1
|
Savelieff MG, Elafros MA, Viswanathan V, Jensen TS, Bennett DL, Feldman EL. The global and regional burden of diabetic peripheral neuropathy. Nat Rev Neurol 2024:10.1038/s41582-024-01041-y. [PMID: 39639140 DOI: 10.1038/s41582-024-01041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is length-dependent peripheral nerve damage arising as a complication of type 1 or type 2 diabetes in up to 50% of patients. DPN poses a substantial burden on patients, who can experience impaired gait and loss of balance, predisposing them to falls and fractures, and neuropathic pain, which is frequently difficult to treat and reduces quality of life. Advanced DPN can lead to diabetic foot ulcers and non-healing wounds that often necessitate lower-limb amputation. From a socioeconomic perspective, DPN increases both direct health-care costs and indirect costs from loss of productivity owing to neuropathy-related disability. In this Review, we highlight the importance of understanding country-specific and region-specific variations in DPN prevalence to inform public health policy and allocate resources appropriately. We also explore how identification of DPN risk factors can guide treatment and prevention strategies and aid the development of health-care infrastructure for populations at risk. We review evidence that metabolic factors beyond hyperglycaemia contribute to DPN development, necessitating a shift from pure glycaemic control to multi-targeted metabolic control, including weight loss and improvements in lipid profiles.
Collapse
Affiliation(s)
- Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Melissa A Elafros
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof. M. Viswanathan Diabetes Research Centre, Royapuram, Chennai, India
| | - Troels S Jensen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Eid SA, Elzinga SE, Kim B, Rumora AE, Hayes JM, Carter A, Pacut C, Allouch AM, Koubek EJ, Feldman EL. High-Intensity Interval Training, Caloric Restriction, or Their Combination Have Beneficial Effects on Metabolically Acquired Peripheral Neuropathy. Diabetes 2024; 73:1895-1907. [PMID: 39163551 PMCID: PMC11493763 DOI: 10.2337/db23-0997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Peripheral neuropathy (PN) is a prevalent and debilitating complication of obesity, prediabetes, and type 2 diabetes, which remains poorly understood and lacks disease-modifying therapies. Fortunately, diet and/or exercise have emerged as effective treatment strategies for PN. Here, we examined the impact of caloric restriction (CR) and high-intensity interval training (HIIT) interventions, alone or combined (HIIT-CR), on metabolic and PN outcomes in high-fat diet (HFD) mice. HFD feeding alone resulted in obesity, impaired glucose tolerance, and PN. Peripheral nerves isolated from these mice also developed insulin resistance (IR). CR and HIIT-CR, but not HIIT alone, improved HFD-induced metabolic dysfunction. However, all interventions improved PN to similar extents. When examining the underlying neuroprotective mechanisms in whole nerves, we found that CR and HIIT-CR activate the fuel-sensing enzyme AMPK. We then performed complimentary in vitro work in Schwann cells, the glia of peripheral nerves. Treating primary Schwann cells with the saturated fatty acid palmitate to mimic prediabetic conditions caused IR, which was reversed by the AMPK activator, AICAR. Together, these results enhance our understanding of PN pathogenesis, the differential mechanisms by which diet and exercise may improve PN, and Schwann cell-specific contributions to nerve insulin signaling and PN progression. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
| | | | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI
- Department of Neurology, Columbia University, New York, NY
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Andrew Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Adam M. Allouch
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Qian Y, Xiong S, Li L, Sun Z, Zhang L, Yuan W, Cai H, Feng G, Wang X, Yao H, Gao Y, Guo L, Wang Z. Spatial multiomics atlas reveals smooth muscle phenotypic transformation and metabolic reprogramming in diabetic macroangiopathy. Cardiovasc Diabetol 2024; 23:358. [PMID: 39395983 PMCID: PMC11471023 DOI: 10.1186/s12933-024-02458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Diabetic macroangiopathy has been the main cause of death and disability in diabetic patients. The mechanisms underlying smooth muscle cell transformation and metabolic reprogramming other than abnormal glucose and lipid metabolism remain to be further explored. METHOD Single-cell transcriptome, spatial transcriptome and spatial metabolome sequencing were performed on anterior tibial artery from 11 diabetic patients with amputation. Multi-omics integration, cell communication analysis, time series analysis, network analysis, enrichment analysis, and gene expression analysis were performed to elucidate the potential molecular features. RESULT We constructed a spatial multiomics map of diabetic blood vessels based on multiomics integration, indicating single-cell and spatial landscape of transcriptome and spatial landscape of metabolome. At the same time, the characteristics of cell composition and biological function of calcified regions were obtained by integrating spatial omics and single cell omics. On this basis, our study provides favorable evidence for the cellular fate of smooth muscle cells, which can be transformed into pro-inflammatory chemotactic smooth muscle cells, macrophage-like smooth muscle cells/foam-like smooth muscle cells, and fibroblast/chondroblast smooth muscle cells in the anterior tibial artery of diabetic patients. The smooth muscle cell phenotypic transformation is driven by transcription factors net including KDM5B, DDIT3, etc. In addition, in order to focus on metabolic reprogramming apart from abnormal glucose and lipid metabolism, we constructed a metabolic network of diabetic vascular activation, and found that HNMT and CYP27A1 participate in diabetic vascular metabolic reprogramming by combining public data. CONCLUSION This study constructs the spatial gene-metabolism map of the whole anterior tibial artery for the first time and reveals the characteristics of vascular calcification, the phenotypic transformation trend of SMCs, and the transcriptional driving network of SMCs phenotypic transformation of diabetic macrovascular disease. In the perspective of combining the transcriptome and metabolome, the study demonstrates the activated metabolic pathways in diabetic blood vessels and the key genes involved in diabetic metabolic reprogramming.
Collapse
Affiliation(s)
- Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Honghua Cai
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiaoguang Wang
- Department of Joint Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Haipeng Yao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China
| | - Yun Gao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
4
|
Elafros MA, Reynolds EL, Callaghan BC. Obesity-related neuropathy: the new epidemic. Curr Opin Neurol 2024; 37:467-477. [PMID: 38864534 PMCID: PMC11371529 DOI: 10.1097/wco.0000000000001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
PURPOSE OF REVIEW To examine the evidence evaluating the association between obesity and neuropathy as well as potential interventions. RECENT FINDINGS Although diabetes has long been associated with neuropathy, additional metabolic syndrome components, including obesity, are increasingly linked to neuropathy development, regardless of glycemic status. Preclinical rodent models as well as clinical studies are shedding light on the mechanisms of obesity-related neuropathy as well as challenges associated with slowing progression. Dietary and surgical weight loss and exercise interventions are promising, but more data is needed. SUMMARY High-fat-diet rodent models have shown that obesity-related neuropathy is a product of excess glucose and lipid accumulation leading to inflammation and cell death. Clinical studies consistently demonstrate obesity is independently associated with neuropathy; therefore, likely a causal risk factor. Dietary weight loss improves neuropathy symptoms but not examination scores. Bariatric surgery and exercise are promising interventions, but larger, more rigorous studies are needed. Further research is also needed to determine the utility of weight loss medications and ideal timing for obesity interventions to prevent neuropathy.
Collapse
Affiliation(s)
| | - Evan Lee Reynolds
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | | |
Collapse
|
5
|
Türküner MS, Yazıcı A, Özcan F. SIK2 Controls the Homeostatic Character of the POMC Secretome Acutely in Response to Pharmacological ER Stress Induction. Cells 2024; 13:1565. [PMID: 39329749 PMCID: PMC11430698 DOI: 10.3390/cells13181565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The neuronal etiology of obesity is centered around a diet-induced inflammatory state in the arcuate nucleus of the hypothalamus, which impairs the functionality of pro-opiomelanocortine neurons (POMCs) responsible for whole-body energy homeostasis and feeding behavior. Intriguingly, systemic salt inducible kinase 2 (SIK2) knockout mice demonstrated reduced food intake and energy expenditure along with modestly dysregulated metabolic parameters, suggesting a causal link between the absence of SIK2 activity in POMCs and the observed phenotype. To test this hypothesis, we conducted a comparative secretomics study from POMC neurons following pharmacologically induced endoplasmic reticulum (ER) stress induction, a hallmark of metabolic inflammation and POMC dysregulation in diet-induced obese (DIO) mice. Our data provide significant in vitro evidence for the POMC-specific SIK2 activity in controlling energy metabolism and feeding in DIO mice by regulating the nature of the related POMC secretome. Our data also suggest that under physiological stress conditions, SIK2 may act as a gatekeeper for the secreted inflammatory factors and signaling molecules critical for cellular survival and energy homeostasis. On the other hand, in the absence of SIK2, the gate opens, leading to a surge of inflammatory cytokines and apoptotic cues concomitant with the dysregulation of POMC neurons.
