1
|
MacIsaac AR, Wellington AJ, Filicetti K, Eggers ED. Impaired dopamine signaling in early diabetic retina: Insights from D1R and D4R agonist effects on whole retina responses. Exp Eye Res 2024; 247:110049. [PMID: 39151774 PMCID: PMC11392630 DOI: 10.1016/j.exer.2024.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The retina has low dopamine levels early in diabetes. To determine how low dopamine levels affected dopamine signaling, the effects of dopamine receptor agonists and mRNA localization were measured after 6 weeks of diabetes. Whole retina ex vivo electroretinogram (ERG) recordings were used to analyze how dopamine type 1 receptor (D1R) and type 4 (D4R) agonists change the light-evoked retinal responses of non-diabetic and 6-week diabetic (STZ injected) mouse retinas. Fluorescence in situ hybridization was utilized to analyze D4R and D1R mRNA locations and expression levels. D4R activation reduced A- and B-wave ERG amplitudes and increased B-wave implicit time and rise-time in the non-diabetic group without a corresponding change in the diabetic group. D1R activation increased B-wave rise-time and oscillatory potential peak time in the non-diabetic group also with no change in the diabetic group. The lack of responsivity to D1R or D4R agonists shows an impairment of dopamine signaling in the diabetic retina. D4R mRNA was found primarily in the outer nuclear layer where photoreceptor cell bodies reside. D1R mRNA was found in the inner nuclear layer and ganglion cell layer that contain bipolar, amacrine, horizontal and ganglion cells. There was no change in D4R or D1R mRNA expression between the non-diabetic and diabetic retinas. This suggests that the significant dopamine signaling changes observed were not from lower receptor expression levels but could be due to changes in dopamine receptor activity or protein levels. These studies show that changes in retinal dopamine signaling could be an important mechanism of diabetic retinal dysfunction.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Retinopathy/metabolism
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- Electroretinography
- In Situ Hybridization, Fluorescence
- Mice, Inbred C57BL
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D4/metabolism
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/agonists
- Retina/metabolism
- Retina/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Angela R MacIsaac
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| | - Andrea J Wellington
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| | - Kyle Filicetti
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, AZ, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Stone RA, Tobias JW, Wei W, Carlstedt X, Zhang L, Iuvone PM, Nickla DL. Diurnal gene expression patterns in retina and choroid distinguish myopia progression from myopia onset. PLoS One 2024; 19:e0307091. [PMID: 39028695 PMCID: PMC11259283 DOI: 10.1371/journal.pone.0307091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/30/2024] [Indexed: 07/21/2024] Open
Abstract
The world-wide prevalence of myopia (nearsightedness) is increasing, but its pathogenesis is incompletely understood. Among many putative mechanisms, laboratory and clinical findings have implicated circadian biology in the etiology of myopia. Consistent with a circadian hypothesis, we recently reported a marked variability in diurnal patterns of gene expression in two crucial tissues controlling post-natal refractive development - the retina and choroid-at the onset of form-deprivation myopia in chick, a widely studied and validated model. To extend these observations, we assayed gene expression by RNA-Seq in retina and choroid during the progression of established unilateral form-deprivation myopia of chick. We assayed gene expression every 4 hours during a single day from myopic and contralateral control eyes. Retinal and choroidal gene expression in myopic vs. control eyes during myopia progression differed strikingly at discrete times during the day. Very few differentially expressed genes occurred at more than one time in either tissue during progressing myopia. Similarly, Gene Set Enrichment Analysis pathways varied markedly by time during the day. Some of the differentially expressed genes in progressing myopia coincided with candidate genes for human myopia, but only partially corresponded with genes previously identified at myopia onset. Considering other laboratory findings and human genetics and epidemiology, these results further link circadian biology to the pathogenesis of myopia; but they also point to important mechanistic differences between the onset of myopia and the progression of established myopia. Future laboratory and clinical investigations should systematically incorporate circadian mechanisms in studying the etiology of myopia and in seeking more effective treatments to normalize eye growth in children.
Collapse
Affiliation(s)
- Richard A. Stone
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John W. Tobias
- Penn Genomics and Sequencing Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wenjie Wei
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Xia Carlstedt
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States of America
| | - Lixin Zhang
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States of America
| | - P. Michael Iuvone
- Department of Ophthalmology & Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Debora L. Nickla
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Felder-Schmittbuhl MP, Hicks D, Ribelayga CP, Tosini G. Melatonin in the mammalian retina: Synthesis, mechanisms of action and neuroprotection. J Pineal Res 2024; 76:e12951. [PMID: 38572848 DOI: 10.1111/jpi.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Melatonin is an important player in the regulation of many physiological functions within the body and in the retina. Melatonin synthesis in the retina primarily occurs during the night and its levels are low during the day. Retinal melatonin is primarily synthesized by the photoreceptors, but whether the synthesis occurs in the rods and/or cones is still unclear. Melatonin exerts its influence by binding to G protein-coupled receptors named melatonin receptor type 1 (MT1) and type 2 (MT2). MT1 and MT2 receptors activate a wide variety of signaling pathways and both receptors are present in the vertebrate photoreceptors where they may form MT1/MT2 heteromers (MT1/2h). Studies in rodents have shown that melatonin signaling plays an important role in the regulation of retinal dopamine levels, rod/cone coupling as well as the photopic and scotopic electroretinogram. In addition, melatonin may play an important role in protecting photoreceptors from oxidative stress and can protect photoreceptors from apoptosis. Critically, melatonin signaling is involved in the modulation of photoreceptor viability during aging and other studies have implicated melatonin in the pathogenesis of age-related macular degeneration. Hence melatonin may represent a useful tool in the fight to protect photoreceptors-and other retinal cells-against degeneration due to aging or diseases.
Collapse
Affiliation(s)
- Marie Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Christophe P Ribelayga
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas, USA
| | - Gianluca Tosini
- Department of Pharmacology & Toxicology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Chen X, Sun X, Ge Y, Zhou X, Chen JF. Targeting adenosine A 2A receptors for early intervention of retinopathy of prematurity. Purinergic Signal 2024:10.1007/s11302-024-09986-x. [PMID: 38329708 DOI: 10.1007/s11302-024-09986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Retinopathy of prematurity (ROP) continues to pose a significant threat to the vision of numerous children worldwide, primarily owing to the increased survival rates of premature infants. The pathologies of ROP are mainly linked to impaired vascularization as a result of hyperoxia, leading to subsequent neovascularization. Existing treatments, including anti-vascular endothelial growth factor (VEGF) therapies, have thus far been limited to addressing pathological angiogenesis at advanced ROP stages, inevitably leading to adverse side effects. Intervention to promote physiological angiogenesis during the initial stages could hold the potential to prevent ROP. Adenosine A2A receptors (A2AR) have been identified in various ocular cell types, exhibiting distinct densities and functionally intricate connections with oxygen metabolism. In this review, we discuss experimental evidence that strongly underscores the pivotal role of A2AR in ROP. In particular, A2AR blockade may represent an effective treatment strategy, mitigating retinal vascular loss by reversing hyperoxia-mediated cellular proliferation inhibition and curtailing hypoxia-mediated neovascularization in oxygen-induced retinopathy (OIR). These effects stem from the interplay of endothelium, neuronal and glial cells, and novel molecular pathways (notably promoting TGF-β signaling) at the hyperoxia phase. We propose that pharmacological targeting of A2AR signaling may confer an early intervention for ROP with distinct therapeutic benefits and mechanisms than the anti-VEGF therapy.
Collapse
Affiliation(s)
- Xuhao Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaoting Sun
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Ge
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xuzhao Zhou
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China.
| |
Collapse
|
5
|
Ribelayga CP, O’Brien J. When microscopy and electrophysiology meet connectomics-Steve Massey's contribution to unraveling the structure and function of the rod/cone gap junction. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1305131. [PMID: 38983007 PMCID: PMC11182179 DOI: 10.3389/fopht.2023.1305131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/31/2023] [Indexed: 07/11/2024]
Abstract
Electrical synapses, formed of gap junctions, are ubiquitous components of the central nervous system (CNS) that shape neuronal circuit connectivity and dynamics. In the retina, electrical synapses can create a circuit, control the signal-to-noise ratio in individual neurons, and support the coordinated neuronal firing of ganglion cells, hence, regulating signal processing at the network, single-cell, and dendritic level. We, the authors, and Steve Massey have had a long interest in gap junctions in retinal circuits, in general, and in the network of photoreceptors, in particular. Our combined efforts, based on a wide array of techniques of molecular biology, microscopy, and electrophysiology, have provided fundamental insights into the molecular structure and properties of the rod/cone gap junction. Yet, a full understanding of how rod/cone coupling controls circuit dynamics necessitates knowing its operating range. It is well established that rod/cone coupling can be greatly reduced or eliminated by bright-light adaptation or pharmacological treatment; however, the upper end of its dynamic range has long remained elusive. This held true until Steve Massey's recent interest for connectomics led to the development of a new strategy to assess this issue. The effort proved effective in establishing, with precision, the connectivity rules between rods and cones and estimating the theoretical upper limit of rod/cone electrical coupling. Comparing electrophysiological measurements and morphological data indicates that under pharmacological manipulation, rod/cone coupling can reach the theoretical maximum of its operating range, implying that, under these conditions, all the gap junction channels present at the junctions are open. As such, channel open probability is likely the main determinant of rod/cone coupling that can change momentarily in a time-of-day- and light-dependent manner. In this article we briefly review our current knowledge of the molecular structure of the rod/cone gap junction and of the mechanisms behind its modulation, and we highlight the recent work led by Steve Massey. Steve's contribution has been critical toward asserting the modulation depth of rod/cone coupling as well as elevating the rod/cone gap junction as one of the most suitable models to examine the role of electrical synapses and their plasticity in neural processing.
Collapse
Affiliation(s)
- Christophe P. Ribelayga
- Department of Vision Sciences, University of Houston College of Optometry, Houston, TX, United States
| | | |
Collapse
|
6
|
Abstract
Although diabetic retinopathy (DR) is clinically diagnosed as a vascular disease, many studies find retinal neuronal and visual dysfunction before the onset of vascular DR. This suggests that DR should be viewed as a neurovascular disease. Prior to the onset of DR, human patients have compromised electroretinograms that indicate a disruption of normal function, particularly in the inner retina. They also exhibit reduced contrast sensitivity. These early changes, especially those due to dysfunction in the inner retina, are also seen in rodent models of diabetes in the early stages of the disease. Rodent models of diabetes exhibit several neuronal mechanisms, such as reduced evoked GABA release, increased excitatory glutamate signaling, and reduced dopamine signaling, that suggest specific neuronal deficits. This suggests that understanding neuronal deficits may lead to early diabetes treatments to ameliorate neuronal dysfunction.
Collapse
Affiliation(s)
- Erika D Eggers
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona, USA;
| |
Collapse
|
7
|
Kovács-Öller T, Szarka G, Hoffmann G, Péntek L, Valentin G, Ross L, Völgyi B. Extrinsic and Intrinsic Factors Determine Expression Levels of Gap Junction-Forming Connexins in the Mammalian Retina. Biomolecules 2023; 13:1119. [PMID: 37509155 PMCID: PMC10377540 DOI: 10.3390/biom13071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Gap junctions (GJs) are not static bridges; instead, GJs as well as the molecular building block connexin (Cx) proteins undergo major expression changes in the degenerating retinal tissue. Various progressive diseases, including retinitis pigmentosa, glaucoma, age-related retinal degeneration, etc., affect neurons of the retina and thus their neuronal connections endure irreversible changes as well. Although Cx expression changes might be the hallmarks of tissue deterioration, GJs are not static bridges and as such they undergo adaptive changes even in healthy tissue to respond to the ever-changing environment. It is, therefore, imperative to determine these latter adaptive changes in GJ functionality as well as in their morphology and Cx makeup to identify and distinguish them from alterations following tissue deterioration. In this review, we summarize GJ alterations that take place in healthy retinal tissue and occur on three different time scales: throughout the entire lifespan, during daily changes and as a result of quick changes of light adaptation.
