1
|
Knoll C, Doehler J, Northall A, Schreiber S, Rotta J, Mattern H, Kuehn E. Age-related differences in human cortical microstructure depend on the distance to the nearest vein. Brain Commun 2024; 6:fcae321. [PMID: 39355004 PMCID: PMC11443451 DOI: 10.1093/braincomms/fcae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Age-related differences in cortical microstructure are used to understand the neuronal mechanisms that underlie human brain ageing. The cerebral vasculature contributes to cortical ageing, but its precise interaction with cortical microstructure is poorly understood. In a cross-sectional study, we combine venous imaging with vessel distance mapping to investigate the interaction between venous distances and age-related differences in the microstructural architecture of the primary somatosensory cortex, the primary motor cortex and additional areas in the frontal cortex as non-sensorimotor control regions. We scanned 18 younger adults and 17 older adults using 7 Tesla MRI to measure age-related changes in longitudinal relaxation time (T1) and quantitative susceptibility mapping (QSM) values at 0.5 mm isotropic resolution. We modelled different cortical depths using an equi-volume approach and assessed the distance of each voxel to its nearest vein using vessel distance mapping. Our data reveal a dependence of cortical quantitative T1 values and positive QSM values on venous distance. In addition, there is an interaction between venous distance and age on quantitative T1 values, driven by lower quantitative T1 values in older compared to younger adults in voxels that are closer to a vein. Together, our data show that the local venous architecture explains a significant amount of variance in standard measures of cortical microstructure and should be considered in neurobiological models of human brain organisation and cortical ageing.
Collapse
Affiliation(s)
- Christoph Knoll
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
| | - Juliane Doehler
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
| | - Alicia Northall
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg 39106, Germany
- Department of Neurology, Otto von Guericke University of Magdeburg, Magdeburg 39120, Germany
| | - Johanna Rotta
- Department of Neurology, Otto von Guericke University of Magdeburg, Magdeburg 39120, Germany
- Department of Neurology, Katharinenhospital, Klinikum Stuttgart, Stuttgart 70174, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg 39106, Germany
- Department Biomedical Magnetic Resonance (BMMR), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Esther Kuehn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- Hertie Institute for Clinical Brain Research (HIH), Tübingen 72076, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen 72076, Germany
| |
Collapse
|
2
|
Lotter LD, Saberi A, Hansen JY, Misic B, Paquola C, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Paillère ML, Artiges E, Papadopoulos Orfanos D, Paus T, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Nees F, Banaschewski T, Eickhoff SB, Dukart J. Regional patterns of human cortex development correlate with underlying neurobiology. Nat Commun 2024; 15:7987. [PMID: 39284858 PMCID: PMC11405413 DOI: 10.1038/s41467-024-52366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Human brain morphology undergoes complex changes over the lifespan. Despite recent progress in tracking brain development via normative models, current knowledge of underlying biological mechanisms is highly limited. We demonstrate that human cortical thickness development and aging trajectories unfold along patterns of molecular and cellular brain organization, traceable from population-level to individual developmental trajectories. During childhood and adolescence, cortex-wide spatial distributions of dopaminergic receptors, inhibitory neurons, glial cell populations, and brain-metabolic features explain up to 50% of the variance associated with a lifespan model of regional cortical thickness trajectories. In contrast, modeled cortical thickness change patterns during adulthood are best explained by cholinergic and glutamatergic neurotransmitter receptor and transporter distributions. These relationships are supported by developmental gene expression trajectories and translate to individual longitudinal data from over 8000 adolescents, explaining up to 59% of developmental change at cohort- and 18% at single-subject level. Integrating neurobiological brain atlases with normative modeling and population neuroimaging provides a biologically meaningful path to understand brain development and aging in living humans.
Collapse
Affiliation(s)
- Leon D Lotter
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
- Max Planck School of Cognition; Stephanstrasse 1A, Leipzig, Germany.
| | - Amin Saberi
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Casey Paquola
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham; University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB); Braunschweig and Berlin, Berlin, Germany
| | - Jean-Luc Martinot
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 "Trajectoires Développementales & Psychiatrie"; Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 "Trajectoires Développementales & Psychiatrie"; Centre Borelli, Gif-sur-Yvette, France
- AP-HP Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 "Trajectoires Développementales & Psychiatrie"; Centre Borelli, Gif-sur-Yvette, France
- Department of Psychiatry, EPS Barthélémy Durand, Etampes, France
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Frauke Nees
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm, Heidelberg, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Zota I, Chanoumidou K, Gravanis A, Charalampopoulos I. Stimulating myelin restoration with BDNF: a promising therapeutic approach for Alzheimer's disease. Front Cell Neurosci 2024; 18:1422130. [PMID: 39285941 PMCID: PMC11402763 DOI: 10.3389/fncel.2024.1422130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder constituting the most common form of dementia (60%-70% of cases). Although AD presents majorly a neurodegenerative pathology, recent clinical evidence highlights myelin impairment as a key factor in disease pathogenesis. The lack of preventive or restorative treatment is emphasizing the need to develop novel therapeutic approaches targeting to the causes of the disease. Recent studies in animals and patients have highlighted the loss of myelination of the neuronal axons as an extremely aggravating factor in AD, in addition to the formation of amyloid plaques and neurofibrillary tangles that are to date the main pathological hallmarks of the disease. Myelin breakdown represents an early stage event in AD. However, it is still unclear whether myelin loss is attributed only to exogenous factors like inflammatory processes of the tissue or to impaired oligodendrogenesis as well. Neurotrophic factors are well established protective molecules under many pathological conditions of the neural tissue, contributing also to proper myelination. Due to their inability to be used as drugs, many research efforts are focused on substituting neurotrophic activity with small molecules. Our research team has recently developed novel micromolecular synthetic neurotrophin mimetics (MNTs), selectively acting on neurotrophin receptors, and thus offering a unique opportunity for innovative therapies against neurodegenerative diseases. These small sized, lipophilic molecules address the underlying biological effect of these diseases (neuroprotective action), but also they exert significant neurogenic actions inducing neuronal replacement of the disease areas. One of the significant neurotrophin molecules in the Central Nervous System is Brain-Derived-Neurotrophin-Factor (BDNF). BDNF is a neurotrophin that not only supports neuroprotection and adult neurogenesis, but also mediates pro-myelinating effects in the CNS. BDNF binds with high-affinity on the TrkB neurotrophin receptor and enhances myelination by increasing the density of oligodendrocyte progenitor cells (OPCs) and playing an important role in CNS myelination. Conclusively, in the present review, we discuss the myelin pathophysiology in Alzheimer's Diseases, as well as the role of neurotrophins, and specifically BDNF, in myelin maintenance and restoration, revealing its valuable therapeutic potential against AD.
Collapse
Affiliation(s)
- Ioanna Zota
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
4
|
Whitman ET, Elliott ML, Knodt AR, Abraham WC, Anderson TJ, Cutfield N, Hogan S, Ireland D, Melzer TR, Ramrakha S, Sugden K, Theodore R, Williams BS, Caspi A, Moffitt TE, Hariri AR. An estimate of the longitudinal pace of aging from a single brain scan predicts dementia conversion, morbidity, and mortality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608305. [PMID: 39229058 PMCID: PMC11370321 DOI: 10.1101/2024.08.19.608305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
To understand how aging affects functional decline and increases disease risk, it is necessary to develop accurate and reliable measures of how fast a person is aging. Epigenetic clocks measure aging but require DNA methylation data, which many studies lack. Using data from the Dunedin Study, we introduce an accurate and reliable measure for the rate of longitudinal aging derived from cross-sectional brain MRI: the Dunedin Pace of Aging Calculated from NeuroImaging or DunedinPACNI. Exporting this measure to the Alzheimer's Disease Neuroimaging Initiative and UK Biobank neuroimaging datasets revealed that faster DunedinPACNI predicted participants' cognitive impairment, accelerated brain atrophy, and conversion to diagnosed dementia. Underscoring close links between longitudinal aging of the body and brain, faster DunedinPACNI also predicted physical frailty, poor health, future chronic diseases, and mortality in older adults. Furthermore, DunedinPACNI followed the expected socioeconomic health gradient. When compared to brain age gap, an existing MRI aging biomarker, DunedinPACNI was similarly or more strongly related to clinical outcomes. DunedinPACNI is a "next generation" MRI measure that will be made publicly available to the research community to help accelerate aging research and evaluate the effectiveness of dementia prevention and anti-aging strategies.
Collapse
Affiliation(s)
- Ethan T Whitman
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Maxwell L Elliott
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Annchen R Knodt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Tim J Anderson
- Department of Medicine, University of Otago, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Neurology, Canterbury District Health Board, Christchurch, New Zealand
| | - Nick Cutfield
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sean Hogan
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - David Ireland
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Tracy R Melzer
- Brain Research New Zealand-Rangahau Roro Aotearoa, Centre of Research Excellence, Universities of Auckland and Otago, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Reremoana Theodore
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | | | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- King's College London, Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, & Neuroscience, London, UK
- PROMENTA, Department of Psychology, University of Oslo, Norway
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- King's College London, Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, & Neuroscience, London, UK
- PROMENTA, Department of Psychology, University of Oslo, Norway
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Lotter LD, Saberi A, Hansen JY, Misic B, Paquola C, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Paillère ML, Artiges E, Orfanos DP, Paus T, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Nees F, Banaschewski T, Eickhoff SB, Dukart J. Regional patterns of human cortex development correlate with underlying neurobiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.05.539537. [PMID: 37205539 PMCID: PMC10187287 DOI: 10.1101/2023.05.05.539537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Human brain morphology undergoes complex changes over the lifespan. Despite recent progress in tracking brain development via normative models, current knowledge of underlying biological mechanisms is highly limited. We demonstrate that human cortical thickness development and aging trajectories unfold along patterns of molecular and cellular brain organization, traceable from population-level to individual developmental trajectories. During childhood and adolescence, cortex-wide spatial distributions of dopaminergic receptors, inhibitory neurons, glial cell populations, and brain-metabolic features explain up to 50% of variance associated with a lifespan model of regional cortical thickness trajectories. In contrast, modeled cortical thickness change patterns during adulthood are best explained by cholinergic and glutamatergic neurotransmitter receptor and transporter distributions. These relationships are supported by developmental gene expression trajectories and translate to individual longitudinal data from over 8,000 adolescents, explaining up to 59% of developmental change at cohort- and 18% at single-subject level. Integrating neurobiological brain atlases with normative modeling and population neuroimaging provides a biologically meaningful path to understand brain development and aging in living humans.
Collapse
Affiliation(s)
- Leon D. Lotter
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University; Düsseldorf, Germany
- Max Planck School of Cognition; Stephanstrasse 1A, 04103 Leipzig, Germany
| | - Amin Saberi
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University; Düsseldorf, Germany
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig, Germany
| | - Justine Y. Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University; Montréal, QC, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University; Montréal, QC, Canada
| | - Casey Paquola
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London; London, United Kingdom
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin; Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King’s College London; London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim; 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay; F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont; 05405 Burlington, Vermont, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham; University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB); Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 “Trajectoires Développementales & Psychiatrie”; Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
| | - Marie-Laure Paillère
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 “Trajectoires Développementales & Psychiatrie”; Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
- AP-HP Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital; Paris, France
| | - Eric Artiges
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, Université paris Cité, INSERM U1299 “Trajectoires Développementales & Psychiatrie”; Centre Borelli CNRS UMR9010, Gif-sur-Yvette, France
- Department of Psychiatry, EPS Barthélémy Durand; Etampes, France
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal; Montréal, Quebec, Canada
- Department of Psychiatry, McGill University; Montreal, Quebec, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen; von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, 68159 Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden; Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden; Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin; Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin; Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin; Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University; Shanghai, China
| | | | - Frauke Nees
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, 68159 Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University; Kiel, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University; Square J5, 68159 Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm; Heidelberg, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University; Düsseldorf, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich; Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University; Düsseldorf, Germany
| |
Collapse
|
6
|
Jansen MG, Zwiers MP, Marques JP, Chan KS, Amelink JS, Altgassen M, Oosterman JM, Norris DG. The Advanced BRain Imaging on ageing and Memory (ABRIM) data collection: Study design, data processing, and rationale. PLoS One 2024; 19:e0306006. [PMID: 38905233 PMCID: PMC11192316 DOI: 10.1371/journal.pone.0306006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
To understand the neurocognitive mechanisms that underlie heterogeneity in cognitive ageing, recent scientific efforts have led to a growing public availability of imaging cohort data. The Advanced BRain Imaging on ageing and Memory (ABRIM) project aims to add to these existing datasets by taking an adult lifespan approach to provide a cross-sectional, normative database with a particular focus on connectivity, myelinization and iron content of the brain in concurrence with cognitive functioning, mechanisms of reserve, and sleep-wake rhythms. ABRIM freely shares MRI and behavioural data from 295 participants between 18-80 years, stratified by age decade and sex (median age 52, IQR 36-66, 53.20% females). The ABRIM MRI collection consists of both the raw and pre-processed structural and functional MRI data to facilitate data usage among both expert and non-expert users. The ABRIM behavioural collection includes measures of cognitive functioning (i.e., global cognition, processing speed, executive functions, and memory), proxy measures of cognitive reserve (e.g., educational attainment, verbal intelligence, and occupational complexity), and various self-reported questionnaires (e.g., on depressive symptoms, pain, and the use of memory strategies in daily life and during a memory task). In a sub-sample (n = 120), we recorded sleep-wake rhythms using an actigraphy device (Actiwatch 2, Philips Respironics) for a period of 7 consecutive days. Here, we provide an in-depth description of our study protocol, pre-processing pipelines, and data availability. ABRIM provides a cross-sectional database on healthy participants throughout the adult lifespan, including numerous parameters relevant to improve our understanding of cognitive ageing. Therefore, ABRIM enables researchers to model the advanced imaging parameters and cognitive topologies as a function of age, identify the normal range of values of such parameters, and to further investigate the diverse mechanisms of reserve and resilience.
