neurologic and psychiatric disorders is reviewed. Lastly, we discuss the sex-specific genetic contribution in disorders of sexual development. The precise molecular mechanisms underlying these differences are currently not entirely known. An increased knowledge and understanding of the role of candidate genes will undeniably be of great aid in elucidating the molecular basis of sex-biased disorders and potentially allow for more sex-specific therapies.
Collapse
Affiliation(s)
- Helen L Sigurdardottir
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
17
|
Green T, Saggar M, Ishak A, Hong DS, Reiss AL. X-Chromosome Effects on Attention Networks: Insights from Imaging Resting-State Networks in Turner Syndrome. Cereb Cortex 2019; 28:3176-3183. [PMID: 28981595 DOI: 10.1093/cercor/bhx188] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/03/2017] [Indexed: 01/15/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is strongly affected by sex, but sex chromosomes' effect on brain attention networks and cognition are difficult to examine in humans. This is due to significant etiologic heterogeneity among diagnosed individuals. In contrast, individuals with Turner syndrome (TS), who have substantially increased risk for ADHD symptoms, share a common genetic risk factor related to the absence of the X-chromosome, thus serving as a more homogeneous genetic model. Resting-state functional MRI was employed to examine differences in attention networks between girls with TS (n = 40) and age- sex- and Tanner-matched controls (n = 33). We compared groups on resting-state functional connectivity measures from data-driven independent components analysis (ICA) and hypothesis-based seed analysis. Using ICA, reduced connectivity was observed in both frontoparietal and dorsal attention networks. Similarly, using seeds in the bilateral intraparietal sulcus (IPS), reduced connectivity was observed between IPS and frontal and cerebellar regions. Finally, we observed a brain-behavior correlation between IPS-cerebellar connectivity and cognitive attention measures. These findings indicate that X-monosomy contributes affects to attention networks and cognitive dysfunction that might increase risk for ADHD. Our findings not only have clinical relevance for girls with TS, but might also serve as a biological marker in future research examining the effects of the intervention that targets attention skills.
Collapse
Affiliation(s)
- Tamar Green
- Division of Interdisciplinary Brain Sciences, Stanford University, CA, USA
| | - Manish Saggar
- Division of Interdisciplinary Brain Sciences, Stanford University, CA, USA
| | - Alexandra Ishak
- Division of Interdisciplinary Brain Sciences, Stanford University, CA, USA
| | - David S Hong
- Division of Interdisciplinary Brain Sciences, Stanford University, CA, USA
| | - Allan L Reiss
- Division of Interdisciplinary Brain Sciences, Stanford University, CA, USA.,Department of Radiology and Pediatrics, Stanford University, CA, USA
| |
Collapse
|
18
|
Foland-Ross LC, Ross JL, Reiss AL. Androgen treatment effects on hippocampus structure in boys with Klinefelter syndrome. Psychoneuroendocrinology 2019; 100:223-228. [PMID: 30388596 PMCID: PMC6644684 DOI: 10.1016/j.psyneuen.2018.09.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
Klinefelter syndrome (KS, 47,XXY) is the most common sex chromosome aneuploidy in males. A variety of complex clinical needs is associated with KS, including physical, cognitive and psychosocial impairments. Standard treatment for KS consists of androgen replacement therapy in adolescence to offset testosterone deficiency. Such treatment has a beneficial effect on the physical and behavioral manifestations of this syndrome. Whether androgen supplementation has a significant influence on the brain, however, is unknown. In the current study, we examined regional gray matter volume in boys with KS to assess whether treatment with oxandrolone, a synthetic hormone analog of testosterone, was associated with structural changes in the brain. Specifically, we focused our investigation on the hippocampus, given (1) its involvement in KS, and (2) the high concentration of androgen receptors found in this region. Structural magnetic resonance imaging data was acquired from a subsample of boys who completed a 2-year double-blind clinical trial in which patients were randomized to treatment with oxandrolone or to placebo, as well as from a sample of typically developing (TD) boys. Group differences in hippocampal volume were examined. A significant main effect of group was observed. Pairwise comparisons indicated smaller hippocampal volume in the placebo group relative to the oxandrolone group, as well as smaller volume in the placebo group relative to the TD control group. No difference in volume was observed between the treatment and TD groups. Moreover, across KS subgroups, a significant positive association was observed between hippocampus volume and performance on a spatial memory task, indicating treatment-based changes in brain structure may underlie cognitive change. These findings confirm prior reports implicating a role of the hippocampus in KS and are important in extending previous research by demonstrating a significant effect of androgens on brain structure.