Collapse
Affiliation(s)
- Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Szarka
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Gyula Hoffmann
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Loretta Péntek
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Gréta Valentin
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Liliana Ross
- Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- Department of Neurobiology, University of Pécs, 7624 Pécs, Hungary
- NEURON-066 Rethealthsi Research Group, 7624 Pécs, Hungary
- Center for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
8
|
Brown-Panton CA, Sabour S, Zoidl GSO, Zoidl C, Tabatabaei N, Zoidl GR. Gap junction Delta-2b ( gjd2b/Cx35.1) depletion causes hyperopia and visual-motor deficiencies in the zebrafish. Front Cell Dev Biol 2023; 11:1150273. [PMID: 36936688 PMCID: PMC10017553 DOI: 10.3389/fcell.2023.1150273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
The zebrafish is a powerful model to investigate the developmental roles of electrical synapses because many signaling pathways that regulate the development of the nervous system are highly conserved from fish to humans. Here, we provide evidence linking the mammalian connexin-36 (Cx36) ortholog gjd2b/Cx35.1, a major component of electrical synapses in the zebrafish, with a refractive error in the context of morphological, molecular, and behavioral changes of zebrafish larvae. Two abnormalities were identified. The optical coherence tomography analysis of the adult retina confirmed changes to the refractive properties caused by eye axial length reduction, leading to hyperopic shifts. The gjd2b/Cx35.1 depletion was also correlated with morphological changes to the head and body ratios in larvae. The differential expression of Wnt/ß-catenin signaling genes, connexins, and dopamine receptors suggested a contribution to the observed phenotypic differences. The alteration of visual-motor behavioral responses to abrupt light transitions was aggravated in larvae, providing evidence that cone photoreceptor cell activity was enhanced when gjd2b/Cx35.1 was depleted. The visual disturbances were reversed under low light conditions in gjd2b -/- /Cx35.1-/- larvae. Since qRT-PCR data demonstrated that two rhodopsin genes were downregulated, we speculated that rod photoreceptor cells in gjd2b/Cx35.1-/- larvae were less sensitive to bright light transitions, thus providing additional evidence that a cone-mediated process caused the VMR light-ON hyperactivity after losing Cx35.1 expression. Together, this study provides evidence for the role of gjd2b/Cx35.1 in the development of the visual system and visually guided behaviors.
Collapse
Affiliation(s)
- Cherie A. Brown-Panton
- Department of Biology, York University, Toronto, ON, Canada
- Center for Vision Research, York University, Toronto, ON, Canada
- *Correspondence: Cherie A. Brown-Panton, ; Georg R. Zoidl,
| | - Shiva Sabour
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Georg S. O. Zoidl
- Department of Biology, York University, Toronto, ON, Canada
- Center for Vision Research, York University, Toronto, ON, Canada
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON, Canada
- Center for Vision Research, York University, Toronto, ON, Canada
| | - Nima Tabatabaei
- Center for Vision Research, York University, Toronto, ON, Canada
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Georg R. Zoidl
- Department of Biology, York University, Toronto, ON, Canada
- Center for Vision Research, York University, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
- *Correspondence: Cherie A. Brown-Panton, ; Georg R. Zoidl,
| |
Collapse
|
9
|
Hu S, Li Y, Zhang Y, Shi R, Tang P, Zhang D, Kuang X, Chen J, Qu J, Gao Y. The adenosine A 2A receptor antagonist KW6002 distinctly regulates retinal ganglion cell morphology during postnatal development and neonatal inflammation. Front Pharmacol 2022; 13:1082997. [PMID: 36588710 PMCID: PMC9800499 DOI: 10.3389/fphar.2022.1082997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Adenosine A2A receptors (A2ARs) appear early in the retina during postnatal development, but the roles of the A2ARs in the morphogenesis of distinct types of retinal ganglion cells (RGCs) during postnatal development and neonatal inflammatory response remain undetermined. As the RGCs are rather heterogeneous in morphology and functions in the retina, here we resorted to the Thy1-YFPH transgenic mice and three-dimensional (3D) neuron reconstruction to investigate how A2ARs regulate the morphogenesis of three morphologically distinct types of RGCs (namely Type I, II, III) during postnatal development and neonatal inflammation. We found that the A2AR antagonist KW6002 did not change the proportion of the three RGC types during retinal development, but exerted a bidirectional effect on dendritic complexity of Type I and III RGCs and cell type-specifically altered their morphologies with decreased dendrite density of Type I, decreased the dendritic field area of Type II and III, increased dendrite density of Type III RGCs. Moreover, under neonatal inflammation condition, KW6002 specifically increased the proportion of Type I RGCs with enhanced the dendrite surface area and volume and the proportion of Type II RGCs with enlarged the soma area and perimeter. Thus, A2ARs exert distinct control of RGC morphologies to cell type-specifically fine-tune the RGC dendrites during normal development but to mainly suppress RGC soma and dendrite volume under neonatal inflammation.
Collapse
Affiliation(s)
- Shisi Hu
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China,Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| | - Yaoyao Li
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuanjie Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ruyi Shi
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ping Tang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Di Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiuli Kuang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiangfan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China,*Correspondence: Ying Gao, ; Jia Qu,
| | - Ying Gao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China,*Correspondence: Ying Gao, ; Jia Qu,
| |
Collapse
|
10
|
Duarte-Silva AT, Ximenes LGR, Guimarães-Souza M, Domith I, Paes-de-Carvalho R. Chemical signaling in the developing avian retina: Focus on cyclic AMP and AKT-dependent pathways. Front Cell Dev Biol 2022; 10:1058925. [PMID: 36568967 PMCID: PMC9780464 DOI: 10.3389/fcell.2022.1058925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Communication between developing progenitor cells as well as differentiated neurons and glial cells in the nervous system is made through direct cell contacts and chemical signaling mediated by different molecules. Several of these substances are synthesized and released by developing cells and play roles since early stages of Central Nervous System development. The chicken retina is a very suitable model for neurochemical studies, including the study of regulation of signaling pathways during development. Among advantages of the model are its very well-known histogenesis, the presence of most neurotransmitter systems found in the brain and the possibility to make cultures of neurons and/or glial cells where many neurochemical functions develop in a similar way than in the intact embryonic tissue. In the chicken retina, some neurotransmitters or neuromodulators as dopamine, adenosine, and others are coupled to cyclic AMP production or adenylyl cyclase inhibition since early stages of development. Other substances as vitamin C and nitric oxide are linked to the major neurotransmitter glutamate and AKT metabolism. All these different systems regulate signaling pathways, including PKA, PKG, SRC, AKT and ERK, and the activation of the transcription factor CREB. Dopamine and adenosine stimulate cAMP accumulation in the chick embryo retina through activation of D1 and A2a receptors, respectively, but the onset of dopamine stimulation is much earlier than that of adenosine. However, adenosine can inhibit adenylyl cyclase and modulate dopamine-dependent cAMP increase since early developmental stages through A1 receptors. Dopamine stimulates different PKA as well as EPAC downstream pathways both in intact tissue and in culture as the CSK-SRC pathway modulating glutamate NMDA receptors as well as vitamin C release and CREB phosphorylation. By the other hand, glutamate modulates nitric oxide production and AKT activation in cultured retinal cells and this pathway controls neuronal survival in retina. Glutamate and adenosine stimulate the release of vitamin C and this vitamin regulates the transport of glutamate, activation of NMDA receptors and AKT phosphorylation in cultured retinal cells. In the present review we will focus on these reciprocal interactions between neurotransmitters or neuromodulators and different signaling pathways during retinal development.
Collapse
Affiliation(s)
- A. T. Duarte-Silva
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - L. G. R. Ximenes
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - M. Guimarães-Souza
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - I. Domith
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - R. Paes-de-Carvalho
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil,Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil,*Correspondence: R. Paes-de-Carvalho,
| |
Collapse
|
11
|
Allen AE. Circadian Regulation of the Rod Contribution to Mesopic Vision in Mice. J Neurosci 2022; 42:8795-8806. [PMID: 36216501 PMCID: PMC9698662 DOI: 10.1523/jneurosci.0486-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
At intermediate (mesopic) light levels, rods and cones are both active and can contribute to vision. This presents a challenge to the retina because the visual responses originating with rods and cones are distinct, yet their visual responses must be seamlessly combined. The current study aimed to establish how the circadian clock regulates rod and/or cone vision in these conditions, given the strong time-of-day change in the reliance on each photoreceptor. Visual responses were recorded in the retina and visual thalamus of anaesthetized male mice at distinct circadian time points, and the method of receptor silent substitution was used to selectively stimulate different photoreceptor types. With stimuli designed to only activate rods, responses in the mesopic range were highly rhythmic and peaked in amplitude in the subjective night. This rhythm was abolished following intravitreal injection of the gap junction blocker meclofenamic acid, consistent with a circadian variation in the strength of electrical coupling of photoreceptors. In contrast, responses to stimuli designed to only activate cones were arrhythmic within the mesopic to photopic range when adapted to the background irradiance. The outcome was that combined rod-plus-cone responses showed a stable contrast-response relationship across mesopic-photopic backgrounds in the circadian day, whereas at night, responses were significantly amplified at lower light levels. These data support the idea that the circadian clock is a key regulator of vision, in this case defining the relative amplitude of rod/cone vision across the mesopic transition according to time of day.SIGNIFICANCE STATEMENT Although the importance of circadian clocks in regulating vision has been long recognized, less is known about how the clock shapes vision in conditions where both rods and cones are active (mesopic conditions). Here, the novel approach of receptor silent substitution has been applied to trace rod and cone visual responses in mice across the circadian cycle and has identified pronounced rhythms in rod, but not cone, vision. This has the effect of boosting responses in dimmer backgrounds at night at the cost of impaired contrast-response stability across the mesopic to photopic range. Thus, the circadian clock drives anticipatory changes in the relative contribution of rods versus cones to vision, which match the prevailing visual environment.
Collapse
Affiliation(s)
- Annette E Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
12
|
Myles WE, McFadden SA. Analytical methods for assessing retinal cell coupling using cut-loading. PLoS One 2022; 17:e0271744. [PMID: 35853039 PMCID: PMC9295955 DOI: 10.1371/journal.pone.0271744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Electrical coupling between retinal neurons contributes to the functional complexity of visual circuits. “Cut-loading” methods allow simultaneous assessment of cell-coupling between multiple retinal cell-types, but existing analysis methods impede direct comparison with gold standard direct dye injection techniques. In the current study, we both improved an existing method and developed two new approaches to address observed limitations. Each method of analysis was applied to cut-loaded dark-adapted Guinea pig retinae (n = 29) to assess coupling strength in the axonless horizontal cell type (‘a-type’, aHCs). Method 1 was an improved version of the standard protocol and described the distance of dye-diffusion (space constant). Method 2 adjusted for the geometric path of dye-transfer through cut-loaded cells and extracted the rate of dye-transfer across gap-junctions in terms of the coupling coefficient (kj). Method 3 measured the diffusion coefficient (De) perpendicular to the cut-axis. Dye transfer was measured after one of five diffusion times (1–20 mins), or with a coupling inhibitor, meclofenamic acid (MFA) (50–500μM after 20 mins diffusion). The standard protocol fits an exponential decay function to the fluorescence profile of a specified retina layer but includes non-specific background fluorescence. This was improved by measuring the fluorescence of individual cell soma and excluding from the fit non-horizontal cells located at the cut-edge (p<0.001) (Method 1). The space constant (Method 1) increased with diffusion time (p<0.01), whereas Methods 2 (p = 0.54) and 3 (p = 0.63) produced consistent results across all diffusion times. Adjusting distance by the mean cell-cell spacing within each tissue reduced the incidence of outliers across all three methods. Method 1 was less sensitive to detecting changes induced by MFA than Methods 2 (p<0.01) and 3 (p<0.01). Although the standard protocol was easily improved (Method 1), Methods 2 and 3 proved more sensitive and generalisable; allowing for detailed assessment of the tracer kinetics between different populations of gap-junction linked cell networks and direct comparison to dye-injection techniques.
