1
|
Wu WY, Yiu E, Ophir AG, Smith DM. Effects of social context manipulation on dorsal and ventral hippocampal neuronal responses. Hippocampus 2023; 33:830-843. [PMID: 36789678 PMCID: PMC11127721 DOI: 10.1002/hipo.23507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The hippocampus is critical for contextual memory and has recently been implicated in various kinds of social memory. Traditionally, studies of hippocampal context coding have manipulated elements of the background environment, such as the shape and color of the apparatus. These manipulations produce large shifts in the spatial firing patterns, a phenomenon known as remapping. These findings suggest that the hippocampus encodes and differentiates contexts by generating unique spatial firing patterns for each environment a subject encounters. However, we do not know whether the hippocampus encodes social contexts defined by the presence of particular conspecifics. We examined this by exposing rats to a series of manipulations of the social context, including the presence of familiar male, unfamiliar male and female conspecifics, in order to determine whether remapping is a plausible mechanism for encoding socially-defined contexts. Because the dorsal and ventral regions of the hippocampus are thought to play different roles in spatial and social cognition, we recorded neurons in both regions. Surprisingly, we found little evidence of remapping in response to manipulation of the social context in either the dorsal or ventral hippocampus, although we saw typical remapping in response to changing the background color. This result suggests that remapping is not the primary mechanism for encoding different social contexts. However, we found that a subset of hippocampal neurons fired selectively near the cages that contained the conspecifics, and these responses were most prevalent in the ventral hippocampus. We also found a striking increase in the spatial information content of ventral hippocampal firing patterns. These results indicate that the ventral hippocampus is sensitive to changes in the social context and neurons that respond selectively near the conspecific cages could play an important, if not fully understood role in encoding the conjunction of conspecifics, their location and the environment.
Collapse
Affiliation(s)
- Wen-Yi Wu
- Department of Psychology, Cornell University, Ithaca, New York, USA
| | - Eunice Yiu
- Department of Psychology, Cornell University, Ithaca, New York, USA
| | | | - David M Smith
- Department of Psychology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Layfield D, Sidell N, Blankenberger K, Newman EL. Hippocampal inactivation during rearing on hind legs impairs spatial memory. Sci Rep 2023; 13:6136. [PMID: 37061540 PMCID: PMC10105745 DOI: 10.1038/s41598-023-33209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/09/2023] [Indexed: 04/17/2023] Open
Abstract
Spatial memory requires an intact hippocampus. Hippocampal function during epochs of locomotion and quiet rest (e.g., grooming and reward consumption) has been the target of extensive study. However, during navigation rats frequently rear up onto their hind legs, and the importance of hippocampal activity during these periods of attentive sampling for spatial memory is unknown. To address this, we tested the necessity of dorsal hippocampal activity during rearing epochs in the study phase of a delayed win-shift task for memory performance in the subsequent test phase. Hippocampal activity was manipulated with closed-loop, bilateral, optogenetic inactivation. Spatial memory accuracy was significantly and selectively reduced when the dorsal hippocampus was inactivated during rearing epochs at encoding. These data show that hippocampal activity during periods of rearing can be important for spatial memory, revealing a novel link between hippocampal function during epochs of rearing and spatial memory.
Collapse
Affiliation(s)
- Dylan Layfield
- Program in Neuroscience, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA.
| | - Nathan Sidell
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| | - Kevin Blankenberger
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| | - Ehren Lee Newman
- Program in Neuroscience, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| |
Collapse
|
3
|
Herreras O, Torres D, Makarov VA, Makarova J. Theoretical considerations and supporting evidence for the primary role of source geometry on field potential amplitude and spatial extent. Front Cell Neurosci 2023; 17:1129097. [PMID: 37066073 PMCID: PMC10097999 DOI: 10.3389/fncel.2023.1129097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Field potential (FP) recording is an accessible means to capture the shifts in the activity of neuron populations. However, the spatial and composite nature of these signals has largely been ignored, at least until it became technically possible to separate activities from co-activated sources in different structures or those that overlap in a volume. The pathway-specificity of mesoscopic sources has provided an anatomical reference that facilitates transcending from theoretical analysis to the exploration of real brain structures. We review computational and experimental findings that indicate how prioritizing the spatial geometry and density of sources, as opposed to the distance to the recording site, better defines the amplitudes and spatial reach of FPs. The role of geometry is enhanced by considering that zones of the active populations that act as sources or sinks of current may arrange differently with respect to each other, and have different geometry and densities. Thus, observations that seem counterintuitive in the scheme of distance-based logic alone can now be explained. For example, geometric factors explain why some structures produce FPs and others do not, why different FP motifs generated in the same structure extend far while others remain local, why factors like the size of an active population or the strong synchronicity of its neurons may fail to affect FPs, or why the rate of FP decay varies in different directions. These considerations are exemplified in large structures like the cortex and hippocampus, in which the role of geometrical elements and regional activation in shaping well-known FP oscillations generally go unnoticed. Discovering the geometry of the sources in play will decrease the risk of population or pathway misassignments based solely on the FP amplitude or temporal pattern.
Collapse
Affiliation(s)
- Oscar Herreras
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council, Madrid, Spain
- *Correspondence: Oscar Herreras,
| | - Daniel Torres
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | - Valeriy A. Makarov
- Institute for Interdisciplinary Mathematics, School of Mathematics, Universidad Complutense de Madrid, Madrid, Spain
| | - Julia Makarova
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council, Madrid, Spain
- Julia Makarova,
| |
Collapse
|
4
|
Kitchigina V, Shubina L. Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110759. [PMID: 37003419 DOI: 10.1016/j.pnpbp.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The dentate gyrus (DG) is part of the hippocampal formation and is essential for important cognitive processes such as navigation and memory. The oscillatory activity of the DG network is believed to play a critical role in cognition. DG circuits generate theta, beta, and gamma rhythms, which participate in the specific information processing performed by DG neurons. In the temporal lobe epilepsy (TLE), cognitive abilities are impaired, which may be due to drastic alterations in the DG structure and network activity during epileptogenesis. The theta rhythm and theta coherence are especially vulnerable in dentate circuits; disturbances in DG theta oscillations and their coherence may be responsible for general cognitive impairments observed during epileptogenesis. Some researchers suggested that the vulnerability of DG mossy cells is a key factor in the genesis of TLE, but others did not support this hypothesis. The aim of the review is not only to present the current state of the art in this field of research but to help pave the way for future investigations by highlighting the gaps in our knowledge to completely appreciate the role of DG rhythms in brain functions. Disturbances in oscillatory activity of the DG during TLE development may be a diagnostic marker in the treatment of this disease.
Collapse
Affiliation(s)
- Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Liubov Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
5
|
Totty MS, Maren S. Neural Oscillations in Aversively Motivated Behavior. Front Behav Neurosci 2022; 16:936036. [PMID: 35846784 PMCID: PMC9284508 DOI: 10.3389/fnbeh.2022.936036] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Fear and anxiety-based disorders are highly debilitating and among the most prevalent psychiatric disorders. These disorders are associated with abnormal network oscillations in the brain, yet a comprehensive understanding of the role of network oscillations in the regulation of aversively motivated behavior is lacking. In this review, we examine the oscillatory correlates of fear and anxiety with a particular focus on rhythms in the theta and gamma-range. First, we describe neural oscillations and their link to neural function by detailing the role of well-studied theta and gamma rhythms to spatial and memory functions of the hippocampus. We then describe how theta and gamma oscillations act to synchronize brain structures to guide adaptive fear and anxiety-like behavior. In short, that hippocampal network oscillations act to integrate spatial information with motivationally salient information from the amygdala during states of anxiety before routing this information via theta oscillations to appropriate target regions, such as the prefrontal cortex. Moreover, theta and gamma oscillations develop in the amygdala and neocortical areas during the encoding of fear memories, and interregional synchronization reflects the retrieval of both recent and remotely encoded fear memories. Finally, we argue that the thalamic nucleus reuniens represents a key node synchronizing prefrontal-hippocampal theta dynamics for the retrieval of episodic extinction memories in the hippocampus.
Collapse
|
6
|
Treatment effects on event-related EEG potentials and oscillations in Alzheimer's disease. Int J Psychophysiol 2022; 177:179-201. [PMID: 35588964 DOI: 10.1016/j.ijpsycho.2022.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease dementia (ADD) is the most diffuse neurodegenerative disorder belonging to mild cognitive impairment (MCI) and dementia in old persons. This disease is provoked by an abnormal accumulation of amyloid-beta and tauopathy proteins in the brain. Very recently, the first disease-modifying drug has been licensed with reserve (i.e., Aducanumab). Therefore, there is a need to identify and use biomarkers probing the neurophysiological underpinnings of human cognitive functions to test the clinical efficacy of that drug. In this regard, event-related electroencephalographic potentials (ERPs) and oscillations (EROs) are promising candidates. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association and Global Brain Consortium reviewed the field literature on the effects of the most used symptomatic drug against ADD (i.e., Acetylcholinesterase inhibitors) on ERPs and EROs in ADD patients with MCI and dementia at the group level. The most convincing results were found in ADD patients. In those patients, Acetylcholinesterase inhibitors partially normalized ERP P300 peak latency and amplitude in oddball paradigms using visual stimuli. In these same paradigms, those drugs partially normalize ERO phase-locking at the theta band (4-7 Hz) and spectral coherence between electrode pairs at the gamma (around 40 Hz) band. These results are of great interest and may motivate multicentric, double-blind, randomized, and placebo-controlled clinical trials in MCI and ADD patients for final cross-validation.