Collapse
Affiliation(s)
- Lara C Foland-Ross
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94304, United States.
| | - Judith L Ross
- Thomas Jefferson University, Department of Pediatrics, Philadelphia, PA, United States; A.I. DuPont Hospital for Children, Wilmington, DE, United States
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94304, United States; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, United States; Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|
19
|
Zhao C, Yang L, Xie S, Zhang Z, Pan H, Gong G. Hemispheric Module-Specific Influence of the X Chromosome on White Matter Connectivity: Evidence from Girls with Turner Syndrome. Cereb Cortex 2019; 29:4580-4594. [PMID: 30615091 DOI: 10.1093/cercor/bhy335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/05/2018] [Indexed: 11/14/2022] Open
Abstract
AbstractTurner syndrome (TS) is caused by the congenital absence of all or part of one of the X chromosomes in females, offering a valuable human “knockout model” to study the functioning patterns of the X chromosome in the human brain. Little is known about whether and how the loss of the X chromosome influences the brain structural wiring patterns in human. We acquired a multimodal MRI dataset and cognitive assessments from 22 girls with TS and 21 age-matched control girls to address these questions. Hemispheric white matter (WM) networks and modules were derived using refined diffusion MRI tractography. Statistical comparisons revealed a reduced topological efficiency of both hemispheric networks and bilateral parietal modules in TS girls. Specifically, the efficiency of right parietal module significantly mediated the effect of the X chromosome on working memory performance, indicating that X chromosome loss impairs working memory performance by disrupting this module. Additionally, TS girls showed structural and functional connectivity decoupling across specific within- and between-modular connections, predominantly in the right hemisphere. These findings provide novel insights into the functional pathways in the brain that are regulated by the X chromosome and highlight a module-specific genetic contribution to WM connectivity in the human brain.
Collapse
Affiliation(s)
- Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Sheng Xie
- Department of Radiology, China–Japan Friendship Hospital, Beijing, China
| | - Zhixin Zhang
- Department of Pediatrics, China–Japan Friendship Hospital, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
20
|
Green T, Flash S, Reiss AL. Sex differences in psychiatric disorders: what we can learn from sex chromosome aneuploidies. Neuropsychopharmacology 2019; 44:9-21. [PMID: 30127341 PMCID: PMC6235860 DOI: 10.1038/s41386-018-0153-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/01/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022]
Abstract
The study of sexual dimorphism in psychiatric and neurodevelopmental disorders is challenging due to the complex interplay of diverse biological, psychological, and social factors. Males are more susceptible to neurodevelopmental disorders including intellectual disability, autism spectrum disorder, and attention-deficit activity disorder. Conversely, after puberty, females are more prone to major depressive disorder and anxiety disorders compared to males. One major biological factor contributing to sex differences is the sex chromosomes. First, the X and Y chromosomes have unique and specific genetic effects as well as downstream gonadal effects. Second, males have one X chromosome and one Y chromosome, while females have two X chromosomes. Thus, sex chromosome constitution also differs between the sexes. Due to this complexity, determining genetic and downstream biological influences on sexual dimorphism in humans is challenging. Sex chromosome aneuploidies, such as Turner syndrome (X0) and Klinefelter syndrome (XXY), are common genetic conditions in humans. The study of individuals with sex chromosome aneuploidies provides a promising framework for studying sexual dimorphism in neurodevelopmental and psychiatric disorders. Here we will review and contrast four syndromes caused by variation in the number of sex chromosomes: Turner syndrome, Klinefelter syndrome, XYY syndrome, and XXX syndrome. Overall we describe an increased rate of attention-deficit hyperactivity disorder and autism spectrum disorder, along with the increased rates of major depressive disorder and anxiety disorders in one or more of these conditions. In addition to contributing unique insights about sexual dimorphism in neuropsychiatric disorders, awareness of the increased risk of neurodevelopmental and psychiatric disorders in sex chromosome aneuploidies can inform appropriate management of these common genetic disorders.