Collapse
Affiliation(s)
- Michelle G. Jansen
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Marcel P. Zwiers
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jose P. Marques
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Kwok-Shing Chan
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jitse S. Amelink
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Radboud University, Nijmegen, the Netherlands
| | - Mareike Altgassen
- Department of Psychology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joukje M. Oosterman
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - David G. Norris
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Lin L, Chen Y, Dai Y, Yan Z, Zou M, Zhou Q, Qian L, Cui W, Liu M, Zhang H, Yang Z, Su S. Quantification of myelination in children with attention-deficit/hyperactivity disorder: a comparative assessment with synthetic MRI and DTI. Eur Child Adolesc Psychiatry 2024; 33:1935-1944. [PMID: 37712949 DOI: 10.1007/s00787-023-02297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Evaluation of myelin content is crucial for attention-deficit/hyperactivity disorder (ADHD). To estimate myelin content in ADHD based on synthetic MRI-based method and compare it with established diffusion tensor imaging (DTI) method. Fifth-nine ADHD and fifty typically developing (TD) children were recruited. Global and regional myelin content (myelin volume fraction [MVF] and myelin volume [MYV]) were assessed using SyMRI and compared with DTI metrics (fractional anisotropy and mean/radial/axial diffusivity). The relationship between significant MRI parameters and clinical variables were assessed in ADHD. No between-group differences of whole-brain myelin content were found. Compared to TDs, ADHD showed higher mean MVF in bilateral internal capsule, external capsule, corona radiata, and corpus callosum, as well as in left tapetum, left superior fronto-occipital fascicular, and right cingulum (all PFDR-corrected < 0.05). Increased MYV were found in similar regions. Abnormalities of DTI metrics were mainly in bilateral corticospinal tract. Besides, MVF in right retro lenticular part of internal capsule was negatively correlated with cancellation test scores (r = - 0.41, P = 0.002), and MYV in right posterior limb of internal capsule (r = 0.377, P = 0.040) and left superior corona radiata (r = 0.375, P = 0.041) were positively correlated with cancellation test scores in ADHD. Increased myelin content underscored the important pathway of frontostriatal tract, posterior thalamic radiation, and corpus callosum underlying ADHD, which reinforced the insights into myelin quantification and its potential role in pathophysiological mechanism and disease diagnosis. Prospectively registered trials number: ChiCTR2100048109; date: 2021-07.
Collapse
Affiliation(s)
- Liping Lin
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yingqian Chen
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Dai
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi Yan
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengsha Zou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qin Zhou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wei Cui
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Meina Liu
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Zhang
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Shu Su
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Boa Sorte Silva NC, Ten Brinke LF, Bielak AAM, Handy TC, Liu-Ambrose T. Improved intraindividual variability in cognitive performance following cognitive and exercise training in older adults. J Int Neuropsychol Soc 2024; 30:328-338. [PMID: 37860873 DOI: 10.1017/s1355617723000577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
OBJECTIVE Increased intraindividual variability (IIV) of cognitive performance is a marker of cognitive decline in older adults. Whether computerized cognitive training (CCT) and aerobic exercise counteracts cognitive decline by reducing IIV is unknown. We investigated the effects of CCT with or without aerobic exercise on IIV in older adults. METHODS This was a secondary analysis of an 8-week randomized controlled trial. Older adults (aged 65-85 years) were randomized to CCT alone (n = 41), CCT with aerobic exercise (n = 41), or an active control group (n = 42). The CCT group trained using the Fit Brains® platform 3×/week for 1 hr (plus 3×/week of home-based training). The CCT with aerobic exercise group received 15 min of walking plus 45 min of Fit Brains® 3×/week (plus 3×/week of home-based training). The control group received sham exercise and cognitive training (3×/week for 1 hr). We computed reaction time IIV from the Dimensional Change Card Sort Test, Flanker Inhibitory Control and Attention Test (Flanker), and Pattern Comparison Processing Speed Test (PACPS). RESULTS Compared with the control group, IIV reduced in a processing speed task (PACPS) following CCT alone (mean difference [95% confidence interval]: -0.144 [-0.255 to -0.034], p < 0.01) and CCT with aerobic exercise (-0.113 [-0.225 to -0.001], p < 0.05). Attention (Flanker congruent) IIV was reduced only after CCT with aerobic exercise (-0.130 [-0.242 to -0.017], p < 0.05). CONCLUSIONS A CCT program promoted cognitive health via reductions in IIV of cognitive performance and combining it with aerobic exercise may result in broader benefits.
Collapse
Affiliation(s)
- Nárlon C Boa Sorte Silva
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Aging SMART, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Lisanne F Ten Brinke
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Allison A M Bielak
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, USA
| | - Todd C Handy
- Department of Psychology, Faculty of Arts, University of British Columbia, Vancouver, BC, Canada
| | - Teresa Liu-Ambrose
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Aging SMART, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| |
Collapse
|
9
|
Sjöström H, van Westen D, Hall S, Tjerkaski J, Westman E, Muehlboeck S, Hansson O, Svenningsson P, Granberg T. Putaminal T1/T2-weighted ratio is increased in PSP compared to PD and healthy controls, a multi-cohort study. Parkinsonism Relat Disord 2024; 121:106047. [PMID: 38368753 DOI: 10.1016/j.parkreldis.2024.106047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Differentiating Parkinson's disease (PD) from progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) is a common clinical problem. We aimed to apply the T1-/T2-weighted ratio imaging technique, based on standard clinical MRI, to reveal differences in neurodegeneration in three large cohorts. METHODS Three cohorts, with a total of 405 participants (269 PD, 44 PSP, 38 MSA, 54 controls), were combined and T1/T2-weighted ratio image analyses were carried out. A combination of automatic segmentation and atlas-based ROI were used in this study. The cohorts were combined using the ComBat batch correction procedure. RESULTS Group differences were found in the putamen (p = 0.040), with higher T1/T2-weighted ratio in this region in PSP compared to PD and healthy controls (p-values 0.010 and 0.007 respectively). Using putaminal T1/T2-weighted ratio for diagnostic separation, a fair performance was found in separating PSP from healthy controls, with an area under the receiver operating characteristic curve of 0.701. CONCLUSION Different patterns of T1/T2-weighted ratio, reflecting differences in underlying pathophysiology, were found between the groups. Since T1/T2-weighted ratio can be applied to standard clinical MRI sequences to allow more quantitative analyses, this seems to be a promising biomarker for diagnostics and treatment evaluation of parkinsonian disorders for clinical trials.
Collapse
Affiliation(s)
- Henrik Sjöström
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden; Center for Neurology, Academic Specialist Center, 113 65, Stockholm, Sweden.
| | - Danielle van Westen
- Department of Clinical Sciences, Diagnostic Radiology, Lund University, 221 85, Lund, Sweden; Department for Image and Function, Skåne University Hospital, 221 85, Lund, Sweden
| | - Sara Hall
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, 221 00, Lund, Sweden; Memory Clinic, Skåne University Hospital, 205 02, Malmö, Sweden
| | - Jonathan Tjerkaski
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, WC2R 2LS, London, England, UK
| | - Sebastian Muehlboeck
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Faculty of Medicine, Lund University, 221 00, Lund, Sweden; Memory Clinic, Skåne University Hospital, 205 02, Malmö, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, 141 86, Stockholm, Sweden
| |
Collapse
|
10
|
Nazarova A, Drobinin V, Helmick CA, Schmidt MH, Cookey J, Uher R. Intracortical Myelin in Youths at Risk for Depression. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100285. [PMID: 38323155 PMCID: PMC10844807 DOI: 10.1016/j.bpsgos.2023.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 02/08/2024] Open
Abstract
Background Major depressive disorder (MDD) is a leading cause of disability. To understand why depression develops, it is important to distinguish between early neural markers of vulnerability that precede the onset of MDD and features that develop during depression. Recent neuroimaging findings suggest that reduced global and regional intracortical myelination (ICM), especially in the lateral prefrontal cortex, may be associated with depression, but it is unknown whether it is a precursor or a consequence of MDD. The study of offspring of affected parents offers the opportunity to distinguish between precursors and consequences by examining individuals who carry high risk at a time when they have not experienced depression. Methods We acquired 129 T1-weighted and T2-weighted scans from 56 (25 female) unaffected offspring of parents with depression and 114 scans from 63 (34 female) unaffected offspring of parents without a history of depression (ages 9 to 16 years). To assess scan quality, we calculated test-retest reliability. We used the scan ratios to calculate myelin maps for 68 cortical regions. We analyzed data using mixed-effects modeling. Results ICM did not differ between high and low familial risk youths in global (B = 0.06, SE = 0.03, p = .06) or regional (B = 0.05, SE = 0.03, p = .08) analyses. Our pediatric sample had high ICM reliability (intraclass correlation coefficient = 0.79; 95% CI, 0.55-0.88). Conclusions Based on our results, reduced ICM does not appear to be a precursor of MDD. Future studies should examine ICM in familial high-risk youths across a broad developmental period.
Collapse
Affiliation(s)
- Anna Nazarova
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Vladislav Drobinin
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Carl A. Helmick
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Matthias H. Schmidt
- Department of Diagnostic Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jacob Cookey
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
Manrique HM, Read DW, Walker MJ. On some statistical and cerebral aspects of the limits of working memory capacity in anthropoid primates, with particular reference to Pan and Homo, and their significance for human evolution. Neurosci Biobehav Rev 2024; 158:105543. [PMID: 38220036 DOI: 10.1016/j.neubiorev.2024.105543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Some comparative ontogenetic data imply that effective working-memory capacity develops in ways that are independent of brain size in humans. These are interpreted better from neuroscientific considerations about the continuing development of neuronal architecture in adolescents and young adults, than from one about gross brain mass which already is reached in childhood. By contrast, working-memory capacity in Pan never develops beyond that of three- or four-year-old children. The phylogenetic divergence begs the question of whether it is any longer plausible to infer from the fossil record, that over the past two million years, an ostensibly gradual increase in endocranial volumes, assigned to the genus Homo, can be correlated in a scientifically-meaningful manner with the gradual evolution of our effective executive working memory. It is argued that whereas Pan's effective working-memory capacity is relatively similar to that of its storage working-memory, our working memory is relatively larger with deeper executive control.
Collapse
Affiliation(s)
- Héctor M Manrique
- Department of Psychology and Sociology, Universidad de Zaragoza, Campus Universitario de Teruel, Ciudad Escolar, s/n. 44003 Teruel, Spain.
| | - Dwight W Read
- Department of Anthropology and Department of Statistics, University of California, Los Angeles, CA 90095, USA.
| | - Michael J Walker
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, Murcia, Spain.
| |
Collapse
|
12
|
Kobayashi H, Sasabayashi D, Takahashi T, Furuichi A, Kido M, Takayanagi Y, Noguchi K, Suzuki M. The relationship between gray/white matter contrast and cognitive performance in first-episode schizophrenia. Cereb Cortex 2024; 34:bhae009. [PMID: 38265871 DOI: 10.1093/cercor/bhae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
Previous postmortem brain studies have revealed disturbed myelination in the intracortical regions in patients with schizophrenia, possibly reflecting anomalous brain maturational processes. However, it currently remains unclear whether this anomalous myelination is already present in early illness stages and/or progresses during the course of the illness. In this magnetic resonance imaging study, we examined gray/white matter contrast (GWC) as a potential marker of intracortical myelination in 63 first-episode schizophrenia (FESz) patients and 77 healthy controls (HC). Furthermore, we investigated the relationships between GWC findings and clinical/cognitive variables in FESz patients. GWC in the bilateral temporal, parietal, occipital, and insular regions was significantly higher in FESz patients than in HC, which was partly associated with the durations of illness and medication, the onset age, and lower executive and verbal learning performances. Because higher GWC implicates lower myelin in the deeper layers of the cortex, these results suggest that schizophrenia patients have less intracortical myelin at the time of their first psychotic episode, which underlies lower cognitive performance in early illness stages.