Collapse
Affiliation(s)
- Mehmet Soner Türküner
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Gebze Technical University (GTU), Gebze, Kocaeli 41400, Turkey; (M.S.T.); (A.Y.)
- Cellular Proteomics Laboratory, Gebze Technical University—Central Research Laboratory, Application and Research Center Laboratory (GTU-MAR), Gebze, Kocaeli 41400, Turkey
| | - Ayşe Yazıcı
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Gebze Technical University (GTU), Gebze, Kocaeli 41400, Turkey; (M.S.T.); (A.Y.)
- Cellular Proteomics Laboratory, Gebze Technical University—Central Research Laboratory, Application and Research Center Laboratory (GTU-MAR), Gebze, Kocaeli 41400, Turkey
| | - Ferruh Özcan
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Gebze Technical University (GTU), Gebze, Kocaeli 41400, Turkey; (M.S.T.); (A.Y.)
- Cellular Proteomics Laboratory, Gebze Technical University—Central Research Laboratory, Application and Research Center Laboratory (GTU-MAR), Gebze, Kocaeli 41400, Turkey
| |
Collapse
|
6
|
Luo B, Xu W, Ye D, Bai X, Wu M, Zhang C, Shi R. Association Between Glycated Hemoglobin and the Lipid Profile at the Central Yunnan Plateau: A Retrospective Study. Diabetes Metab Syndr Obes 2024; 17:2975-2981. [PMID: 39139740 PMCID: PMC11321356 DOI: 10.2147/dmso.s469368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Dyslipidemia commonly complicates type 2 diabetes mellitus, yet the relationship between glycosylated hemoglobin and blood lipid levels remains uncertain. Methods This retrospective cross-sectional study included 27,158 participants from the People's Hospital of Yuxi. Statistical comparisons for continuous variables utilized analysis of variance (ANOVA), while chi-square analysis was employed for categorical variables. Boxplots assessed the concentration, dispersion, and deviation of total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C) distribution. A linear regression analysis examined the association between HbA1c and lipid profile, complemented by a fitting curve to visualize trends. Results Participants who developed diabetes exhibited higher age and elevated Body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), TC, TG, LDL-C, and FPG levels compared to those without diabetes (p < 0.001). Linear regression analysis demonstrated significant associations between HbA1c values and TC, TG, LDL-C, and HDL-C (p < 0.001). The plotted curve indicated that as TC, TG, and LDL levels increased, HbA1c levels rose, while HDL levels decreased. Conclusion HbA1c was positively correlated with TC, TG, LDL-C, and negatively correlated with HDL-C in the population in the central Yunnan Plateau.
Collapse
Affiliation(s)
- Beibei Luo
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Wenbo Xu
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Dan Ye
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Xuejing Bai
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Mengna Wu
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Chunting Zhang
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Rui Shi
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| |
Collapse
|
7
|
Eid SA, Elzinga SE, Guo K, Hinder LM, Hayes JM, Pacut CM, Koubek EJ, Hur J, Feldman EL. Transcriptomic profiling of sciatic nerves and dorsal root ganglia reveals site-specific effects of prediabetic neuropathy. Transl Res 2024; 270:24-41. [PMID: 38556110 PMCID: PMC11166517 DOI: 10.1016/j.trsl.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Peripheral neuropathy (PN) is a severe and frequent complication of obesity, prediabetes, and type 2 diabetes characterized by progressive distal-to-proximal peripheral nerve degeneration. However, a comprehensive understanding of the mechanisms underlying PN, and whether these mechanisms change during PN progression, is currently lacking. Here, gene expression data were obtained from distal (sciatic nerve; SCN) and proximal (dorsal root ganglia; DRG) injury sites of a high-fat diet (HFD)-induced mouse model of obesity/prediabetes at early and late disease stages. Self-organizing map and differentially expressed gene analyses followed by pathway enrichment analysis identified genes and pathways altered across disease stage and injury site. Pathways related to immune response, inflammation, and glucose and lipid metabolism were consistently dysregulated with HFD-induced PN, irrespective of injury site. However, regulation of oxidative stress was unique to the SCN while dysregulated Hippo and Notch signaling were only observed in the DRG. The role of the immune system and inflammation in disease progression was supported by an increase in the percentage of immune cells in the SCN with PN progression. Finally, when comparing these data to transcriptomic signatures from human patients with PN, we observed conserved pathways related to metabolic dysregulation across species, highlighting the translational relevance of our mouse data. Our findings demonstrate that PN is associated with distinct site-specific molecular re-programming in the peripheral nervous system, identifying novel, clinically relevant therapeutic targets.
Collapse
Affiliation(s)
- Stéphanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Crystal M. Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Sun W, Yang F, Wang Y, Yang Y, Du R, Wang X, Luo Z, Wu J, Chen J. Sortilin-Mediated Inhibition of TREK1/2 Channels in Primary Sensory Neurons Promotes Prediabetic Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310295. [PMID: 38626370 PMCID: PMC11187941 DOI: 10.1002/advs.202310295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/29/2024] [Indexed: 04/18/2024]
Abstract
Neuropathic pain can occur during the prediabetic stage, even in the absence of hyperglycemia. The presence of prediabetic neuropathic pain (PDNP) poses challenges to the management of individuals with prediabetes. However, the mechanisms underlying this pain remain unclear. This study aims to investigate the underlying mechanism and identify potential therapeutic targets of PDNP. A prediabetic animal model induced by a high-energy diet exhibits both mechanical allodynia and thermal hyperalgesia. Furthermore, hyperexcitability and decreased potassium currents are observed in the dorsal root ganglion (DRG) neurons of these rats. TREK1 and TREK2 channels, which belong to the two-pore-domain K+ channel (K2P) family and play an important role in controlling cellular excitability, are downregulated in DRG neurons. Moreover, this alteration is modulated by Sortilin, a molecular partner that modulates the expression of TREK1. The overexpression of Sortilin negatively affects the expression of TREK1 and TREK2, leading to increased neuronal excitability in the DRG and enhanced peripheral pain sensitivity in rats. Moreover, the downregulation of Sortilin or activation of TREK1 and TREK2 channels by genetic or pharmacological approaches can alleviate PDNP. Therefore, targeting the Sortilin-mediated TREK1/2 pathway may provide a therapeutic approach for ameliorating PDNP.
Collapse
Affiliation(s)
- Wei Sun
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Fan Yang
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Yan Wang
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Yan Yang
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Rui Du
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Xiao‐Liang Wang
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Zhi‐Xin Luo
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
| | - Jun‐Jie Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of Orthodontics, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi Province710032P. R. China
| | - Jun Chen
- Institute for Biomedical Sciences of PainTangdu HospitalThe Fourth Military Medical UniversityXi'anShaanxi Province710038P. R. China
- Present address:
Sanhang Institute for Brain Science and Technology (SiBST)School of Medical Research, Northwestern Polytechnical University (NPU)Xi'an Shaanxi710129P. R. China
| |
Collapse
|
9
|
Silsby M, Feldman EL, Dortch RD, Roth A, Haroutounian S, Rajabally YA, Vucic S, Shy ME, Oaklander AL, Simon NG. Advances in diagnosis and management of distal sensory polyneuropathies. J Neurol Neurosurg Psychiatry 2023; 94:1025-1039. [PMID: 36997315 PMCID: PMC10544692 DOI: 10.1136/jnnp-2021-328489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Distal sensory polyneuropathy (DSP) is characterised by length-dependent, sensory-predominant symptoms and signs, including potentially disabling symmetric chronic pain, tingling and poor balance. Some patients also have or develop dysautonomia or motor involvement depending on whether large myelinated or small fibres are predominantly affected. Although highly prevalent, diagnosis and management can be challenging. While classic diabetes and toxic causes are well-recognised, there are increasingly diverse associations, including with dysimmune, rheumatological and neurodegenerative conditions. Approximately half of cases are initially considered idiopathic despite thorough evaluation, but often, the causes emerge later as new symptoms develop or testing advances, for instance with genetic approaches. Improving and standardising DSP metrics, as already accomplished for motor neuropathies, would permit in-clinic longitudinal tracking of natural history and treatment responses. Standardising phenotyping could advance research and facilitate trials of potential therapies, which lag so far. This review updates on recent advances and summarises current evidence for specific treatments.