Collapse
Affiliation(s)
- Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Stanford University, Stanford, CA, 94305, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - Shira Flash
- Center for Interdisciplinary Brain Sciences Research, Stanford University, Stanford, CA, 94305, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Stanford University, Stanford, CA, 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
21
|
Kanakis GA, Nieschlag E. Klinefelter syndrome: more than hypogonadism. Metabolism 2018; 86:135-144. [PMID: 29382506 DOI: 10.1016/j.metabol.2017.09.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Klinefelter syndrome (KS) is the most frequent chromosome disorder in males (1:650 newborn males), defined by 47,XXY karyotype. The classical phenotype is that of a tall male with relatively long legs, small, firm testes and gynecomastia. Azoospermia and infertility are almost inevitably present, but may be overcome by TESE and ICSI. Nevertheless, a broad spectrum of phenotypes has been described and more than 70% of the actually existing KS men may remain undiagnosed throughout their lifespan. Accordingly, hypogonadism is usually not evident until early adulthood and progresses with ageing. KS patients present a series of comorbidities that increase morbidity and mortality by 40%. Such disturbances are the impaired metabolic profile (obesity, dyslipidemia, insulin resistance) and a tendency to thrombosis, which all favor cardiovascular disease. They also present susceptibility for specific neoplasias (breast cancer, extragonadal germ cell tumors), autoimmune diseases as well as osteoporosis and bone fractures. Moreover, KS has been associated with verbal processing and attention deficits as well as social skill impairments, leading KS individuals to academic and professional achievements inferior to those of their peers of comparable socio-economic status. Nevertheless, the majority fall within the average range regarding their intellectual abilities and adaptive functioning. Testosterone replacement therapy (TRT) is the mainstay of treatment in hypogonadal KS patients; however, randomized trials are needed to determine optimal therapeutic regimens and follow-up schedules.
Collapse
Affiliation(s)
- George A Kanakis
- Department of Endocrinology, Athens Naval & VA Hospital, Athens, Greece.
| | - Eberhard Nieschlag
- University Hospital of Muenster, Center of Reproductive Medicine and Andrology, Domagkstraße 11, D-48149, Muenster, Germany
| |
Collapse
|
22
|
Abstract
Sex chromosome aneuploidies comprise a relatively common group of chromosome disorders characterized by the loss or gain of one or more sex chromosomes. We discuss five of the better-known sex aneuploidies: Turner syndrome (XO), Klinefelter syndrome (XXY), trisomy X (XXX), XYY, and XXYY. Despite their prevalence in the general population, these disorders are underdiagnosed and the specific genetic mechanisms underlying their phenotypes are poorly understood. Although there is considerable variation between them in terms of associated functional impairment, each disorder has a characteristic physical, cognitive, and neurologic profile. The most common cause of sex chromosome aneuploidies is nondisjunction, which can occur during meiosis or during the early stages of postzygotic development. The loss or gain of genetic material can affect all daughter cells or it may be partial, leading to tissue mosaicism. In both typical and atypical sex chromosome karyotypes, there is random inactivation of all but one X chromosome. The mechanisms by which a phenotype results from sex chromosome aneuploidies are twofold: dosage imbalance arising from a small number of genes that escape inactivation, and their endocrinologic consequences.
Collapse
Affiliation(s)
- David Skuse
- Brain and Behaviour Science Unit, UCL Institute of Child Health, London, United Kingdom.
| | - Frida Printzlau
- Brain and Behaviour Science Unit, UCL Institute of Child Health, London, United Kingdom
| | - Jeanne Wolstencroft
- Brain and Behaviour Science Unit, UCL Institute of Child Health, London, United Kingdom
| |
Collapse
|
23
|
Seiler C, Green T, Hong D, Chromik L, Huffman L, Holmes S, Reiss AL. Multi-Table Differential Correlation Analysis of Neuroanatomical and Cognitive Interactions in Turner Syndrome. Neuroinformatics 2017; 16:81-93. [PMID: 29270892 DOI: 10.1007/s12021-017-9351-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Girls and women with Turner syndrome (TS) have a completely or partially missing X chromosome. Extensive studies on the impact of TS on neuroanatomy and cognition have been conducted. The integration of neuroanatomical and cognitive information into one consistent analysis through multi-table methods is difficult and most standard tests are underpowered. We propose a new two-sample testing procedure that compares associations between two tables in two groups. The procedure combines multi-table methods with permutation tests. In particular, we construct cluster size test statistics that incorporate spatial dependencies. We apply our new procedure to a newly collected dataset comprising of structural brain scans and cognitive test scores from girls with TS and healthy control participants (age and sex matched). We measure neuroanatomy with Tensor-Based Morphometry (TBM) and cognitive function with Wechsler IQ and NEuroPSYchological tests (NEPSY-II). We compare our multi-table testing procedure to a single-table analysis. Our new procedure reports differential correlations between two voxel clusters and a wide range of cognitive tests whereas the single-table analysis reports no differences. Our findings are consistent with the hypothesis that girls with TS have a different brain-cognition association structure than healthy controls.