Collapse
Affiliation(s)
- William E. Myles
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- * E-mail:
| | - Sally A. McFadden
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
13
|
Vaughn MJ, Haas JS. On the Diverse Functions of Electrical Synapses. Front Cell Neurosci 2022; 16:910015. [PMID: 35755782 PMCID: PMC9219736 DOI: 10.3389/fncel.2022.910015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical synapses are the neurophysiological product of gap junctional pores between neurons that allow bidirectional flow of current between neurons. They are expressed throughout the mammalian nervous system, including cortex, hippocampus, thalamus, retina, cerebellum, and inferior olive. Classically, the function of electrical synapses has been associated with synchrony, logically following that continuous conductance provided by gap junctions facilitates the reduction of voltage differences between coupled neurons. Indeed, electrical synapses promote synchrony at many anatomical and frequency ranges across the brain. However, a growing body of literature shows there is greater complexity to the computational function of electrical synapses. The paired membranes that embed electrical synapses act as low-pass filters, and as such, electrical synapses can preferentially transfer spike after hyperpolarizations, effectively providing spike-dependent inhibition. Other functions include driving asynchronous firing, improving signal to noise ratio, aiding in discrimination of dissimilar inputs, or dampening signals by shunting current. The diverse ways by which electrical synapses contribute to neuronal integration merits furthers study. Here we review how functions of electrical synapses vary across circuits and brain regions and depend critically on the context of the neurons and brain circuits involved. Computational modeling of electrical synapses embedded in multi-cellular models and experiments utilizing optical control and measurement of cellular activity will be essential in determining the specific roles performed by electrical synapses in varying contexts.
Collapse
Affiliation(s)
- Mitchell J Vaughn
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
14
|
Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT. Candidate pathways for retina to scleral signaling in refractive eye growth. Exp Eye Res 2022; 219:109071. [PMID: 35447101 PMCID: PMC9701099 DOI: 10.1016/j.exer.2022.109071] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The global prevalence of myopia, or nearsightedness, has increased at an alarming rate over the last few decades. An eye is myopic if incoming light focuses prior to reaching the retinal photoreceptors, which indicates a mismatch in its shape and optical power. This mismatch commonly results from excessive axial elongation. Important drivers of the myopia epidemic include environmental factors, genetic factors, and their interactions, e.g., genetic factors influencing the effects of environmental factors. One factor often hypothesized to be a driver of the myopia epidemic is environmental light, which has changed drastically and rapidly on a global scale. In support of this, it is well established that eye size is regulated by a homeostatic process that incorporates visual cues (emmetropization). This process allows the eye to detect and minimize refractive errors quite accurately and locally over time by modulating the rate of elongation of the eye via remodeling its outermost coat, the sclera. Critically, emmetropization is not dependent on post-retinal processing. Thus, visual cues appear to influence axial elongation through a retina-to-sclera, or retinoscleral, signaling cascade, capable of transmitting information from the innermost layer of the eye to the outermost layer. Despite significant global research interest, the specifics of retinoscleral signaling pathways remain elusive. While a few pharmacological treatments have proven to be effective in slowing axial elongation (most notably topical atropine), the mechanisms behind these treatments are still not fully understood. Additionally, several retinal neuromodulators, neurotransmitters, and other small molecules have been found to influence axial length and/or refractive error or be influenced by myopigenic cues, yet little progress has been made explaining how the signal that originates in the retina crosses the highly vascular choroid to affect the sclera. Here, we compile and synthesize the evidence surrounding three of the major candidate pathways receiving significant research attention - dopamine, retinoic acid, and adenosine. All three candidates have both correlational and causal evidence backing their involvement in axial elongation and have been implicated by multiple independent research groups across diverse species. Two hypothesized mechanisms are presented for how a retina-originating signal crosses the choroid - via 1) all-trans retinoic acid or 2) choroidal blood flow influencing scleral oxygenation. Evidence of crosstalk between the pathways is discussed in the context of these two mechanisms.
Collapse
Affiliation(s)
- Dillon M Brown
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Reece Mazade
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Gangarosa Department of Environmental Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Kelleigh Hogan
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Pooja M Datta Roy
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA.
| |
Collapse
|
15
|
Ishibashi M, Keung J, Morgans CW, Aicher SA, Carroll JR, Singer JH, Jia L, Li W, Fahrenfort I, Ribelayga CP, Massey SC. Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals. eLife 2022; 11:73039. [PMID: 35471186 PMCID: PMC9170248 DOI: 10.7554/elife.73039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Electrical coupling, mediated by gap junctions, contributes to signal averaging, synchronization, and noise reduction in neuronal circuits. In addition, gap junctions may also provide alternative neuronal pathways. However, because they are small and especially difficult to image, gap junctions are often ignored in large-scale 3D reconstructions. Here, we reconstruct gap junctions between photoreceptors in the mouse retina using serial blockface-scanning electron microscopy, focused ion beam-scanning electron microscopy, and confocal microscopy for the gap junction protein Cx36. An exuberant spray of fine telodendria extends from each cone pedicle (including blue cones) to contact 40-50 nearby rod spherules at sites of Cx36 labeling, with approximately 50 Cx36 clusters per cone pedicle and 2-3 per rod spherule. We were unable to detect rod/rod or cone/cone coupling. Thus, rod/cone coupling accounts for nearly all gap junctions between photoreceptors. We estimate a mean of 86 Cx36 channels per rod/cone pair, which may provide a maximum conductance of ~1200 pS, if all gap junction channels were open. This is comparable to the maximum conductance previously measured between rod/cone pairs in the presence of a dopamine antagonist to activate Cx36, suggesting that the open probability of gap junction channels can approach 100% under certain conditions.
Collapse
Affiliation(s)
- Munenori Ishibashi
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Joyce Keung
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - James R Carroll
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, College Park, United States
| | - Li Jia
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Iris Fahrenfort
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Christophe P Ribelayga
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Stephen C Massey
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| |
Collapse
|
16
|
Jin N, Tian LM, Fahrenfort I, Zhang Z, Postma F, Paul DL, Massey SC, Ribelayga CP. Genetic elimination of rod/cone coupling reveals the contribution of the secondary rod pathway to the retinal output. SCIENCE ADVANCES 2022; 8:eabm4491. [PMID: 35363529 PMCID: PMC10938630 DOI: 10.1126/sciadv.abm4491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
In the retina, signals originating from rod and cone photoreceptors can reach retinal ganglion cells (RGCs)-the output neurons-through different pathways. However, little is known about the exact sensitivities and operating ranges of these pathways. Previously, we created rod- or cone-specific Cx36 knockout (KO) mouse lines. Both lines are deficient in rod/cone electrical coupling and therefore provide a way to selectively remove the secondary rod pathway. We measured the threshold of the primary rod pathway in RGCs of wild-type mice. Under pharmacological blockade of the primary rod pathway, the threshold was elevated. This secondary component was removed in the Cx36 KOs to unmask the threshold of the third rod pathway, still below cone threshold. In turn, the cone threshold was estimated by several independent methods. Our work defines the functionality of the secondary rod pathway and describes an additive contribution of the different pathways to the retinal output.
Collapse
Affiliation(s)
- Nange Jin
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Lian-Ming Tian
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Iris Fahrenfort
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Zhijing Zhang
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Friso Postma
- Department of Neurobiology, Medical School, Harvard University, Boston, MA, USA
| | - David L. Paul
- Department of Neurobiology, Medical School, Harvard University, Boston, MA, USA
| | - Stephen C. Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
- Elizabeth Morford Distinguished Chair in Ophthalmology and Research Director, Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Christophe P. Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
- Bernice Weingarten Chair in Ophthalmology, Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| |
Collapse
|
17
|
Adámek P, Langová V, Horáček J. Early-stage visual perception impairment in schizophrenia, bottom-up and back again. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:27. [PMID: 35314712 PMCID: PMC8938488 DOI: 10.1038/s41537-022-00237-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/17/2022] [Indexed: 01/01/2023]
Abstract
Visual perception is one of the basic tools for exploring the world. However, in schizophrenia, this modality is disrupted. So far, there has been no clear answer as to whether the disruption occurs primarily within the brain or in the precortical areas of visual perception (the retina, visual pathways, and lateral geniculate nucleus [LGN]). A web-based comprehensive search of peer-reviewed journals was conducted based on various keyword combinations including schizophrenia, saliency, visual cognition, visual pathways, retina, and LGN. Articles were chosen with respect to topic relevance. Searched databases included Google Scholar, PubMed, and Web of Science. This review describes the precortical circuit and the key changes in biochemistry and pathophysiology that affect the creation and characteristics of the retinal signal as well as its subsequent modulation and processing in other parts of this circuit. Changes in the characteristics of the signal and the misinterpretation of visual stimuli associated with them may, as a result, contribute to the development of schizophrenic disease.
Collapse
Affiliation(s)
- Petr Adámek
- Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic.
| | - Veronika Langová
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Horáček
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
18
|
van der Sande E, Haarman AEG, Quint WH, Tadema KCD, Meester-Smoor MA, Kamermans M, De Zeeuw CI, Klaver CCW, Winkelman BHJ, Iglesias AI. The Role of GJD2(Cx36) in Refractive Error Development. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35262731 PMCID: PMC8934558 DOI: 10.1167/iovs.63.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Refractive errors are common eye disorders characterized by a mismatch between the focal power of the eye and its axial length. An increased axial length is a common cause of the refractive error myopia (nearsightedness). The substantial increase in myopia prevalence over the last decades has raised public health concerns because myopia can lead to severe ocular complications later in life. Genomewide association studies (GWAS) have made considerable contributions to the understanding of the genetic architecture of refractive errors. Among the hundreds of genetic variants identified, common variants near the gap junction delta-2 (GJD2) gene have consistently been reported as one of the top hits. GJD2 encodes the connexin 36 (Cx36) protein, which forms gap junction channels and is highly expressed in the neural retina. In this review, we provide current evidence that links GJD2(Cx36) to the development of myopia. We summarize the gap junctional communication in the eye and the specific role of GJD2(Cx36) in retinal processing of visual signals. Finally, we discuss the pathways involving dopamine and gap junction phosphorylation and coupling as potential mechanisms that may explain the role of GJD2(Cx36) in refractive error development.
Collapse
Affiliation(s)
- Emilie van der Sande
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim H. Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kirke C. D. Tadema
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Biomedical Physics and Biomedical Photonics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Beerend H. J. Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adriana I. Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Losenkova K, Takeda A, Ragauskas S, Cerrada-Gimenez M, Vähätupa M, Kaja S, Paul ML, Schmies CC, Rolshoven G, Müller CE, Sandholm J, Jalkanen S, Kalesnykas G, Yegutkin GG. CD73 controls ocular adenosine levels and protects retina from light-induced phototoxicity. Cell Mol Life Sci 2022; 79:152. [PMID: 35212809 PMCID: PMC8881442 DOI: 10.1007/s00018-022-04187-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 01/03/2023]
Abstract
ATP and adenosine have emerged as important signaling molecules involved in vascular remodeling, retinal functioning and neurovascular coupling in the mammalian eye. However, little is known about the regulatory mechanisms of purinergic signaling in the eye. Here, we used three-dimensional multiplexed imaging, in situ enzyme histochemistry, flow cytometric analysis, and single cell transcriptomics to characterize the whole pattern of purine metabolism in mouse and human eyes. This study identified ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2, and ecto-5′-nucleotidase/CD73 as major ocular ecto-nucleotidases, which are selectively expressed in the photoreceptor layer (CD73), optic nerve head, retinal vasculature and microglia (CD39), as well as in neuronal processes and cornea (CD39, NTPDase2). Specifically, microglial cells can create a spatially arranged network in the retinal parenchyma by extending and retracting their branched CD39high/CD73low processes and forming local “purinergic junctions” with CD39low/CD73− neuronal cell bodies and CD39high/CD73− retinal blood vessels. The relevance of the CD73–adenosine pathway was confirmed by flash electroretinography showing that pharmacological inhibition of adenosine production by injection of highly selective CD73 inhibitor PSB-12489 in the vitreous cavity of dark-adapted mouse eyes rendered the animals hypersensitive to prolonged bright light, manifested as decreased a-wave and b-wave amplitudes. The impaired electrical responses of retinal cells in PSB-12489-treated mice were not accompanied by decrease in total thickness of the retina or death of photoreceptors and retinal ganglion cells. Our study thus defines ocular adenosine metabolism as a complex and spatially integrated network and further characterizes the critical role of CD73 in maintaining the functional activity of retinal cells.