Collapse
Affiliation(s)
- Haruko Kobayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Research Center for idling Brain Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Research Center for idling Brain Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Research Center for idling Brain Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Research Center for idling Brain Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Kido Clinic, 244 Honoki, Imizu City, Toyama, 934-0053, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Arisawabashi Hospital, 5-5 Hane-Shin, Fuchu-Machi, Toyama, 939-2704, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
- Research Center for idling Brain Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
13
|
Wu H, Fan S, Yan C, Wang H. Cortical microstructural brain network mediates the association between personality trait of agreeableness and life satisfaction. Cereb Cortex 2024; 34:bhad410. [PMID: 37948663 DOI: 10.1093/cercor/bhad410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023] Open
Abstract
Personality traits are commonly regarded as relatively stable, whereas life satisfaction can fluctuate with time and circumstances, shaped by external influences and personal encounters. The correlation between personality traits and life satisfaction is well-established, yet the underlying neural mechanisms of the myelin-based microstructural brain network connecting them remain unclear. Here, we constructed individual-level whole-brain myelin microstructural networks from the MRI data of 1,043 healthy adults and performed correlation analysis to detect significant personality trait-related and life satisfaction-related subnetworks. A mediation analysis was used to verify whether the shared structural basis of personality traits and life satisfaction significantly mediated their association. The results showed that agreeableness positively correlated with life satisfaction. We identified a shared structural basis of the personality trait of agreeableness and life satisfaction. The regions comprising this overlapping network include the superior parietal lobule, inferior parietal lobule, and temporoparietal junction. Moreover, the shared microstructural connections mediate the association between the personality trait of agreeableness and life satisfaction. This large-scale neuroimaging investigation substantiates a mediation framework for understanding the microstructural connections between personality and life satisfaction, offering potential targets for assessment and interventions to promote human well-being.
Collapse
Affiliation(s)
- Huijun Wu
- School of Media & Communication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shijia Fan
- School of Psychological and Cognitive Sciences & Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| | - Chuyao Yan
- School of Psychology, Nanjing Normal University, Nanjing 200097, China
| | - Hao Wang
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- G. Oppenheimer Center for Neurobiology of Stress & Resilience, UCLA, Los Angeles, CA 90095, United States
| |
Collapse
|
14
|
Khodanovich M, Svetlik M, Naumova A, Kamaeva D, Usova A, Kudabaeva M, Anan’ina T, Wasserlauf I, Pashkevich V, Moshkina M, Obukhovskaya V, Kataeva N, Levina A, Tumentceva Y, Yarnykh V. Age-Related Decline in Brain Myelination: Quantitative Macromolecular Proton Fraction Mapping, T2-FLAIR Hyperintensity Volume, and Anti-Myelin Antibodies Seven Years Apart. Biomedicines 2023; 12:61. [PMID: 38255168 PMCID: PMC10812983 DOI: 10.3390/biomedicines12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Age-related myelination decrease is considered one of the likely mechanisms of cognitive decline. The present preliminary study is based on the longitudinal assessment of global and regional myelination of the normal adult human brain using fast macromolecular fraction (MPF) mapping. Additional markers were age-related changes in white matter (WM) hyperintensities on FLAIR-MRI and the levels of anti-myelin autoantibodies in serum. Eleven healthy subjects (33-60 years in the first study) were scanned twice, seven years apart. An age-related decrease in MPF was found in global WM, grey matter (GM), and mixed WM-GM, as well as in 48 out of 82 examined WM and GM regions. The greatest decrease in MPF was observed for the frontal WM (2-5%), genu of the corpus callosum (CC) (4.0%), and caudate nucleus (5.9%). The age-related decrease in MPF significantly correlated with an increase in the level of antibodies against myelin basic protein (MBP) in serum (r = 0.69 and r = 0.63 for global WM and mixed WM-GM, correspondingly). The volume of FLAIR hyperintensities increased with age but did not correlate with MPF changes and the levels of anti-myelin antibodies. MPF mapping showed high sensitivity to age-related changes in brain myelination, providing the feasibility of this method in clinics.
Collapse
Affiliation(s)
- Marina Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Mikhail Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Anna Naumova
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Department of Radiology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Daria Kamaeva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia;
| | - Anna Usova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 12/1 Savinykh St., Tomsk 634009, Russia;
| | - Marina Kudabaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Tatyana Anan’ina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Irina Wasserlauf
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Valentina Pashkevich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Marina Moshkina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Victoria Obukhovskaya
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Department of Fundamental Psychology and Behavioral Medicine, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Nadezhda Kataeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Anastasia Levina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
- Medica Diagnostic and Treatment Center, 86 Sovetskaya st., Tomsk 634510, Russia
| | - Yana Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (M.S.); (A.N.); (M.K.); (T.A.); (I.W.); (N.K.); (A.L.); (Y.T.)
| | - Vasily Yarnykh
- Department of Radiology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
15
|
Köhncke Y, Kühn S, Düzel S, Sander MC, Brandmaier AM, Lindenberger U. Grey-matter structure in cortical and limbic regions correlates with general cognitive ability in old age. AGING BRAIN 2023; 5:100103. [PMID: 38186748 PMCID: PMC10770753 DOI: 10.1016/j.nbas.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
According to the maintenance hypothesis (Nyberg et al., 2012), structural integrity of the brain's grey matter helps to preserve cognitive functioning into old age. A corollary of this hypothesis that can be tested in cross-sectional data is that grey-matter structural integrity and general cognitive ability are positively associated in old age. Building on Köhncke et al. (2021), who found that region-specific latent factors of grey-matter integrity are positively associated with episodic memory ability among older adults, we examine associations between general factors of grey-matter integrity and a general factor of cognitive ability in a cross-sectional sample of 1466 participants aged 60-88 years, 319 of whom contributed imaging data. Indicator variables based on T1-weighted images (voxel-based morphometry, VBM), magnetization-transfer imaging (MT), and diffusion tensor imaging-derived mean diffusivity (MD) had sufficient portions of variance in common to establish latent factors of grey-matter structure for a comprehensive set of regions of interest (ROI). Individual differences in grey-matter factors were positively correlated across neocortical and limbic areas, allowing for the definition of second-order, general factors for neocortical and limbic ROI, respectively. Both general grey-matter factors were positively correlated with general cognitive ability. For the basal ganglia, the three modality-specific indicators showed heterogenous loading patterns, and no reliable associations of the general grey-matter factor to general cognitive ability were found. To provide more direct tests of the maintenance hypothesis, we recommend applying the present structural modeling approach to longitudinal data, thereby enhancing the physiological validity of latent constructs of brain structure.
Collapse
Affiliation(s)
- Ylva Köhncke
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Myriam C. Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Andreas M. Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK, & Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK, & Berlin, Germany
| |
Collapse
|
16
|
Oi Y, Hirose M, Togo H, Yoshinaga K, Akasaka T, Okada T, Aso T, Takahashi R, Glasser MF, Hayashi T, Hanakawa T. Identifying and reverting the adverse effects of white matter hyperintensities on cortical surface analyses. Neuroimage 2023; 281:120377. [PMID: 37714391 DOI: 10.1016/j.neuroimage.2023.120377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
The Human Connectome Project (HCP)-style surface-based brain MRI analysis is a powerful technique that allows precise mapping of the cerebral cortex. However, the strength of its surface-based analysis has not yet been tested in the older population that often presents with white matter hyperintensities (WMHs) on T2-weighted (T2w) MRI (hypointensities on T1w MRI). We investigated T1-weighted (T1w) and T2w structural MRI in 43 healthy middle-aged to old participants. Juxtacortical WMHs were often misclassified by the default HCP pipeline as parts of the gray matter in T1w MRI, leading to incorrect estimation of the cortical surfaces and cortical metrics. To revert the adverse effects of juxtacortical WMHs, we incorporated the Brain Intensity AbNormality Classification Algorithm into the HCP pipeline (proposed pipeline). Blinded radiologists performed stereological quality control (QC) and found a decrease in the estimation errors in the proposed pipeline. The superior performance of the proposed pipeline was confirmed using an originally-developed automated surface QC based on a large database. Here we showed the detrimental effects of juxtacortical WMHs for estimating cortical surfaces and related metrics and proposed a possible solution for this problem. The present knowledge and methodology should help researchers identify adequate cortical surface biomarkers for aging and age-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yuki Oi
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Laboratory for Brain Connectomics Imaging, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Masakazu Hirose
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroki Togo
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan; Laboratory for Brain Connectomics Imaging, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan; Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kenji Yoshinaga
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Thai Akasaka
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohisa Okada
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshihiko Aso
- Laboratory for Brain Connectomics Imaging, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan; Department of Brain Connectomics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Hanakawa
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan; Laboratory for Brain Connectomics Imaging, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan; Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan; Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
17
|
Karl V, Rohe T. Structural brain changes in emotion recognition across the adult lifespan. Soc Cogn Affect Neurosci 2023; 18:nsad052. [PMID: 37769357 PMCID: PMC10627307 DOI: 10.1093/scan/nsad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Emotion recognition (ER) declines with increasing age, yet little is known whether this observation is based on structural brain changes conveyed by differential atrophy. To investigate whether age-related ER decline correlates with reduced grey matter (GM) volume in emotion-related brain regions, we conducted a voxel-based morphometry analysis using data of the Human Connectome Project-Aging (N = 238, aged 36-87) in which facial ER was tested. We expected to find brain regions that show an additive or super-additive age-related change in GM volume indicating atrophic processes that reduce ER in older adults. The data did not support our hypotheses after correction for multiple comparisons. Exploratory analyses with a threshold of P < 0.001 (uncorrected), however, suggested that relationships between GM volume and age-related general ER may be widely distributed across the cortex. Yet, small effect sizes imply that only a small fraction of the decline of ER in older adults can be attributed to local GM volume changes in single voxels or their multivariate patterns.
Collapse
Affiliation(s)
- Valerie Karl
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Tim Rohe
- Institute of Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
18
|
Kollndorfer K, Novak A, Nenning KH, Fischmeister FPS, Seidl R, Langs G, Kasprian G, Prayer D, Bartha-Doering L. Cortical thickness in the right medial frontal gyrus predicts planning performance in healthy children and adolescents. Front Psychol 2023; 14:1196707. [PMID: 37794918 PMCID: PMC10546024 DOI: 10.3389/fpsyg.2023.1196707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023] Open
Abstract
The ability to plan is an important part of the set of the cognitive skills called "executive functions." To be able to plan actions in advance is of great importance in everyday life and constitutes one of the major key features for academic as well as economic success. The present study aimed to investigate the neuroanatomical correlates of planning in normally developing children, as measured by the cortical thickness of the prefrontal cortex. Eighteen healthy children and adolescents underwent structural MRI examinations and the Tower of London (ToL) task. A multiple regression analysis revealed that the cortical thickness of the right caudal middle frontal gyrus (cMFG) was a significant predictor of planning performance. Neither the cortical thickness of any other prefrontal area nor gender were significantly associated with performance in the ToL task. The results of the present exploratory study suggest that the cortical thickness of the right, but not the left cMFG, is positively correlated with performance in the ToL task. We, therefore, conclude that increased cortical thickness may be more beneficial for higher-order processes, such as information integration, than for lower-order processes, such as the analysis of external information.