Collapse
Affiliation(s)
- Matthew Silsby
- Neurology, Westmead Hospital, Westmead, New South Wales, Australia
- Brain and Nerve Research Centre, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard D Dortch
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA
| | - Alison Roth
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Simon Haroutounian
- Department of Anesthesiology, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Yusuf A Rajabally
- Inflammatory Neuropathy Clinic, Department of Neurology, University Hospitals Birmingham, Aston Medical School, Aston University, Birmingham, UK
| | - Steve Vucic
- Brain and Nerve Research Centre, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Anne Louise Oaklander
- Nerve Unit, Departments of Neurology and Pathology (Neuropathology), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Neil G Simon
- Northern Beaches Clinical School, Macquarie University, Frenchs Forest, New South Wales, Australia
| |
Collapse
|
10
|
Staehelin Jensen T. The pathogenesis of painful diabetic neuropathy and clinical presentation. Diabetes Res Clin Pract 2023; 206 Suppl 1:110753. [PMID: 38245319 DOI: 10.1016/j.diabres.2023.110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 01/22/2024]
Abstract
Diabetic neuropathy is a common complication of diabetes that affects up to 50% of patients during the course of the disease; 20-30% of the patients also develop neuropathic pain. The mechanisms underlying neuropathy are not known in detail, but both metabolic and vascular factors may contribute to the development of neuropathy. The development of the most common type of neuropathy is insidious, often starting distally in the toes and feet and gradually ascending up the leg and later also involving fingers and hands. The symptoms are mainly sensory with either sensory loss or positive symptoms with different types of paresthesia or painful sensations. In more advanced cases motor dysfunction may occur, causing gait disturbances and falls. The diagnosis of neuropathy is based on history and a careful examination, which includes a sensory examination of both large and small sensory nerve fiber function, as well as an examination of motor function and deep tendon reflexes of the lower limbs. Attention needs to be paid to the feet including examination of the skin, joints, and vascular supply. Nerve conduction studies are rarely needed to make a diagnosis of neuropathy. In patients with clear motor deficit or with an asymmetrical presentation, additional electrophysiological examination may be necessary. Early detection of diabetic neuropathy is important to avoid further irreversible injury to the peripheral nerves.
Collapse
Affiliation(s)
- Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
11
|
Kim B, Kang Y, Mendelson FE, Hayes JM, Savelieff MG, Nagrath S, Feldman EL. Palmitate and glucose increase amyloid precursor protein in extracellular vesicles: Missing link between metabolic syndrome and Alzheimer's disease. J Extracell Vesicles 2023; 12:e12340. [PMID: 37898562 PMCID: PMC10613125 DOI: 10.1002/jev2.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 10/30/2023] Open
Abstract
The metabolic syndrome (MetS) and Alzheimer's disease share several pathological features, including insulin resistance, abnormal protein processing, mitochondrial dysfunction and elevated inflammation and oxidative stress. The MetS constitutes elevated fasting glucose, obesity, dyslipidaemia and hypertension and increases the risk of developing Alzheimer's disease, but the precise mechanism remains elusive. Insulin resistance, which develops from a diet rich in sugars and saturated fatty acids, such as palmitate, is shared by the MetS and Alzheimer's disease. Extracellular vesicles (EVs) are also a point of convergence, with altered dynamics in both the MetS and Alzheimer's disease. However, the role of palmitate- and glucose-induced insulin resistance in the brain and its potential link through EVs to Alzheimer's disease is unknown. We demonstrate that palmitate and high glucose induce insulin resistance and amyloid precursor protein phosphorylation in primary rat embryonic cortical neurons and human cortical stem cells. Palmitate also triggers insulin resistance in oligodendrocytes, the supportive glia of the brain. Palmitate and glucose enhance amyloid precursor protein secretion from cortical neurons via EVs, which induce tau phosphorylation when added to naïve neurons. Additionally, EVs from palmitate-treated oligodendrocytes enhance insulin resistance in recipient neurons. Overall, our findings suggest a novel theory underlying the increased risk of Alzheimer's disease in MetS mediated by EVs, which spread Alzheimer's pathology and insulin resistance.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Yoon‐Tae Kang
- Department of Chemical Engineering and Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Faye E. Mendelson
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - John M. Hayes
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Sunitha Nagrath
- Department of Chemical Engineering and Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
12
|
Eid SA, Rumora AE, Beirowski B, Bennett DL, Hur J, Savelieff MG, Feldman EL. New perspectives in diabetic neuropathy. Neuron 2023; 111:2623-2641. [PMID: 37263266 PMCID: PMC10525009 DOI: 10.1016/j.neuron.2023.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Diabetes prevalence continues to climb with the aging population. Type 2 diabetes (T2D), which constitutes most cases, is metabolically acquired. Diabetic peripheral neuropathy (DPN), the most common microvascular complication, is length-dependent damage to peripheral nerves. DPN pathogenesis is complex, but, at its core, it can be viewed as a state of impaired metabolism and bioenergetics failure operating against the backdrop of long peripheral nerve axons supported by glia. This unique peripheral nerve anatomy and the injury consequent to T2D underpins the distal-to-proximal symptomatology of DPN. Earlier work focused on the impact of hyperglycemia on nerve damage and bioenergetics failure, but recent evidence additionally implicates contributions from obesity and dyslipidemia. This review will cover peripheral nerve anatomy, bioenergetics, and glia-axon interactions, building the framework for understanding how hyperglycemia and dyslipidemia induce bioenergetics failure in DPN. DPN and painful DPN still lack disease-modifying therapies, and research on novel mechanism-based approaches is also covered.
Collapse
Affiliation(s)
- Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy E Rumora
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Bogdan Beirowski
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Neuroscience Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Eid SA, O’Brien PD, Kretzler KH, Jang DG, Mendelson FE, Hayes JM, Carter A, Zhang H, Pennathur S, Brosius FC, Koubek EJ, Feldman EL. Dietary interventions improve diabetic kidney disease, but not peripheral neuropathy, in a db/db mouse model of type 2 diabetes. FASEB J 2023; 37:e23115. [PMID: 37490006 PMCID: PMC10372884 DOI: 10.1096/fj.202300354r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Patients with type 2 diabetes often develop the microvascular complications of diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN), which decrease quality of life and increase mortality. Unfortunately, treatment options for DKD and DPN are limited. Lifestyle interventions, such as changes to diet, have been proposed as non-pharmacological treatment options for preventing or improving DKD and DPN. However, there are no reported studies simultaneously evaluating the therapeutic efficacy of varying dietary interventions in a type 2 diabetes mouse model of both DKD and DPN. Therefore, we compared the efficacy of a 12-week regimen of three dietary interventions, low carbohydrate, caloric restriction, and alternate day fasting, for preventing complications in a db/db type 2 diabetes mouse model by performing metabolic, DKD, and DPN phenotyping. All three dietary interventions promoted weight loss, ameliorated glycemic status, and improved DKD, but did not impact percent fat mass and DPN. Multiple regression analysis identified a negative correlation between fat mass and motor nerve conduction velocity. Collectively, our data indicate that these three dietary interventions improved weight and glycemic status and alleviated DKD but not DPN. Moreover, diets that decrease fat mass may be a promising non-pharmacological approach to improve DPN in type 2 diabetes given the negative correlation between fat mass and motor nerve conduction velocity.
Collapse
Affiliation(s)
- Stephanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | | | | | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Andrew Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Frank C. Brosius
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Medicine, University of Arizona, Tucson, AZ, 85721 USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| |
Collapse
|
14
|
Enders J, Elliott D, Wright DE. Emerging Nonpharmacologic Interventions to Treat Diabetic Peripheral Neuropathy. Antioxid Redox Signal 2023; 38:989-1000. [PMID: 36503268 PMCID: PMC10402707 DOI: 10.1089/ars.2022.0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022]
Abstract
Significance: Diabetic peripheral neuropathy (DPN), a complication of metabolic syndrome, type I and type II diabetes, leads to sensory changes that include slow nerve conduction, nerve degeneration, loss of sensation, pain, and gate disturbances. These complications remain largely untreatable, although tight glycemic control can prevent neuropathy progression. Nonpharmacologic approaches remain the most impactful to date, but additional advances in treatment approaches are needed. Recent Advances: This review highlights several emerging interventions, including a focus on dietary interventions and physical activity, that continue to show promise for treating DPN. We provide an overview of our current understanding of how exercise can improve aspects of DPN. We also highlight new studies in which a ketogenic diet has been used as an intervention to prevent and reverse DPN. Critical Issues: Both exercise and consuming a ketogenic diet induce systemic and cellular changes that collectively improve complications associated with DPN. Both interventions may involve similar signaling pathways and benefits but also impact DPN through unique mechanisms. Future Directions: These lifestyle interventions are critically important as personalized medicine approaches will likely be needed to identify specific subsets of neuropathy symptoms and deficits in patients, and determine the most impactful treatment. Overall, these two interventions have the potential to provide meaningful relief for patients with DPN and provide new avenues to identify new therapeutic targets.