Collapse
Affiliation(s)
- Karolina Losenkova
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Akira Takeda
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | | | | | | | - Simon Kaja
- Experimentica Ltd., Kuopio, Finland.,Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Marius L Paul
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.,Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Constanze C Schmies
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Georg Rolshoven
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | | | - Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|
20
|
Flood MD, Wellington AJ, Eggers ED. Impaired Light Adaptation of ON-Sustained Ganglion Cells in Early Diabetes Is Attributable to Diminished Response to Dopamine D4 Receptor Activation. Invest Ophthalmol Vis Sci 2022; 63:33. [PMID: 35077550 PMCID: PMC8802033 DOI: 10.1167/iovs.63.1.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal neuronal signaling is disrupted early in diabetes, before the onset of the vascular pathologies associated with diabetic retinopathy. There is also growing evidence that retinal dopamine, a neuromodulator that mediates light adaptation, is reduced in early diabetes. Previously, we have shown that after 6 weeks of diabetes, light adaptation is impaired in ON-sustained (ON-s) ganglion cells in the mouse retina. The purpose of this study was to determine whether changes in the response to dopamine receptor activation contribute to this dysfunction. Methods Single-cell retinal patch-clamp recordings from the mouse retina were used to determine how activating dopamine type D4 receptors (D4Rs) changes the light-evoked and spontaneous excitatory inputs to ON-s ganglion cells, in both control and 6-week diabetic (STZ-injected) animals. Fluorescence in situ hybridization was also used to assess whether D4R expression was affected by diabetes. Results D4R activation decreased light-evoked and spontaneous inputs to ON-s ganglion cells in control and diabetic retinas. However, D4R activation caused a smaller reduction in light-evoked excitatory inputs to ON-s ganglion cells in diabetic retinas compared to controls. This impaired D4R signaling is not attributable to a decline in D4R expression, as there was no change in D4R mRNA density in the diabetic retinas. Conclusions These results suggest that the cellular response to dopamine signaling is disrupted in early diabetes and may be amenable to chronic dopamine supplementation therapy.
Collapse
Affiliation(s)
- Michael D Flood
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| | - Andrea J Wellington
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| | - Erika D Eggers
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
21
|
Flood MD, Eggers ED. Dopamine D1 and D4 receptors contribute to light adaptation in ON-sustained retinal ganglion cells. J Neurophysiol 2021; 126:2039-2052. [PMID: 34817291 PMCID: PMC8715048 DOI: 10.1152/jn.00218.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 01/21/2023] Open
Abstract
The adaptation of ganglion cells to increasing light levels is a crucial property of the retina. The retina must respond to light intensities that vary by 10-12 orders of magnitude, but the dynamic range of ganglion cell responses covers only ∼3 orders of magnitude. Dopamine is a crucial neuromodulator for light adaptation and activates receptors in the D1 and D2 families. Dopamine type D1 receptors (D1Rs) are expressed on horizontal cells and some bipolar, amacrine, and ganglion cells. In the D2 family, D2Rs are expressed on dopaminergic amacrine cells and D4Rs are primarily expressed on photoreceptors. However, the roles of activating these receptors to modulate the synaptic properties of the inputs to ganglion cells are not yet clear. Here, we used single-cell retinal patch-clamp recordings from the mouse retina to determine how activating D1Rs and D4Rs changed the light-evoked and spontaneous excitatory inputs to ON-sustained (ON-s) ganglion cells. We found that both D1R and D4R activation decrease the light-evoked excitatory inputs to ON-s ganglion cells, but that only the sum of the peak response decrease due to activating the two receptors was similar to the effect of light adaptation to a rod-saturating background. The largest effects on spontaneous excitatory activity of both D1R and D4R agonists was on the frequency of events, suggesting that both D1Rs and D4Rs are acting upstream of the ganglion cells.NEW & NOTEWORTHY Dopamine by bright light conditions allows retinal neurons to reduce sensitivity to adapt to bright light conditions. It is not clear how and why dopamine receptors modulate retinal ganglion cell signaling. We found that both D1 and D4 dopamine receptors in photoreceptors and inner retinal neurons contribute significantly to the reduction in sensitivity of ganglion cells with light adaptation. However, light adaptation also requires dopamine-independent mechanisms that could reflect inherent sensitivity changes in photoreceptors.
Collapse
Affiliation(s)
- Michael D Flood
- Department of Physiology, University of Arizona, Tucson, Arizona
- Department Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Erika D Eggers
- Department of Physiology, University of Arizona, Tucson, Arizona
- Department Biomedical Engineering, University of Arizona, Tucson, Arizona
| |
Collapse
|
22
|
Association Between Adenosine A 2A Receptors and Connexin 43 Regulates Hemichannels Activity and ATP Release in Astrocytes Exposed to Amyloid-β Peptides. Mol Neurobiol 2021; 58:6232-6248. [PMID: 34476674 DOI: 10.1007/s12035-021-02538-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022]
Abstract
Increasing evidence implicates astrocytes and the associated purinergic modulation in Alzheimer's disease (AD), characterized by cognitive deficits involving the extracellular amyloid-β peptides (Aβ) accumulation. Aβ can affect astrocytic gliotransmitters release, namely ATP, which is rapidly metabolized into adenosine by ecto-5'-nucleotidase, CD73, resulting in adenosine A2A receptors (A2AR) activation that bolsters neurodegeneration. AD's brains exhibit an upregulation of A2AR and of connexin 43 (Cx43), which in astrocytes forms hemichannels that can mediate ATP release. However, a coupling between astrocytic A2AR and Cx43 remains to be established. This was now investigated using astrocytic primary cultures exposed to Aβ1-42 peptides. Aβ triggered ATP release through Cx43 hemichannels, a process blocked by A2AR antagonists and mimicked by selective A2AR activation. A2AR directly regulated hemichannels activity and prevented Cx43 upregulation and phosphorylation observed in Aβ1-42-exposed astrocytes. Moreover, a proximity ligand assay revealed a physical association between astrocytic A2AR and Cx43. Finally, the blockade of CD73-mediated extracellular formation of ATP-derived adenosine prevented the Aβ-induced increase of Cx43 hemichannel activity and of ATP release. Overall, the data identify a feed-forward loop involving astrocytic A2AR and Cx43 hemichannels, whereby A2AR increase Cx43 hemichannel activity leading to increased ATP release, which is converted into adenosine by CD73, sustaining the increased astrocytic A2AR activity in AD-like conditions.
Collapse
|
23
|
Agarwal P, Agarwal R. Tackling retinal ganglion cell apoptosis in glaucoma: role of adenosine receptors. Expert Opin Ther Targets 2021; 25:585-596. [PMID: 34402357 DOI: 10.1080/14728222.2021.1969362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The role of adenosine receptors as therapeutic targets for neuroprotection is now widely recognized. Their role, however, in protection against retinal ganglion cell (RGC) apoptosis in glaucoma needs further investigation. Hence, in this review, we look into the possibility of adenosine receptors as potential therapeutic targets by exploring their role in modulating various pathophysiological mechanisms underlying glaucomatous RGC loss. AREAS COVERED This review presents a summary of the adenosine receptor distribution in retina and the cellular functions mediated by them. The major pathophysiological mechanisms such as excitotoxicity, vascular dysregulation, loss of neurotrophic signaling, and inflammatory responses involved in glaucomatous RGC loss are discussed. The literature showing the role of adenosine receptors in modulating these pathophysiological mechanisms is discussed. The literature search was conducted using Pubmed search engine using key words such as 'RGC apoptosis,' 'adenosine,' adenosine receptors' 'retina' 'excitotoxicity,' 'neurotrophins,' 'ischemia', and 'cytokines' individually and in various combinations. EXPERT OPINION Use of adenosine receptor agonists and antagonists, for preservation of the RGCs in glaucomatous eyes independent of the level of intraocular pressure seems a very useful strategy. Future application of this strategy would require appropriate designing of drug formulation for tissue and disease-specific receptor targeting. Furthermore, the modulation of physiological functions and potential adverse effects need further investigations.
Collapse
Affiliation(s)
- Puneet Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Cao J, Mangel SC. Interactions of cone cannabinoid CB1 and dopamine D4 receptors increase day/night difference in rod-cone gap junction coupling in goldfish retina. J Physiol 2021; 599:4085-4100. [PMID: 34252195 DOI: 10.1113/jp281308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/30/2021] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS Although cone and rod photoreceptor cells in the retina have a type of cannabinoid receptor called a CB1 receptor, little is known about how cannabinoids, the active component in marijuana, affect retinal function. Studies have shown that a circadian (24-h) clock in the retina uses dopamine receptors, which are also on photoreceptors, to regulate gap junctions (a type of cell-to-cell communication) between rods and cones, so that they are functional (open) at night but closed in the day. We show that CB1 receptors have opposite effects on rod-cone gap junctions in day and night, decreasing communication in the day when dopamine receptors are active and increasing communication when dopamine receptors are inactive. CB1 and dopamine receptors thus work together to enhance the day/night difference in rod-cone gap junction communication. The increased rod-cone communication at night due to cannabinoid CB1 receptors may help improve night vision. ABSTRACT Cannabinoid CB1 receptors and dopamine D4 receptors in the brain form receptor complexes that interact but the physiological function of these interactions in intact tissue remains unclear. In vertebrate retina, rods and cones, which are connected by gap junctions, express both CB1 and D4 receptors. Because the retinal circadian clock uses cone D4 receptors to decrease rod-cone gap junction coupling in the day and to increase it at night, we studied whether an interaction between cone CB1 and D4 receptors increases the day/night difference in rod-cone coupling compared to D4 receptors acting alone. Using electrical recording and injections of Neurobiotin tracer into individual cones in intact goldfish retinas, we found that SR141716A (a CB1 receptor antagonist) application alone in the day increased both the extent of rod-cone tracer coupling and rod input to cones, which reaches cones via open gap junctions. Conversely, SR141716A application alone at night or SR141716A application in the day following 30-min spiperone (a D4 receptor antagonist) application decreased both rod-cone tracer coupling and rod input to cones. These results show that endogenous activation of cone CB1 receptors decreases rod-cone coupling in the day when D4 receptors are activated but increases it at night when D4 receptors are not activated. Therefore, the D4 receptor-dependent day/night switch in the effects of CB1 receptor activation results in an enhancement of the day/night difference in rod-cone coupling. This synergistic interaction increases detection of very dim large objects at night and fine spatial details in the day.
Collapse
Affiliation(s)
- Jiexin Cao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, USA.,Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, USA
| | - Stuart C Mangel
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH, USA.,Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
25
|
Vila A, Shihabeddin E, Zhang Z, Santhanam A, Ribelayga CP, O’Brien J. Synaptic Scaffolds, Ion Channels and Polyamines in Mouse Photoreceptor Synapses: Anatomy of a Signaling Complex. Front Cell Neurosci 2021; 15:667046. [PMID: 34393723 PMCID: PMC8356055 DOI: 10.3389/fncel.2021.667046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Synaptic signaling complexes are held together by scaffold proteins, each of which is selectively capable of interacting with a number of other proteins. In previous studies of rabbit retina, we found Synapse-Associated Protein-102 (SAP102) and Channel Associated Protein of Synapse-110 (Chapsyn110) selectively localized in the tips of horizontal cell processes at contacts with rod and cone photoreceptors, along with several interacting ion channels. We have examined the equivalent suites of proteins in mouse retina and found similarities and differences. In the mouse retina we identified Chapsyn110 as the scaffold selectively localized in the tips of horizontal cells contacting photoreceptors, with Sap102 more diffusely present. As in rabbit, the inward rectifier potassium channel Kir2.1 was present with Chapsyn110 on the tips of horizontal cell dendrites within photoreceptor invaginations, where it could provide a hyperpolarization-activated current that could contribute to ephaptic signaling in the photoreceptor synapses. Pannexin 1 and Pannexin 2, thought to play a role in ephaptic and/or pH mediated signaling, were present in the outer plexiform layer, but likely not in the horizontal cells. Polyamines regulate many ion channels and control the degree of rectification of Kir2.1 by imposing a voltage-dependent block. During the day polyamine immunolabeling was unexpectedly high in photoreceptor terminals compared to other areas of the retina. This content was significantly lower at night, when polyamine content was predominantly in Müller glia, indicating daily rhythms of polyamine content. Both rod and cone terminals displayed the same rhythm. While polyamine content was not prominent in horizontal cells, if polyamines are released, they may regulate the activity of Kir2.1 channels located in the tips of HCs. The rhythmic change in polyamine content of photoreceptor terminals suggests that a daily rhythm tunes the behavior of suites of ion channels within the photoreceptor synapses.