Collapse
Affiliation(s)
- Kathrin Kollndorfer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Developmental and Interventional Imaging (DIN) Lab, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Astrid Novak
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Karl-Heinz Nenning
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Computational Imaging Research Lab (CIR), Vienna, Austria
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Florian Ph S. Fischmeister
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Developmental and Interventional Imaging (DIN) Lab, Vienna, Austria
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Computational Imaging Research Lab (CIR), Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| |
Collapse
|
19
|
Kilpatrick LA, Zhang K, Dong TS, Gee GC, Beltran-Sanchez H, Wang M, Labus JS, Naliboff BD, Mayer EA, Gupta A. Mediation of the association between disadvantaged neighborhoods and cortical microstructure by body mass index. COMMUNICATIONS MEDICINE 2023; 3:122. [PMID: 37714947 PMCID: PMC10504354 DOI: 10.1038/s43856-023-00350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Living in a disadvantaged neighborhood is associated with worse health outcomes, including brain health, yet the underlying biological mechanisms are incompletely understood. We investigated the relationship between neighborhood disadvantage and cortical microstructure, assessed as the T1-weighted/T2-weighted ratio (T1w/T2w) on magnetic resonance imaging, and the potential mediating roles of body mass index (BMI) and stress, as well as the relationship between trans-fatty acid intake and cortical microstructure. METHODS Participants comprised 92 adults (27 men; 65 women) who underwent neuroimaging and provided residential address information. Neighborhood disadvantage was assessed as the 2020 California State area deprivation index (ADI). The T1w/T2w ratio was calculated at four cortical ribbon levels (deep, lower-middle, upper-middle, and superficial). Perceived stress and BMI were assessed as potential mediating factors. Dietary data was collected in 81 participants. RESULTS Here, we show that worse ADI is positively correlated with BMI (r = 0.27, p = .01) and perceived stress (r = 0.22, p = .04); decreased T1w/T2w ratio in middle/deep cortex in supramarginal, temporal, and primary motor regions (p < .001); and increased T1w/T2w ratio in superficial cortex in medial prefrontal and cingulate regions (p < .001). Increased BMI partially mediates the relationship between worse ADI and observed T1w/T2w ratio increases (p = .02). Further, trans-fatty acid intake (high in fried fast foods and obesogenic) is correlated with these T1w/T2w ratio increases (p = .03). CONCLUSIONS Obesogenic aspects of neighborhood disadvantage, including poor dietary quality, may disrupt information processing flexibility in regions involved in reward, emotion regulation, and cognition. These data further suggest ramifications of living in a disadvantaged neighborhood on brain health.
Collapse
Affiliation(s)
- Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA.
| | - Keying Zhang
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
| | - Tien S Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Gilbert C Gee
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- California Center for Population Research, University of California, Los Angeles, CA, USA
| | - Hiram Beltran-Sanchez
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- California Center for Population Research, University of California, Los Angeles, CA, USA
| | - May Wang
- Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jennifer S Labus
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
| | - Bruce D Naliboff
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
| | - Emeran A Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Boroshok AL, McDermott CL, Fotiadis P, Park AT, Tooley UA, Gataviņš MM, Tisdall MD, Bassett DS, Mackey AP. Individual differences in T1w/T2w ratio development during childhood. Dev Cogn Neurosci 2023; 62:101270. [PMID: 37348147 PMCID: PMC10439503 DOI: 10.1016/j.dcn.2023.101270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Myelination is a key developmental process that promotes rapid and efficient information transfer. Myelin also stabilizes existing brain networks and thus may constrain neuroplasticity, defined here as the brain's potential to change in response to experiences rather than the canonical definition as the process of change. Characterizing individual differences in neuroplasticity may shed light on mechanisms by which early experiences shape learning, brain and body development, and response to interventions. The T1-weighted/T2-weighted (T1w/T2w) MRI signal ratio is a proxy measure of cortical microstructure and thus neuroplasticity. Here, in pre-registered analyses, we investigated individual differences in T1w/T2w ratios in children (ages 4-10, n = 157). T1w/T2w ratios were positively associated with age within early-developing sensorimotor and attention regions. We also tested whether socioeconomic status, cognition (crystallized knowledge or fluid reasoning), and biological age (as measured with molar eruption) were related to T1w/T2w signal but found no significant effects. Associations among T1w/T2w ratios, early experiences, and cognition may emerge later in adolescence and may not be strong enough to detect in moderate sample sizes.
Collapse
Affiliation(s)
- Austin L Boroshok
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Panagiotis Fotiadis
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne T Park
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ursula A Tooley
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Washington University in St. Louis, USA; Department of Neurology, Washington University in St. Louis, USA
| | - Mārtiņš M Gataviņš
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Electrical & Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Physics & Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Santa Fe Institute, Santa Fe, NM, USA
| | - Allyson P Mackey
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Cheng GWY, Ma IWT, Huang J, Yeung SHS, Ho P, Chen Z, Mak HKF, Herrup K, Chan KWY, Tse KH. Cuprizone drives divergent neuropathological changes in different mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.547147. [PMID: 37546935 PMCID: PMC10402084 DOI: 10.1101/2023.07.24.547147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Myelin degradation is a normal feature of brain aging that accelerates in Alzheimer's disease (AD). To date, however, the underlying biological basis of this correlation remains elusive. The amyloid cascade hypothesis predicts that demyelination is caused by increased levels of the β-amyloid (Aβ) peptide. Here we report on work supporting the alternative hypothesis that early demyelination is upstream of amyloid. We challenged two different mouse models of AD (R1.40 and APP/PS1) using cuprizone-induced demyelination and tracked the responses with both neuroimaging and neuropathology. In oppose to amyloid cascade hypothesis, R1.40 mice, carrying only a single human mutant APP (Swedish; APP SWE ) transgene, showed a more abnormal changes of magnetization transfer ratio and diffusivity than in APP/PS1 mice, which carry both APP SWE and a second PSEN1 transgene (delta exon 9; PSEN1 dE9 ). Although cuprizone targets oligodendrocytes (OL), magnetic resonance spectroscopy and targeted RNA-seq data in R1.40 mice suggested a possible metabolic alternation in axons. In support of alternative hypotheses, cuprizone induced significant intraneuronal amyloid deposition in young APP/PS1, but not in R1.40 mice, and it suggested the presence of PSEN deficiencies, may accelerate Aβ deposition upon demyelination. In APP/PS1, mature OL is highly vulnerable to cuprizone with significant DNA double strand breaks (53BP1 + ) formation. Despite these major changes in myelin, OLs, and Aβ immunoreactivity, no cognitive impairment or hippocampal pathology was detected in APP/PS1 mice after cuprizone treatment. Together, our data supports the hypothesis that myelin loss can be the cause, but not the consequence, of AD pathology. SIGNIFICANCE STATEMENT The causal relationship between early myelin loss and the progression of Alzheimer's disease remains unclear. Using two different AD mouse models, R1.40 and APP/PS1, our study supports the hypothesis that myelin abnormalities are upstream of amyloid production and deposition. We find that acute demyelination initiates intraneuronal amyloid deposition in the frontal cortex. Further, the loss of oligodendrocytes, coupled with the accelerated intraneuronal amyloid deposition, interferes with myelin tract diffusivity at a stage before any hippocampus pathology or cognitive impairments occur. We propose that myelin loss could be the cause, not the consequence, of amyloid pathology during the early stages of Alzheimer's disease.
Collapse
|
22
|
Kujawa MJ, Marcinkowska AB, Grzywińska M, Waśkow M, Romanowski A, Szurowska E, Winklewski PJ, Szarmach A. Physical activity and the brain myelin content in humans. Front Cell Neurosci 2023; 17:1198657. [PMID: 37342769 PMCID: PMC10277468 DOI: 10.3389/fncel.2023.1198657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
New imaging sequences and biophysical models allow adopting magnetic resonance imaging (MRI) for in vivo myelin mapping in humans. Understanding myelination and remyelination processes in the brain is fundamental from the perspective of proper design of physical exercise and rehabilitation schemes that aim to slow down demyelination in the aging population and to induce remyelination in patients with neurodegenerative diseases. Therefore, in this review we strive to provide a state-of-the art summary of the existing MRI studies in humans focused on the effects of physical activity on myelination/remyelination. We present and discuss four cross-sectional and four longitudinal studies and one case report. Physical activity and an active lifestyle have a beneficial effect on the myelin content in humans. Myelin expansion can be induced in humans throughout the entire lifespan by intensive aerobic exercise. Additional research is needed to determine (1) what exercise intensity (and cognitive novelty, which is embedded in the exercise scheme) is the most beneficial for patients with neurodegenerative diseases, (2) the relationship between cardiorespiratory fitness and myelination, and (3) how exercise-induced myelination affect cognitive abilities.
Collapse
Affiliation(s)
- Mariusz J. Kujawa
- 2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna B. Marcinkowska
- 2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
- Applied Cognitive Neuroscience Lab, Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Grzywińska
- Neuroinformatics and Artificial Intelligence Lab, Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Gdańsk, Poland
| | - Monika Waśkow
- Institute of Health Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | | | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł J. Winklewski
- 2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Gdańsk, Poland
| | - Arkadiusz Szarmach
- 2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
23
|
Dash S, Park B, Kroenke CD, Rooney WD, Urbanski HF, Kohama SG. Brain volumetrics across the lifespan of the rhesus macaque. Neurobiol Aging 2023; 126:34-43. [PMID: 36917864 PMCID: PMC10106431 DOI: 10.1016/j.neurobiolaging.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/30/2023] [Accepted: 02/05/2023] [Indexed: 02/13/2023]
Abstract
The rhesus macaque is a long-lived nonhuman primate (NHP) with a brain structure similar to humans, which may represent a valuable translational animal model in which to study human brain aging. Previous magnetic resonance imaging (MRI) studies of age in rhesus macaque brains have been prone to low statistical power, unbalanced sex ratio and lack of a complete age range. To overcome these problems, the current study surveyed structural T1-weighted magnetic resonance imaging scans of 66 animals, 34 females (aged 6-31 years) and 32 males (aged 5-27 years). Differences observed in older animals, included enlargement of the lateral ventricles and a smaller volume in the frontal cortex, caudate, putamen, hypothalamus, and thalamus. Unexpected, greater volume, were measured in older animals in the hippocampus, amygdala, and globus pallidus. There were also numerous differences between males and females with respect to age in both white and gray matter regions. As an apparent model of normative human aging, the macaque is ideal for studying induction and mitigation of neurodegenerative disease.
Collapse
Affiliation(s)
- Steven Dash
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Byung Park
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
24
|
Guo Y, Dong D, Wu H, Xue Z, Zhou F, Zhao L, Li Z, Feng T. The intracortical myelin content of impulsive choices: results from T1- and T2-weighted MRI myelin mapping. Cereb Cortex 2023; 33:7163-7174. [PMID: 36748995 PMCID: PMC10422924 DOI: 10.1093/cercor/bhad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Delay discounting (DD) refers to a phenomenon that humans tend to choose small-sooner over large-later rewards during intertemporal choices. Steep discounting of delayed outcome is related to a variety of maladaptive behaviors and is considered as a transdiagnostic process across psychiatric disorders. Previous studies have investigated the association between brain structure (e.g. gray matter volume) and DD; however, it is unclear whether the intracortical myelin (ICM) influences DD. Here, based on a sample of 951 healthy young adults drawn from the Human Connectome Project, we examined the relationship between ICM, which was measured by the contrast of T1w and T2w images, and DD and further tested whether the identified associations were mediated by the regional homogeneity (ReHo) of brain spontaneous activity. Vertex-wise regression analyses revealed that steeper DD was significantly associated with lower ICM in the left temporoparietal junction (TPJ) and right middle-posterior cingulate cortex. Region-of-interest analysis revealed that the ReHo values in the left TPJ partially mediated the association of its myelin content with DD. Our findings provide the first evidence that cortical myelination is linked with individual differences in decision impulsivity and suggest that the myelin content affects cognitive performances partially through altered local brain synchrony.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship education, Chongqing University of Posts and Telecommunications, Chongqing, China
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Huimin Wu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhiyuan Xue
- School of Humanities and Management, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Le Zhao
- Faculty of Psychology, Beijing Normal University, Zhuhai, China
| | - Zhangyong Li
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Yi C, Verkhratsky A, Niu J. Pathological potential of oligodendrocyte precursor cells: terra incognita. Trends Neurosci 2023:S0166-2236(23)00103-0. [PMID: 37183154 DOI: 10.1016/j.tins.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Adult oligodendrocyte precursor cells (aOPCs), transformed from fetal OPCs, are idiosyncratic neuroglia of the central nervous system (CNS) that are distinct in many ways from other glial cells. OPCs have been classically studied in the context of their remyelinating capacity. Recent studies, however, revealed that aOPCs not only contribute to post-lesional remyelination but also play diverse crucial roles in multiple neurological diseases. In this review we briefly present the physiology of aOPCs and summarize current knowledge of the beneficial and detrimental roles of aOPCs in different CNS diseases. We discuss unique features of aOPC death, reactivity, and changes during senescence, as well as aOPC interactions with other glial cells and pathological remodeling during disease. Finally, we outline future perspectives for the study of aOPCs in brain pathologies which may instigate the development of aOPC-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; Department of Pathology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, UK; Achucarro Centre for Neuroscience, Basque Foundation for Science (IKERBASQUE), Bilbao 48011, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
26
|
Schmitz-Koep B, Menegaux A, Gaser C, Brandes E, Schinz D, Thalhammer M, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Sorg C, Hedderich DM. Altered Gray Matter Cortical and Subcortical T1-Weighted/T2-Weighted Ratio in Premature-Born Adults. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:495-504. [PMID: 35276405 DOI: 10.1016/j.bpsc.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Microscopic studies in newborns and animal models indicate impaired myelination after premature birth, particularly for cortical myelination; however, it remains unclear whether such myelination impairments last into adulthood and, if so, are relevant for impaired cognitive performance. It has been suggested that the ratio of T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging signal intensity (T1w/T2w ratio) is a proxy for myelin content. We hypothesized altered gray matter (GM) T1w/T2w ratio in premature-born adults, which is associated with lower cognitive performance after premature birth. METHODS We analyzed GM T1w/T2w ratio in 101 adults born very premature (VP) and/or at very low birth weight (VLBW) (<32 weeks of gestation and/or birth weight <1500 g) and 109 full-term control subjects at 26 years of age, controlled for voxelwise volume alterations. Cognitive performance was assessed by verbal, performance, and full scale IQ using the Wechsler Adult Intelligence Scale. RESULTS Significantly higher T1w/T2w ratio in VP/VLBW subjects was found bilaterally in widespread cortical areas, particularly in frontal, parietal, and temporal cortices, and in putamen and pallidum. In these areas, T1w/T2w ratio was not related to birth variables, such as gestational age, or IQ scores. In contrast, significantly lower T1w/T2w ratio in VP/VLBW subjects was found in bilateral clusters in superior temporal gyrus, which was associated with birth weight in the VP/VLBW group. Furthermore, lower T1w/T2w ratio in left superior temporal gyrus was associated with lower full scale and verbal IQ. CONCLUSIONS Results demonstrate GM T1w/T2w ratio alterations in premature-born adults and suggest altered GM myelination development after premature birth with lasting and functionally relevant effects into early adulthood.