Collapse
|
7
|
Pfeiffer BE. Spatial Learning Drives Rapid Goal Representation in Hippocampal Ripples without Place Field Accumulation or Goal-Oriented Theta Sequences. J Neurosci 2022; 42:3975-3988. [PMID: 35396328 PMCID: PMC9097771 DOI: 10.1523/jneurosci.2479-21.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/05/2023] Open
Abstract
The hippocampus is critical for rapid acquisition of many forms of memory, although the circuit-level mechanisms through which the hippocampus rapidly consolidates novel information are unknown. Here, the activity of large ensembles of hippocampal neurons in adult male Long-Evans rats was monitored across a period of rapid spatial learning to assess how the network changes during the initial phases of memory formation and retrieval. In contrast to several reports, the hippocampal network did not display enhanced representation of the goal location via accumulation of place fields or elevated firing rates at the goal. Rather, population activity rates increased globally as a function of experience. These alterations in activity were mirrored in the power of the theta oscillation and in the quality of theta sequences, without preferential encoding of paths to the learned goal location. In contrast, during brief "offline" pauses in movement, representation of a novel goal location emerged rapidly in ripples, preceding other changes in network activity. These data demonstrate that the hippocampal network can facilitate active navigation without enhanced goal representation during periods of active movement, and further indicate that goal representation in hippocampal ripples before movement onset supports subsequent navigation, possibly through activation of downstream cortical networks.SIGNIFICANCE STATEMENT Understanding the mechanisms through which the networks of the brain rapidly assimilate information and use previously learned knowledge are fundamental areas of focus in neuroscience. In particular, the hippocampal circuit is a critical region for rapid formation and use of spatial memory. In this study, several circuit-level features of hippocampal function were quantified while rats performed a spatial navigation task requiring rapid memory formation and use. During periods of active navigation, a general increase in overall network activity is observed during memory acquisition, which plateaus during memory retrieval periods, without specific enhanced representation of the goal location. During pauses in navigation, rapid representation of the distant goal well emerges before either behavioral improvement or changes in online activity.
Collapse
Affiliation(s)
- Brad E Pfeiffer
- Neuroscience Graduate Program, Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
8
|
Mysin I, Shubina L. From mechanisms to functions: The role of theta and gamma coherence in the intrahippocampal circuits. Hippocampus 2022; 32:342-358. [PMID: 35192228 DOI: 10.1002/hipo.23410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 11/08/2022]
Abstract
Brain rhythms are essential for information processing in neuronal networks. Oscillations recorded in different brain regions can be synchronized and have a constant phase difference, that is, they can be coherent. Coherence between local field potential (LFP) signals from different brain regions may be correlated with the performance of cognitive tasks, indicating that these regions of the brain are jointly involved in the information processing. Why does coherence occur and how is it related to the information transfer between different regions of the hippocampal formation? In this article, we discuss possible mechanisms of theta and gamma coherence and its role in the hippocampus-dependent attention and memory processes, since theta and gamma rhythms are most pronounced in these processes. We review in vivo studies of interactions between different regions of the hippocampal formation in theta and gamma frequency bands. The key propositions of the review are as follows: (1) coherence emerges from synchronous postsynaptic currents in principal neurons as a result of synchronization of neuronal spike activity; (2) the synchronization of neuronal spike patterns in two regions of the hippocampal formation can be realized through induction or resonance; (3) coherence at a specific time point reflects the transfer of information between the regions of the hippocampal formation; (4) the physiological roles of theta and gamma coherence are different due to their different functions and mechanisms of generation. All hippocampal neurons are involved in theta activity, and theta coherence arranges the firing order of principal neurons throughout the hippocampal formation. In contrast, gamma coherence reflects the coupling of active neuronal ensembles. Overall, the coherence of LFPs between different areas of the brain is an important physiological process based on the synchronized neuronal firing, and it is essential for cooperative information processing.
Collapse
Affiliation(s)
- Ivan Mysin
- Laboratory of Systemic Organization of Neurons, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Liubov Shubina
- Laboratory of Systemic Organization of Neurons, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
9
|
Deep brain electrophysiology in freely moving sheep. Curr Biol 2022; 32:763-774.e4. [PMID: 35030329 DOI: 10.1016/j.cub.2021.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Although rodents are arguably the easiest animals to use for studying brain function, relying on them as model species for translational research comes with its own set of limitations. Here, we propose sheep as a practical large animal species to use for in vivo brain function studies performed in naturalistic settings. We conducted proof-of-principle deep brain electrophysiological recording experiments using unrestrained sheep during behavioral testing. Recordings were made from cortex and hippocampus, both while sheep performed goal-directed behaviors (two-choice discrimination tasks) and across states of vigilance, including sleep. Hippocampal and cortical oscillatory rhythms were consistent with those seen in rodents and non-human primates, and included cortical alpha oscillations and hippocampal sharp wave ripple oscillations (∼150 Hz) during immobility and hippocampal theta oscillations (5-6 Hz) during locomotion. Recordings were conducted over a period of many months during which time the animals participated willingly in the experiments. Over 3,000 putative neurons were identified, including examples whose activity was modulated by task, speed of locomotion, spatial position, reward and vigilance states, and one whose firing rate was potentially modulated by the sight of the investigator. Together, these experiments demonstrate that sheep are excellent experimental animals to use for longitudinal studies requiring a large-brained mammal and/or large-scale recordings across distributed neuronal networks. Sheep could be used safely for studying not only neural encoding of decision-making and spatial-mapping in naturalistic environments outside the confines of the traditional laboratory but also the neural basis of both intra- and inter-species social interactions.
Collapse
|
10
|
Reset of hippocampal-prefrontal circuitry facilitates learning. Nature 2021; 591:615-619. [PMID: 33627872 PMCID: PMC7990705 DOI: 10.1038/s41586-021-03272-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The ability to rapidly adapt to novel situations is essential for survival, and this flexibility is impaired in many neuropsychiatric disorders1. Thus, understanding whether and how novelty prepares, or primes, brain circuitry to facilitate cognitive flexibility has important translational relevance. Exposure to novelty recruits the hippocampus and medial prefrontal cortex (mPFC)2 and may prime hippocampal-prefrontal circuitry for subsequent learning-associated plasticity. Here we show that novelty resets the neural circuits that link the ventral hippocampus (vHPC) and the mPFC, facilitating the ability to overcome an established strategy. Exposing mice to novelty disrupted a previously encoded strategy by reorganizing vHPC activity to local theta (4-12 Hz) oscillations and weakening existing vHPC-mPFC connectivity. As mice subsequently adapted to a new task, vHPC neurons developed new task-associated activity, vHPC-mPFC connectivity was strengthened, and mPFC neurons updated to encode the new rules. Without novelty, however, mice adhered to their established strategy. Blocking dopamine D1 receptors (D1Rs) or inhibiting novelty-tagged cells that express D1Rs in the vHPC prevented these behavioural and physiological effects of novelty. Furthermore, activation of D1Rs mimicked the effects of novelty. These results suggest that novelty promotes adaptive learning by D1R-mediated resetting of vHPC-mPFC circuitry, thereby enabling subsequent learning-associated circuit plasticity.
Collapse
|
11
|
Young CK, Ruan M, McNaughton N. Speed modulation of hippocampal theta frequency and amplitude predicts water maze learning. Hippocampus 2020; 31:201-212. [PMID: 33171002 DOI: 10.1002/hipo.23281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Theta oscillations in the hippocampus have many behavioral correlates, with the magnitude and vigor of ongoing movement being the most salient. Many consider correlates of locomotion with hippocampal theta to be a confound in delineating theta contributions to cognitive processes. Theory and empirical experiments suggest theta-movement relationships are important if spatial navigation is to support higher cognitive processes. In the current study, we tested if variations in speed modulation of hippocampal theta can predict spatial learning rates in the water maze. Using multi-step regression, we find that the magnitude and robustness of hippocampal theta frequency versus speed scaling can predict water maze learning rates. Using a generalized linear model, we also demonstrate that speed and water maze learning are the best predictors of hippocampal theta frequency and amplitude. Our findings suggest movement-speed correlations with hippocampal theta frequency may be actively used in spatial learning.