Collapse
Affiliation(s)
- Jonathan Enders
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Daniel Elliott
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Douglas E. Wright
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
15
|
Thomas S, Enders J, Kaiser A, Rovenstine L, Heslop L, Hauser W, Chadwick A, Wright D. Abnormal intraepidermal nerve fiber density in disease: A scoping review. Front Neurol 2023; 14:1161077. [PMID: 37153658 PMCID: PMC10157176 DOI: 10.3389/fneur.2023.1161077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Background Intraepidermal nerve fiber density (IENFD) has become an important biomarker for neuropathy diagnosis and research. The consequences of reduced IENFD can include sensory dysfunction, pain, and a significant decrease in quality of life. We examined the extent to which IENFD is being used as a tool in human and mouse models and compared the degree of fiber loss between diseases to gain a broader understanding of the existing data collected using this common technique. Methods We conducted a scoping review of publications that used IENFD as a biomarker in human and non-human research. PubMed was used to identify 1,004 initial articles that were then screened to select articles that met the criteria for inclusion. Criteria were chosen to standardize publications so they could be compared rigorously and included having a control group, measuring IENFD in a distal limb, and using protein gene product 9.5 (PGP9.5). Results We analyzed 397 articles and collected information related to publication year, the condition studied, and the percent IENFD loss. The analysis revealed that the use of IENFD as a tool has been increasing in both human and non-human research. We found that IENFD loss is prevalent in many diseases, and metabolic or diabetes-related diseases were the most studied conditions in humans and rodents. Our analysis identified 73 human diseases in which IENFD was affected, with 71 reporting IENFD loss and an overall average IENFD change of -47%. We identified 28 mouse and 21 rat conditions, with average IENFD changes of -31.6% and -34.7%, respectively. Additionally, we present data describing sub-analyses of IENFD loss according to disease characteristics in diabetes and chemotherapy treatments in humans and rodents. Interpretation Reduced IENFD occurs in a surprising number of human disease conditions. Abnormal IENFD contributes to important complications, including poor cutaneous vascularization, sensory dysfunction, and pain. Our analysis informs future rodent studies so they may better mirror human diseases impacted by reduced IENFD, highlights the breadth of diseases impacted by IENFD loss, and urges exploration of common mechanisms that lead to substantial IENFD loss as a complication in disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Douglas Wright
- Sensory Nerve Disorder Lab, Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
16
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
17
|
Thomas SJ, Enders J, Kaiser A, Rovenstine L, Heslop L, Hauser W, Chadwick A, Wright DE. Abnormal Intraepidermal Nerve Fiber Density in Disease: A Scoping Review. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.08.23285644. [PMID: 36798392 PMCID: PMC9934806 DOI: 10.1101/2023.02.08.23285644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Background Intraepidermal nerve fiber density (IENFD) has become an important biomarker for neuropathy diagnosis and research. The consequences of reduced IENFD can include sensory dysfunction, pain, and a significant decrease in quality of life. We examined the extent to which IENFD is being used as a tool in human and mouse models and compared the degree of fiber loss between diseases to gain a broader understanding of the existing data collected using this common technique. Methods We conducted a scoping review of publications that used IENFD as a biomarker in human and non-human research. PubMed was used to identify 1,004 initial articles that were then screened to select articles that met the criteria for inclusion. Criteria were chosen to standardize publications so they could be compared rigorously and included having a control group, measuring IENFD in a distal limb, and using protein gene product 9.5 (PGP9.5). Results We analyzed 397 articles and collected information related to publication year, the condition studied, and the percent IENFD loss. The analysis revealed that the use of IENFD as a tool has been increasing in both human and non-human research. We found that IENFD loss is prevalent in many diseases, and metabolic or diabetes-related diseases were the most studied conditions in humans and rodents. Our analysis identified 74 human diseases in which IENFD was affected, with 71 reporting IENFD loss and an overall average IENFD change of -47%. We identified 28 mouse and 21 rat conditions, with average IENFD changes of -31.6 % and - 34.7% respectively. Additionally, we present data describing sub-analyses of IENFD loss according to disease characteristics in diabetes and chemotherapy treatments in humans and rodents. Interpretation Reduced IENFD occurs in a surprising number of human disease conditions. Abnormal IENFD contributes to important complications, including poor cutaneous vascularization, sensory dysfunction, and pain. Our analysis informs future rodent studies so they may better mirror human diseases impacted by reduced IENFD, highlights the breadth of diseases impacted by IENFD loss, and urges exploration of common mechanisms that lead to substantial IENFD loss as a complication in disease.
Collapse
Affiliation(s)
- SJ Thomas
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - J Enders
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - A Kaiser
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - L Rovenstine
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - L Heslop
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - W Hauser
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - A Chadwick
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| | - DE Wright
- Sensory Nerve Disorder Lab, University of Kansas Medical Center, Anesthesiology Department, Kansas City, KS, USA
| |
Collapse
|
18
|
Akowuah PK, Lema C, Rumbaut RE, Burns AR. A Low-Fat/Sucrose Diet Rich in Complex Carbohydrates Reverses High-Fat/Sucrose Diet-Induced Corneal Dysregulation. Int J Mol Sci 2023; 24:931. [PMID: 36674448 PMCID: PMC9865780 DOI: 10.3390/ijms24020931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
High-fat/sucrose diet feeding in mice causes loss of corneal nerve function and impairs corneal wound healing. While changing to a diet with a low fat/sugar composition and enrichments in complex carbohydrates mitigates the reduction in nerve function, it remains to be determined if it has an effect on corneal wound healing. In this study, 6-week-old C57BL/6 male mice were fed either a normal diet or a high-fat/sucrose diet for 20 weeks. A third group (diet reversal) was placed on a high-fat/sucrose diet for 10 weeks followed by a normal diet for an additional 10 weeks. A central corneal epithelial abrasion wound was created, and wound closure was monitored. Neutrophil and platelet recruitment was assessed by immunofluorescence microscopy. Mice fed the high-fat/sucrose diet-only had greater adiposity (p < 0.005) than normal diet-only fed mice; diet reversal markedly reduced adiposity. Following corneal abrasion, wound closure was delayed by ~6 h (p ≤ 0.01) and, at 30 h post-wounding, fewer neutrophils reached the wound center and fewer extravascular platelets were present at the limbus (p < 0.05). Diet restored normal wound closure and neutrophil and platelet influx in the injured cornea. These data suggest compositional changes to the diet may be an effective diet-based therapeutic strategy for maintaining or restoring corneal health.
Collapse
Affiliation(s)
| | - Carolina Lema
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Rolando E. Rumbaut
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical, Houston, TX 77030, USA
| | - Alan R. Burns
- College of Optometry, University of Houston, Houston, TX 77204, USA
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Yang C, Zhao X, An X, Zhang Y, Sun W, Zhang Y, Duan Y, Kang X, Sun Y, Jiang L, Lian F. Axonal transport deficits in the pathogenesis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2023; 14:1136796. [PMID: 37056668 PMCID: PMC10086245 DOI: 10.3389/fendo.2023.1136796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic disease that gravely endangers human health and seriously affects the quality of life of hyperglycemic patients. More seriously, it can lead to amputation and neuropathic pain, imposing a severe financial burden on patients and the healthcare system. Even with strict glycemic control or pancreas transplantation, peripheral nerve damage is difficult to reverse. Most current treatment options for DPN can only treat the symptoms but not the underlying mechanism. Patients with long-term diabetes mellitus (DM) develop axonal transport dysfunction, which could be an important factor in causing or exacerbating DPN. This review explores the underlying mechanisms that may be related to axonal transport impairment and cytoskeletal changes caused by DM, and the relevance of the latter with the occurrence and progression of DPN, including nerve fiber loss, diminished nerve conduction velocity, and impaired nerve regeneration, and also predicts possible therapeutic strategies. Understanding the mechanisms of diabetic neuronal injury is essential to prevent the deterioration of DPN and to develop new therapeutic strategies. Timely and effective improvement of axonal transport impairment is particularly critical for the treatment of peripheral neuropathies.
Collapse
|
20
|
Sánchez-Alegría K, Arias C. Functional consequences of brain exposure to saturated fatty acids: From energy metabolism and insulin resistance to neuronal damage. Endocrinol Diabetes Metab 2023; 6:e386. [PMID: 36321333 PMCID: PMC9836261 DOI: 10.1002/edm2.386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Saturated fatty acids (FAs) are the main component of high-fat diets (HFDs), and high consumption has been associated with the development of insulin resistance, endoplasmic reticulum stress and mitochondrial dysfunction in neuronal cells. In particular, the reduction in neuronal insulin signaling seems to underlie the development of cognitive impairments and has been considered a risk factor for Alzheimer's disease (AD). METHODS This review summarized and critically analyzed the research that has impacted the field of saturated FA metabolism in neurons. RESULTS We reviewed the mechanisms for free FA transport from the systemic circulation to the brain and how they impact neuronal metabolism. Finally, we focused on the molecular and the physiopathological consequences of brain exposure to the most abundant FA in the HFD, palmitic acid (PA). CONCLUSION Understanding the mechanisms that lead to metabolic alterations in neurons induced by saturated FAs could help to develop several strategies for the prevention and treatment of cognitive impairment associated with insulin resistance, metabolic syndrome, or type II diabetes.