Collapse
Affiliation(s)
- Christof Seiler
- Department of Statistics, Stanford University, Stanford, CA, USA.
| | - Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Hong
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Lindsay Chromik
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Lynne Huffman
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA.,Departments of Radiology, Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
24
|
Aberrant ocular architecture and function in patients with Klinefelter syndrome. Sci Rep 2017; 7:13130. [PMID: 29030589 PMCID: PMC5640645 DOI: 10.1038/s41598-017-13528-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/25/2017] [Indexed: 11/25/2022] Open
Abstract
Klinefelter Syndrome (KS), the most common chromosomal disorder in men (47,XXY), is associated with numerous comorbidities. Based on a number of isolated case reports, we performed the first systematic and comprehensive evaluation of eye health in KS patients with a focus on ocular structure and vascularization. Twenty-one KS patients and 26 male and 38 female controls underwent a variety of non-invasive examinations investigating ocular morphology (examination of retinal thickness, optic nerve head, and cornea) and function (visual field testing and quantification of ocular vessel density by optical coherence tomography angiography). In comparison to healthy controls, KS patients exhibited a smaller foveal avascular zone and a decreased retinal thickness due to a drastically thinner outer nuclear layer. The cornea of KS patients showed a decreased peripheral thickness and volume. In perimetry evaluation, KS patients required brighter stimuli and gave more irregular values. KS patients show an ocular phenotype including morphological and functional features, which is very likely caused by the supernumerary X chromosome. Thus, KS should not be limited to infertility, endocrine dysfunction, neurocognitive and psychosocial comorbidities. Defining an aberrant ocular morphology and function, awareness for possible eye problems should be raised.
Collapse
|
25
|
Kaku SM, Dhiman V. Sex Chromosomes: Does it Affect the Way You Think? Indian J Psychol Med 2017; 39:549-551. [PMID: 28852264 PMCID: PMC5560018 DOI: 10.4103/ijpsym.ijpsym_107_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sowmyashree Mayur Kaku
- Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Vikas Dhiman
- Division of Non-Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
26
|
Zhao C, Gong G. Mapping the effect of the X chromosome on the human brain: Neuroimaging evidence from Turner syndrome. Neurosci Biobehav Rev 2017; 80:263-275. [PMID: 28591595 DOI: 10.1016/j.neubiorev.2017.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/07/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
In addition to determining sex, the X chromosome has long been considered to play a crucial role in brain development and intelligence. Turner syndrome (TS) is caused by the congenital absence of all or part of one of the X chromosomes in females. Thus, Turner syndrome provides a unique "knock-out model" for investigating how the X chromosome influences the human brain in vivo. Numerous cutting-edge neuroimaging techniques and analyses have been applied to investigate various brain phenotypes in women with TS, which have yielded valuable evidence toward elucidating the causal relationship between the X chromosome and human brain structure and function. In this review, we comprehensively summarize the recent progress made in TS-related neuroimaging studies and emphasize how these findings have enhanced our understanding of X chromosome function with respect to the human brain. Future investigations are encouraged to address the issues of previous TS neuroimaging studies and to further identify the biological mechanisms that underlie the function of specific X-linked genes in the human brain.
Collapse
Affiliation(s)
- Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
27
|
Xie S, Yang J, Zhang Z, Zhao C, Bi Y, Zhao Q, Pan H, Gong G. The Effects of the X Chromosome on Intrinsic Functional Connectivity in the Human Brain: Evidence from Turner Syndrome Patients. Cereb Cortex 2017; 27:474-484. [PMID: 26494797 DOI: 10.1093/cercor/bhv240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Turner syndrome (TS), a disorder caused by the congenital absence of one of the 2 X chromosomes in female humans, provides a valuable human "knockout model" for studying the functions of the X chromosome. At present, it remains unknown whether and how the loss of the X chromosome influences intrinsic functional connectivity (FC), a fundamental phenotype of the human brain. To address this, we performed resting-state functional magnetic resonance imaging and specific cognitive assessments on 22 TS patients and 17 age-matched control girls. A novel data-driven approach was applied to identify the disrupted patterns of intrinsic FC in TS. The TS girls exhibited significantly reduced whole-brain FC strength within the bilateral postcentral gyrus/intraparietal sulcus, angular gyrus, and cuneus and the right cerebellum. Furthermore, a specific functional subnetwork was identified in which the intrinsic FC between nodes was mostly reduced in TS patients. Particularly, this subnetwork is composed of 3 functional modules, and the disruption of intrinsic FC within one of these modules was associated with the deficits of TS patients in math-related cognition. Taken together, these findings provide novel insight into how the X chromosome affects the human brain and cognition, and emphasize an important role of X-linked genes in intrinsic neural coupling.