Collapse
Affiliation(s)
- Calvin K Young
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Ming Ruan
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Zhuhai Municipal Women's and Children's Hospital, Zhuhai, China
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Goyal A, Miller J, Qasim SE, Watrous AJ, Zhang H, Stein JM, Inman CS, Gross RE, Willie JT, Lega B, Lin JJ, Sharan A, Wu C, Sperling MR, Sheth SA, McKhann GM, Smith EH, Schevon C, Jacobs J. Functionally distinct high and low theta oscillations in the human hippocampus. Nat Commun 2020; 11:2469. [PMID: 32424312 PMCID: PMC7235253 DOI: 10.1038/s41467-020-15670-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/23/2020] [Indexed: 11/08/2022] Open
Abstract
Based on rodent models, researchers have theorized that the hippocampus supports episodic memory and navigation via the theta oscillation, a ~4-10 Hz rhythm that coordinates brain-wide neural activity. However, recordings from humans have indicated that hippocampal theta oscillations are lower in frequency and less prevalent than in rodents, suggesting interspecies differences in theta's function. To characterize human hippocampal theta, we examine the properties of theta oscillations throughout the anterior-posterior length of the hippocampus as neurosurgical subjects performed a virtual spatial navigation task. During virtual movement, we observe hippocampal oscillations at multiple frequencies from 2 to 14 Hz. The posterior hippocampus prominently displays oscillations at ~8-Hz and the precise frequency of these oscillations correlates with the speed of movement, implicating these signals in spatial navigation. We also observe slower ~3 Hz oscillations, but these signals are more prevalent in the anterior hippocampus and their frequency does not vary with movement speed. Our results converge with recent findings to suggest an updated view of human hippocampal electrophysiology. Rather than one hippocampal theta oscillation with a single general role, high- and low-frequency theta oscillations, respectively, may reflect spatial and non-spatial cognitive processes.
Collapse
Affiliation(s)
- Abhinav Goyal
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jonathan Miller
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Salman E Qasim
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | | | - Honghui Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cory S Inman
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | - Jon T Willie
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | - Bradley Lega
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Jui-Jui Lin
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Ashwini Sharan
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, 9107, USA
- Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, 9107, USA
| | - Michael R Sperling
- Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guy M McKhann
- Department of Neurosurgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Catherine Schevon
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
13
|
Kaplan R, Tauste Campo A, Bush D, King J, Principe A, Koster R, Ley Nacher M, Rocamora R, Friston KJ. Human hippocampal theta oscillations reflect sequential dependencies during spatial planning. Cogn Neurosci 2019; 11:122-131. [DOI: 10.1080/17588928.2019.1676711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Raphael Kaplan
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, UK
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Adrià Tauste Campo
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Epilepsy Unit, Department of Neurology, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Daniel Bush
- UCL Institute of Cognitive Neuroscience, University College London, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John King
- UCL Institute of Cognitive Neuroscience, University College London, London, UK
- Clinical, Education and Health Psychology, University College London, London, UK
| | - Alessandro Principe
- Epilepsy Unit, Department of Neurology, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Raphael Koster
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, UK
- UCL Institute of Cognitive Neuroscience, University College London, London, UK
| | - Miguel Ley Nacher
- Epilepsy Unit, Department of Neurology, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rodrigo Rocamora
- Epilepsy Unit, Department of Neurology, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Karl J. Friston
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
14
|
Lee SL(T, Lew D, Wickenheisser V, Markus EJ. Interdependence between dorsal and ventral hippocampus during spatial navigation. Brain Behav 2019; 9:e01410. [PMID: 31571397 PMCID: PMC6790314 DOI: 10.1002/brb3.1410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The hippocampus is linked to the formation and retrieval of episodic memories and spatial navigation. In rats, it is an elongated structure divided into dorsal (septal) and ventral (temporal) regions paralleling the respective division in the posterior and anterior hippocampus in humans. The dorsal hippocampus has been suggested to be more important for spatial processing and the ventral to processing anxiety-based behaviors. Far less is known regarding the degree to which these different regions interact during information processing. The anatomical connectivity suggests a flow of information between the dorsal and ventral regions; conversely, there are also commissural connections to the contralateral hippocampus. The current study examined the extent to which information from the dorsal hippocampus interacts with processing in the ipsilateral and contralateral ventral hippocampus following the acquisition of a spatial task. METHODS Rats were well-trained on a spatial reference version of the water maze, followed by muscimol inactivation of different hippocampal subregions in a within-animal repeated design. Various combinations of bilateral, ipsilateral, and contralateral infusions were used. RESULTS Combined dorsal and ventral inactivation produced a severe impairment in spatial performance. Inactivation of only the dorsal or ventral regions resulted in intermediate impairment with performance levels falling between controls and combined inactivation. Performance was impaired during contralateral inactivation and was almost equivalent to bilateral dorsal and ventral hippocampus inactivation, while ipsilateral inactivation resulted in little impairment. CONCLUSIONS Taken together, results indicate that for spatial processing, the hippocampus functions as a single integrated structure along the longitudinal axis.
Collapse
Affiliation(s)
- Shang Lin (Tommy) Lee
- Behavioral Neuroscience DivisionDepartment of Psychological SciencesUniversity of ConnecticutStorrsCTUSA
| | - Dana Lew
- Behavioral Neuroscience DivisionDepartment of Psychological SciencesUniversity of ConnecticutStorrsCTUSA
| | - Victoria Wickenheisser
- Behavioral Neuroscience DivisionDepartment of Psychological SciencesUniversity of ConnecticutStorrsCTUSA
| | - Etan J. Markus
- Behavioral Neuroscience DivisionDepartment of Psychological SciencesUniversity of ConnecticutStorrsCTUSA
| |
Collapse
|
15
|
Walters CJ, Jubran J, Sheehan A, Erickson MT, Redish AD. Avoid-approach conflict behaviors differentially affected by anxiolytics: implications for a computational model of risky decision-making. Psychopharmacology (Berl) 2019; 236:2513-2525. [PMID: 30863879 PMCID: PMC6697581 DOI: 10.1007/s00213-019-05197-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/13/2019] [Indexed: 01/14/2023]
Abstract
Whether fear or anxiety is expressed is thought to depend on an animal's proximity to threat. In general, fear is elicited when threat is proximal, while anxiety is a response to threat that is distal and uncertain. This threat gradient model suggests that fear and anxiety involve non-overlapping neural circuitry, yet few behavioral paradigms exist that elicit both states. We studied avoid-approach conflict in rats that were behaving in a predator-inhabited foraging arena task that involved tangible threat and reward incentives. In the task, rats exhibited a variety of both fearful and anxious behaviors corresponding to proximal and distal threat, respectively. We then administered ethanol or diazepam to the rats in order to study how anxiolytics affected these fear and anxiety behaviors. We discovered that both ethanol and diazepam attenuated proximal-threat fear-like behaviors. Furthermore, we found that diazepam, but not ethanol, increased distal-threat anxiety-like behavior but also made rats less risk-averse. Finally, we describe how decisional conflict can be modeled as a partially observable Markov decision process and characterize a potential relationship between anxious behavior, diazepam's ability to suppress hippocampal theta oscillations, and hippocampal representations of the future.
Collapse
Affiliation(s)
- Cody J Walters
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Ayaka Sheehan
- University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
16
|
Winne J, Franzon R, de Miranda A, Malfatti T, Patriota J, Mikulovic S, Leão KE, Leão RN. Salicylate induces anxiety-like behavior and slow theta oscillation and abolishes the relationship between running speed and fast theta oscillation frequency. Hippocampus 2018; 29:15-25. [PMID: 30152905 DOI: 10.1002/hipo.23021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/27/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023]
Abstract
Salicylate intoxication is a cause of tinnitus in humans and it is often used to produce tinnitus-like perception in animal models. Here, we assess whether salicylate induces anxiety-like electrophysiological and behavioral signs. Using microwire electrode arrays, we recorded local field potential in the ventral and, in some experiments dorsal hippocampus, in an open field arena 1 hr after salicylate (300 mg/kg) injection. We found that animals treated with salicylate moved dramatically less than saline treated animals. Salicylate-treated animals showed a strong 4-6 Hz (type 2) oscillation in the ventral hippocampus (with smaller peaks in dorsal hippocampus electrodes). Coherence in the 4-6 Hz-theta band was low in the ventral and dorsal hippocampus when compared to movement-related theta coherence (7-10 Hz). Moreover, movement related theta oscillation frequency decreased and its dependency on running speed was abolished. Our results suggest that salicylate-induced theta is mostly restricted to the ventral hippocampus. Slow theta has been classically associated to anxiety-like behaviors. Here, we show that salicylate application can consistently generate low frequency theta in the ventral hippocampus. Tinnitus and anxiety show strong comorbidity and the increase in ventral hippocampus low frequency theta could be part of this association.