Collapse
Affiliation(s)
- Karina Sánchez-Alegría
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
21
|
Griffin H, Sullivan SC, Barger SW, Phelan KD, Baldini G. Liraglutide Counteracts Endoplasmic Reticulum Stress in Palmitate-Treated Hypothalamic Neurons without Restoring Mitochondrial Homeostasis. Int J Mol Sci 2022; 24:ijms24010629. [PMID: 36614074 PMCID: PMC9820707 DOI: 10.3390/ijms24010629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
One feature of high-fat diet-induced neurodegeneration in the hypothalamus is an increased level of palmitate, which is associated with endoplasmic reticulum (ER) stress, loss of CoxIV, mitochondrial fragmentation, and decreased abundance of MC4R. To determine whether antidiabetic drugs protect against ER and/or mitochondrial dysfunction by lipid stress, hypothalamic neurons derived from pre-adult mice and neuronal Neuro2A cells were exposed to elevated palmitate. In the hypothalamic neurons, palmitate exposure increased expression of ER resident proteins, including that of SERCA2, indicating ER stress. Liraglutide reverted such altered ER proteostasis, while metformin only normalized SERCA2 expression. In Neuro2A cells liraglutide, but not metformin, also blunted dilation of the ER induced by palmitate treatment, and enhanced abundance and expression of MC4R at the cell surface. Thus, liraglutide counteracts, more effectively than metformin, altered ER proteostasis, morphology, and folding capacity in neurons exposed to fat. In palmitate-treated hypothalamic neurons, mitochondrial fragmentation took place together with loss of CoxIV and decreased mitochondrial membrane potential (MMP). Metformin, but not liraglutide, reverted mitochondrial fragmentation, and both liraglutide and metformin did not protect against either loss of CoxIV abundance or MMP. Thus, ER recovery from lipid stress can take place in hypothalamic neurons in the absence of recovered mitochondrial homeostasis.
Collapse
Affiliation(s)
- Haven Griffin
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sarah C. Sullivan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Steven W. Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kevin D. Phelan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence:
| |
Collapse
|
22
|
Canta A, Carozzi VA, Chiorazzi A, Meregalli C, Oggioni N, Rodriguez-Menendez V, Sala B, Melcangi RC, Giatti S, Lombardi R, Bianchi R, Marmiroli P, Cavaletti G. Multimodal Comparison of Diabetic Neuropathy in Aged Streptozotocin-Treated Sprague-Dawley and Zucker Diabetic Fatty Rats. Biomedicines 2022; 11:20. [PMID: 36672528 PMCID: PMC9855818 DOI: 10.3390/biomedicines11010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The development and progression of diabetic polyneuropathy (DPN) are due to multiple mechanisms. The creation of reliable animal models of DPN has been challenging and this issue has not yet been solved. However, despite some recognized differences from humans, most of the current knowledge on the pathogenesis of DPN relies on results achieved using rodent animal models. The simplest experimental DPN model reproduces type 1 diabetes, induced by massive chemical destruction of pancreatic beta cells with streptozotocin (STZ). Spontaneous/transgenic models of diabetes are less frequently used, mostly because they are less predictable in clinical course, more expensive, and require a variable time to achieve homogeneous metabolic conditions. Among them, Zucker diabetic fatty (ZDF) rats represent a typical type 2 diabetes model. Both STZ-induced and ZDF rats have been extensively used, but only very few studies have compared the long-term similarities and differences existing between these two models. Moreover, inconsistencies have been reported regarding several aspects of short-term in vivo studies using these models. In this study, we compared the long-term course of DPN in STZ-treated Sprague-Dawley and ZDF rats with a multimodal set of readout measures.
Collapse
Affiliation(s)
- Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valentina A. Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Norberto Oggioni
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Virginia Rodriguez-Menendez
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Barbara Sala
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20100 Milano, Italy
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20100 Milano, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, IRCCS Fondazione Istituto Neurologico “Carlo Besta”, 20100 Milano, Italy
| | - Roberto Bianchi
- Neuroalgology Unit, IRCCS Fondazione Istituto Neurologico “Carlo Besta”, 20100 Milano, Italy
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
23
|
Chen S, Huang X. Cytosolic lipolysis in non-adipose tissues: energy provision and beyond. FEBS J 2022; 289:7385-7398. [PMID: 34407292 DOI: 10.1111/febs.16161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/18/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Cytosolic lipolysis is a well-defined biochemical process that plays important roles in the mobilization of stored neutral lipids. Lipid turnover, regulated by cytosolic lipolysis, has been extensively studied in adipose tissue, liver, and muscle. The storage and utilization of neutral lipids is a basic function of most, if not all, tissues and cells. In this review, we focus on the functions of cytosolic lipolysis mainly in non-adipose tissues and in several physiological processes, including cancer, longevity, and pathogen infection. The mechanisms underlying the impact of cytosolic lipolysis on these events will be discussed. Detailed understanding of cytosolic lipolysis in both adipose and non-adipose tissues will have implications for future clinical translation.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Ang L, Mizokami-Stout K, Eid SA, Elafros M, Callaghan B, Feldman EL, Pop-Busui R. The conundrum of diabetic neuropathies-Past, present, and future. J Diabetes Complications 2022; 36:108334. [PMID: 36306721 PMCID: PMC10202025 DOI: 10.1016/j.jdiacomp.2022.108334] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 10/31/2022]
Abstract
Diabetic neuropathy (DN) remains arguably the most prevalent chronic complication in people with both type 1 and type 2 diabetes, including in youth, despite changes in the current standards of clinical care. Additionally, emerging evidence demonstrates that neuropathy affects a large proportion of people with undiagnosed diabetes and/or prediabetes, as well as those with obesity. Here we summarize the latest epidemiology of DN, recent findings regarding the pathophysiology of the disease, as well as current outcome measures for screening and diagnosis, in research and clinical settings. The authors discuss novel perspectives on the impact of social determinants of health in DN development and management, and the latest evidence on effective therapies, including pharmacological and nonpharmacological therapies for neuropathic pain. Throughout the publication, we identify knowledge gaps and the need for future funding to address these gaps, as well as needs to advocate for a personalized care approach to reduce the burden of DN and optimize quality of life for all affected individuals.
Collapse
Affiliation(s)
- Lynn Ang
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Kara Mizokami-Stout
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America; Ann Arbor Veteran Affairs Hospital, Ann Arbor, MI, United States of America
| | - Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Melissa Elafros
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Brian Callaghan
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
25
|
Elafros MA, Andersen H, Bennett DL, Savelieff MG, Viswanathan V, Callaghan BC, Feldman EL. Towards prevention of diabetic peripheral neuropathy: clinical presentation, pathogenesis, and new treatments. Lancet Neurol 2022; 21:922-936. [PMID: 36115364 PMCID: PMC10112836 DOI: 10.1016/s1474-4422(22)00188-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
Abstract
Diabetic peripheral neuropathy (DPN) occurs in up to half of individuals with type 1 or type 2 diabetes. DPN results from the distal-to-proximal loss of peripheral nerve function, leading to physical disability and sometimes pain, with the consequent lowering of quality of life. Early diagnosis improves clinical outcomes, but many patients still develop neuropathy. Hyperglycaemia is a risk factor and glycaemic control prevents DPN development in type 1 diabetes. However, glycaemic control has modest or no benefit in individuals with type 2 diabetes, probably because they usually have comorbidities. Among them, the metabolic syndrome is a major risk factor for DPN. The pathophysiology of DPN is complex, but mechanisms converge on a unifying theme of bioenergetic failure in the peripheral nerves due to their unique anatomy. Current clinical management focuses on controlling diabetes, the metabolic syndrome, and pain, but remains suboptimal for most patients. Thus, research is ongoing to improve early diagnosis and prognosis, to identify molecular mechanisms that could lead to therapeutic targets, and to investigate lifestyle interventions to improve clinical outcomes.