Collapse
Affiliation(s)
- Alejandro Vila
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Eyad Shihabeddin
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Zhijing Zhang
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Abirami Santhanam
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Christophe P. Ribelayga
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - John O’Brien
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
26
|
Zhi Z, Xiang J, Fu Q, Pei X, Zhou D, Cao Y, Xie L, Zhang S, Chen S, Qu J, Zhou X. The Role of Retinal Connexins Cx36 and Horizontal Cell Coupling in Emmetropization in Guinea Pigs. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 34283211 PMCID: PMC8300059 DOI: 10.1167/iovs.62.9.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to determine whether retinal gap junctions (GJs) via connexin 36 (Cx36, mediating coupling of many retinal cell types) and horizontal cell (HC-HC) coupling, are involved in emmetropization. Methods Guinea pigs (3 weeks old) were monocularly form deprived (FD) or raised without FD (in normal visual [NV] environment) for 2 days or 4 weeks; alternatively, they wore a -4 D lens (hyperopic defocus [HD]) or 0 D lens for 2 days or 1 week. FD and NV eyes received daily subconjunctival injections of a nonspecific GJ-uncoupling agent, 18-β-Glycyrrhetinic Acid (18-β-GA). The amounts of total Cx36 and of phosphorylated Cx36 (P-Cx36; activated state that increases cell-cell coupling), in the inner and outer plexiform layers (IPLs and OPLs), were evaluated by quantitative immunofluorescence (IF), and HC-HC coupling was evaluated by cut-loading with neurobiotin. Results FD per se (excluding effect of light-attenuation) increased HC-HC coupling in OPL, whereas HD did not affect it. HD for 2 days or 1 week had no significant effect on retinal content of Cx36 or P-Cx36. FD for 4 weeks decreased the total amounts of Cx36 and P-Cx36, and the P-Cx36/Cx36 ratio, in the IPL. Subconjunctival 18-β-GA induced myopia in NV eyes and increased the myopic shifts in FD eyes, while reducing the amounts of Cx36 and P-Cx36 in both the IPL and OPL. Conclusions These results suggest that cell-cell coupling via GJs containing Cx36 (particularly those in the IPL) plays a role in emmetropization and form deprivation myopia (FDM) in mammals. Although both FD and 18-β-GA induced myopia, they had opposite effects on HC-HC coupling. These findings suggest that HC-HC coupling in the OPL might not play a significant role in emmetropization and myopia development.
Collapse
Affiliation(s)
- Zhina Zhi
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jing Xiang
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Qian Fu
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiaomeng Pei
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Dengke Zhou
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yuqing Cao
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Liqin Xie
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Sen Zhang
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Si Chen
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology, and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health People's Republic of China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| |
Collapse
|
27
|
Quint WH, Tadema KCD, de Vrieze E, Lukowicz RM, Broekman S, Winkelman BHJ, Hoevenaars M, de Gruiter HM, van Wijk E, Schaeffel F, Meester-Smoor M, Miller AC, Willemsen R, Klaver CCW, Iglesias AI. Loss of Gap Junction Delta-2 (GJD2) gene orthologs leads to refractive error in zebrafish. Commun Biol 2021; 4:676. [PMID: 34083742 PMCID: PMC8175550 DOI: 10.1038/s42003-021-02185-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
Myopia is the most common developmental disorder of juvenile eyes, and it has become an increasing cause of severe visual impairment. The GJD2 locus has been consistently associated with myopia in multiple independent genome-wide association studies. However, despite the strong genetic evidence, little is known about the functional role of GJD2 in refractive error development. Here, we find that depletion of gjd2a (Cx35.5) or gjd2b (Cx35.1) orthologs in zebrafish, cause changes in the biometry and refractive status of the eye. Our immunohistological and scRNA sequencing studies show that Cx35.5 (gjd2a) is a retinal connexin and its depletion leads to hyperopia and electrophysiological changes in the retina. These findings support a role for Cx35.5 (gjd2a) in the regulation of ocular biometry. Cx35.1 (gjd2b) has previously been identified in the retina, however, we found an additional lenticular role. Lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. Our results provide functional evidence of a link between gjd2 and refractive error. Quint et al. use zebrafish lines deficient in one of two orthologs of the Gap Junction Delta-2 (GJD2) gene, which is associated with myopia by genome-wide association studies. They link gjd2 with refractive error and report evidence to suggest that gjd2a plays a role in ocular biometry whilst gjd2b, previously found in the retina, possesses an additional lenticular role.
Collapse
Affiliation(s)
- Wim H Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands. .,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Kirke C D Tadema
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rachel M Lukowicz
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Sanne Broekman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Beerend H J Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Melanie Hoevenaars
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Erwin van Wijk
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Schaeffel
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Magda Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adriana I Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands. .,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Cangiano L, Asteriti S. Interphotoreceptor coupling: an evolutionary perspective. Pflugers Arch 2021; 473:1539-1554. [PMID: 33988778 PMCID: PMC8370920 DOI: 10.1007/s00424-021-02572-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
In the vertebrate retina, signals generated by cones of different spectral preference and by highly sensitive rod photoreceptors interact at various levels to extract salient visual information. The first opportunity for such interaction is offered by electrical coupling of the photoreceptors themselves, which is mediated by gap junctions located at the contact points of specialised cellular processes: synaptic terminals, telodendria and radial fins. Here, we examine the evolutionary pressures for and against interphotoreceptor coupling, which are likely to have shaped how coupling is deployed in different species. The impact of coupling on signal to noise ratio, spatial acuity, contrast sensitivity, absolute and increment threshold, retinal signal flow and colour discrimination is discussed while emphasising available data from a variety of vertebrate models spanning from lampreys to primates. We highlight the many gaps in our knowledge, persisting discrepancies in the literature, as well as some major unanswered questions on the actual extent and physiological role of cone-cone, rod-cone and rod-rod communication. Lastly, we point toward limited but intriguing evidence suggestive of the ancestral form of coupling among ciliary photoreceptors.
Collapse
Affiliation(s)
- Lorenzo Cangiano
- Dept. of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy.
| | - Sabrina Asteriti
- Dept. of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy
| |
Collapse
|
29
|
Goel M, Mangel SC. Dopamine-Mediated Circadian and Light/Dark-Adaptive Modulation of Chemical and Electrical Synapses in the Outer Retina. Front Cell Neurosci 2021; 15:647541. [PMID: 34025356 PMCID: PMC8131545 DOI: 10.3389/fncel.2021.647541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The vertebrate retina, like most other brain regions, undergoes relatively slow alterations in neural signaling in response to gradual changes in physiological conditions (e.g., activity changes to rest), or in response to gradual changes in environmental conditions (e.g., day changes into night). As occurs elsewhere in the brain, the modulatory processes that mediate slow adaptation in the retina are driven by extrinsic signals (e.g., changes in ambient light level) and/or by intrinsic signals such as those of the circadian (24-h) clock in the retina. This review article describes and discusses the extrinsic and intrinsic modulatory processes that enable neural circuits in the retina to optimize their visual performance throughout day and night as the ambient light level changes by ~10 billion-fold. In the first synaptic layer of the retina, cone photoreceptor cells form gap junctions with rods and signal cone-bipolar and horizontal cells (HCs). Distinct extrinsic and intrinsic modulatory processes in this synaptic layer are mediated by long-range feedback of the neuromodulator dopamine. Dopamine is released by dopaminergic cells, interneurons whose cell bodies are located in the second synaptic layer of the retina. Distinct actions of dopamine modulate chemical and electrical synapses in day and night. The retinal circadian clock increases dopamine release in the day compared to night, activating high-affinity dopamine D4 receptors on cones. This clock effect controls electrical synapses between rods and cones so that rod-cone electrical coupling is minimal in the day and robust at night. The increase in rod-cone coupling at night improves the signal-to-noise ratio and the reliability of very dim multi-photon light responses, thereby enhancing detection of large dim objects on moonless nights.Conversely, maintained (30 min) bright illumination in the day compared to maintained darkness releases sufficient dopamine to activate low-affinity dopamine D1 receptors on cone-bipolar cell dendrites. This non-circadian light/dark adaptive process regulates the function of GABAA receptors on ON-cone-bipolar cell dendrites so that the receptive field (RF) surround of the cells is strong following maintained bright illumination but minimal following maintained darkness. The increase in surround strength in the day following maintained bright illumination enhances the detection of edges and fine spatial details.
Collapse
Affiliation(s)
- Manvi Goel
- Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, United States
| | - Stuart C Mangel
- Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
30
|
Bhoi JD, Zhang Z, Janz R, You Y, Wei H, Wu J, Ribelayga CP. The SNARE regulator Complexin3 is a target of the cone circadian clock. J Comp Neurol 2021; 529:1066-1080. [PMID: 32783205 PMCID: PMC8190822 DOI: 10.1002/cne.25004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 01/07/2023]
Abstract
BMAL1 is a core component of the mammalian circadian clockwork. Removal of BMAL1 from the retina significantly affects visual information processing in both rod and cone pathways. To identify potential pathways and/or molecules through which BMAL1 alters signal transmission at the cone pedicle, we performed an RNA-seq differential expression analysis between cone-specific Bmal1 knockout cones (cone-Bmal1-/- ) and wild-type (WT) cones. We found 88 genes differentially expressed. Among these, Complexin3 (Cplx3), a SNARE regulator at ribbon synapses, was downregulated fivefold in the mutant cones. The purpose of this work was to determine whether BMAL1 and/or the cone clock controls CPLX3 protein expression at cone pedicles. We found that CPLX3 expression level was decreased twofold in cone-Bmal1-/- cones. Furthermore, CPLX3 expression was downregulated at night compared to the day in WT cones but remained constitutively low in mutant cones both day and night. The transcript and protein expression levels of Cplx4-the other complexin expressed in cones-were similar in WT and mutant cones; in WT cones, CPLX4 protein level did not change with the time of day. In silico analysis revealed four potential BMAL1:CLOCK binding sites upstream from exon one of Cplx3 and none upstream of exon one of Cplx4. Our results suggest that CPLX3 expression is regulated at the transcriptional level by the cone clock. The modulation of CPLX3 may be a mechanism by which the clock controls the cone synaptic transfer function to second-order cells and thereby impacts retinal signal processing during the day/night cycle.
Collapse
Affiliation(s)
- Jacob D. Bhoi
- Rice University, Undergraduate Program in Neuroscience, Houston, Texas
- Summer Research Program, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhijing Zhang
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Roger Janz
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- MD Anderson UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
- Program in Neuroscience, MD Anderson UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
- Neuroscience Research Center, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yanan You
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Center for Stem Cell and Regenerative Medicine, The University of Texas Brown Foundation Institute of Molecular Medicine, Houston, Texas
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Center for Stem Cell and Regenerative Medicine, The University of Texas Brown Foundation Institute of Molecular Medicine, Houston, Texas
| | - Jiaqian Wu
- MD Anderson UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
- Program in Neuroscience, MD Anderson UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
- Neuroscience Research Center, The University of Texas Health Science Center at Houston, Houston, Texas
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Center for Stem Cell and Regenerative Medicine, The University of Texas Brown Foundation Institute of Molecular Medicine, Houston, Texas
| | - Christophe P. Ribelayga
- Summer Research Program, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- MD Anderson UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
- Program in Neuroscience, MD Anderson UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
- Neuroscience Research Center, The University of Texas Health Science Center at Houston, Houston, Texas
- Program in Biochemistry and Cell Biology, MD Anderson UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
- Bernice Weingarten Chair in Ophthalmology, Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
31
|
Cao J, Ribelayga CP, Mangel SC. A Circadian Clock in the Retina Regulates Rod-Cone Gap Junction Coupling and Neuronal Light Responses via Activation of Adenosine A 2A Receptors. Front Cell Neurosci 2021; 14:605067. [PMID: 33510619 PMCID: PMC7835330 DOI: 10.3389/fncel.2020.605067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Adenosine, a major neuromodulator in the central nervous system (CNS), is involved in a variety of regulatory functions such as the sleep/wake cycle. Because exogenous adenosine displays dark- and night-mimicking effects in the vertebrate retina, we tested the hypothesis that a circadian (24 h) clock in the retina uses adenosine to control neuronal light responses and information processing. Using a variety of techniques in the intact goldfish retina including measurements of adenosine overflow and content, tracer labeling, and electrical recording of the light responses of cone photoreceptor cells and cone horizontal cells (cHCs), which are post-synaptic to cones, we demonstrate that a circadian clock in the retina itself-but not activation of melatonin or dopamine receptors-controls extracellular and intracellular adenosine levels so that they are highest during the subjective night. Moreover, the results show that the clock increases extracellular adenosine at night by enhancing adenosine content so that inward adenosine transport ceases. Also, we report that circadian clock control of endogenous cone adenosine A2A receptor activation increases rod-cone gap junction coupling and rod input to cones and cHCs at night. These results demonstrate that adenosine and A2A receptor activity are controlled by a circadian clock in the retina, and are used by the clock to modulate rod-cone electrical synapses and the sensitivity of cones and cHCs to very dim light stimuli. Moreover, the adenosine system represents a separate circadian-controlled pathway in the retina that is independent of the melatonin/dopamine pathway but which nevertheless acts in concert to enhance the day/night difference in rod-cone coupling.