Collapse
Affiliation(s)
| | - Jiaotian Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zhixin Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qiuling Zhao
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hui Pan
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
28
|
Bale TL, Epperson CN. Sex as a Biological Variable: Who, What, When, Why, and How. Neuropsychopharmacology 2017; 42:386-396. [PMID: 27658485 PMCID: PMC5399243 DOI: 10.1038/npp.2016.215] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/22/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Abstract
The inclusion of sex as a biological variable in research is absolutely essential for improving our understanding of disease mechanisms contributing to risk and resilience. Studies focusing on examining sex differences have demonstrated across many levels of analyses and stages of brain development and maturation that males and females can differ significantly. This review will discuss examples of animal models and clinical studies to provide guidance and reference for the inclusion of sex as an important biological variable relevant to a Neuropsychopharmacology audience.
Collapse
Affiliation(s)
- Tracy L Bale
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn PROMOTES Research on Sex and Gender in Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry,Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| | - C Neill Epperson
- Penn PROMOTES Research on Sex and Gender in Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry,Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
- Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
29
|
An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans. J Neurosci 2016; 36:2438-48. [PMID: 26911691 DOI: 10.1523/jneurosci.3195-15.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings.
Collapse
|
30
|
Granger A, Zurada A, Zurada-Zielińska A, Gielecki J, Loukas M. Anatomy of turner syndrome. Clin Anat 2016; 29:638-42. [PMID: 27087450 DOI: 10.1002/ca.22727] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 01/15/2023]
Abstract
Turner syndrome (TS) is one of the most common sex chromosome abnormalities and results from total or partial monosomy of the X chromosome. It occurs in 1 in 2000 newborn girls and is also believed to be present in a larger proportion of conceptuses. There are various anatomic anomalies that have been associated with TS and the consequences of late recognition of these anomalies can be devastating. Aortic dilation and dissection occur at increased rates in TS patients and contribute to the decreased life expectancy of these patients. Such cases have prompted the need for early identification and continuous monitoring. Other anatomic variations increase morbidity in this population, and negatively impact the social and reproductive aspects of their lives. In this review, we summarize the cardiovascular, neurological, genitourinary, otolaryngolical, craniofacial, and skeletal defects associated with TS. To elucidate these morphological variations, novel illustrations have also been constructed. Clin. Anat. 29:638-642, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andre Granger
- Department of Anatomical Sciences, St George's University, Grenada, West Indies
| | - Anna Zurada
- Department of Anatomy, Varmia and Mazury Medical School, Olsztyn, Poland
| | | | - Jerzy Gielecki
- Department of Anatomy, Varmia and Mazury Medical School, Olsztyn, Poland
| | - Marios Loukas
- Department of Anatomical Sciences, St George's University, Grenada, West Indies
| |
Collapse
|
31
|
Nur MM, Yamada M, Tonk V, Wilson GN. Chromosome Xq13.2 Microduplication Involving an X-Inactivation Gene in a Girl with Short Stature, Madelung Deformity, and von Willebrand Disease. J Pediatr Adolesc Gynecol 2016; 29:e39-42. [PMID: 26639996 DOI: 10.1016/j.jpag.2015.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND The objective of the study was to describe a novel Xp13.2 chromosome microduplication in a child with some features of Turner syndrome but with menorrhagia after normal menarche. We used clinical evaluation and high resolution chromosome (microarray) analysis. CASE A 15-year-old girl with typical (short stature, pulmonic stenosis, widely-spaced nipples) and atypical (Madelung deformity, menorrhagia) manifestations of Turner syndrome had a novel chromosome constitution with extra material (microduplication) at band Xq13.2 that contained the X-inactive-specific-transcript locus. She also had connective tissue laxity, suggestive of vessel fragility as a contributor to her menorrhagia as well as her diagnosis of von Willebrand disease. This first case of selective X-inactive-specific-transcript locus duplication suggests a role for gene repression in Turner syndrome and other disorders that affect ovarian function. CONCLUSION High-resolution chromosome (microarray) analysis, now a standard of care, will provide new insights into adolescents with abnormal growth and reproductive tract symptoms, especially when accompanied by congenital anomalies.