Collapse
Affiliation(s)
| | - Henning Andersen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | | | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof M Viswanathan Diabetes Research Centre, Royapuram, Chennai, India
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Lim JZM, Burgess J, Ooi CG, Ponirakis G, Malik RA, Wilding JPH, Alam U. The Peripheral Neuropathy Prevalence and Characteristics Are Comparable in People with Obesity and Long-Duration Type 1 Diabetes. Adv Ther 2022; 39:4218-4229. [PMID: 35867275 PMCID: PMC9402741 DOI: 10.1007/s12325-022-02208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Peripheral neuropathy is reported in obesity even in the absence of hyperglycaemia. OBJECTIVE To compare the prevalence and characterise the phenotype of peripheral neuropathy in people living with obesity (OB) and long-duration type 1 diabetes (T1D). PATIENTS AND METHODS We performed a prospective cross-sectional study of 130 participants including healthy volunteers (HV) (n = 28), people with T1D (n = 51), and OB (BMI 30-50 kg/m2) (n = 51). Participants underwent assessment of neuropathic symptoms (Neuropathy Symptom Profile, NSP), neurological deficits (Neuropathy Disability Score, NDS), vibration perception threshold (VPT) and evaluation of sural nerve conduction velocity and amplitude. RESULTS Peripheral neuropathy was present in 43.1% of people with T1D (age 49.9 ± 12.9 years; duration of diabetes 23.4 ± 13.5 years) and 33.3% of OB (age 48.2 ± 10.8 years). VPT for high risk of neuropathic foot ulceration (VPT ≥ 25 V) was present in 31.4% of T1D and 19.6% of OB. Participants living with OB were heavier (BMI 42.9 ± 3.5 kg/m2) and had greater centripetal adiposity with an increased body fat percentage (FM%) (P < 0.001) and waist circumference (WC) (P < 0.001) compared to T1D. The OB group had a higher NDS (P < 0.001), VAS for pain (P < 0.001), NSP (P < 0.001), VPT (P < 0.001) and reduced sural nerve conduction velocity (P < 0.001) and amplitude (P < 0.001) compared to HV, but these parameters were comparable in T1D. VPT was positively associated with increased WC (P = 0.011), FM% (P = 0.001) and HbA1c (P < 0.001) after adjusting for age (R2 = 0.547). Subgroup analysis of respiratory quotient (RQ) measured in the OB group did not correlate with VPT (P = 0.788), nerve conduction velocity (P = 0.743) or amplitude (P = 0.677). CONCLUSION The characteristics of peripheral neuropathy were comparable between normoglycaemic people living with obesity and people with long-duration T1D, suggesting that metabolic factors linked to obesity play a pivotal role in the development of peripheral neuropathy. Further studies are needed to investigate the mechanistic link between visceral adiposity and neuropathy.
Collapse
Affiliation(s)
- J Z M Lim
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Division of Diabetes and Endocrinology, Aintree University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - J Burgess
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - C G Ooi
- Division of Diabetes and Endocrinology, Aintree University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - G Ponirakis
- Division of Medicine, Qatar Foundation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - R A Malik
- Division of Medicine, Qatar Foundation, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - J P H Wilding
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Division of Diabetes and Endocrinology, Aintree University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Division of Diabetes and Endocrinology, Aintree University Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
- Department of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
27
|
Bonomo R, Kramer S, Aubert VM. Obesity-Associated Neuropathy: Recent Preclinical Studies and Proposed Mechanisms. Antioxid Redox Signal 2022; 37:597-612. [PMID: 35152780 PMCID: PMC9527047 DOI: 10.1089/ars.2021.0278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022]
Abstract
Significance: The prevalence of metabolic syndrome (MetS) and associated obesity has increased in recent years, affecting millions worldwide. One of the most common complications of obesity is damage to the peripheral nerve system, referred to as neuropathy. The lack of disease-modifying therapy for this complication is largely due to a poor understanding of the complex neurobiology underlying neuropathy. Recent preclinical studies suggest that in addition to glucotoxic events, other mechanisms, including lipid signaling, microbiome, or inflammation, may be viable targets to prevent nerve damage and neuropathic pain in obesity. Recent Advances: Clinical and preclinical studies using diet-induced obesity rodent models have identified novel interventions that improve neuropathy. Notably, mechanistic studies suggest that lipid, calcium signaling, and inflammation are converging pathways. Critical Issues: In this review, we focus on interventions and their mechanisms that are shown to ameliorate neuropathy in MetS obese models, including: (i) inhibition of a sensory neuron population, (ii), modification of dietary components, (iii) activation of nuclear and mitochondrial lipid pathways, (iv) exercise, and (v) modulation of gut microbiome composition and their metabolites. Future Directions: These past years, novel research increased our knowledge about neuropathy in obesity and discovered the involvement of nonglucose signaling. More studies are necessary to uncover the interplay between complex metabolic pathways in the peripheral nerve system of obese individuals. Further mechanistic studies in preclinical models and humans are crucial to create single- or multitarget interventions for this complex disease implying complex metabolic phenotyping. Antioxid. Redox Signal. 37, 597-612.
Collapse
Affiliation(s)
- Raiza Bonomo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Sarah Kramer
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Virginie M. Aubert
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
28
|
Rumora AE, Kim B, Feldman EL. A Role for Fatty Acids in Peripheral Neuropathy Associated with Type 2 Diabetes and Prediabetes. Antioxid Redox Signal 2022; 37:560-577. [PMID: 35152728 PMCID: PMC9499450 DOI: 10.1089/ars.2021.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Significance: As the global prevalence of diabetes rises, diabetic complications are also increasing at an alarming rate. Peripheral neuropathy (PN) is the most prevalent complication of diabetes and prediabetes, and is characterized by progressive sensory loss resulting from nerve damage. While hyperglycemia is the major risk factor for PN in type 1 diabetes (T1D), the metabolic syndrome (MetS) underlies the onset and progression of PN in type 2 diabetes (T2D) and prediabetes. Recent Advances: Recent reports show that dyslipidemia, a MetS component, is strongly associated with PN in T2D and prediabetes. Dyslipidemia is characterized by an abnormal plasma lipid profile with uncontrolled lipid levels, and both clinical and preclinical studies implicate a role for dietary fatty acids (FAs) in PN pathogenesis. Molecular studies further show that saturated and unsaturated FAs differentially regulate the nerve lipid profile and nerve function. Critical Issues: We first review the properties of FAs and the neuroanatomy of the peripheral nervous system (PNS). Second, we discuss clinical and preclinical studies that implicate the involvement of FAs in PN. Third, we summarize the potential effects of FAs on nerve function and lipid metabolism within the peripheral nerves, sensory neurons, and Schwann cells. Future Directions: Future directions will focus on identifying molecular pathways in T2D and prediabetes that are modulated by FAs in PN. Determining pathophysiological mechanisms that underlie the injurious effects of saturated FAs and beneficial properties of unsaturated FAs will provide mechanistic targets for developing new targeted therapies to treat PN associated with T2D and prediabetes. Antioxid. Redox Signal. 37, 560-577.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, Columbia University, New York, New York, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Rumora AE, Guo K, Hinder LM, O’Brien PD, Hayes JM, Hur J, Feldman EL. A High-Fat Diet Disrupts Nerve Lipids and Mitochondrial Function in Murine Models of Neuropathy. Front Physiol 2022; 13:921942. [PMID: 36072849 PMCID: PMC9441493 DOI: 10.3389/fphys.2022.921942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
As the prevalence of prediabetes and type 2 diabetes (T2D) continues to increase worldwide, accompanying complications are also on the rise. The most prevalent complication, peripheral neuropathy (PN), is a complex process which remains incompletely understood. Dyslipidemia is an emerging risk factor for PN in both prediabetes and T2D, suggesting that excess lipids damage peripheral nerves; however, the precise lipid changes that contribute to PN are unknown. To identify specific lipid changes associated with PN, we conducted an untargeted lipidomics analysis comparing the effect of high-fat diet (HFD) feeding on lipids in the plasma, liver, and peripheral nerve from three strains of mice (BL6, BTBR, and BKS). HFD feeding triggered distinct strain- and tissue-specific lipid changes, which correlated with PN in BL6 mice versus less robust murine models of metabolic dysfunction and PN (BTBR and BKS mice). The BL6 mice showed significant changes in neutral lipids, phospholipids, lysophospholipids, and plasmalogens within the nerve. Sphingomyelin (SM) and lysophosphatidylethanolamine (LPE) were two lipid species that were unique to HFD BL6 sciatic nerve compared to other strains (BTBR and BKS). Plasma and liver lipids were significantly altered in all murine strains fed a HFD independent of PN status, suggesting that nerve-specific lipid changes contribute to PN pathogenesis. Many of the identified lipids affect mitochondrial function and mitochondrial bioenergetics, which were significantly impaired in ex vivo sural nerve and dorsal root ganglion sensory neurons. Collectively, our data show that consuming a HFD dysregulates the nerve lipidome and mitochondrial function, which may contribute to PN in prediabetes.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, Columbia University, New York, NY, United States
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Phillipe D. O’Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Afshinnia F, Reynolds EL, Rajendiran TM, Soni T, Byun J, Savelieff MG, Looker HC, Nelson RG, Michailidis G, Callaghan BC, Pennathur S, Feldman EL. Serum lipidomic determinants of human diabetic neuropathy in type 2 diabetes. Ann Clin Transl Neurol 2022; 9:1392-1404. [PMID: 35923113 PMCID: PMC9463947 DOI: 10.1002/acn3.51639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The serum lipidomic profile associated with neuropathy in type 2 diabetes is not well understood. Obesity and dyslipidemia are known neuropathy risk factors, suggesting lipid profiles early during type 2 diabetes may identify individuals who develop neuropathy later in the disease course. This retrospective cohort study examined lipidomic profiles 10 years prior to type 2 diabetic neuropathy assessment. METHODS Participants comprised members of the Gila River Indian community with type 2 diabetes (n = 69) with available stored serum samples and neuropathy assessment 10 years later using the combined Michigan Neuropathy Screening Instrument (MNSI) examination and questionnaire scores. A combined MNSI index was calculated from examination and questionnaire scores. Serum lipids (435 species from 18 classes) were quantified by mass spectrometry. RESULTS The cohort included 17 males and 52 females with a mean age of 45 years (SD = 9 years). Participants were stratified as with (high MNSI index score > 2.5407) versus without neuropathy (low MNSI index score ≤ 2.5407). Significantly decreased medium-chain acylcarnitines and increased total free fatty acids, independent of chain length and saturation, in serum at baseline associated with incident peripheral neuropathy at follow-up, that is, participants had high MNSI index scores, independent of covariates. Participants with neuropathy also had decreased phosphatidylcholines and increased lysophosphatidylcholines at baseline, independent of chain length and saturation. The abundance of other lipid classes did not differ significantly by neuropathy status. INTERPRETATION Abundance differences in circulating acylcarnitines, free fatty acids, phosphatidylcholines, and lysophosphatidylcholines 10 years prior to neuropathy assessment are associated with neuropathy status in type 2 diabetes.