Collapse
Affiliation(s)
- Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Gaser
- Departments of Psychiatry, University Hospital Jena, Jena, Germany; Departments of Neurology, University Hospital Jena, Jena, Germany
| | - Elin Brandes
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany; Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin and Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Berlin, Germany; UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, United Kingdom; Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
27
|
Lu J, Drobyshevsky A, Lu L, Yu Y, Caplan MS, Claud EC. Microbiota from Preterm Infants Who Develop Necrotizing Enterocolitis Drives the Neurodevelopment Impairment in a Humanized Mouse Model. Microorganisms 2023; 11:1131. [PMID: 37317106 PMCID: PMC10224461 DOI: 10.3390/microorganisms11051131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is the leading basis for gastrointestinal morbidity and poses a significant risk for neurodevelopmental impairment (NDI) in preterm infants. Aberrant bacterial colonization preceding NEC contributes to the pathogenesis of NEC, and we have demonstrated that immature microbiota in preterm infants negatively impacts neurodevelopment and neurological outcomes. In this study, we tested the hypothesis that microbial communities before the onset of NEC drive NDI. Using our humanized gnotobiotic model in which human infant microbial samples were gavaged to pregnant germ-free C57BL/6J dams, we compared the effects of the microbiota from preterm infants who went on to develop NEC (MNEC) to the microbiota from healthy term infants (MTERM) on brain development and neurological outcomes in offspring mice. Immunohistochemical studies demonstrated that MNEC mice had significantly decreased occludin and ZO-1 expression compared to MTERM mice and increased ileal inflammation marked by the increased nuclear phospho-p65 of NFκB expression, revealing that microbial communities from patients who developed NEC had a negative effect on ileal barrier development and homeostasis. In open field and elevated plus maze tests, MNEC mice had worse mobility and were more anxious than MTERM mice. In cued fear conditioning tests, MNEC mice had worse contextual memory than MTERM mice. MRI revealed that MNEC mice had decreased myelination in major white and grey matter structures and lower fractional anisotropy values in white matter areas, demonstrating delayed brain maturation and organization. MNEC also altered the metabolic profiles, especially carnitine, phosphocholine, and bile acid analogs in the brain. Our data demonstrated numerous significant differences in gut maturity, brain metabolic profiles, brain maturation and organization, and behaviors between MTERM and MNEC mice. Our study suggests that the microbiome before the onset of NEC has negative impacts on brain development and neurological outcomes and can be a prospective target to improve long-term developmental outcomes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | - Lei Lu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yueyue Yu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Michael S. Caplan
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60202, USA
| | - Erika C. Claud
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
28
|
Kilpatrick L, Zhang K, Dong T, Gee G, Beltran-Sanchez H, Wang M, Labus J, Naliboff B, Mayer E, Gupta A. Mediating role of obesity on the association between disadvantaged neighborhoods and intracortical myelination. RESEARCH SQUARE 2023:rs.3.rs-2592087. [PMID: 36993600 PMCID: PMC10055549 DOI: 10.21203/rs.3.rs-2592087/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We investigated the relationship between neighborhood disadvantage (area deprivation index [ADI]) and intracortical myelination (T1-weighted/T2-weighted ratio at deep to superficial cortical levels), and the potential mediating role of the body mass index (BMI) and perceived stress in 92 adults. Worse ADI was correlated with increased BMI and perceived stress (p's<.05). Non-rotated partial least squares analysis revealed associations between worse ADI and decreased myelination in middle/deep cortex in supramarginal, temporal, and primary motor regions and increased myelination in superficial cortex in medial prefrontal and cingulate regions (p<.001); thus, neighborhood disadvantage may influence the flexibility of information processing involved in reward, emotion regulation, and cognition. Structural equation modelling revealed increased BMI as partially mediating the relationship between worse ADI and observed myelination increases (p=.02). Further, trans-fatty acid intake was correlated with observed myelination increases (p=.03), suggesting the importance of dietary quality. These data further suggest ramifications of neighborhood disadvantage on brain health.
Collapse
Affiliation(s)
| | | | - Tien Dong
- University of California Los Angeles
| | | | | | - May Wang
- University of California Los Angeles
| | | | | | | | | |
Collapse
|
29
|
Bero J, Li Y, Kumar A, Humphries C, Nag S, Lee H, Ahn WY, Hahn S, Constable RT, Kim H, Lee D. Coordinated anatomical and functional variability in the human brain during adolescence. Hum Brain Mapp 2023; 44:1767-1778. [PMID: 36479851 PMCID: PMC9921246 DOI: 10.1002/hbm.26173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Adolescence represents a time of unparalleled brain development. In particular, developmental changes in morphometric and cytoarchitectural features are accompanied by maturation in the functional connectivity (FC). Here, we examined how three facets of the brain, including myelination, cortical thickness (CT), and resting-state FC, interact in children between the ages of 10 and 15. We investigated the pattern of coordination in these measures by computing correlation matrices for each measure as well as meta-correlations among them both at the regional and network levels. The results revealed consistently higher meta-correlations among myelin, CT, and FC in the sensory-motor cortical areas than in the association cortical areas. We also found that these meta-correlations were stable and little affected by age-related changes in each measure. In addition, regional variations in the meta-correlations were consistent with the previously identified gradient in the FC and therefore reflected the hierarchy of cortical information processing, and this relationship persists in the adult brain. These results demonstrate that heterogeneity in FC among multiple cortical areas are closely coordinated with the development of cortical myelination and thickness during adolescence.
Collapse
Affiliation(s)
- John Bero
- Neurogazer, Inc.BaltimoreMarylandUSA
| | - Yang Li
- Neurogazer, Inc.BaltimoreMarylandUSA
| | | | | | | | | | - Woo Young Ahn
- Department of PsychologySeoul National UniversitySeoulKorea
| | - Sowon Hahn
- Department of PsychologySeoul National UniversitySeoulKorea
| | - Robert Todd Constable
- Department of Diagnostic Radiology and NeurosurgeryYale School of MedicineNew HavenConnecticutUSA
| | - Hackjin Kim
- Department of PsychologyKorea UniversitySeoulKorea
| | - Daeyeol Lee
- Neurogazer, Inc.BaltimoreMarylandUSA
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins UniversityBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
- Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
30
|
Malakshan SR, Daneshvarfard F, Abrishami Moghaddam H. A correlational study between microstructural, macrostructural and functional age-related changes in the human visual cortex. PLoS One 2023; 18:e0266206. [PMID: 36662780 PMCID: PMC9858032 DOI: 10.1371/journal.pone.0266206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023] Open
Abstract
Age-related changes in the human brain can be investigated from either structural or functional perspectives. Analysis of structural and functional age-related changes throughout the lifespan may help to understand the normal brain development process and monitor the structural and functional pathology of the brain. This study, combining dedicated electroencephalography (EEG) and magnetic resonance imaging (MRI) approaches in adults (20-78 years), highlights the complex relationship between micro/macrostructural properties and the functional responses to visual stimuli. Here, we aimed to relate age-related changes of the latency of visual evoked potentials (VEPs) to micro/macrostructural indexes and find any correlation between micro/macrostructural features, as well. We studied age-related structural changes in the brain, by using the MRI and diffusion-weighted imaging (DWI) as preferred imaging methods for extracting brain macrostructural parameters such as the cortical thickness, surface area, folding and curvature index, gray matter volume, and microstructural parameters such as mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD). All the mentioned features were significantly correlated with age in V1 and V2 regions of the visual cortex. Furthermore, we highlighted, negative correlations between structural features extracted from T1-weighted images and DWI. The latency and amplitude of the three dominants peaks (C1, P1, N1) of the VEP were considered as the brain functional features to be examined for correlation with age and structural features of the corresponding age. We observed significant correlations between mean C1 latency and GM volume averaged in V1 and V2. In hierarchical regression analysis, the structural index did not contribute to significant variance in the C1 latency after regressing out the effect of age. However, the age explained significant variance in the model after regressing out the effect of structural feature.
Collapse
Affiliation(s)
- Sahar Rahimi Malakshan
- Faculty of Electrical Engineering, Department of Biomedical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Farveh Daneshvarfard
- Faculty of Electrical Engineering, Department of Biomedical Engineering, K.N. Toosi University of Technology, Tehran, Iran
- INSERM U1105, Université de Picardie, CURS, Amiens, France
| | - Hamid Abrishami Moghaddam
- Faculty of Electrical Engineering, Department of Biomedical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
31
|
Guo Y, Wu H, Dong D, Zhou F, Li Z, Zhao L, Long Z. Stress and the brain: Emotional support mediates the association between myelination in the right supramarginal gyrus and perceived chronic stress. Neurobiol Stress 2022; 22:100511. [PMID: 36632310 PMCID: PMC9826980 DOI: 10.1016/j.ynstr.2022.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Perceived stress, which refers to people's evaluation of a stressful event and their ability to cope with it, has emerged as a stable predictor for physical and mental health outcomes. Increasing evidence has suggested the buffering effect of social support on perceived stress. Although previous studies have investigated the brain structural features (e.g., gray matter volume) associated with perceived stress, less is known about the association between perceived chronic stress and intra-cortical myelin (ICM), which is an important microstructure of brain and is essential for healthy brain functions, and the role of social support in this association. Using a sample of 1076 healthy young adults drawn from the Human Connectome Project, we quantified the ICMby the contrast of T1w and T2w images and examined its association with perceived chronic stress during the last month and social support. Behavioral results showed that perceived chronic stress was negatively associated with both emotional support and instrumental support. Vertex-wise multiple regression analyses revealed that higher level of perceived chronic stress was significantly associated with lower ICM content of a cluster in the right supramarginal gyrus (rSMG). Interestingly, the emotional support, but not the instrumental support, significantly mediated the association of perceived chronic stress with ICM in the rSMG. Overall, the present study provides novel evidence for the cortical myelination of perceived chronic stress in humans and highlights the essential role of the rSMG in perceived chronic stress and emotional support.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship Education, Chongqing University of Posts and Telecommunications, Chongqing, China,School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China,Key Laboratory of Cognition and Personality, Ministry of Education, China,Corresponding author. School of Bioinformatics, Chongqing University of Posts and Telecommunications, No. 2, Chongwen Road, Nanan District, China.
| | - Huimin Wu
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhangyong Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Le Zhao
- Faculty of Psychology, Beijing Normal University, Zhuhai, China
| | - Zhiliang Long
- Key Laboratory of Cognition and Personality, Ministry of Education, China,Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
32
|
Strain JF, Cooley SA, Tomov D, Boerwinkle A, Ances BM. Abnormal Magnetic Resonance Image Signature in Virologically Stable HIV Individuals. J Infect Dis 2022; 226:2161-2169. [PMID: 36281565 DOI: 10.1093/infdis/jiac418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND With implementation of combination antiretroviral therapy (cART), changes to brain integrity in people with HIV (PWH) are subtle compared to those observed in the pre-cART era. T1-weighted/T2-weighted (T1w/T2w) ratio has been proposed as a measure of cortical myelin. This study examines T1w/T2w values between virologically controlled PWH and persons without HIV (PWoH). METHODS Virologically well-controlled PWH (n = 164) and PWoH (n = 120) were compared on global and regional T1w/T2w values. T1w/T2w values were associated with HIV disease variables (nadir and current CD4 T-cell count, and CNS penetration effectiveness of cART regimen) in PWH, and as a function of age for both PWoH and PWH. RESULTS PWH had reduced global and regional T1w/T2w values compared to PWoH in the posterior cingulate cortex, caudal anterior cingulate cortex, and insula. T1w/T2w values did not correlate with HIV variables except for a negative relationship with CNS penetration effectiveness. Greater cardiovascular disease risk and older age were associated with lower T1w/T2w values only for PWH. CONCLUSIONS T1w/T2w values obtained from commonly acquired MRI protocols differentiates virologically well-controlled PWH from PWoH. Changes in T1w/T2w ratio do not correlate with typical HIV measures. Future studies are needed to determine the biological mechanisms underlying this measure.