Collapse
Affiliation(s)
- Jessica Winne
- Neurodynamics Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Rafael Franzon
- Neurodynamics Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Aron de Miranda
- Neurodynamics Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Thawann Malfatti
- Neurodynamics Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João Patriota
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Sanja Mikulovic
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Katarina E Leão
- Neurodynamics Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Richardson N Leão
- Neurodynamics Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.,Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Cardoso-Cruz H, Dourado M, Monteiro C, Galhardo V. Blockade of dopamine D2 receptors disrupts intrahippocampal connectivity and enhances pain-related working memory deficits in neuropathic pain rats. Eur J Pain 2018; 22:1002-1015. [PMID: 29377353 DOI: 10.1002/ejp.1186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2017] [Indexed: 11/09/2022]
Abstract
BACKGROUND Dopamine (DA) is thought to be important to local hippocampal networks integrity during spatial working memory (sWM) processing. Chronic pain may contribute to deficient dopaminergic signalling, which may in turn affect cognition. However, the neural mechanisms that determine this impairment are poorly understood. Here, we evaluated whether the sWM impairment characteristic of animal models of chronic pain is dependent on DA D2 receptor (D2r) activity. METHODS To address this issue, we implanted multichannel arrays of electrodes in the dorsal and ventral hippocampal CA1 field (dvCA1) of rats and recorded the neuronal activity during a classical delayed food-reinforced T-maze sWM task. Within-subject behavioural performance and patterns of dorsoventral neural activity were assessed before and after the onset of persistent neuropathic pain using the spared nerve injury (SNI) model. RESULTS Our results show that the peripheral nerve lesion caused a disruption in sWM and hippocampus spike activity and that disruption was maximized by the systemic administration of the D2r antagonist raclopride. These deficits are strictly correlated with a selective disruption of hippocampal theta-oscillations. Particularly, we found a significant decrease in intrahippocampal CA1 field connectivity level. CONCLUSIONS Together, these results suggest that disruption of the dopaminergic balance in the intrahippocampal networks may be important for the development of cognitive deficits experienced during painful conditions. SIGNIFICANCE This study provides new insights into the role of D2r in the manifestation of pain-related sWM deficits. Our findings support that selective blockade of D2r produces a significant decrease in intrahippocampal connectivity mediated by theta-oscillations, and amplifies pain-related sWM deficits. These results suggest that further characterization of intrahippocampal dopaminergic modulation may be clinically relevant for the understanding of cognitive impairments that accompanies nociceptive stressful conditions.
Collapse
Affiliation(s)
- H Cardoso-Cruz
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal
| | - M Dourado
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal.,PDN - Programa Doutoral em Neurociências, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - C Monteiro
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal
| | - V Galhardo
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal
| |
Collapse
|
18
|
Jacinto LR, Cerqueira JJ, Sousa N. Patterns of Theta Activity in Limbic Anxiety Circuit Preceding Exploratory Behavior in Approach-Avoidance Conflict. Front Behav Neurosci 2016; 10:171. [PMID: 27713693 PMCID: PMC5031779 DOI: 10.3389/fnbeh.2016.00171] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
Theta oscillations within the hippocampus-amygdala-medial prefrontal cortex (HPC-AMY-mPFC) circuit have been consistently implicated in the regulation of anxiety behaviors, including risk-assessment. To study if theta activity during risk-assessment was correlated with exploratory behavior in an approach/avoidance paradigm we recorded simultaneous local field potentials from this circuit in rats exploring the elevated-plus maze (EPM). Opposing patterns of power variations in the ventral hippocampus (vHPC), basolateral amygdala (BLA), and prelimbic (PrL) mPFC, but not in the dorsal hippocampus (dHPC), during exploratory risk-assessment of the open arms preceded further exploration of the open arms or retreat back to the safer closed arms. The same patterns of theta power variations in the HPC-BLA-mPFC(PrL) circuit were also displayed by animals submitted to chronic unpredictable stress protocol known to induce an anxious state. Diverging patterns of vHPC-mPFC(PrL) theta coherence were also significantly correlated with forthcoming approach or avoidance behavior in the conflict situation in both controls and stressed animals; interestingly, vHPC-BLA, and BLA-mPFC(PrL) theta coherence correlated with future behavior only in stressed animals, underlying the pivotal role of the amygdala on the stress response.
Collapse
Affiliation(s)
- Luis R Jacinto
- Life and Health Sciences Research Institute, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| | - João J Cerqueira
- Life and Health Sciences Research Institute, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| |
Collapse
|
19
|
Hernández-Pérez JJ, Gutiérrez-Guzmán BE, Olvera-Cortés ME. Hippocampal strata theta oscillations change their frequency and coupling during spatial learning. Neuroscience 2016; 337:224-241. [PMID: 27615031 DOI: 10.1016/j.neuroscience.2016.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 11/18/2022]
Abstract
The theta rhythm is necessary for hippocampal-dependent spatial learning. It has been proposed that each hippocampal stratum can generate a current theta dipole. Therefore, considering that each hippocampal circuit (CA1, CA3, and Dentate Gyrus (DG)) contributes differently to distinct aspects of a spatial memory, the theta oscillations on each stratum and their couplings may exhibit oscillatory dynamics associated with different stages of learning. To test this hypothesis, the theta oscillations from five hippocampal strata were recorded in the rat during different stages of learning in a Morris maze. The peak power, the relative power (RP) and the coherence between hippocampal strata were analyzed. The early acquisition stage of the Morris task was characterized by the predominance of slow frequency theta activity and high coupling between specific hippocampal strata at slow frequencies. However, on the last training day, the theta oscillations were faster in all hippocampal strata, with tighter coupling at fast frequencies between the CA3 pyramidal stratum and other strata. Our results suggest that modifications to the theta frequency and its coupling can be a means by which the hippocampus differentially operates during acquisition and retrieval states.
Collapse
Affiliation(s)
- J Jesús Hernández-Pérez
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico; Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| | - Blanca E Gutiérrez-Guzmán
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico; Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - María E Olvera-Cortés
- Laboratorio de Neurofisiología Experimental, División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| |
Collapse
|
20
|
The transient decline in hippocampal theta power during response inhibition in a positive patterning task. Neuroreport 2016; 26:833-7. [PMID: 26302159 DOI: 10.1097/wnr.0000000000000432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is believed that a transient decline in hippocampal theta power is induced by behavioral inhibition during a go/no-go stimulus discrimination task. In a previously reported positive patterning (PP) task, rats learn to lever press when a compound stimulus, both tone and light, is presented and inhibit their lever press when a single stimulus, tone or light, is presented. In this task, rats were required to inhibit their response to the single stimulus in a task where both compound and single stimuli were presented with an overlapping element. Thus, we hypothesized that there would be a transient decline in hippocampal theta power induced by behavioral inhibition to the presence of a single stimuli in the PP task. The result of this study showed that a decline in hippocampal theta power occurred during response inhibition to the presence of a single tone stimulus in the PP task, supporting our hypothesis. However, we did not observe any decline in hippocampal theta power during response inhibition to the presence of a single light stimulus. We found that the error response rate for the tone stimulus was slightly lower than that for light stimulus in the PP task. Thus, we proposed that the decline in hippocampal theta power related to more accurate response inhibition to the stimulus that had an overlapping element.
Collapse
|
21
|
Anderson KL, Frazier HN, Maimaiti S, Bakshi VV, Majeed ZR, Brewer LD, Porter NM, Lin AL, Thibault O. Impact of Single or Repeated Dose Intranasal Zinc-free Insulin in Young and Aged F344 Rats on Cognition, Signaling, and Brain Metabolism. J Gerontol A Biol Sci Med Sci 2016; 72:189-197. [PMID: 27069097 DOI: 10.1093/gerona/glw065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/19/2016] [Indexed: 01/13/2023] Open
Abstract
Novel therapies have turned to delivering compounds to the brain using nasal sprays, bypassing the blood brain barrier, and enriching treatment options for brain aging and/or Alzheimer's disease. We conducted a series of in vivo experiments to test the impact of intranasal Apidra, a zinc-free insulin formulation, on the brain of young and aged F344 rats. Both single acute and repeated daily doses were compared to test the hypothesis that insulin could improve memory recall in aged memory-deficient animals. We quantified insulin signaling in different brain regions and at different times following delivery. We measured cerebral blood flow (CBF) using MRI and also characterized several brain metabolite levels using MR spectroscopy. We show that neither acute nor chronic Apidra improved memory or recall in young or aged animals. Within 2 hours of a single dose, increased insulin signaling was seen in ventral areas of the aged brains only. Although chronic Apidra was able to offset reduced CBF with aging, it also caused significant reductions in markers of neuronal integrity. Our data suggest that this zinc-free insulin formulation may actually hasten cognitive decline with age when used chronically.