Collapse
Affiliation(s)
- Farsad Afshinnia
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA
| | - Evan L. Reynolds
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA,Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Thekkelnaycke M. Rajendiran
- University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA,Department of PathologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tanu Soni
- University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA
| | - Jaeman Byun
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Helen C. Looker
- Chronic Kidney Disease SectionNational Institute of Diabetes and Digestive and Kidney DiseasesPhoenixArizonaUSA
| | - Robert G. Nelson
- Chronic Kidney Disease SectionNational Institute of Diabetes and Digestive and Kidney DiseasesPhoenixArizonaUSA
| | - George Michailidis
- Department of Statistics and the Informatics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Brian C. Callaghan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA,Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Subramaniam Pennathur
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA,University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA,Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA,Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
31
|
Fatty Acids: A Safe Tool for Improving Neurodevelopmental Alterations in Down Syndrome? Nutrients 2022; 14:nu14142880. [PMID: 35889838 PMCID: PMC9323400 DOI: 10.3390/nu14142880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The triplication of chromosome 21 causes Down syndrome (DS), a genetic disorder that is characterized by intellectual disability (ID). The causes of ID start in utero, leading to impairments in neurogenesis, and continue into infancy, leading to impairments in dendritogenesis, spinogenesis, and connectivity. These defects are associated with alterations in mitochondrial and metabolic functions and precocious aging, leading to the early development of Alzheimer’s disease. Intense efforts are currently underway, taking advantage of DS mouse models to discover pharmacotherapies for the neurodevelopmental and cognitive deficits of DS. Many treatments that proved effective in mouse models may raise safety concerns over human use, especially at early life stages. Accumulating evidence shows that fatty acids, which are nutrients present in normal diets, exert numerous positive effects on the brain. Here, we review (i) the knowledge obtained from animal models regarding the effects of fatty acids on the brain, by focusing on alterations that are particularly prominent in DS, and (ii) the progress recently made in a DS mouse model, suggesting that fatty acids may indeed represent a useful treatment for DS. This scenario should prompt the scientific community to further explore the potential benefit of fatty acids for people with DS.
Collapse
|
32
|
Babetto E, Beirowski B. Of axons that struggle to make ends meet: Linking axonal bioenergetic failure to programmed axon degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148545. [PMID: 35339437 DOI: 10.1016/j.bbabio.2022.148545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta Babetto
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | - Bogdan Beirowski
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
33
|
Zhou T, Lee A, Lo ACY, Kwok JSWJ. Diabetic Corneal Neuropathy: Pathogenic Mechanisms and Therapeutic Strategies. Front Pharmacol 2022; 13:816062. [PMID: 35281903 PMCID: PMC8905431 DOI: 10.3389/fphar.2022.816062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus (DM) is a major global public health problem that can cause complications such as diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. Besides the reporting of reduction in corneal nerve density and decrease in corneal sensitivity in diabetic patients, there may be a subsequent result in delayed corneal wound healing and increased corneal infections. Despite being a potential cause of blindness, these corneal nerve changes have not gained enough attention. It has been proposed that corneal nerve changes may be an indicator for diabetic neuropathy, which can provide a window for early diagnosis and treatment. In this review, the authors aimed to give an overview of the relationship between corneal nerves and diabetic neuropathy as well as the underlying pathophysiological mechanisms of corneal nerve fiber changes caused by DM for improved prediction and prevention of diabetic neuropathy. In addition, the authors summarized current and novel therapeutic methods for delayed corneal wound healing, nerve protection and regeneration in the diabetic cornea.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Allie Lee
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jeremy Sze Wai John Kwok
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
34
|
Singleton JR, Foster-Palmer S, Marcus RL. Exercise as Treatment for Neuropathy in the Setting of Diabetes and Prediabetic Metabolic Syndrome: A Review of Animal Models and Human Trials. Curr Diabetes Rev 2022; 18:e230921196752. [PMID: 34561989 DOI: 10.2174/1573399817666210923125832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Peripheral neuropathy is among the most common complications of diabetes, but a phenotypically identical distal sensory predominant, painful axonopathy afflicts patients with prediabetic metabolic syndrome, exemplifying a spectrum of risk and continuity of pathogenesis. No pharmacological treatment convincingly improves neuropathy in the setting of metabolic syndrome, but evolving data suggest that exercise may be a promising alternative. OBJECTIVE The aim of the study was to review in depth the current literature regarding exercise treatment of metabolic syndrome neuropathy in humans and animal models, highlight the diverse mechanisms by which exercise exerts beneficial effects, and examine adherence limitations, safety aspects, modes and dose of exercise. RESULTS Rodent models that recapitulate the organismal milieu of prediabetic metabolic syndrome and the phenotype of its neuropathy provide a strong platform to dissect exercise effects on neuropathy pathogenesis. In these models, exercise reverses hyperglycemia and consequent oxidative and nitrosative stress, improves microvascular vasoreactivity, enhances axonal transport, ameliorates the lipotoxicity and inflammatory effects of hyperlipidemia and obesity, supports neuronal survival and regeneration following injury, and enhances mitochondrial bioenergetics at the distal axon. Prospective human studies are limited in scale but suggest exercise to improve cutaneous nerve regenerative capacity, neuropathic pain, and task-specific functional performance measures of gait and balance. Like other heath behavioral interventions, the benefits of exercise are limited by patient adherence. CONCLUSION Exercise is an integrative therapy that potently reduces cellular inflammatory state and improves distal axonal oxidative metabolism to ameliorate features of neuropathy in metabolic syndrome. The intensity of exercise need not improve cardinal features of metabolic syndrome, including weight, glucose control, to exert beneficial effects.