Collapse
Affiliation(s)
- Marcela M Nur
- Department of Pediatrics, Texas Tech University Health Science Center, Lubbock, Texas.
| | - Merick Yamada
- Department of Pediatrics, Texas Tech University Health Science Center, Lubbock, Texas
| | - Vijay Tonk
- Department of Pediatrics, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Golder N Wilson
- Department of Pediatrics, Texas Tech University Health Science Center, Lubbock, Texas
| |
Collapse
|
32
|
Wallentin M, Skakkebæk A, Bojesen A, Fedder J, Laurberg P, Østergaard JR, Hertz JM, Pedersen AD, Gravholt CH. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation. Neuroimage Clin 2016; 11:239-251. [PMID: 26958463 PMCID: PMC4773384 DOI: 10.1016/j.nicl.2016.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/24/2016] [Accepted: 02/10/2016] [Indexed: 11/20/2022]
Abstract
Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.
Collapse
Affiliation(s)
- Mikkel Wallentin
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, building 10-G-5, Nørrebrogade, 8000 Aarhus C, Denmark; Center for Semiotics, Aarhus University, Denmark.
| | - Anne Skakkebæk
- Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, 8000 Aarhus C, Denmark; Department of Clinical Genetics, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Anders Bojesen
- Department of Clinical Genetics, Vejle Hospital, Sygehus Lillebaelt, 7100 Vejle, Denmark; Institute of Regional Health Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Jens Fedder
- Centre of Andrology & Fertility Clinic, Department D, Odense University Hospital, 5000 Odense C, Denmark
| | - Peter Laurberg
- Department of Endocrinology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - John R Østergaard
- Centre for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, Denmark
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
| | - Anders Degn Pedersen
- Vejlefjord Rehabilitation Center, 7140 Stouby, Denmark; Department of Psychology and Behavioral Sciences, Aarhus University, 8000 Aarhus, Denmark
| | - Claus Højbjerg Gravholt
- Department of Endocrinology and Internal Medicine (MEA), Aarhus University Hospital, 8000 Aarhus C, Denmark; Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
33
|
Cousminer DL, Widén E, Palmert MR. The genetics of pubertal timing in the general population: recent advances and evidence for sex-specificity. Curr Opin Endocrinol Diabetes Obes 2016; 23:57-65. [PMID: 26574646 PMCID: PMC4734379 DOI: 10.1097/med.0000000000000213] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This article overviews advances in the genetics of puberty based on studies in the general population, describes evidence for sex-specific genetic effects on pubertal timing, and briefly reviews possible mechanisms mediating sexually dimorphic genetic effects. RECENT FINDINGS Pubertal timing is highly polygenic, and many loci are conserved among ethnicities. A number of identified loci underlie both pubertal timing and related traits such as height and BMI. It is increasingly apparent that understanding the factors modulating the onset of puberty is important because the timing of this developmental stage is associated with a wider range of adult health outcomes than previously appreciated. Although most of the genetic effects underlying the timing of puberty are common between boys and girls, some effects show sex-specificity and many are epigenetically modulated. Several potential mechanisms, including hormone-independent ones, may be responsible for observed sex differences. SUMMARY Studies of pubertal timing in the general population have provided new knowledge about the genetic architecture of this complex trait. Increasing attention paid to sex-specific effects may provide key insights into the sexual dimorphism in pubertal timing and even into the associations between puberty and adult health risks by identifying common underlying biological pathways.
Collapse
Affiliation(s)
- Diana L. Cousminer
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisabeth Widén
- Institute for Molecular Medicine, Finland, University of Helsinki, Helsinki, Finland
| | - Mark R. Palmert
- Division of Endocrinology, the Hospital for Sick Children
- The Departments of Pediatrics and Physiology, University of Toronto, Canada
| |
Collapse
|
34
|
Sex differences and stress across the lifespan. Nat Neurosci 2015; 18:1413-20. [PMID: 26404716 DOI: 10.1038/nn.4112] [Citation(s) in RCA: 487] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
Sex differences in stress responses can be found at all stages of life and are related to both the organizational and activational effects of gonadal hormones and to genes on the sex chromosomes. As stress dysregulation is the most common feature across neuropsychiatric diseases, sex differences in how these pathways develop and mature may predict sex-specific periods of vulnerability to disruption and increased disease risk or resilience across the lifespan. The aging brain is also at risk to the effects of stress, where the rapid decline of gonadal hormones in women combined with cellular aging processes promote sex biases in stress dysregulation. In this Review, we discuss potential underlying mechanisms driving sex differences in stress responses and their relevance to disease. Although stress is involved in a much broader range of diseases than neuropsychiatric ones, we highlight here this area and its examples across the lifespan.