Collapse
Affiliation(s)
- Jiexin Cao
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Christophe P Ribelayga
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Stuart C Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
32
|
Zhu Q, Yang G, Chen B, Liu F, Li X, Liu L. Altered Expression of GJD2 Messenger RNA and the Coded Protein Connexin 36 in Negative Lens-induced Myopia of Guinea Pigs. Optom Vis Sci 2020; 97:1080-1088. [PMID: 33278187 PMCID: PMC7742206 DOI: 10.1097/opx.0000000000001611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
SIGNIFICANCE Decreased expression of the retinal GJD2 gene messenger RNA (mRNA) and connexin 36 (Cx36) protein in the guinea pig negative lens-induced myopia (LIM) model suggests their involvement in local retinal circuits regulating eye growth. PURPOSE Previous studies suggest that the GJD2 gene and Cx36 protein encoded by the GJD2 gene play important roles in retinal signaling pathways and eye development. The aim of this study was to investigate the changes in GJD2 mRNA and Cx36 protein expression in the guinea pig lens-induced myopia model. METHODS Four-week-old guinea pigs were randomly divided into two groups. Animals in the experimental group were fitted with monocular -10 D lenses; and animals in the control group, with monocular plano lenses. Biometric measurements, including the spherical equivalent refractive error and axial length, were monitored. Animals were killed after 0, 1, 2, and 3 weeks of treatment, and their retinas were isolated. Retinal GJD2 mRNA and Cx36 protein expression levels were assessed by quantitative real-time polymerase chain reaction and Western blot analysis, respectively. RESULTS Spherical equivalent refractive error values indicated that negative lens-treated eyes became significantly more myopic than plano lens-treated eyes (P = .001), consistent with their longer axial lengths compared with those of control eyes. Both GJD2 mRNA and Cx36 protein expression levels were decreased in the retinas of negative lens-treated eyes compared with levels in the retinas of plano lens-treated eyes, although there were differences in the timing; GJD2 mRNA, levels were significantly decreased after 1 and 2 weeks of treatment (P = .01 and P = .004, respectively), whereas Cx36 protein expression was significantly decreased after only 1 week (P = .01). CONCLUSIONS That both retinal GJD2 mRNA and Cx36 protein expression levels were decreased after induction of myopia with negative lenses points to retinal circuits involving Cx36 in myopia development in the guinea pig.
Collapse
Affiliation(s)
- Qiurong Zhu
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guoyuan Yang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bingjie Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengyang Liu
- Department of Optometry, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xia Li
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Tetenborg S, Wang HY, Nemitz L, Depping A, Espejo AB, Aseervatham J, Bedford MT, Janssen-Bienhold U, O'Brien J, Dedek K. Phosphorylation of Connexin36 near the C-terminus switches binding affinities for PDZ-domain and 14-3-3 proteins in vitro. Sci Rep 2020; 10:18378. [PMID: 33110101 PMCID: PMC7592057 DOI: 10.1038/s41598-020-75375-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Connexin36 (Cx36) is the most abundant connexin in central nervous system neurons. It forms gap junction channels that act as electrical synapses. Similar to chemical synapses, Cx36-containing gap junctions undergo activity-dependent plasticity and complex regulation. Cx36 gap junctions represent multimolecular complexes and contain cytoskeletal, regulatory and scaffolding proteins, which regulate channel conductance, assembly and turnover. The amino acid sequence of mammalian Cx36 harbors a phosphorylation site for the Ca2+/calmodulin-dependent kinase II at serine 315. This regulatory site is homologous to the serine 298 in perch Cx35 and in close vicinity to a PDZ binding domain at the very C-terminal end of the protein. We hypothesized that this phosphorylation site may serve as a molecular switch, influencing the affinity of the PDZ binding domain for its binding partners. Protein microarray and pulldown experiments revealed that this is indeed the case: phosphorylation of serine 298 decreased the binding affinity for MUPP1, a known scaffolding partner of connexin36, and increased the binding affinity for two different 14-3-3 proteins. Although we did not find the same effect in cell culture experiments, our data suggest that phosphorylation of serine 315/298 may serve to recruit different proteins to connexin36/35-containing gap junctions in an activity-dependent manner.
Collapse
Affiliation(s)
- Stephan Tetenborg
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Ruiz Department of Ophthalmology & Visual Science, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Helen Y Wang
- Ruiz Department of Ophthalmology & Visual Science, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lena Nemitz
- Visual Neuroscience, Dept. of Neuroscience, University of Oldenburg, Oldenburg, Germany
| | - Anne Depping
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Alexsandra B Espejo
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Jaya Aseervatham
- Ruiz Department of Ophthalmology & Visual Science, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Ulrike Janssen-Bienhold
- Visual Neuroscience, Dept. of Neuroscience, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - John O'Brien
- Ruiz Department of Ophthalmology & Visual Science, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Karin Dedek
- Animal Navigation/Neurosensorics, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
34
|
Campbell JR, Li H, Wang Y, Kozhemyakin M, Hunt AJ, Liu X, Janz R, Heidelberger R. Phosphorylation of the Retinal Ribbon Synapse Specific t-SNARE Protein Syntaxin3B Is Regulated by Light via a Ca 2 +-Dependent Pathway. Front Cell Neurosci 2020; 14:587072. [PMID: 33192329 PMCID: PMC7606922 DOI: 10.3389/fncel.2020.587072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Neurotransmitter release at retinal ribbon-style synapses utilizes a specialized t-SNARE protein called syntaxin3B (STX3B). In contrast to other syntaxins, STX3 proteins can be phosphorylated in vitro at T14 by Ca2+/calmodulin-dependent protein kinase II (CaMKII). This modification has the potential to modulate SNARE complex formation required for neurotransmitter release in an activity-dependent manner. To determine the extent to which T14 phosphorylation occurs in vivo in the mammalian retina and characterize the pathway responsible for the in vivo phosphorylation of T14, we utilized quantitative immunofluorescence to measure the levels of STX3 and STX3 phosphorylated at T14 (pSTX3) in the synaptic terminals of mouse retinal photoreceptors and rod bipolar cells (RBCs). Results demonstrate that STX3B phosphorylation at T14 is light-regulated and dependent upon the elevation of intraterminal Ca2+. In rod photoreceptor terminals, the ratio of pSTX3 to STX3 was significantly higher in dark-adapted mice, when rods are active, than in light-exposed mice. By contrast, in RBC terminals, the ratio of pSTX3 to STX3 was higher in light-exposed mice, when these terminals are active, than in dark-adapted mice. These results were recapitulated in the isolated eyecup preparation, but only when Ca2+ was included in the external medium. In the absence of external Ca2+, pSTX3 levels remained low regardless of light/dark exposure. Using the isolated RBC preparation, we next showed that elevation of intraterminal Ca2+ alone was sufficient to increase STX3 phosphorylation at T14. Furthermore, both the non-specific kinase inhibitor staurosporine and the selective CaMKII inhibitor AIP inhibited the Ca2+-dependent increase in the pSTX3/STX3 ratio in isolated RBC terminals, while in parallel experiments, AIP suppressed RBC depolarization-evoked exocytosis, measured using membrane capacitance measurements. Our data support a novel, illumination-regulated modulation of retinal ribbon-style synapse function in which activity-dependent Ca2+ entry drives the phosphorylation of STX3B at T14 by CaMKII, which in turn, modulates the ability to form SNARE complexes required for exocytosis.
Collapse
Affiliation(s)
- Joseph R Campbell
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hongyan Li
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanzhao Wang
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Maxim Kozhemyakin
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Albert J Hunt
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoqin Liu
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roger Janz
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
35
|
Rhodopsin-mediated light-off-induced protein kinase A activation in mouse rod photoreceptor cells. Proc Natl Acad Sci U S A 2020; 117:26996-27003. [PMID: 33046651 DOI: 10.1073/pnas.2009164117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Light-induced extrasynaptic dopamine release in the retina reduces adenosine 3',5'-cyclic monophosphate (cAMP) in rod photoreceptor cells, which is thought to mediate light-dependent desensitization. However, the fine time course of the cAMP dynamics in rods remains elusive due to technical difficulty. Here, we visualized the spatiotemporal regulation of cAMP-dependent protein kinase (PKA) in mouse rods by two-photon live imaging of retinal explants of PKAchu mice, which express a fluorescent biosensor for PKA. Unexpectedly, in addition to the light-on-induced suppression, we observed prominent light-off-induced PKA activation. This activation required photopic light intensity and was confined to the illuminated rods. The estimated maximum spectral sensitivity of 489 nm and loss of the light-off-induced PKA activation in rod-transducin-knockout retinas strongly suggest the involvement of rhodopsin. In support of this notion, rhodopsin-deficient retinal explants showed only the light-on-induced PKA suppression. Taken together, these results suggest that, upon photopic light stimulation, rhodopsin and dopamine signals are integrated to shape the light-off-induced cAMP production and following PKA activation. This may support the dark adaptation of rods.
Collapse
|
36
|
Li Y, Cohen ED, Qian H. Rod and Cone Coupling Modulates Photopic ERG Responses in the Mouse Retina. Front Cell Neurosci 2020; 14:566712. [PMID: 33100974 PMCID: PMC7546330 DOI: 10.3389/fncel.2020.566712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Light adaptation changes both the sensitivity and maximum amplitude (Rmax) of the mouse photopic electroretinogram (ERG) b-wave. Using the ERG, we examined how modulation of gap junctional coupling between rod and cones alters the light-adapted ERG. To measure changes, a b-wave light adaptation enhancement factor (LAEF), was defined as the ratio of Rmax after 15 min light adaptation to Rmax recorded at the onset of an adapting light. For wild-type mice (WT), the LAEF averaged 2.64 ± 0.29, however, it was significantly reduced (1.06 ± 0.04) for connexin 36 knock out (Cx36KO) mice, which lack electrical coupling between photoreceptors. Wild type mice intraocularly injected with meclofenamic acid (MFA), a gap junction blocker, also showed a significantly reduced LAEF. Degeneration of rod photoreceptors significantly alters the effects of light adaptation on the photopic ERG response. Rd10 mice at P21, with large portions of their rod photoreceptors present in the retina, exhibited a similar b-wave enhancement as wildtype controls, with a LAEF of 2.55 ± 0.19. However, by P31 with most of their rod photoreceptors degenerated, rd10 mice had a much reduced b-wave enhancement during light-adaptation (LAEF of 1.54 ± 0.12). Flicker ERG responses showed a higher temporal amplitude in mesopic conditions for WT than those of Cx36KO mice, suggesting rod-cone coupling help high-frequency signals to pass from rods to cone pathways in the retina. In conclusion, our study provides a novel method to noninvasively measure the dynamics and modulation by the light adaptation for rod-cone gap junctional coupling in intact eyes.