Collapse
Affiliation(s)
| | | | | | | | - Zana R Majeed
- The School of Biology, University of Kentucky, Lexington
| | | | | | | | | |
Collapse
|
22
|
Sosa M, Gillespie AK, Frank LM. Neural Activity Patterns Underlying Spatial Coding in the Hippocampus. Curr Top Behav Neurosci 2016; 37:43-100. [PMID: 27885550 DOI: 10.1007/7854_2016_462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hippocampus is well known as a central site for memory processing-critical for storing and later retrieving the experiences events of daily life so they can be used to shape future behavior. Much of what we know about the physiology underlying hippocampal function comes from spatial navigation studies in rodents, which have allowed great strides in understanding how the hippocampus represents experience at the cellular level. However, it remains a challenge to reconcile our knowledge of spatial encoding in the hippocampus with its demonstrated role in memory-dependent tasks in both humans and other animals. Moreover, our understanding of how networks of neurons coordinate their activity within and across hippocampal subregions to enable the encoding, consolidation, and retrieval of memories is incomplete. In this chapter, we explore how information may be represented at the cellular level and processed via coordinated patterns of activity throughout the subregions of the hippocampal network.
Collapse
Affiliation(s)
- Marielena Sosa
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, USA
| | | | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, USA. .,Howard Hughes Medical Institute, Maryland, USA.
| |
Collapse
|
23
|
Numan R. A Prefrontal-Hippocampal Comparator for Goal-Directed Behavior: The Intentional Self and Episodic Memory. Front Behav Neurosci 2015; 9:323. [PMID: 26635567 PMCID: PMC4658443 DOI: 10.3389/fnbeh.2015.00323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/11/2015] [Indexed: 01/02/2023] Open
Abstract
The hypothesis of this article is that the interactions between the prefrontal cortex and the hippocampus play a critical role in the modulation of goal-directed self-action and the strengthening of episodic memories. We describe various theories that model a comparator function for the hippocampus, and then elaborate the empirical evidence that supports these theories. One theory which describes a prefrontal-hippocampal comparator for voluntary action is emphasized. Action plans are essential for successful goal-directed behavior, and are elaborated by the prefrontal cortex. When an action plan is initiated, the prefrontal cortex transmits an efference copy (or corollary discharge) to the hippocampus where it is stored as a working memory for the action plan (which includes the expected outcomes of the action plan). The hippocampus then serves as a response intention-response outcome working memory comparator. Hippocampal comparator function is enabled by the hippocampal theta rhythm allowing the hippocampus to compare expected action outcomes to actual action outcomes. If the expected and actual outcomes match, the hippocampus transmits a signal to prefrontal cortex which strengthens or consolidates the action plan. If a mismatch occurs, the hippocampus transmits an error signal to the prefrontal cortex which facilitates a reformulation of the action plan, fostering behavioral flexibility and memory updating. The corollary discharge provides the self-referential component to the episodic memory, affording the personal and subjective experience of what behavior was carried out, when it was carried out, and in what context (where) it occurred. Such a perspective can be applied to episodic memory in humans, and episodic-like memory in non-human animal species.
Collapse
Affiliation(s)
- Robert Numan
- Psychology Department, Santa Clara University Santa Clara, CA, USA
| |
Collapse
|
24
|
Fareri DS, Gabard-Durnam L, Goff B, Flannery J, Gee DG, Lumian DS, Caldera C, Tottenham N. Normative development of ventral striatal resting state connectivity in humans. Neuroimage 2015; 118:422-37. [PMID: 26087377 DOI: 10.1016/j.neuroimage.2015.06.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 05/14/2015] [Accepted: 06/05/2015] [Indexed: 11/24/2022] Open
Abstract
Incentives play a crucial role in guiding behavior throughout our lives, but perhaps no more so than during the early years of life. The ventral striatum is a critical piece of an incentive-based learning circuit, sharing robust anatomical connections with subcortical (e.g., amygdala, hippocampus) and cortical structures (e.g., medial prefrontal cortex (mPFC), insula) that collectively support incentive valuation and learning. Resting-state functional connectivity (rsFC) is a powerful method that provides insight into the development of the functional architecture of these connections involved in incentive-based learning. We employed a seed-based correlation approach to investigate ventral striatal rsFC in a cross-sectional sample of typically developing individuals between the ages of 4.5 and 23-years old (n=66). Ventral striatal rsFC with the mPFC showed regionally specific linear age-related changes in connectivity that were associated with age-related increases in circulating testosterone levels. Further, ventral striatal connectivity with the posterior hippocampus and posterior insula demonstrated quadratic age-related changes characterized by negative connectivity in adolescence. Finally, across this age range, the ventral striatum demonstrated positive coupling with the amygdala beginning during childhood and remaining consistently positive across age. In sum, our findings suggest that normative ventral striatal rsFC development is dynamic and characterized by early establishment of connectivity with medial prefrontal and limbic structures supporting incentive-based learning, as well as substantial functional reorganization with later developing regions during transitions into and out of adolescence.
Collapse
Affiliation(s)
- Dominic S Fareri
- Department of Psychology, Columbia University, New York, NY 10027, USA; Gordon F. Derner Institute of Advanced Psychological Studies, Adelphi University, Garden City, NY 11530, USA.
| | - Laurel Gabard-Durnam
- Department of Psychology, Columbia University, New York, NY 10027, USA; Department of Psychology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Bonnie Goff
- Department of Psychology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Jessica Flannery
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - Dylan G Gee
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Daniel S Lumian
- Department of Psychology, University of Denver, Denver, CO 80208, USA
| | - Christina Caldera
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY 10027, USA; Department of Psychology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Sakimoto Y, Sakata S. Behavioral inhibition during a conflict state elicits a transient decline in hippocampal theta power. Behav Brain Res 2015; 290:70-6. [PMID: 25930218 DOI: 10.1016/j.bbr.2015.03.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 03/22/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
Abstract
Although it has been shown that hippocampal theta power transiently declines during response inhibition in a simultaneous feature negative (FN: A+, AB-) task, observations of additional changes after this initial decline have been inconsistent across subjects. We hypothesized that the cause of these inconsistencies might be that variations in the learning speed for the FN task differentially affect the changes in hippocampal theta activity observed during the task. In this study, we classified rats into three groups (fast, intermediate, and slow FN-learning groups) based on the number of sessions required to complete learning of the FN task. We then examined whether there was a difference in hippocampal theta power among the fast, intermediate, and slow FN-learning groups, and rats that learned a simple discrimination task (SD group). We observed that compared to the SD group, the slow FN-learning group, but not the fast FN-learning group, showed an increase in hippocampal theta power. In addition, a transient decline of hippocampal theta power occurred in the fast FN-learning group, but not in the slow FN-learning group. These results indicate that the hippocampal theta activity during response inhibition in the FN task differed between fast- and slow-learning rats. Thus, we propose that a difference in learning speed affected hippocampal theta activity during response inhibition under a conflict state.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| | - Shogo Sakata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
26
|
Jacobson TK, Schmidt B, Hinman JR, Escabí MA, Markus EJ. Age-related decrease in theta and gamma coherence across dorsal ca1 pyramidale and radiatum layers. Hippocampus 2015; 25:1327-35. [DOI: 10.1002/hipo.22439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Tara K. Jacobson
- Departments of Psychology; University of Connecticut; Storrs Connecticut
| | - Brandy Schmidt
- Departments of Psychology; University of Connecticut; Storrs Connecticut
| | - James R. Hinman
- Departments of Psychology; University of Connecticut; Storrs Connecticut
| | - Monty A. Escabí
- Departments of Psychology; University of Connecticut; Storrs Connecticut
- Departments of Biomedical Engineering; University of Connecticut; Storrs Connecticut
- Departments of Electrical and Computer Engineering; University of Connecticut; Storrs Connecticut
| | - Etan J. Markus
- Departments of Psychology; University of Connecticut; Storrs Connecticut
| |
Collapse
|
27
|
Long LL, Bunce JG, Chrobak JJ. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus. Front Syst Neurosci 2015; 9:37. [PMID: 25852496 PMCID: PMC4360780 DOI: 10.3389/fnsys.2015.00037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/23/2015] [Indexed: 01/03/2023] Open
Abstract
Hippocampal theta has been related to locomotor speed, attention, anxiety, sensorimotor integration and memory among other emergent phenomena. One difficulty in understanding the function of theta is that the hippocampus (HPC) modulates voluntary behavior at the same time that it processes sensory input. Both functions are correlated with characteristic changes in theta indices. The current review highlights a series of studies examining theta local field potential (LFP) signals across the septotemporal or longitudinal axis of the HPC. While the theta signal is coherent throughout the entirety of the HPC, the amplitude, but not the frequency, of theta varies significantly across its three-dimensional expanse. We suggest that the theta signal offers a rich vein of information about how distributed neuronal ensembles support emergent function. Further, we speculate that emergent function across the long axis varies with respect to spatiotemporal scale. Thus, septal HPC processes details of the proximal spatiotemporal environment while more temporal aspects process larger spaces and wider time-scales. The degree to which emergent functions are supported by the synchronization of theta across the septotemporal axis is an open question. Our working model is that theta synchrony serves to bind ensembles representing varying resolutions of spatiotemporal information at interdependent septotemporal areas of the HPC. Such synchrony and cooperative interactions along the septotemporal axis likely support memory formation and subsequent consolidation and retrieval.