Collapse
Affiliation(s)
- Jeremy F Strain
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Sarah A Cooley
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Dimitre Tomov
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Anna Boerwinkle
- Department of Neurology, Washington University, St Louis, Missouri, USA
| | - Beau M Ances
- Department of Neurology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
33
|
Sui YV, Masurkar AV, Rusinek H, Reisberg B, Lazar M. Cortical myelin profile variations in healthy aging brain: A T1w/T2w ratio study. Neuroimage 2022; 264:119743. [PMID: 36368498 PMCID: PMC9904172 DOI: 10.1016/j.neuroimage.2022.119743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Demyelination is observed in both healthy aging and age-related neurodegenerative disorders. While the significance of myelin within the cortex is well acknowledged, studies focused on intracortical demyelination and depth-specific structural alterations in normal aging are lacking. Using the recently available Human Connectome Project Aging dataset, we investigated intracortical myelin in a normal aging population using the T1w/T2w ratio. To capture the fine changes across cortical depths, we employed a surface-based approach by constructing cortical profiles traveling perpendicularly through the cortical ribbon and sampling T1w/T2w values. The curvatures of T1w/T2w cortical profiles may be influenced by differences in local myeloarchitecture and other tissue properties, which are known to vary across cortical regions. To quantify the shape of these profiles, we parametrized the level of curvature using a nonlinearity index (NLI) that measures the deviation of the profile from a straight line. We showed that NLI exhibited a steep decline in aging that was independent of local cortical thinning. Further examination of the profiles revealed that lower T1w/T2w near the gray-white matter boundary and superficial cortical depths were major contributors to the apparent NLI variations with age. These findings suggest that demyelination and changes in other T1w/T2w related tissue properties in normal aging may be depth-specific and highlight the potential of NLI as a unique marker of microstructural alterations within the cerebral cortex.
Collapse
Affiliation(s)
- Yu Veronica Sui
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, rm440, New York, NY 10016, USA,Corresponding author. (Y.V. Sui)
| | - Arjun V. Masurkar
- Department of Neurology, Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA,Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA,Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Henry Rusinek
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, rm440, New York, NY 10016, USA,Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Barry Reisberg
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mariana Lazar
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, rm440, New York, NY 10016, USA
| |
Collapse
|
34
|
Cortical adaptation of the night monkey to a nocturnal niche environment: a comparative non-invasive T1w/T2w myelin study. Brain Struct Funct 2022:10.1007/s00429-022-02591-x. [PMID: 36399210 DOI: 10.1007/s00429-022-02591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022]
Abstract
Night monkeys (Aotus) are the only genus of monkeys within the Simian lineage that successfully occupy a nocturnal environmental niche. Their behavior is supported by their sensory organs' distinctive morphological features; however, little is known about their evolutionary adaptations in sensory regions of the cerebral cortex. Here, we investigate this question by exploring the cortical organization of night monkeys using high-resolution in-vivo brain MRI and comparative cortical-surface T1w/T2w myeloarchitectonic mapping. Our results show that the night monkey cerebral cortex has a qualitatively similar but quantitatively different pattern of cortical myelin compared to the diurnal macaque and marmoset monkeys. T1w/T2w myelin and its gradient allowed us to parcellate high myelin areas, including the middle temporal complex (MT +) and auditory cortex, and a low-myelin area, Brodmann area 7 (BA7) in the three species, despite species differences in cortical convolutions. Relative to the total cortical-surface area, those of MT + and the auditory cortex are significantly larger in night monkeys than diurnal monkeys, whereas area BA7 occupies a similar fraction of the cortical sheet in all three species. We propose that the selective expansion of sensory areas dedicated to visual motion and auditory processing in night monkeys may reflect cortical adaptations to a nocturnal environment.
Collapse
|
35
|
Corrigan NM, Yarnykh VL, Huber E, Zhao TC, Kuhl PK. Brain myelination at 7 months of age predicts later language development. Neuroimage 2022; 263:119641. [PMID: 36170763 PMCID: PMC10038938 DOI: 10.1016/j.neuroimage.2022.119641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/24/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Between 6 and 12 months of age there are dramatic changes in infants' processing of language. The neurostructural underpinnings of these changes are virtually unknown. The objectives of this study were to (1) examine changes in brain myelination during this developmental period and (2) examine the relationship between myelination during this period and later language development. Macromolecular proton fraction (MPF) was used as a marker of myelination. Whole-brain MPF maps were obtained with 1.25 mm3 isotropic spatial resolution from typically developing children at 7 and 11 months of age. Effective myelin density was calculated from MPF based on a linear relationship known from the literature. Voxel-based analyses were used to identify longitudinal changes in myelin density and to calculate correlations between myelin density at these ages and later language development. Increases in myelin density were more predominant in white matter than in gray matter. A strong predictive relationship was found between myelin density at 7 months of age, language production at 24 and 30 months of age, and rate of language growth. No relationships were found between myelin density at 11 months, or change in myelin density between 7 and 11 months of age, and later language measures. Our findings suggest that critical changes in brain structure may precede periods of pronounced change in early language skills.
Collapse
Affiliation(s)
- Neva M Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth Huber
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA
| | - T Christina Zhao
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Rubinski A, Franzmeier N, Dewenter A, Luan Y, Smith R, Strandberg O, Ossenkoppele R, Dichgans M, Hansson O, Ewers M. Higher levels of myelin are associated with higher resistance against tau pathology in Alzheimer's disease. Alzheimers Res Ther 2022; 14:139. [PMID: 36153607 PMCID: PMC9508747 DOI: 10.1186/s13195-022-01074-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), fibrillar tau initially occurs locally and progresses preferentially between closely connected regions. However, the underlying sources of regional vulnerability to tau pathology remain unclear. Previous brain-autopsy findings suggest that the myelin levels-which differ substantially between white matter tracts in the brain-are a key modulating factor of region-specific susceptibility to tau deposition. Here, we investigated whether myelination differences between fiber tracts of the human connectome are predictive of the interregional spreading of tau pathology in AD. METHODS We included two independently recruited samples consisting of amyloid-PET-positive asymptomatic and symptomatic elderly individuals, in whom tau-PET was obtained at baseline (ADNI: n = 275; BioFINDER-1: n = 102) and longitudinally in a subset (ADNI: n = 123, mean FU = 1.53 [0.69-3.95] years; BioFINDER-1: n = 39, mean FU = 1.87 [1.21-2.78] years). We constructed MRI templates of the myelin water fraction (MWF) in 200 gray matter ROIs and connecting fiber tracts obtained from adult cognitively normal participants. Using the same 200 ROI brain-parcellation atlas, we obtained tau-PET ROI values from each individual in ADNI and BioFINDER-1. In a spatial regression analysis, we first tested the association between cortical myelin and group-average tau-PET signal in the amyloid-positive and control groups. Secondly, employing a previously established approach of modeling tau-PET spreading based on functional connectivity between ROIs, we estimated in a linear regression analysis, whether the level of fiber-tract myelin modulates the association between functional connectivity and longitudinal tau-PET spreading (i.e., covariance) between ROIs. RESULTS We found that higher myelinated cortical regions show lower tau-PET uptake (ADNI: rho = - 0.267, p < 0.001; BioFINDER-1: rho = - 0.175, p = 0.013). Fiber-tract myelin levels modulated the association between functional connectivity and tau-PET spreading, such that at higher levels of fiber-tract myelin, the association between stronger connectivity and higher covariance of tau-PET between the connected ROIs was attenuated (interaction fiber-tract myelin × functional connectivity: ADNI: β = - 0.185, p < 0.001; BioFINDER-1: β = - 0.166, p < 0.001). CONCLUSION Higher levels of myelin are associated with lower susceptibility of the connected regions to accumulate fibrillar tau. These results enhance our understanding of brain substrates that explain regional variation in tau accumulation and encourage future studies to investigate potential underlying mechanisms.
Collapse
Affiliation(s)
- Anna Rubinski
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Ying Luan
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Ruben Smith
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
37
|
Glasser MF, Coalson TS, Harms MP, Xu J, Baum GL, Autio JA, Auerbach EJ, Greve DN, Yacoub E, Van Essen DC, Bock NA, Hayashi T. Empirical transmit field bias correction of T1w/T2w myelin maps. Neuroimage 2022; 258:119360. [PMID: 35697132 PMCID: PMC9483036 DOI: 10.1016/j.neuroimage.2022.119360] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/30/2022] Open
Abstract
T1-weighted divided by T2-weighted (T1w/T2w) myelin maps were initially developed for neuroanatomical analyses such as identifying cortical areas, but they are increasingly used in statistical comparisons across individuals and groups with other variables of interest. Existing T1w/T2w myelin maps contain radiofrequency transmit field (B1+) biases, which may be correlated with these variables of interest, leading to potentially spurious results. Here we propose two empirical methods for correcting these transmit field biases using either explicit measures of the transmit field or alternatively a 'pseudo-transmit' approach that is highly correlated with the transmit field at 3T. We find that the resulting corrected T1w/T2w myelin maps are both better neuroanatomical measures (e.g., for use in cross-species comparisons), and more appropriate for statistical comparisons of relative T1w/T2w differences across individuals and groups (e.g., sex, age, or body-mass-index) within a consistently acquired study at 3T. We recommend that investigators who use the T1w/T2w approach for mapping cortical myelin use these B1+ transmit field corrected myelin maps going forward.
Collapse
Affiliation(s)
| | | | - Michael P Harms
- Psychiatry, Washington University Medical School, St. Louis, MO, United States
| | - Junqian Xu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Graham L Baum
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Joonas A Autio
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | | | - Nicholas A Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Takuya Hayashi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
38
|
Patel R, Mackay CE, Jansen MG, Devenyi GA, O'Donoghue MC, Kivimäki M, Singh-Manoux A, Zsoldos E, Ebmeier KP, Chakravarty MM, Suri S. Inter- and intra-individual variation in brain structural-cognition relationships in aging. Neuroimage 2022; 257:119254. [PMID: 35490915 PMCID: PMC9393406 DOI: 10.1016/j.neuroimage.2022.119254] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 01/21/2023] Open
Abstract
The sources of inter- and intra-individual variability in age-related cognitive decline remain poorly understood. We examined the association between 20-year trajectories of cognitive decline and multimodal brain structure and morphology in older age. We used the Whitehall II Study, an extensively characterised cohort with 3T brain magnetic resonance images acquired at older age (mean age = 69.52 ± 4.9) and 5 repeated cognitive performance assessments between mid-life (mean age = 53.2 ±4.9 years) and late-life (mean age = 67.7 ± 4.9). Using non-negative matrix factorization, we identified 10 brain components integrating cortical thickness, surface area, fractional anisotropy, and mean and radial diffusivities. We observed two latent variables describing distinct brain-cognition associations. The first describes variations in 5 structural components associated with low mid-life performance across multiple cognitive domains, decline in reasoning, but maintenance of fluency abilities. The second describes variations in 6 structural components associated with low mid-life performance in fluency and memory, but retention of multiple abilities. Expression of latent variables predicts future cognition 3.2 years later (mean age = 70.87 ± 4.9). This data-driven approach highlights brain-cognition relationships wherein individuals degrees of cognitive decline and maintenance across diverse cognitive functions are both positively and negatively associated with markers of cortical structure.