Collapse
|
35
|
Sharma A, Jamil MA, Nuesgen N, Schreiner F, Priebe L, Hoffmann P, Herns S, Nöthen MM, Fröhlich H, Oldenburg J, Woelfle J, El-Maarri O. DNA methylation signature in peripheral blood reveals distinct characteristics of human X chromosome numerical aberrations. Clin Epigenetics 2015. [PMID: 26221191 PMCID: PMC4517491 DOI: 10.1186/s13148-015-0112-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Abnormal sex chromosome numbers in humans are observed in Turner (45,X) and Klinefelter (47,XXY) syndromes. Both syndromes are associated with several clinical phenotypes, whose molecular mechanisms are obscure, and show a range of inter-individual penetrance. In order to understand the effect of abnormal numbers of X chromosome on the methylome and its correlation to the variable clinical phenotype, we performed a genome-wide methylation analysis using MeDIP and Illumina's Infinium assay on individuals with four karyotypes: 45,X, 46,XY, 46,XX, and 47,XXY. RESULTS DNA methylation changes were widespread on all autosomal chromosomes in 45,X and in 47,XXY individuals, with Turner individuals presenting five times more affected loci. Differentially methylated CpGs, in most cases, have intermediate methylation levels and tend to occur outside CpG islands, especially in individuals with Turner syndrome. The X inactivation process appears to be less effective in Klinefelter syndrome as methylation on the X was decreased compared to normal female samples. In a large number of individuals, we verified several loci by pyrosequencing and observed only weak inter-loci correlations between the verified regions. This suggests a certain stochastic/random contribution to the methylation changes at each locus. Interestingly, methylation patterns on some PAR2 loci differ between male and Turner syndrome individuals and between female and Klinefelter syndrome individuals, which possibly contributed to this distinguished and unique autosomal methylation patterns in Turner and Klinefelter syndrome individuals. CONCLUSIONS The presented data clearly show that gain or loss of an X chromosome results in different epigenetic effects, which are not necessary opposite.
Collapse
Affiliation(s)
- Amit Sharma
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Muhammad Ahmer Jamil
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Nicole Nuesgen
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Felix Schreiner
- Pediatric Endocrinology Division, Children's Hospital, University of Bonn, Bonn, Germany
| | - Lutz Priebe
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Stefan Herns
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Holger Fröhlich
- Institute for Computer Science, c/o Bonn-Aachen International Center for IT, Algorithmic Bioinformatics, University of Bonn, Dahlmannstr. 2, 53113 Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Joachim Woelfle
- Pediatric Endocrinology Division, Children's Hospital, University of Bonn, Bonn, Germany
| | - Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| |
Collapse
|
36
|
Skakkebæk A, Wallentin M, Gravholt CH. Neuropsychology and socioeconomic aspects of Klinefelter syndrome: new developments. Curr Opin Endocrinol Diabetes Obes 2015; 22:209-16. [PMID: 25899809 DOI: 10.1097/med.0000000000000157] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To summarize recent important studies on neuropsychology and epidemiology of Klinefelter syndrome. PubMed was searched for 'Klinefelter', 'Klinefelter's' and 'XXY' in titles and abstracts. Relevant studies were obtained and reviewed, as well as other articles selected by the authors. RECENT FINDINGS Klinefelter syndrome is the most common sex-chromosome disorder in humans, affecting one in 660 men. The key findings in Klinefelter syndrome are small testes, hypergonadotropic hypogonadism and cognitive impairment. Klinefelter syndrome scores significantly below education matched controls on a range of cognitive tests with verbal skills displaying the largest effects. Boys with Klinefelter syndrome are often in the need of speech therapy and many suffer from learning disability and may benefit from special education. New studies are elucidating aspects of cognitive functioning and suggesting that neuropsychological treatment may be of value. The socioeconomic status and educational level of Klinefelter syndrome is severely affected with many struggling to achieve any or only shorter education, resulting in low-income levels and early retirement. In addition, few become fathers and fewer live with a partner compared with controls. Medical treatment is mainly testosterone replacement therapy in order to alleviate acute and long-term consequences of hypogonadism, as well as, treating or preventing the frequent comorbidity. SUMMARY The neurocognitive phenotype of Klinefelter syndrome is being unraveled and the need for psychological and cognitive treatment in many cases is evident. The neurocognitive deficits no doubt influence the socioeconomic status of many Klinefelter syndrome patients, which is clearly inferior to age-matched controls.