Collapse
Affiliation(s)
- Yichao Li
- Visual Function Core, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, United States
| | - Ethan D Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, United States
| | - Haohua Qian
- Visual Function Core, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Flood MD, Wellington AJ, Cruz LA, Eggers ED. Early diabetes impairs ON sustained ganglion cell light responses and adaptation without cell death or dopamine insensitivity. Exp Eye Res 2020; 200:108223. [PMID: 32910942 DOI: 10.1016/j.exer.2020.108223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Retinal signaling under dark-adapted conditions is perturbed during early diabetes. Additionally, dopamine, the main neuromodulator of retinal light adaptation, is diminished in diabetic retinas. However, it is not known if this dopamine deficiency changes how the retina responds to increased light or dopamine. Here we determine whether light adaptation is impaired in the diabetic retina, and investigate potential mechanism(s) of impairment. Diabetes was induced in C57BL/6J male mice via 3 intraperitoneal injections of streptozotocin (75 mg/kg) and confirmed by blood glucose levels more than 200 mg/dL. After 6 weeks, whole-cell recordings of light-evoked and spontaneous inhibitory postsynaptic currents (IPSCs) or excitatory postsynaptic currents (EPSCs) were made from rod bipolar cells and ON sustained ganglion cells, respectively. Light responses were recorded before and after D1 receptor (D1R) activation (SKF-38393, 20 μM) or light adaptation (background of 950 photons·μm-2 ·s-1). Retinal whole mounts were stained for either tyrosine hydroxylase and activated caspase-3 or GAD65/67, GlyT1 and RBPMS and imaged. D1R activation and light adaptation both decreased inhibition, but the disinhibition was not different between control and diabetic rod bipolar cells. However, diabetic ganglion cell light-evoked EPSCs were increased in the dark and showed reduced light adaptation. No differences were found in light adaptation of spontaneous EPSC parameters, suggesting upstream changes. No changes in cell density were found for dopaminergic, glycinergic or GABAergic amacrine cells, or ganglion cells. Thus, in early diabetes, ON sustained ganglion cells receive excessive excitation under dark- and light-adapted conditions. Our results show that this is not attributable to loss in number or dopamine sensitivity of inhibitory amacrine cells or loss of dopaminergic amacrine cells.
Collapse
Affiliation(s)
- Michael D Flood
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| | - Andrea J Wellington
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| | - Luis A Cruz
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| | - Erika D Eggers
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
38
|
Korshunov KS, Blakemore LJ, Trombley PQ. Illuminating and Sniffing Out the Neuromodulatory Roles of Dopamine in the Retina and Olfactory Bulb. Front Cell Neurosci 2020; 14:275. [PMID: 33110404 PMCID: PMC7488387 DOI: 10.3389/fncel.2020.00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023] Open
Abstract
In the central nervous system, dopamine is well-known as the neuromodulator that is involved with regulating reward, addiction, motivation, and fine motor control. Yet, decades of findings are revealing another crucial function of dopamine: modulating sensory systems. Dopamine is endogenous to subsets of neurons in the retina and olfactory bulb (OB), where it sharpens sensory processing of visual and olfactory information. For example, dopamine modulation allows the neural circuity in the retina to transition from processing dim light to daylight and the neural circuity in the OB to regulate odor discrimination and detection. Dopamine accomplishes these tasks through numerous, complex mechanisms in both neural structures. In this review, we provide an overview of the established and emerging research on these mechanisms and describe similarities and differences in dopamine expression and modulation of synaptic transmission in the retinas and OBs of various vertebrate organisms. This includes discussion of dopamine neurons’ morphologies, potential identities, and biophysical properties along with their contributions to circadian rhythms and stimulus-driven synthesis, activation, and release of dopamine. As dysregulation of some of these mechanisms may occur in patients with Parkinson’s disease, these symptoms are also discussed. The exploration and comparison of these two separate dopamine populations shows just how remarkably similar the retina and OB are, even though they are functionally distinct. It also shows that the modulatory properties of dopamine neurons are just as important to vision and olfaction as they are to motor coordination and neuropsychiatric/neurodegenerative conditions, thus, we hope this review encourages further research to elucidate these mechanisms.
Collapse
Affiliation(s)
- Kirill S Korshunov
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Laura J Blakemore
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
39
|
Blockade of Adenosine A 2A Receptor Protects Photoreceptors after Retinal Detachment by Inhibiting Inflammation and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7649080. [PMID: 32714489 PMCID: PMC7354651 DOI: 10.1155/2020/7649080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
Purpose Adenosine A2A receptor (A2AR) signaling is neuroprotective in some retinal damage models, but its role in neuronal survival during retinal detachment (RD) is unclear. We tested the hypothesis that A2AR antagonist ZM241385 would prevent photoreceptor apoptosis by inhibiting retinal inflammation and oxidative stress after RD. Methods The A2AR antagonist ZM241385 was delivered daily to C57BL/6J mice for three days at a dose (3 mg/kg, i.p.) starting 2 hours prior to creating RD. A2AR expression, microglia proliferation and reactivity, glial fibrillary acidic protein (GFAP) accumulation, IL-1β expression, and reactive oxygen species (ROS) production were evaluated with immunofluorescence. Photoreceptor TUNEL was analyzed. Results A2AR expression obviously increased and accumulated in microglia and Müller cells in the retinas after RD. The A2AR antagonist ZM241385 effectively inhibited retinal microglia proliferation and reactivity, decreased GFAP upregulation and proinflammatory cytokine IL-1β expression of Müller cells, and suppressed ROS overproduction, resulting in attenuation of photoreceptor apoptosis after RD. Conclusions The A2AR antagonist ZM241385 is an effective suppressor of microglia proliferation and reactivity, gliosis, neuroinflammation, oxidative stress, and photoreceptor apoptosis in a mouse model of RD. This suggests that A2AR blockade may be an important therapeutic strategy to protect photoreceptors in RD and other CNS diseases that share a common etiology.
Collapse
|
40
|
Jin N, Zhang Z, Keung J, Youn SB, Ishibashi M, Tian LM, Marshak DW, Solessio E, Umino Y, Fahrenfort I, Kiyama T, Mao CA, You Y, Wei H, Wu J, Postma F, Paul DL, Massey SC, Ribelayga CP. Molecular and functional architecture of the mouse photoreceptor network. SCIENCE ADVANCES 2020; 6:eaba7232. [PMID: 32832605 PMCID: PMC7439306 DOI: 10.1126/sciadv.aba7232] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Mouse photoreceptors are electrically coupled via gap junctions, but the relative importance of rod/rod, cone/cone, or rod/cone coupling is unknown. Furthermore, while connexin36 (Cx36) is expressed by cones, the identity of the rod connexin has been controversial. We report that FACS-sorted rods and cones both express Cx36 but no other connexins. We created rod- and cone-specific Cx36 knockout mice to dissect the photoreceptor network. In the wild type, Cx36 plaques at rod/cone contacts accounted for more than 95% of photoreceptor labeling and paired recordings showed the transjunctional conductance between rods and cones was ~300 pS. When Cx36 was eliminated on one side of the gap junction, in either conditional knockout, Cx36 labeling and rod/cone coupling were almost abolished. We could not detect direct rod/rod coupling, and cone/cone coupling was minor. Rod/cone coupling is so prevalent that indirect rod/cone/rod coupling via the network may account for previous reports of rod coupling.
Collapse
Affiliation(s)
- Nange Jin
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhijing Zhang
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joyce Keung
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean B. Youn
- Summer Research Program, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Undergraduate Program, William Marsh Rice University, Houston, TX, USA
| | - Munenori Ishibashi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lian-Ming Tian
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David W. Marshak
- Department of Neurobiology and Anatomy, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Research Center, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eduardo Solessio
- Center for Vision Research and SUNY Eye Institute, Department of Ophthalmology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yumiko Umino
- Center for Vision Research and SUNY Eye Institute, Department of Ophthalmology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Iris Fahrenfort
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Research Center, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanan You
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The University of Texas Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The University of Texas Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Jiaqian Wu
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The University of Texas Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Friso Postma
- Department of Neurobiology, Medical School, Harvard University, Boston, MA, USA
| | - David L. Paul
- Department of Neurobiology, Medical School, Harvard University, Boston, MA, USA
| | - Stephen C. Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Summer Research Program, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Research Center, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Elizabeth Morford Distinguished Chair in Ophthalmology and Research Director, Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christophe P. Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Summer Research Program, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Research Center, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Program in Biochemistry and Cellular Biology, Graduate School of Biomedical Sciences, MD Anderson Cancer Center/UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
- Bernice Weingarten Chair in Ophthalmology, Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
41
|
Cachope R, Pereda AE. Regulatory Roles of Metabotropic Glutamate Receptors on Synaptic Communication Mediated by Gap Junctions. Neuroscience 2020; 456:85-94. [PMID: 32619474 DOI: 10.1016/j.neuroscience.2020.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022]
Abstract
Variations of synaptic strength are thought to underlie forms of learning and can functionally reshape neural circuits. Metabotropic glutamate receptors play key roles in regulating the strength of chemical synapses. However, information within neural circuits is also conveyed via a second modality of transmission: gap junction-mediated synapses. We review here evidence indicating that metabotropic glutamate receptors also play important roles in the regulation of synaptic communication mediated by neuronal gap junctions, also known as 'electrical synapses'. Activity-driven interactions between metabotropic glutamate receptors and neuronal gap junctions can lead to long-term changes in the strength of electrical synapses. Further, the regulatory action of metabotropic glutamate receptors on neuronal gap junctions is not restricted to adulthood but is also of critical relevance during brain development and contributes to the pathological mechanisms that follow brain injury.
Collapse
Affiliation(s)
- Roger Cachope
- CHDI Foundation, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
42
|
Zhang S, Lyuboslavsky P, Dixon JA, Chrenek MA, Sellers JT, Hamm JM, Ribelayga CP, Zhang Z, Le YZ, Iuvone PM. Effects of Cone Connexin-36 Disruption on Light Adaptation and Circadian Regulation of the Photopic ERG. Invest Ophthalmol Vis Sci 2020; 61:24. [PMID: 32531058 PMCID: PMC7415284 DOI: 10.1167/iovs.61.6.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The present study tested the hypothesis that connexin-36 (Cx36) and gap junctions between photoreceptor cells contribute to the circadian rhythm of the photopic electroretinogram (ERG) b-wave amplitude. Methods Cone-specific disruption of Cx36 was obtained in mice with a floxed Gjd2 gene and human red/green pigment promoter (HRGP)-driven Cre recombinase. Standard ERG, spectral-domain optical coherence tomography (SD-OCT) and histochemical methods were used. Results HRGPcreGjd2fl/fl mice had a selective reduction in Cx36 protein in the outer plexiform layer; no reduction in Cx36 was observed in the inner plexiform layer. Cx36 disruption had no effect on the number of cones, the thickness of the photoreceptor layer, or the scotopic ERG responses. However, there was a reduction of the photopic ERG circadian rhythm, with b-wave amplitudes in the day and the night locked in the daytime, light-adapted state. In HRGPcreGjd2+/+and Gjd2fl/fl controls, the circadian rhythm of light-adapted ERG persisted, similar to that in wild type mice. Conclusions Cx36 regulation contributes to the circadian rhythm of light-adapted ERG; in the absence of photoreceptor gap junctions, mice appear to be in a fully light-adapted state regardless of the time of day. The higher amplitudes and reduced circadian regulation of the b-wave of HRGPcreGjd2fl/fl mice may be due to increased synaptic strength at the cone to ON bipolar cell synapse due to electrotonic isolation of the terminals lacking gap junctions.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Capital Medical University, Beijing, China
| | - Polina Lyuboslavsky
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
| | - Jendayi Azeezah Dixon
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
| | - Jana T. Sellers
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
| | - Jessica M. Hamm
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
| | - Christophe P. Ribelayga
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Zhijing Zhang
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Yun Z. Le
- Departments of Medicine, Cell Biology, and Ophthalmology and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - P. Michael Iuvone
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, Georgia, United States
- Department of Pharmacology, Emory University, School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
43
|
Martin EA, Lasseigne AM, Miller AC. Understanding the Molecular and Cell Biological Mechanisms of Electrical Synapse Formation. Front Neuroanat 2020; 14:12. [PMID: 32372919 PMCID: PMC7179694 DOI: 10.3389/fnana.2020.00012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
In this review article, we will describe the recent advances made towards understanding the molecular and cell biological mechanisms of electrical synapse formation. New evidence indicates that electrical synapses, which are gap junctions between neurons, can have complex molecular compositions including protein asymmetries across joined cells, diverse morphological arrangements, and overlooked similarities with other junctions, all of which indicate new potential roles in neurodevelopmental disease. Aquatic organisms, and in particular the vertebrate zebrafish, have proven to be excellent models for elucidating the molecular mechanisms of electrical synapse formation. Zebrafish will serve as our main exemplar throughout this review and will be compared with other model organisms. We highlight the known cell biological processes that build neuronal gap junctions and compare these with the assemblies of adherens junctions, tight junctions, non-neuronal gap junctions, and chemical synapses to explore the unknown frontiers remaining in our understanding of the critical and ubiquitous electrical synapse.