Collapse
Affiliation(s)
- Lauren L Long
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut Storrs, CT, USA
| | - Jamie G Bunce
- Neural Systems Lab, Department of Health Sciences, Boston University Boston, MA, USA
| | - James J Chrobak
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
28
|
Differences in paired-pulse inhibition and facilitation in the dentate gyrus and CA3 field between dorsal and ventral rat hippocampus. Brain Res 2015; 1608:21-30. [PMID: 25770056 DOI: 10.1016/j.brainres.2015.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 12/28/2022]
Abstract
We studied the processes of inhibition and facilitation in the dentate gyrus (DG) and the CA3 field by examining the effects of paired-pulse stimulation on the evoked population spike (PS) in dorsal (DH) and ventral (VH) hippocampal slices from the adult rat. The antidromic-orthodromic (A-O) and the orthodromic-orthodromic (O-O) paired-pulse stimulation protocols were used at varying inter-pulse intervals (IPI). In the DG, the A-O stimulation produced an early depression of PS lasting 30-40ms which was significantly stronger in the VH compared with DH. The O-O stimulation produced a biphasic pattern of effects, in both dorsal and ventral DG, consisting of an early depression of PS followed by facilitation at relatively longer intervals. In the DH but not the VH the phase of facilitation was followed by a late depression of PS (>200ms). In the CA3 field both A-O and O-O stimulation had a biphasic effect consisting of an early phase of strong depression of similar strength in DH and VH. The depression was followed by a phase of facilitation which was more pronounced with O-O stimulation. The facilitation observed with the O-O stimulation was much stronger in DH than VH and in DH only it was significantly reduced by the antagonist of GABAB receptors CGP52432. Furthermore, the facilitation was insensitive to changes in [Ca(2+)]o in both hippocampal poles. These findings suggest that the dorsal compared with ventral DG is more amenable to fast-frequency input but filters out slow-frequency inputs more reliably while the gating and amplification of the excitatory input in the CA3 circuitry is more prominent in DH than in VH.
Collapse
|
29
|
Negative versus positive allosteric modulation of metabotropic glutamate receptors (mGluR5): indices for potential pro-cognitive drug properties based on EEG network oscillations and sleep-wake organization in rats. Psychopharmacology (Berl) 2015; 232:1107-22. [PMID: 25323624 DOI: 10.1007/s00213-014-3746-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 09/15/2014] [Indexed: 12/11/2022]
Abstract
RATIONALE Evidence is emerging that positive and negative modulation of the metabotropic glutamate (mGluR5) receptors has the potential for treating cognitive deficits and neuroprotection associated with psychiatric and neurodegenerative diseases, respectively. Sleep and synchronisation of disparate neuronal networks are critically involved in neuronal plasticity, and disturbance in vigilance states and cortical network connectivity contribute significantly to cognitive deficits described in schizophrenia and Alzheimer's disease. Here, we examined the circadian changes of mGluR5 density and the functional response to modulation of mGluR5 signaling. METHODS The current study carried out in Sprague-Dawley rats quantified the density of mGluR5 across the light-dark cycle with autoradiography. The central activity of mGluR5 negative allosteric modulators (2-methyl-6-(phenylethynyl)pyridine (MPEP) and [(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and positive allosteric modulators (S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (ADX47273) and (7S)-3-tert-butyl-7-[3-(4-fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyridine (LSN2814617) was examined on sleep-wake architecture. The functional effect of mGluR5 modulation on cortical networks communication was described in freely moving animals. RESULTS The density of mGluR5 in the striatal, cortical, hippocampal and thalamic structures was unchanged across the light-dark cycle. Allosteric blockade of mGluR5 consistently consolidated deep sleep, enhanced sleep efficiency and elicited prominent functional coherent network activity in slow theta and gamma oscillations. However, allosteric activation of mGluR5 increased waking, decreased deep sleep and reduced functional network connectivity following the activation of slow alpha oscillatory activity. CONCLUSION This functional study differentiates the pharmacology of allosteric blockade of mGluR5 from that of allosteric activation and suggests that mGluR5 blockade enhances sleep and facilitates oscillatory network connectivity, both processes being known to have relevance in cognition processes.
Collapse
|
30
|
Tendler A, Wagner S. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory. eLife 2015; 4. [PMID: 25686218 PMCID: PMC4353977 DOI: 10.7554/elife.03614] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 02/12/2015] [Indexed: 12/25/2022] Open
Abstract
Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7–10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3–7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes. DOI:http://dx.doi.org/10.7554/eLife.03614.001 For the brain to function correctly, the activities of multiple regions must be coordinated. This coordination is thought to be carried out by waves of electrical activity in the brain. One of the most prominent signals within these waves is called the theta rhythm. The theta rhythm is thought to help coordinate neural activity between the regions of the brain that are involved in learning and memory. However, theta rhythms also appear when subjects encounter emotional stimuli, which suggests that they might have a role in social cognition. Consistent with this idea, theta rhythms are reduced in individuals with autism spectrum disorders, but the exact nature of the relationship between theta rhythms and social behavior has remained unclear. Tendler and Wagner have now addressed this question directly by implanting electrodes into five brain regions that are active when rats engage in social interactions. Exposing a rat to a social stimulus, such as an unfamiliar visitor rat, caused the intensity of theta rhythms to increase in this network. This change was temporary, with the theta rhythms gradually returning to normal as the novelty of the visitor wore off. An increase in the intensity of theta rhythms also occurred in the same network when the rats encountered a fearful stimulus, such as a tone that had previously signaled the delivery of a mild electric shock. Notably, however, the fearful stimulus led to an increase in low frequency theta rhythms, whereas the social stimulus led to an increase in high frequency theta rhythms. These results suggest that social and fearful stimuli give rise to two different forms of alertness or arousal, which are reflected by the two types of theta rhythms in this network within the brain. Tendler and Wagner also suggest that the distinct frequencies of theta rhythms might be used to support different forms of communication between various regions of the brain, depending on the emotional value of the stimuli (for example, are they social or fearful stimuli?) encountered by the animal. This means that emotional states might be dictating cognitive processes such as learning and memory. DOI:http://dx.doi.org/10.7554/eLife.03614.002
Collapse
Affiliation(s)
- Alex Tendler
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| |
Collapse
|
31
|
Sakimoto Y, Sakata S. Change in hippocampal theta activity during behavioral inhibition for a stimulus having an overlapping element. Behav Brain Res 2014; 282:111-6. [PMID: 25549854 DOI: 10.1016/j.bbr.2014.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022]
Abstract
It is believed that a decline in hippocampal theta power is induced by response inhibition for a conflict stimulus having an overlapping element. This study used a simultaneous feature positive (simul FP: A-, AX+) task and a serial FP (A-, X→A+) task. In these tasks, the compound and single stimuli have an overlapping element, and rats are required to exhibit response inhibition for the single stimulus A. We examined hippocampal theta activity during simul FP (A-, AX+), serial FP (A-, X→A+), and simple discrimination (SD; A-, X+) tasks and revealed that the transient decrease in hippocampal theta power occurred during response inhibition for the single stimulus A in simul FP tasks, which provides evidence that a transient decline in hippocampal theta power is induced by behavioral inhibition of conflict stimuli having an overlapping element. Thus, we concluded that the transient decline in hippocampal theta power was induced by behavioral inhibition for the conflict stimulus having an overlapping element.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| | - Shogo Sakata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
32
|
Li LB, Zhang L, Sun YN, Han LN, Wu ZH, Zhang QJ, Liu J. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats. Neuropharmacology 2014; 91:23-33. [PMID: 25486618 DOI: 10.1016/j.neuropharm.2014.11.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC.