Collapse
Affiliation(s)
- Anne Skakkebæk
- aDepartment Clinical Genetics, Aarhus University Hospital bDepartment of Endocrinology and Internal Medicine cCenter of Functionally Integrative Neuroscience dCenter for Semiotics eDepartment of Molecular Medicine, Aarhus University Hospital, Denmark
| | | | | |
Collapse
|
37
|
Scerif G, Baker K. Annual research review: Rare genotypes and childhood psychopathology--uncovering diverse developmental mechanisms of ADHD risk. J Child Psychol Psychiatry 2015; 56:251-73. [PMID: 25494546 DOI: 10.1111/jcpp.12374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Through the increased availability and sophistication of genetic testing, it is now possible to identify causal diagnoses in a growing proportion of children with neurodevelopmental disorders. In addition to developmental delay and intellectual disability, many genetic disorders are associated with high risks of psychopathology, which curtail the wellbeing of affected individuals and their families. Beyond the identification of significant clinical needs, understanding the diverse pathways from rare genetic mutations to cognitive dysfunction and emotional-behavioural disturbance has theoretical and practical utility. METHODS We overview (based on a strategic search of the literature) the state-of-the-art on causal mechanisms leading to one of the most common childhood behavioural diagnoses - attention deficit hyperactivity disorder (ADHD) - in the context of specific genetic disorders. We focus on new insights emerging from the mapping of causal pathways from identified genetic differences to neuronal biology, brain abnormalities, cognitive processing differences and ultimately behavioural symptoms of ADHD. FINDINGS First, ADHD research in the context of rare genotypes highlights the complexity of multilevel mechanisms contributing to psychopathology risk. Second, comparisons between genetic disorders associated with similar psychopathology risks can elucidate convergent or distinct mechanisms at each level of analysis, which may inform therapeutic interventions and prognosis. Third, genetic disorders provide an unparalleled opportunity to observe dynamic developmental interactions between neurocognitive risk and behavioural symptoms. Fourth, variation in expression of psychopathology risk within each genetic disorder points to putative moderating and protective factors within the genome and the environment. CONCLUSION A common imperative emerging within psychopathology research is the need to investigate mechanistically how developmental trajectories converge or diverge between and within genotype-defined groups. Crucially, as genetic predispositions modify interaction dynamics from the outset, longitudinal research is required to understand the multi-level developmental processes that mediate symptom evolution.
Collapse
Affiliation(s)
- Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | |
Collapse
|
38
|
Levitsky LL, Luria AHO, Hayes FJ, Lin AE. Turner syndrome: update on biology and management across the life span. Curr Opin Endocrinol Diabetes Obes 2015; 22:65-72. [PMID: 25517026 DOI: 10.1097/med.0000000000000128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW We review recent understanding of the pathophysiology, molecular biology, and management of Turner syndrome. RECENT FINDINGS Sophisticated genetic techniques are able to detect mosaicism in one-third of individuals previously thought to have monosomy X. Prenatal detection using maternal blood should permit noninvasive detection of most fetuses with an X chromosome abnormality. Disproportionate growth with short limbs has been documented in this condition, and a target gene of short stature homeobox, connective tissue growth factor (Ctgf), has been described. Liver disease is more common in Turner syndrome than previously recognized. Most girls have gonadal failure. Spontaneous puberty and menarche is more commonly seen in girls with XX mosaicism. Low-dose estrogen replacement therapy may be given early to induce a more normal onset and tempo of puberty. Oocyte donation for assisted reproduction carries a substantial risk, particularly if the woman has known cardiac or aortic disease. Neurodevelopmental differences in Turner syndrome are beginning to be correlated with differences in brain anatomy. SUMMARY An increased understanding of the molecular basis for aspects of this disorder is now developing. In addition, a renewed focus on health maintenance through the life span should provide better general and targeted healthcare for these girls and women.
Collapse
Affiliation(s)
- Lynne L Levitsky
- aPediatric Endocrine Unit, Department of Pediatrics, Massachusetts General Hospital bGenetics Residency Program, Harvard Medical School cBoston Children's Hospital dReproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital eGenetics Unit, Mass General Hospital for Children, Massachusetts, Boston, USA
| | | | | | | |
Collapse
|