Collapse
Affiliation(s)
- E Anne Martin
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Abagael M Lasseigne
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Adam C Miller
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| |
Collapse
|
44
|
Eleftheriou CG, Wright P, Allen AE, Elijah D, Martial FP, Lucas RJ. Melanopsin Driven Light Responses Across a Large Fraction of Retinal Ganglion Cells in a Dystrophic Retina. Front Neurosci 2020; 14:320. [PMID: 32317928 PMCID: PMC7147324 DOI: 10.3389/fnins.2020.00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and project to central targets, allowing them to contribute to both image-forming and non-image forming vision. Recent studies have highlighted chemical and electrical synapses between ipRGCs and neurons of the inner retina, suggesting a potential influence from the melanopsin-born signal to affect visual processing at an early stage of the visual pathway. We investigated melanopsin responses in ganglion cell layer (GCL) neurons of both intact and dystrophic mouse retinas using 256 channel multi-electrode array (MEA) recordings. A wide 200 μm inter-electrode spacing enabled a pan-retinal visualization of melanopsin's influence upon GCL activity. Upon initial stimulation of dystrophic retinas with a long, bright light pulse, over 37% of units responded with an increase in firing (a far greater fraction than can be expected from the anatomically characterized number of ipRGCs). This relatively widespread response dissipated with repeated stimulation even at a quite long inter-stimulus interval (ISI; 120 s), to leave a smaller fraction of responsive units (<10%; more in tune with the predicted number of ipRGCs). Visually intact retinas appeared to lack such widespread melanopsin responses indicating that it is a feature of dystrophy. Taken together, our data reveal the potential for anomalously widespread melanopsin responses in advanced retinal degeneration. These could be used to probe the functional reorganization of retinal circuits in degeneration and should be taken into account when using retinally degenerate mice as a model of disease.
Collapse
Affiliation(s)
- Cyril G. Eleftheriou
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, United States
| | - Phillip Wright
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel Elijah
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
45
|
Inhibitory components of retinal bipolar cell receptive fields are differentially modulated by dopamine D1 receptors. Vis Neurosci 2020; 37:E01. [PMID: 32046810 DOI: 10.1017/s0952523819000129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During adaptation to an increase in environmental luminance, retinal signaling adjustments are mediated by the neuromodulator dopamine. Retinal dopamine is released with light and can affect center-surround receptive fields, the coupling state between neurons, and inhibitory pathways through inhibitory receptors and neurotransmitter release. While the inhibitory receptive field surround of bipolar cells becomes narrower and weaker during light adaptation, it is unknown how dopamine affects bipolar cell surrounds. If dopamine and light have similar effects, it would suggest that dopamine could be a mechanism for light-adapted changes. We tested the hypothesis that dopamine D1 receptor activation is sufficient to elicit the magnitude of light-adapted reductions in inhibitory bipolar cell surrounds. Surrounds were measured from OFF bipolar cells in dark-adapted mouse retinas while stimulating D1 receptors, which are located on bipolar, horizontal, and inhibitory amacrine cells. The D1 agonist SKF-38393 narrowed and weakened OFF bipolar cell inhibitory receptive fields but not to the same extent as with light adaptation. However, the receptive field surround reductions differed between the glycinergic and GABAergic components of the receptive field. GABAergic inhibitory strength was reduced only at the edges of the surround, while glycinergic inhibitory strength was reduced across the whole receptive field. These results expand the role of retinal dopamine to include modulation of bipolar cell receptive field surrounds. Additionally, our results suggest that D1 receptor pathways may be a mechanism for the light-adapted weakening of glycinergic surround inputs and the furthest wide-field GABAergic inputs to bipolar cells. However, remaining differences between light-adapted and D1 receptor-activated inhibition demonstrate that non-D1 receptor mechanisms are necessary to elicit the full effect of light adaptation on inhibitory surrounds.
Collapse
|
46
|
Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci 2020; 51:194-216. [PMID: 30270466 PMCID: PMC6441387 DOI: 10.1111/ejn.14185] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system. Dysregulation of retinal clocks not only causes retinal or ocular diseases, it also impacts the circadian rhythm of the whole body, as the light information transmitted from the retina entrains the brain clock that governs the body circadian rhythms. In this review, how circadian oscillations in various retinal cells are integrated, and how retinal diseases affect daily rhythms.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
47
|
Abstract
Gap junction-mediated electrical coupling between retinal photoreceptors is an important determinant of photoreceptor function. Yet, quantitative measurements of the junctional conductance between coupled photoreceptors are required to fully assess the effects of coupling on visual performance. Such measurements have been obtained in salamander and other lower vertebrate retinas but are difficult to acquire in mammalian retinas, in part because of the much smaller size of photoreceptors in mammals. Here, we describe in detail a dual whole-cell patch-clamp technique we recently developed to measure the junctional conductance between photoreceptor pairs in the mouse retina. With this method, electrical coupling strength between mouse photoreceptors can be estimated with high accuracy and its impact on retinal processing of visual information further evaluated.
Collapse
|
48
|
Rod Photoreceptors Signal Fast Changes in Daylight Levels Using a Cx36-Independent Retinal Pathway in Mouse. J Neurosci 2019; 40:796-810. [PMID: 31776212 DOI: 10.1523/jneurosci.0455-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022] Open
Abstract
Temporal contrast detected by rod photoreceptors is channeled into multiple retinal rod pathways that ultimately connect to cone photoreceptor pathways via Cx36 gap junctions or via chemical synapses. However, we do not yet understand how the different rod pathways contribute to the perception of temporal contrast (changes in luminance with time) at mesopic light levels, where both rods and cones actively respond to light. Here, we use a forced-choice, operant behavior assay to investigate rod-driven, temporal contrast sensitivity (TCS) in mice of either sex. Transgenic mice with desensitized cones (GNAT2 cpfl3 line) were used to identify rod contributions to TCS in mesopic lights. We found that at low mesopic lights (400 photons/s/μm2 at the retina), control and GNAT2 cpfl3 mice had similar TCS. Surprisingly, at upper mesopic lights (8000 photons/s/μm2), GNAT2 cpfl3 mice exhibited a relative reduction in TCS to low (<12 Hz) while maintaining normal TCS to high (12-36 Hz) temporal frequencies. The rod-driven responses to high temporal frequencies developed gradually over time (>30 min). Furthermore, the TCS of GNAT2 cpfl3 and GNAT2 cpfl3 ::Cx36-/- mice matched closely, indicating that transmission of high-frequency signals (1) does not require the rod-cone Cx36 gap junctions as has been proposed in the past; and (2) a Cx36-independent rod pathway(s) (e.g., direct rod to OFF cone bipolar cell synapses and/or glycinergic synapses from AII amacrine cells to OFF ganglion cells) is sufficient for fast, mesopic rod-driven vision. These findings extend our understanding of the link between visual circuits and perception in mouse.SIGNIFICANCE STATEMENT The contributions of specific retinal pathways to visual perception are not well understood. We found that the temporal processing properties of rod-driven vision in mice change significantly with light level. In dim lights, rods relay relatively slow temporal variations. However, in daylight conditions, rod pathways exhibit high sensitivity to fast but not to slow temporal variations, whereas cone-driven responses supplement the loss in rod-driven sensitivity to slow temporal variations. Our findings highlight the dynamic interplay of rod- and cone-driven vision as light levels rise from night to daytime levels. Furthermore, the fast, rod-driven signals do not require the rod-to-cone Cx36 gap junctions as proposed in the past, but rather, can be relayed by alternative Cx36-independent rod pathways.
Collapse
|
49
|
Borges-Martins VPP, Ferreira DDP, Souto AC, Oliveira Neto JG, Pereira-Figueiredo D, da Costa Calaza K, de Jesus Oliveira K, Manhães AC, de Melo Reis RA, Kubrusly RCC. Caffeine regulates GABA transport via A 1R blockade and cAMP signaling. Neurochem Int 2019; 131:104550. [PMID: 31563462 DOI: 10.1016/j.neuint.2019.104550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/06/2023]
Abstract
Caffeine is the most consumed psychostimulant drug in the world, acting as a non-selective antagonist of adenosine receptors A1R and A2AR, which are widely expressed in retinal layers. We have previously shown that caffeine, when administered acutely, acts on A1R to potentiate the NMDA receptor-induced GABA release. Now we asked if long-term caffeine exposure also modifies GABA uptake in the avian retina and which mechanisms are involved in this process. Chicken embryos aged E11 were injected with a single dose of caffeine (30 mg/kg) in the air chamber. Retinas were dissected on E15 for ex vivo neurochemical assays. Our results showed that [3H]-GABA uptake was dependent on Na+ and blocked at 4 °C or by NO-711 and caffeine. This decrease was observed after 60 min of [3H]-GABA uptake assay at E15, which is accompanied by an increase in [3H]-GABA release. Caffeine increased the protein levels of A1R without altering ADORA1 mRNA and was devoid of effects on A2AR density or ADORA2A mRNA levels. The decrease of GABA uptake promoted by caffeine was reverted by A1R activation with N6-cyclohexyl adenosine (CHA) but not by A2AR activation with CGS 21680. Caffeine exposure increased cAMP levels and GAT-1 protein levels, which was evenly expressed between E11-E15. As expected, we observed an increase of GABA containing amacrine cells and processes in the IPL, also, cAMP pathway blockage by H-89 decreased caffeine mediated [3H]-GABA uptake. Our data support the idea that chronic injection of caffeine alters GABA transport via A1R during retinal development and that the cAMP/PKA pathway plays an important role in the regulation of GAT-1 function.
Collapse
Affiliation(s)
| | - Danielle Dias Pinto Ferreira
- Laboratório de Doenças Neurodegenerativas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Arthur Cardoso Souto
- Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, Brazil.
| | - Jessika Geisebel Oliveira Neto
- Laboratório de Fisiologia Endócrina e Metabologia, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, Brazil.
| | - Danniel Pereira-Figueiredo
- Laboratório de Neurobiologia da Retina, Departmento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.
| | - Karin da Costa Calaza
- Laboratório de Neurobiologia da Retina, Departmento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.
| | - Karen de Jesus Oliveira
- Laboratório de Fisiologia Endócrina e Metabologia, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, Brazil.
| | - Alex Christian Manhães
- Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ricardo Augusto de Melo Reis
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Regina Célia Cussa Kubrusly
- Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
50
|
Brown CA, Del Corsso C, Zoidl C, Donaldson LW, Spray DC, Zoidl G. Tubulin-Dependent Transport of Connexin-36 Potentiates the Size and Strength of Electrical Synapses. Cells 2019; 8:E1146. [PMID: 31557934 PMCID: PMC6829524 DOI: 10.3390/cells8101146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Connexin-36 (Cx36) electrical synapses strengthen transmission in a calcium/calmodulin (CaM)/calmodulin-dependent kinase II (CaMKII)-dependent manner similar to a mechanism whereby the N-methyl-D-aspartate (NMDA) receptor subunit NR2B facilitates chemical transmission. Since NR2B-microtubule interactions recruit receptors to the cell membrane during plasticity, we hypothesized an analogous modality for Cx36. We determined that Cx36 binding to tubulin at the carboxy-terminal domain was distinct from Cx43 and NR2B by binding a motif overlapping with the CaM and CaMKII binding motifs. Dual patch-clamp recordings demonstrated that pharmacological interference of the cytoskeleton and deleting the binding motif at the Cx36 carboxyl-terminal (CT) reversibly abolished Cx36 plasticity. Mechanistic details of trafficking to the gap-junction plaque (GJP) were probed pharmacologically and through mutational analysis, all of which affected GJP size and formation between cell pairs. Lys279, Ile280, and Lys281 positions were particularly critical. This study demonstrates that tubulin-dependent transport of Cx36 potentiates synaptic strength by delivering channels to GJPs, reinforcing the role of protein transport at chemical and electrical synapses to fine-tune communication between neurons.
Collapse
Affiliation(s)
- Cherie A Brown
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Cristiane Del Corsso
- Department of Biophysics and Physiology, Federal University of Rio de Janeiro-RJ, Rio de Janeiro 21941-901, Brazil.
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Logan W Donaldson
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - David C Spray
- Department of Neuroscience, Albert Einstein College, Bronx, NY 10461, USA.
- Department of Medicine, Albert Einstein College, Bronx, NY 10461, USA.
| | - Georg Zoidl
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|