Collapse
Affiliation(s)
- Li-Bo Li
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi-Na Sun
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ling-Na Han
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhong-Heng Wu
- Department of Rehabilitation Medicine, the Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qiao-Jun Zhang
- Department of Rehabilitation Medicine, the Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
33
|
Ahnaou A, Huysmans H, Jacobs T, Drinkenburg W. Cortical EEG oscillations and network connectivity as efficacy indices for assessing drugs with cognition enhancing potential. Neuropharmacology 2014; 86:362-77. [DOI: 10.1016/j.neuropharm.2014.08.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
34
|
Sakimoto Y, Sakata S. Hippocampal theta activity during behavioral inhibition for conflicting stimuli. Behav Brain Res 2014; 275:183-90. [PMID: 25218872 DOI: 10.1016/j.bbr.2014.08.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 08/26/2014] [Accepted: 08/30/2014] [Indexed: 11/18/2022]
Abstract
A recent behavioral inhibitory theory proposed that the hippocampus plays an important role in response inhibition to conflicting stimuli composed of simple inhibitory associations between events embedded in concurrent simple excitatory associations. In addition, the theory states that a serial feature negative (FN) task is a hippocampal-dependent task requiring the formation of a simple inhibitory association; on the other hand, a simple discrimination (SD) task is a typical hippocampus-independent task. In the present study, we recorded hippocampal theta activity from rats during FN and SD tasks to identify any potential differences. In the FN (A+, B→A-) task used in this study, rats were required to press a lever to present stimulus A (A+) and avoid pressing a lever to present a serial compound stimulus (B→A-). In the simple discrimination task (A+, B-), rats were required to press a lever to present stimulus A (A+) and avoid pressing a lever to present stimulus B (B-). We observed a transient decline of hippocampal theta power during response inhibition for a serial compound stimulus in the FN task. Thus, we conclude that the transient decline in hippocampal theta power reflects response inhibition for a conflicting stimulus. The results of the present study strongly support the behavioral inhibition theory.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| | - Shogo Sakata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
35
|
Siegle JH, Wilson MA. Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus. eLife 2014; 3:e03061. [PMID: 25073927 PMCID: PMC4384761 DOI: 10.7554/elife.03061] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Assessing the behavioral relevance of the hippocampal theta rhythm has proven
difficult, due to a shortage of experiments that selectively manipulate
phase-specific information processing. Using closed-loop stimulation, we triggered
inhibition of dorsal CA1 at specific phases of the endogenous theta rhythm in freely
behaving mice. This intervention enhanced performance on a spatial navigation task
that requires the encoding and retrieval of information related to reward location on
every trial. In agreement with prior models of hippocampal function, the behavioral
effects depended on both the phase of theta and the task segment at which we
stimulated. Stimulation in the encoding segment enhanced performance when inhibition
was triggered by the peak of theta. Conversely, stimulation in the retrieval segment
enhanced performance when inhibition was triggered by the trough of theta. These
results suggest that processes related to the encoding and retrieval of task-relevant
information are preferentially active at distinct phases of theta. DOI:http://dx.doi.org/10.7554/eLife.03061.001 Around 15 years ago, an imaging study compared the brains of London taxi
drivers—who need to know their way around one of the biggest cities in the
world—with those of the general public, and found that a structure called the
hippocampus was routinely larger in the taxi drivers. This finding was consistent
with previous studies from rats, which showed that anatomical changes occur in the
hippocampus after animals learn to navigate through various mazes. Together, these
results suggest that the hippocampus is important for spatial awareness in both
humans and rodents. The hippocampus—which takes its name from the Greek for
‘seahorse’ due to its shape—consists mostly of cells called
pyramidal neurons, which communicate with one other using an excitatory molecule
called glutamate. However, it also contains cells that suppress the activity of the
pyramidal neurons, using an inhibitory molecule called GABA. When electrodes are used
to record the combined electrical activity of many cells in the
hippocampus—including both excitatory and inhibitory cells—the
resulting pattern resembles a wave with peaks and troughs that repeat roughly eight
times per second. Although this activity, known as the theta rhythm or cycle, has
been observed in countless experiments, it has been difficult to pin down how it is
relevant to behavior. Siegle and Wilson now show that the theta cycle may help the brain to keep incoming
information separate from information stored in memory. This conclusion is based on
the results of experiments on mice with hippocampi that had been modified to make
them sensitive to light: in particular, light was needed to activate the neurons that
suppress the activity of the pyramidal neurons. This meant that it was possible to
reduce the overall level of activity in the hippocampus by shining light on certain
neurons. The mice were trained to perform a spatial memory task that consisted of an encoding
stage—where they learned the location of a reward—and a retrieval
stage, in which they recalled this location from memory. On certain trials, pulses of
light could be delivered to the brain at specific points in the theta cycle.
Delivering light near the peak of the cycle during the encoding stage resulted in
improved memory performance, as did delivering light near the trough of the cycle
during the retrieval stage. These results suggest that the hippocampus preferentially encodes and retrieves
information at different stages of the theta cycle. Specifically, activity just after
the peak of the theta cycle is biased towards retrieval, meaning that reducing
hippocampal activity at this time point will make it easier to form new memories. By
contrast, reducing activity just after the trough of the theta cycle—when the
hippocampus is biased towards encoding—will enhance memory retrieval. DOI:http://dx.doi.org/10.7554/eLife.03061.002
Collapse
Affiliation(s)
- Joshua H Siegle
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Matthew A Wilson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
36
|
Long LL, Hinman JR, Chen CMA, Stevenson IH, Read HL, Escabi MA, Chrobak JJ. Novel acoustic stimuli can alter locomotor speed to hippocampal theta relationship. Hippocampus 2014; 24:1053-8. [PMID: 24866396 DOI: 10.1002/hipo.22308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2014] [Indexed: 02/04/2023]
Abstract
Hippocampal theta (6-12 Hz) plays a critical role in synchronizing the discharge of action potentials, ultimately orchestrating individual neurons into large-scale ensembles. Alterations in theta dynamics may reflect variations in sensorimotor integration, the flow of sensory input, and/or cognitive processing. Previously we have investigated septotemporal variation in the locomotor speed to theta amplitude relationship as well as how that relationship is systematically altered as a function of novel, physical space. In the present study, we ask, beyond physical space, whether persistent and passive sound delivery can alter septal theta local field potential rhythm dynamics. Results indicate pronounced alterations in the slope of the speed to theta amplitude relationship as a function of sound presentation and location. Further, this reduction in slope habituates across days. The current findings highlight that moment-to-moment alterations in theta amplitude is a rich dynamic index that is quantitatively related to both alterations in motor behavior and sensory experience. The implications of these phenomena are discussed with respect to emergent cognitive functions subserved by hippocampal circuits.
Collapse
Affiliation(s)
- Lauren L Long
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | | | | | | | | | | | | |
Collapse
|
37
|
Sakimoto Y, Sakata S. Change in hippocampal theta activity with transfer from simple discrimination tasks to a simultaneous feature-negative task. Front Behav Neurosci 2014; 8:159. [PMID: 24917797 PMCID: PMC4042157 DOI: 10.3389/fnbeh.2014.00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/16/2014] [Indexed: 11/17/2022] Open
Abstract
It was showed that solving a simple discrimination task (A+, B−) and a simultaneous feature-negative (FN) task (A+, AB−) used the hippocampal-independent strategy. Recently, we showed that the number of sessions required for a rat to completely learn a task differed between the FN and simple discrimination tasks, and there was a difference in hippocampal theta activity between these tasks. These results suggested that solving the FN task relied on a different strategy than the simple discrimination task. In this study, we provided supportive evidence that solving the FN and simple discrimination tasks involved different strategies by examining changes in performance and hippocampal theta activity in the FN task after transfer from the simple discrimination task (A+, B− → A+, AB−). The results of this study showed that performance on the FN task was impaired and there was a difference in hippocampal theta activity between the simple discrimination task and FN task. Thus, we concluded that solving the FN task uses a different strategy than the simple discrimination task.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Department of Systems Neuroscience, Graduate School of Medicine, Yamaguchi University Yamaguchi, Japan
| | - Shogo Sakata
- Department of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University Hiroshima, Japan
| |
Collapse
|
38
|
Theta dynamics in rat: speed and acceleration across the Septotemporal axis. PLoS One 2014; 9:e97987. [PMID: 24842406 PMCID: PMC4026415 DOI: 10.1371/journal.pone.0097987] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 04/28/2014] [Indexed: 11/25/2022] Open
Abstract
Theta (6–12 Hz) rhythmicity in the local field potential (LFP) reflects a clocking mechanism that brings physically isolated neurons together in time, allowing for the integration and segregation of distributed cell assemblies. Variation in the theta signal has been linked to locomotor speed, sensorimotor integration as well as cognitive processing. Previously, we have characterized the relationship between locomotor speed and theta power and how that relationship varies across the septotemporal (long) axis of the hippocampus (HPC). The current study investigated the relationship between whole body acceleration, deceleration and theta indices at CA1 and dentate gyrus (DG) sites along the septotemporal axis of the HPC in rats. Results indicate that whole body acceleration and deceleration predicts a significant amount of variability in the theta signal beyond variation in locomotor speed. Furthermore, deceleration was more predictive of variation in theta amplitude as compared to acceleration as rats traversed a linear track. Such findings highlight key variables that systematically predict the variability in the theta signal across the long axis of the HPC. A better understanding of the relative contribution of these quantifiable variables and their variation as a function of experience and environmental conditions should facilitate our understanding of the relationship between theta and sensorimotor/cognitive functions.