Collapse
Affiliation(s)
- Raihaan Patel
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Québec, H4H 1R3, Canada; Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Clare E Mackay
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 7JX, Oxford, United Kingdom
| | - Michelle G Jansen
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Québec, H4H 1R3, Canada; Department of Psychiatry, McGill University, Montréal, Québec, H3A 1A1, Canada
| | - M Clare O'Donoghue
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 7JX, Oxford, United Kingdom
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, WC1E 6BT, London, United Kingdom
| | - Archana Singh-Manoux
- Department of Epidemiology and Public Health, University College London, WC1E 6BT, London, United Kingdom; Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, 7501020, Paris, France
| | - Enikő Zsoldos
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 9DU, Oxford, UK
| | - Klaus P Ebmeier
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun, Québec, H4H 1R3, Canada; Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, H3A 2B4, Canada; Department of Psychiatry, McGill University, Montréal, Québec, H3A 1A1, Canada
| | - Sana Suri
- Department of Psychiatry, Warneford Hospital, University of Oxford, OX3 7JX, Oxford, United Kingdom; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, OX3 7JX, Oxford, United Kingdom.
| |
Collapse
|
39
|
Norbom LB, Hanson J, van der Meer D, Ferschmann L, Røysamb E, von Soest T, Andreassen OA, Agartz I, Westlye LT, Tamnes CK. Parental socioeconomic status is linked to cortical microstructure and language abilities in children and adolescents. Dev Cogn Neurosci 2022; 56:101132. [PMID: 35816931 PMCID: PMC9284438 DOI: 10.1016/j.dcn.2022.101132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022] Open
Abstract
Gradients in parental socioeconomic status (SES) are closely linked to important life outcomes in children and adolescents, such as cognitive abilities, school achievement, and mental health. Parental SES may also influence brain development, with several magnetic resonance imaging (MRI) studies reporting associations with youth brain morphometry. However, MRI signal intensity metrics have not been assessed, but could offer a microstructural correlate, thereby increasing our understanding of SES influences on neurobiology. We computed a parental SES score from family income, parental education and parental occupation, and assessed relations with cortical microstructure as measured by T1w/T2w ratio (n = 504, age = 3-21 years). We found negative age-stabile relations between parental SES and T1w/T2w ratio, indicating that youths from lower SES families have higher ratio in widespread frontal, temporal, medial parietal and occipital regions, possibly indicating a more developed cortex. Effect sizes were small, but larger than for conventional morphometric properties i.e. cortical surface area and thickness, which were not significantly associated with parental SES. Youths from lower SES families had poorer language related abilities, but microstructural differences did not mediate these relations. T1w/T2w ratio appears to be a sensitive imaging marker for further exploring the association between parental SES and child brain development.
Collapse
Affiliation(s)
- Linn B Norbom
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Norwegian Institute of Public Health, Norway.
| | - Jamie Hanson
- Learning Research and Development Center University of Pittsburgh, USA; Department of Psychology, University of Pittsburgh, USA; Norwegian Institute of Public Health, Norway
| | - Dennis van der Meer
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands; Norwegian Institute of Public Health, Norway
| | - Lia Ferschmann
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Norwegian Institute of Public Health, Norway
| | - Espen Røysamb
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Norwegian Institute of Public Health, Norway
| | - Tilmann von Soest
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Norwegian Institute of Public Health, Norway
| | - Ole A Andreassen
- K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Norwegian Institute of Public Health, Norway
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; Norwegian Institute of Public Health, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Lars T Westlye
- K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Norwegian Institute of Public Health, Norway
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Norwegian Institute of Public Health, Norway
| |
Collapse
|
40
|
Helmet Technology, Head Impact Exposure, and Cortical Thinning Following a Season of High School Football. Ann Biomed Eng 2022; 50:1608-1619. [PMID: 35867315 DOI: 10.1007/s10439-022-03023-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/13/2022] [Indexed: 11/01/2022]
Abstract
The purpose of this study was to compare the effects of wearing older, lower-ranked football helmets (LRank) to wearing newer, higher-ranked football helmets (HRank) on pre- to post-season changes in cortical thickness in response to repetitive head impacts and assess whether changes in cortical thickness are associated with head impact exposure for either helmet type. 105 male high-school athletes (NHRank = 52, NLRank = 53) wore accelerometers affixed behind the left mastoid during all practices and games for one regular season of American football to monitor head impact exposure. Pre- and post-season magnetic resonance imaging (MRI) were completed to assess longitudinal changes in cortical thickness. Significant reductions in cortical thickness (i.e., cortical thinning) were observed pre- to post-season for each group, but these longitudinal alterations were not significantly different between the LRank and HRank groups. Further, significant group-by-head impact exposure interactions were observed when predicting changes in cortical thickness. Specifically, a greater frequency of high magnitude head impacts during the football season resulted in greater cortical thinning for the LRank group, but not for the HRank group. These data provide preliminary in vivo evidence that HRank helmets may provide a buffer between the specific effect of high magnitude head impacts on regional thinning by dissipating forces more evenly throughout the cortex. However, future research with larger sample sizes, increased longitudinal measures and additional helmet technologies is warranted to both expand upon and further validate the present study findings.
Collapse
|
41
|
Cheng GWY, Mok KKS, Yeung SHS, Kofler J, Herrup K, Tse KH. Apolipoprotein E ε4 Mediates Myelin Breakdown by Targeting Oligodendrocytes in Sporadic Alzheimer Disease. J Neuropathol Exp Neurol 2022; 81:717-730. [PMID: 35779013 DOI: 10.1093/jnen/nlac054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
White matter degradation in the frontal lobe is one of the earliest detectable changes in aging and Alzheimer disease. The ε4 allele of apolipoprotein E (APOE4) is strongly associated with such myelin pathology but the underlying cellular mechanisms remain obscure. We hypothesized that, as a lipid transporter, APOE4 directly triggers pathology in the cholesterol-rich myelin sheath independent of AD pathology. To test this, we performed immunohistochemistry on brain tissues from healthy controls, sporadic, and familial Alzheimer disease subjects. While myelin basic protein expression was largely unchanged, in frontal cortex the number of oligodendrocytes (OLs) was significantly reduced in APOE4 brains independent of their Braak stage or NIA-RI criteria. This high vulnerability of OLs was confirmed in humanized APOE3 or APOE4 transgenic mice. A gradual decline of OL numbers was found in the aging brain without associated neuronal loss. Importantly, the application of lipidated human APOE4, but not APOE3, proteins significantly reduced the formation of myelinating OL in primary cell culture derived from Apoe-knockout mice, especially in cholesterol-depleted conditions. Our findings suggest that the disruption of myelination in APOE4 carriers may represent a direct OL pathology, rather than an indirect consequence of amyloid plaque formation or neuronal loss.
Collapse
Affiliation(s)
- Gerald Wai-Yeung Cheng
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Kingston King-Shi Mok
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Sunny Hoi-Sang Yeung
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Julia Kofler
- Division of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| |
Collapse
|
42
|
Margoni M, Pagani E, Meani A, Storelli L, Mesaros S, Drulovic J, Barkhof F, Vrenken H, Strijbis E, Gallo A, Bisecco A, Pareto D, Sastre-Garriga J, Ciccarelli O, Yiannakas M, Palace J, Preziosa P, Rocca MA, Filippi M. Exploring in vivo multiple sclerosis brain microstructural damage through T1w/T2w ratio: a multicentre study. J Neurol Neurosurg Psychiatry 2022; 93:741-752. [PMID: 35580993 DOI: 10.1136/jnnp-2022-328908] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To evaluate white matter and grey matter T1-weighted (w)/T2w ratio (T1w/T2w ratio) in healthy controls and patients with multiple sclerosis, and its association with clinical disability. METHODS In this cross-sectional study, 270 healthy controls and 434 patients with multiple sclerosis were retrospectively selected from 7 European sites. T1w/T2w ratio was obtained from brain T2w and T1w scans after intensity calibration using eyes and temporal muscle. RESULTS In healthy controls, T1w/T2w ratio increased until 50-60 years both in white and grey matter. Compared with healthy controls, T1w/T2w ratio was significantly lower in white matter lesions of all multiple sclerosis phenotypes, and in normal-appearing white matter and cortex of patients with relapsing-remitting and secondary progressive multiple sclerosis (p≤0.026), but it was significantly higher in the striatum and pallidum of patients with relapsing-remitting, secondary progressive and primary progressive multiple sclerosis (p≤0.042). In relapse-onset multiple sclerosis, T1w/T2w ratio was significantly lower in white matter lesions and normal-appearing white matter already at Expanded Disability Status Scale (EDSS) <3.0 and in the cortex only for EDSS ≥3.0 (p≤0.023). Conversely, T1w/T2w ratio was significantly higher in the striatum and pallidum for EDSS ≥4.0 (p≤0.005). In primary progressive multiple sclerosis, striatum and pallidum showed significantly higher T1w/T2w ratio beyond EDSS=6.0 (p≤0.001). In multiple sclerosis, longer disease duration, higher EDSS, higher brain lesional volume and lower normalised brain volume were associated with lower lesional and cortical T1w/T2w ratio and a higher T1w/T2w ratio in the striatum and pallidum (β from -1.168 to 0.286, p≤0.040). CONCLUSIONS T1w/T2w ratio may represent a clinically relevant marker sensitive to demyelination, neurodegeneration and iron accumulation occurring at the different multiple sclerosis phases.
Collapse
Affiliation(s)
- Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarlota Mesaros
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Jelena Drulovic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Beograd, Serbia
| | - Frederik Barkhof
- Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Hugo Vrenken
- Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eva Strijbis
- MS Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Marios Yiannakas
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
43
|
Mahoney SO, Chowdhury NF, Ngo V, Imms P, Irimia A. Mild Traumatic Brain Injury Results in Significant and Lasting Cortical Demyelination. Front Neurol 2022; 13:854396. [PMID: 35812106 PMCID: PMC9262516 DOI: 10.3389/fneur.2022.854396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Despite contributing to neurocognitive deficits, intracortical demyelination after traumatic brain injury (TBI) is understudied. This study uses magnetic resonance imaging (MRI) to map intracortical myelin and its change in healthy controls and after mild TBI (mTBI). Acute mTBI involves reductions in relative myelin content primarily in lateral occipital regions. Demyelination mapped ~6 months post-injury is significantly more severe than that observed in typical aging (p < 0.05), with temporal, cingulate, and insular regions losing more myelin (30%, 20%, and 16%, respectively) than most other areas, although occipital regions experience 22% less demyelination. Thus, occipital regions may be more susceptible to primary injury, whereas temporal, cingulate and insular regions may be more susceptible to later manifestations of injury sequelae. The spatial profiles of aging- and mTBI-related chronic demyelination overlap substantially; exceptions include primary motor and somatosensory cortices, where myelin is relatively spared post-mTBI. These features resemble those of white matter demyelination and cortical thinning during Alzheimer's disease, whose risk increases after mTBI.
Collapse
Affiliation(s)
- Sean O. Mahoney
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Nahian F. Chowdhury
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Van Ngo
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Phoebe Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Andrew and Edna Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Andrei Irimia
| |
Collapse
|
44
|
Polk SE, Kleemeyer MM, Köhncke Y, Brandmaier AM, Bodammer NC, Misgeld C, Porst J, Wolfarth B, Kühn S, Lindenberger U, Wenger E, Düzel S. Change in Latent Gray-Matter Structural Integrity Is Associated With Change in Cardiovascular Fitness in Older Adults Who Engage in At-Home Aerobic Exercise. Front Hum Neurosci 2022; 16:852737. [PMID: 35655926 PMCID: PMC9152142 DOI: 10.3389/fnhum.2022.852737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
In aging humans, aerobic exercise interventions have been found to be associated with more positive or less negative changes in frontal and temporal brain areas, such as the anterior cingulate cortex (ACC) and hippocampus, relative to no-exercise control conditions. However, individual measures such as gray-matter (GM) probability may afford less reliable and valid conclusions about maintenance or losses in structural brain integrity than a latent construct based on multiple indicators. Here, we established a latent factor of GM structural integrity based on GM probability assessed by voxel-based morphometry, magnetization transfer saturation, and mean diffusivity. Based on this latent factor, we investigated changes in structural brain integrity during a six-month exercise intervention in brain regions previously reported in studies using volumetric approaches. Seventy-five healthy, previously sedentary older adults aged 63-76 years completed an at-home intervention study in either an exercise group (EG; n = 40) or in an active control group (ACG; n = 35). Measures of peak oxygen uptake (VO2peak) taken before and after the intervention revealed a time-by-group interaction, with positive average change in the EG and no reliable mean change in the ACG. Significant group differences in structural brain integrity changes were observed in the right and left ACC, right posterior cingulate cortex (PCC), and left juxtapositional lobule cortex (JLC). In all instances, average changes in the EG did not differ reliably from zero, whereas average changes in the ACG were negative, pointing to maintenance of structural brain integrity in the EG, and to losses in the ACG. Significant individual differences in change were observed for right ACC and left JLC. Following up on these differences, we found that exercising participants with greater fitness gains also showed more positive changes in structural integrity. We discuss the benefits and limitations of a latent-factor approach to changes in structural brain integrity, and conclude that aerobic fitness interventions are likely to contribute to brain maintenance in old age.
Collapse
Affiliation(s)
- Sarah E. Polk
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- International Max Planck Research School on the Life Course (LIFE), Berlin, Germany
| | - Maike M. Kleemeyer
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ylva Köhncke
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Andreas M. Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - Nils C. Bodammer
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Carola Misgeld
- Department of Sports Medicine, Charité – Universitätsmedizin Berlin, Humboldt Universität zu Berlin, Berlin, Germany
| | - Johanna Porst
- Department of Sports Medicine, Charité – Universitätsmedizin Berlin, Humboldt Universität zu Berlin, Berlin, Germany
| | - Bernd Wolfarth
- Department of Sports Medicine, Charité – Universitätsmedizin Berlin, Humboldt Universität zu Berlin, Berlin, Germany
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Elisabeth Wenger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
45
|
Langensee L, Rumetshofer T, Behjat H, Novén M, Li P, Mårtensson J. T1w/T2w Ratio and Cognition in 9-to-11-Year-Old Children. Brain Sci 2022; 12:599. [PMID: 35624986 PMCID: PMC9139105 DOI: 10.3390/brainsci12050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Childhood is a period of extensive cortical and neural development. Among other things, axons in the brain gradually become more myelinated, promoting the propagation of electrical signals between different parts of the brain, which in turn may facilitate skill development. Myelin is difficult to assess in vivo, and measurement techniques are only just beginning to make their way into standard imaging protocols in human cognitive neuroscience. An approach that has been proposed as an indirect measure of cortical myelin is the T1w/T2w ratio, a contrast that is based on the intensities of two standard structural magnetic resonance images. Although not initially intended as such, researchers have recently started to use the T1w/T2w contrast for between-subject comparisons of cortical data with various behavioral and cognitive indices. As a complement to these earlier findings, we computed individual cortical T1w/T2w maps using data from the Adolescent Brain Cognitive Development study (N = 960; 449 females; aged 8.9 to 11.0 years) and related the T1w/T2w maps to indices of cognitive ability; in contrast to previous work, we did not find significant relationships between T1w/T2w values and cognitive performance after correcting for multiple testing. These findings reinforce existent skepticism about the applicability of T1w/T2w ratio for inter-individual comparisons.
Collapse
Affiliation(s)
- Lara Langensee
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, 22100 Lund, Sweden; (T.R.); (J.M.)
| | - Theodor Rumetshofer
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, 22100 Lund, Sweden; (T.R.); (J.M.)
| | - Hamid Behjat
- Faculty of Engineering, Department of Biomedical Engineering, Lund University, 22100 Lund, Sweden;
| | - Mikael Novén
- Faculty of Science, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Ping Li
- Faculty of Humanities, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China;
| | - Johan Mårtensson
- Faculty of Medicine, Department of Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, 22100 Lund, Sweden; (T.R.); (J.M.)
| |
Collapse
|
46
|
Chen B, Linke A, Olson L, Kohli J, Kinnear M, Sereno M, Müller RA, Carper R, Fishman I. Cortical Myelination in Toddlers and Preschoolers with Autism Spectrum Disorder. Dev Neurobiol 2022; 82:261-274. [PMID: 35348301 PMCID: PMC9325547 DOI: 10.1002/dneu.22874] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022]
Abstract
Intracortical myelin is thought to play a significant role in the development of neural circuits and functional networks, with consistent evidence of atypical network connectivity in children with autism spectrum disorders (ASD). However, little is known about the development of intracortical myelin in the first years of life in ASD, during the critical neurodevelopmental period when autism symptoms first emerge. Using T1-weighted (T1w) and T2-weighted (T2w) structural magnetic resonance imaging (MRI) in 21 young children with ASD and 16 typically developing (TD) children, ages 1.5 to 5.5 years, we demonstrate the feasibility of estimating intracortical myelin in vivo using the T1w/T2w ratio as a proxy. The resultant T1w/T2w maps were largely comparable with those reported in prior T1w/T2w studies in typically developing children and adults, and revealed no group differences between TD children and those with ASD. However, differential associations between T1w/T2w and age were identified in several early myelinated regions (e.g., visual, posterior cingulate, precuneus cortices) in the ASD and TD groups, with age-related increase in estimated myelin content across the toddler and preschool years detected in TD children, but not in children with ASD. The atypical age-related effects in intracortical myelin, suggesting a disrupted myelination in the first years of life in ASD, may be related to the aberrant brain network connectivity reported in young children with ASD in some of the same cortical regions and circuits. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bosi Chen
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA
| | - Annika Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University
| | - Lindsay Olson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA
| | - Jiwandeep Kohli
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA
| | - Mikaela Kinnear
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University
| | - Martin Sereno
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA.,Center for Autism and Developmental Disorders, San Diego State University
| | - Ruth Carper
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA.,Center for Autism and Developmental Disorders, San Diego State University
| | - Inna Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, USA.,Center for Autism and Developmental Disorders, San Diego State University
| |
Collapse
|
47
|
Yuan S, Liu M, Kim S, Yang J, Barkovich AJ, Xu D, Kim H. Cyto/myeloarchitecture of cortical gray matter and superficial white matter in early neurodevelopment: multimodal MRI study in preterm neonates. Cereb Cortex 2022; 33:357-373. [PMID: 35235643 PMCID: PMC9837610 DOI: 10.1093/cercor/bhac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/19/2023] Open
Abstract
The cerebral cortex undergoes rapid microstructural changes throughout the third trimester. Recently, there has been growing interest on imaging features that represent cyto/myeloarchitecture underlying intracortical myelination, cortical gray matter (GM), and its adjacent superficial whitematter (sWM). Using 92 magnetic resonance imaging scans from 78 preterm neonates, the current study used combined T1-weighted/T2-weighted (T1w/T2w) intensity ratio and diffusion tensor imaging (DTI) measurements, including fractional anisotropy (FA) and mean diffusivity (MD), to characterize the developing cyto/myeloarchitectural architecture. DTI metrics showed a linear trajectory: FA decreased in GM but increased in sWM with time; and MD decreased in both GM and sWM. Conversely, T1w/T2w measurements showed a distinctive parabolic trajectory, revealing additional cyto/myeloarchitectural signature inferred. Furthermore, the spatiotemporal courses were regionally heterogeneous: central, ventral, and temporal regions of GM and sWM exhibited faster T1w/T2w changes; anterior sWM areas exhibited faster FA increases; and central and cingulate areas in GM and sWM exhibited faster MD decreases. These results may explain cyto/myeloarchitectural processes, including dendritic arborization, synaptogenesis, glial proliferation, and radial glial cell organization and apoptosis. Finally, T1w/T2w values were significantly associated with 1-year language and cognitive outcome scores, while MD significantly decreased with intraventricular hemorrhage.
Collapse
Affiliation(s)
| | | | | | - Jingda Yang
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Anthony James Barkovich
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Duan Xu
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hosung Kim
- Corresponding author: 2025 Zonal Ave, Los Angeles, CA 90033, USA.
| |
Collapse
|
48
|
Drakulich S, Sitartchouk A, Olafson E, Sarhani R, Thiffault AC, Chakravarty M, Evans AC, Karama S. General cognitive ability and pericortical contrast. INTELLIGENCE 2022. [DOI: 10.1016/j.intell.2022.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Kilpatrick LA, Alger JR, O’Neill J, Joshi SH, Narr KL, Levitt JG, O’Connor MJ. Impact of prenatal alcohol exposure on intracortical myelination and deep white matter in children with attention deficit hyperactivity disorder. NEUROIMAGE. REPORTS 2022; 2:100082. [PMID: 37284413 PMCID: PMC10243188 DOI: 10.1016/j.ynirp.2022.100082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
White matter alterations have been reported in children with prenatal alcohol exposure (PAE) and in children with attention deficit hyperactivity disorder (ADHD); however, as children with PAE often present with ADHD, covert PAE may have contributed to previous ADHD findings. Additionally, data regarding intracortical myelination in ADHD are lacking. Therefore, we evaluated intracortical myelination (assessed as the T1w/T2w ratio at 4 cortical ribbon levels) and myelin-related deep white matter features in children (aged 8-13 years) with ADHD with PAE (ADHD + PAE), children with familial ADHD without PAE (ADHD-PAE), and typically developing (TD) children. In widespread tracts, ADHD + PAE children showed higher mean and radial diffusivity than TD and ADHD-PAE children and lower fractional anisotropy than ADHD-PAE children; ADHD-PAE and TD children did not differ significantly. Compared to TD children, ADHD + PAE children had lower intracortical myelination only at the deepest cortical level (mainly in right insula and cingulate cortices), while ADHD-PAE children had lower intracortical myelination at multiple cortical levels (mainly in right insula, sensorimotor, and cingulate cortices); ADHD + PAE and ADHD-PAE children did not differ significantly in intracortical myelination. Considering the two ADHD groups jointly (via non-parametric combination) revealed common reductions in intracortical myelination, but no common deep white matter abnormalities. These results suggest the importance of considering PAE in ADHD studies of white matter pathology. ADHD + PAE may be associated with deeper, white matter abnormalities, while familial ADHD without PAE may be associated with more superficial, cortical abnormalities. This may be relevant to the different treatment response observed in these two ADHD etiologies.
Collapse
Affiliation(s)
- Lisa A. Kilpatrick
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Jeffry R. Alger
- Department of Neurology, University of California, Los Angeles, CA, USA
- Neurospectroscopics, LLC., Sherman Oaks, CA, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph O’Neill
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience, University of California Los Angeles, CA, USA
| | - Shantanu H. Joshi
- Department of Neurology, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Katherine L. Narr
- Department of Neurology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Jennifer G. Levitt
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience, University of California Los Angeles, CA, USA
| | - Mary J. O’Connor
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience, University of California Los Angeles, CA, USA
| |
Collapse
|
50
|
Pappaianni E, Borsarini B, Doucet GE, Hochman A, Frangou S, Micali N. Initial evidence of abnormal brain plasticity in anorexia nervosa: an ultra-high field study. Sci Rep 2022; 12:2589. [PMID: 35173174 PMCID: PMC8850617 DOI: 10.1038/s41598-022-06113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Anorexia Nervosa has been associated with white matter abnormalities implicating subcortical abnormal myelination. Extending these findings to intracortical myelin has been challenging but ultra-high field neuroimaging offers new methodological opportunities. To test the integrity of intracortical myelin in AN we used 7 T neuroimaging to acquire T1-weighted images optimized for intracortical myelin from seven females with AN (age range: 18-33) and 11 healthy females (age range: 23-32). Intracortical T1 values (inverse index of myelin concentration) were extracted from 148 cortical regions at ten depth-levels across the cortical ribbon. Across all cortical regions, these levels were averaged to generate estimates of total intracortical myelin concentration and were clustered using principal component analyses into two clusters; the outer cluster comprised T1 values across depth-levels ranging from the CSF boundary to the middle of the cortical regions and the inner cluster comprised T1 values across depth-levels ranging from the middle of the cortical regions to the gray/white matter boundary. Individuals with AN exhibited higher T1 values (i.e., decreased intracortical myelin concentration) in all three metrics. It remains to be established if these abnormalities result from undernutrition or specific lipid nutritional imbalances, or are trait markers; and whether they may contribute to neurobiological deficits seen in AN.
Collapse
Affiliation(s)
- Edoardo Pappaianni
- Department of Psychiatry, Faculty of Medicine, University of Geneva, 2 Rue Verte, 1205, Geneva, Switzerland
| | - Bianca Borsarini
- Department of Psychiatry, Faculty of Medicine, University of Geneva, 2 Rue Verte, 1205, Geneva, Switzerland
| | | | - Ayelet Hochman
- Department of Psychology, St. John's University, Queens, NY, USA
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Nadia Micali
- Department of Psychiatry, Faculty of Medicine, University of Geneva, 2 Rue Verte, 1205, Geneva, Switzerland. .,Great Ormond Street Institute of Child Health, University College London, London, UK. .,Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|