Collapse
|
39
|
Cardoso-Cruz H, Dourado M, Monteiro C, Matos MR, Galhardo V. Activation of dopaminergic D2/D3 receptors modulates dorsoventral connectivity in the hippocampus and reverses the impairment of working memory after nerve injury. J Neurosci 2014; 34:5861-73. [PMID: 24760846 PMCID: PMC6608290 DOI: 10.1523/jneurosci.0021-14.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 11/21/2022] Open
Abstract
Dopamine plays an important role in several forms of synaptic plasticity in the hippocampus, a crucial brain structure for working memory (WM) functioning. In this study, we evaluated whether the working-memory impairment characteristic of animal models of chronic pain is dependent on hippocampal dopaminergic signaling. To address this issue, we implanted multichannel arrays of electrodes in the dorsal and ventral hippocampal CA1 region of rats and recorded the neuronal activity during a food-reinforced spatial WM task of trajectory alternation. Within-subject behavioral performance and patterns of dorsoventral neuronal activity were assessed before and after the onset of persistent neuropathic pain using the Spared Nerve Injury (SNI) model of neuropathic pain. Our results show that the peripheral nerve lesion caused a disruption in WM and in hippocampus spike activity and that this disruption was reversed by the systemic administration of the dopamine D2/D3 receptor agonist quinpirole (0.05 mg/kg). In SNI animals, the administration of quinpirole restored both the performance-related and the task-related spike activity to the normal range characteristic of naive animals, whereas quinpirole in sham animals caused the opposite effect. Quinpirole also reversed the abnormally low levels of hippocampus dorsoventral connectivity and phase coherence. Together with our finding of changes in gene expression of dopamine receptors and modulators after the onset of the nerve injury model, these results suggest that disruption of the dopaminergic balance in the hippocampus may be crucial for the clinical neurological and cognitive deficits observed in patients with painful syndromes.
Collapse
Affiliation(s)
- Helder Cardoso-Cruz
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Grupo de Morfofisiologia do Sistema Somatosensitivo, Universidade do Porto, 4150-180 Porto, Portugal, and
| | - Margarida Dourado
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Grupo de Morfofisiologia do Sistema Somatosensitivo, Universidade do Porto, 4150-180 Porto, Portugal, and
- Programa Doutoral em Neurociências, Faculdade de Medicina, Universidade do Porto. 4200-319 Porto, Portugal
| | - Clara Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Grupo de Morfofisiologia do Sistema Somatosensitivo, Universidade do Porto, 4150-180 Porto, Portugal, and
| | - Mariana R. Matos
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Grupo de Morfofisiologia do Sistema Somatosensitivo, Universidade do Porto, 4150-180 Porto, Portugal, and
| | - Vasco Galhardo
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Grupo de Morfofisiologia do Sistema Somatosensitivo, Universidade do Porto, 4150-180 Porto, Portugal, and
| |
Collapse
|
40
|
Belchior H, Lopes-Dos-Santos V, Tort ABL, Ribeiro S. Increase in hippocampal theta oscillations during spatial decision making. Hippocampus 2014; 24:693-702. [PMID: 24520011 PMCID: PMC4229028 DOI: 10.1002/hipo.22260] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 01/01/2023]
Abstract
The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5-12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making.
Collapse
Affiliation(s)
- Hindiael Belchior
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Psychobiology Graduate Program, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | | |
Collapse
|
41
|
Babayan AH, Kramár EA. Rapid effects of oestrogen on synaptic plasticity: interactions with actin and its signalling proteins. J Neuroendocrinol 2013; 25:1163-72. [PMID: 24112361 PMCID: PMC3989941 DOI: 10.1111/jne.12108] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 01/02/2023]
Abstract
Oestrogen rapidly enhances fast excitatory postsynaptic potentials, facilitates long-term potentiation (LTP) and increases spine numbers. Each effect likely contributes to the influence of the steroid on cognition and memory. In the present review, we first describe a model for the substrates of LTP that includes an outline of the synaptic events occurring during induction, expression and consolidation. Briefly, critical signalling pathways involving the small GTPases RhoA and Rac/Cdc42 are activated by theta burst-induced calcium influx and initiate actin filament assembly via phosphorylation (inactivation) of cofilin. Reorganisation of the actin cytoskeleton changes spine and synapse morphology, resulting in increased concentrations of AMPA receptors at stimulated contacts. We then use the synaptic model to develop a specific hypothesis about how oestrogen affects both baseline transmission and plasticity. Brief infusions of 17β-oestradiol (E2 ) reversibly stimulate the RhoA, cofilin phosphorylation and actin polymerisation cascade of the LTP machinery; blocking this eliminates the effects of the steroid on transmission. We accordingly propose that E2 induces a weak form of LTP and thereby increases synaptic responses, a hypothesis that also accounts for how it markedly enhances theta burst induced potentiation. Although the effects of E2 on the cytoskeleton could be a result of the direct activation of small GTPases by oestrogen receptors on the synaptic membrane, the hormone also activates tropomyosin-related kinase B receptors for brain-derived neurotrophic factor, a neurotrophin that engages the RhoA-cofilin sequence and promotes LTP. The latter observations raise the possibility that E2 produces its effects on synaptic physiology via transactivation of neighbouring receptors that have prominent roles in the management of spine actin, synaptic physiology and plasticity.
Collapse
Affiliation(s)
- A H Babayan
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | | |
Collapse
|
42
|
Jacinto LR, Reis JS, Dias NS, Cerqueira JJ, Correia JH, Sousa N. Stress affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization. Front Behav Neurosci 2013; 7:127. [PMID: 24137113 PMCID: PMC3797543 DOI: 10.3389/fnbeh.2013.00127] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/08/2013] [Indexed: 11/16/2022] Open
Abstract
Exposure to a novel environment triggers the response of several brain areas that regulate emotional behaviors. Here, we studied theta oscillations within the hippocampus (HPC)-amygdala (AMY)-medial prefrontal cortex (mPFC) network in exploration of a novel environment and subsequent familiarization through repeated exposures to that same environment; in addition, we assessed how concomitant stress exposure could disrupt this activity and impair both behavioral processes. Local field potentials (LFP) were simultaneously recorded from dorsal and ventral hippocampus (dHPC and vHPC, respectively), basolateral amygdala (BLA) and mPFC in freely behaving rats while they were exposed to a novel environment, then repeatedly re-exposed over the course of 3 weeks to that same environment and, finally, on re-exposure to a novel unfamiliar environment. A longitudinal analysis of theta activity within this circuit revealed a reduction of vHPC and BLA theta power and vHPC-BLA theta coherence through familiarization which was correlated with a return to normal exploratory behavior in control rats. In contrast, a persistent over-activation of the same brain regions was observed in stressed rats that displayed impairments in novel exploration and familiarization processes. Importantly, we show that stress also affected intra-hippocampal synchrony and heightened the coherence between vHPC and BLA. In summary, we demonstrate that modulatory theta activity in the aforementioned circuit, namely in the vHPC and BLA, is correlated with the expression of anxiety in novelty-induced exploration and familiarization in both normal and pathological conditions.
Collapse
Affiliation(s)
- Luis R Jacinto
- Life and Health Sciences Research Institute, University of Minho, Campus de Gualtar Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal ; Department of Industrial Electronics, University of Minho, Campus de Azurém Braga, Portugal
| | | | | | | | | | | |
Collapse
|
43
|
Jacobson TK, Howe MD, Schmidt B, Hinman JR, Escabí MA, Markus EJ. Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation. J Neurophysiol 2013; 109:1852-65. [PMID: 23303862 DOI: 10.1152/jn.00409.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampal theta and gamma oscillations coordinate the timing of multiple inputs to hippocampal neurons and have been linked to information processing and the dynamics of encoding and retrieval. One major influence on hippocampal rhythmicity is from cholinergic afferents. In both humans and rodents, aging is linked to impairments in hippocampus-dependent function along with degradation of cholinergic function. Cholinomimetics can reverse some age-related memory impairments and modulate oscillations in the hippocampus. Therefore, one would expect corresponding changes in these oscillations and possible rescue with the cholinomimetic physostigmine. Hippocampal activity was recorded while animals explored a familiar or a novel maze configuration. Reexposure to a familiar situation resulted in minimal aging effects or changes in theta or gamma oscillations. In contrast, exploration of a novel maze configuration increased theta power; this was greater in adult than old animals, although the deficit was reversed with physostigmine. In contrast to the theta results, the effects of novelty, age, and/or physostigmine on gamma were relatively weak. Unrelated to the behavioral situation were an age-related decrease in the degree of theta-gamma coupling and the fact that physostigmine lowered the frequency of theta in both adult and old animals. The results indicate that age-related changes in gamma and theta modulation of gamma, while reflecting aging changes in hippocampal circuitry, seem less related to aging changes in information processing. In contrast, the data support a role for theta and the cholinergic system in encoding and that hippocampal aging is related to impaired encoding of new information.
Collapse
Affiliation(s)
- Tara K Jacobson
- Dept. of Psychology, Behavioral Neuroscience, Univ. of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|