Collapse
Affiliation(s)
| | | | - Robin L Marcus
- Department Physical Therapy and Athletic Training, University of Utah, UT, United States
| |
Collapse
|
35
|
Callaghan BC, Reynolds EL, Banerjee M, Akinci G, Chant E, Villegas-Umana E, Rothberg AE, Burant CF, Feldman EL. Dietary weight loss in people with severe obesity stabilizes neuropathy and improves symptomatology. Obesity (Silver Spring) 2021; 29:2108-2118. [PMID: 34747574 PMCID: PMC8612943 DOI: 10.1002/oby.23246] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/05/2021] [Accepted: 05/30/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The aim of this study was to determine the effect of dietary weight loss on neuropathy outcomes in people with severe obesity. METHODS A prospective cohort study of participants attending a medical weight-management program was followed. Weight loss was achieved with meal replacement of 800 kcal/d for 12 weeks and then transitioning to 1,200 to 1,500 kcal/d. The coprimary outcomes were changes in intraepidermal nerve fiber density (IENFD) at the distal leg and proximal thigh. Secondary outcomes included nerve conduction studies, Michigan Neuropathy Screening Instrument questionnaire and exam, Quality of Life in Neurological Disorders, and quantitative sensory testing. RESULTS Among 131 baseline participants, 72 (mean [SD] age: 50.1 [10.5] years, 51.4% female) completed 2 years of follow-up. Participants lost 12.4 (11.8) kg. All metabolic syndrome components improved with the exception of blood pressure. IENFD in the distal leg (0.4 [3.3], p = 0.29), and proximal thigh (0.3 [6.3], p = 0.74) did not significantly change. Improvements were observed on the Michigan Neuropathy Screening Instrument questionnaire, two Quality of Life in Neurological Disorders subdomains, and quantitative sensory testing cold threshold. CONCLUSIONS Dietary weight loss was associated with improvements in all metabolic parameters except blood pressure, and both IENFD outcomes remained stable after 2 years. Given that natural history studies reveal decreases in IENFD over time, dietary weight loss may halt this progression, but randomized controlled trials are needed.
Collapse
Affiliation(s)
- Brian C Callaghan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Evan L Reynolds
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mousumi Banerjee
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Gulcin Akinci
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pediatric Neurology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey
| | - Ericka Chant
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Amy E Rothberg
- Division of Metabolism, Endocrinology, and Diabetes, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
Eid SA, Feldman EL. Advances in diet-induced rodent models of metabolically acquired peripheral neuropathy. Dis Model Mech 2021; 14:273425. [PMID: 34762126 PMCID: PMC8592018 DOI: 10.1242/dmm.049337] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peripheral neuropathy (PN) is a severe complication that affects over 30% of prediabetic and 60% of type 2 diabetic (T2D) patients. The metabolic syndrome is increasingly recognized as a major driver of PN. However, basic and translational research is needed to understand the mechanisms that contribute to nerve damage. Rodent models of diet-induced obesity, prediabetes, T2D and PN closely resemble the human disease and have proven to be instrumental for the study of PN mechanisms. In this Perspective article, we focus on the development, neurological characterization and dietary fat considerations of diet-induced rodent models of PN. We highlight the importance of investigating sex differences and discuss some of the challenges in translation from bench to bedside, including recapitulating the progressive nature of human PN and modeling neuropathic pain. We emphasize that future research should overcome these challenges in the quest to better mimic human PN in animal models.
Collapse
Affiliation(s)
- Stéphanie A Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Okdahl T, Brock C. Molecular Aspects in the Potential of Vitamins and Supplements for Treating Diabetic Neuropathy. Curr Diab Rep 2021; 21:31. [PMID: 34448953 PMCID: PMC8397661 DOI: 10.1007/s11892-021-01397-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW To discuss and provide evidence-based data on dietary supplements as part of treating diabetic neuropathy RECENT FINDINGS: Few randomized controlled trials are available, but some have shown beneficial efficacy of various dietary supplements on objective primary endpoints including nerve conduction velocities and axon potentials as well as subjective patient-reported outcomes. No medical cure for diabetic neuropathy exists, and prevention is therefore crucial. Tight glucose control slows the progression of nerve damage in diabetes, but an unmet clinical need for effective interventions is warranted. Consequently, a growing number of patients turn to dietary supplements proposed to possess neuroprotective properties. However, the postulated effects are often not evidence-based as they have not been tested scientifically. Taken together, this review will focus on dietary supplements investigated in clinical trials for their potential capabilities in targeting the molecular mechanisms involved in the underlying pathogenesis of diabetic neuropathy.
Collapse
Affiliation(s)
- Tina Okdahl
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital and Clinical Institute, Aalborg University, Mølleparkvej 4, 9000 Aalborg, Denmark
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital and Clinical Institute, Aalborg University, Mølleparkvej 4, 9000 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
38
|
Rajagopal R, Sylvester B, Zhang S, Adak S, Wei X, Bowers M, Jessberger S, Hsu FF, Semenkovich CF. Glucose-mediated de novo lipogenesis in photoreceptors drives early diabetic retinopathy. J Biol Chem 2021; 297:101104. [PMID: 34425110 PMCID: PMC8445899 DOI: 10.1016/j.jbc.2021.101104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
Diabetic retinopathy (DR) is an increasingly frequent cause of blindness across populations; however, the events that initiate pathophysiology of DR remain elusive. Strong preclinical and clinical evidence suggests that abnormalities in retinal lipid metabolism caused by diabetes may account for the origin of this disease. A major arm of lipid metabolism, de novo biosynthesis, is driven by elevation in available glucose, a common thread binding all forms of vision loss in diabetes. Therefore, we hypothesized that aberrant retinal lipid biogenesis is an important promoter of early DR. In murine models, we observed elevations of diabetes-associated retinal de novo lipogenesis ∼70% over control levels. This shift was primarily because of activation of fatty acid synthase (FAS), a rate-limiting enzyme in the biogenic pathway. Activation of FAS was driven by canonical glucose-mediated disinhibition of acetyl-CoA carboxylase, a major upstream regulatory enzyme. Mutant mice expressing gain-of-function FAS demonstrated increased vulnerability to DR, whereas those with FAS deletion in rod photoreceptors maintained preserved visual responses upon induction of diabetes. Excess retinal de novo lipogenesis—either because of diabetes or because of FAS gain of function—was associated with modestly increased levels of palmitate-containing phosphatidylcholine species in synaptic membranes, a finding with as yet uncertain significance. These findings implicate glucose-dependent increases in photoreceptor de novo lipogenesis in the early pathogenesis of DR, although the mechanism of deleterious action of this pathway remains unclear.
Collapse
Affiliation(s)
- Rithwick Rajagopal
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri, USA.
| | - Beau Sylvester
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sheng Zhang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Megan Bowers
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
39
|
Bodden C, Hannan AJ, Reichelt AC. Of 'junk food' and 'brain food': how parental diet influences offspring neurobiology and behaviour. Trends Endocrinol Metab 2021; 32:566-578. [PMID: 33941448 DOI: 10.1016/j.tem.2021.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
Unhealthy lifestyles and mental health problems are increasingly prevalent globally. Not only are 'junk food'-induced overweight and obesity risk factors for the development of brain disorders but they are also associated intergenerationally with ill health. Here, we reflect on the current knowledge of how maternal and paternal diet influences offspring brain development and behaviour, potentially predisposing children to mental health problems. Mounting evidence indicates diet-induced maternal and paternal programming of infant metabolism and neurobehavioural function, with potential downstream effects on mental health and resilience. Beyond the central nervous system (CNS), the microbiota-gut-brain axis has emerged as an important mediator of host physiology. We discuss how intergenerational seeding of the gut microbiome via parental lineage can influence offspring gut health and neurobiology.
Collapse
Affiliation(s)
- Carina Bodden
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amy C Reichelt
- Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
40
|
Rumora AE, Guo K, Alakwaa FM, Andersen ST, Reynolds EL, Jørgensen ME, Witte DR, Tankisi H, Charles M, Savelieff MG, Callaghan BC, Jensen TS, Feldman EL. Plasma lipid metabolites associate with diabetic polyneuropathy in a cohort with type 2 diabetes. Ann Clin Transl Neurol 2021; 8:1292-1307. [PMID: 33955722 PMCID: PMC8164865 DOI: 10.1002/acn3.51367] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The global rise in type 2 diabetes is associated with a concomitant increase in diabetic complications. Diabetic polyneuropathy is the most frequent type 2 diabetes complication and is associated with poor outcomes. The metabolic syndrome has emerged as a major risk factor for diabetic polyneuropathy; however, the metabolites associated with the metabolic syndrome that correlate with diabetic polyneuropathy are unknown. METHODS We conducted a global metabolomics analysis on plasma samples from a subcohort of participants from the Danish arm of Anglo-Danish-Dutch study of Intensive Treatment of Diabetes in Primary Care (ADDITION-Denmark) with and without diabetic polyneuropathy versus lean control participants. RESULTS Compared to lean controls, type 2 diabetes participants had significantly higher HbA1c (p = 0.0028), BMI (p = 0.0004), and waist circumference (p = 0.0001), but lower total cholesterol (p = 0.0001). Out of 991 total metabolites, we identified 15 plasma metabolites that differed in type 2 diabetes participants by diabetic polyneuropathy status, including metabolites belonging to energy, lipid, and xenobiotic pathways, among others. Additionally, these metabolites correlated with alterations in plasma lipid metabolites in type 2 diabetes participants based on neuropathy status. Further evaluating all plasma lipid metabolites identified a shift in abundance, chain length, and saturation of free fatty acids in type 2 diabetes participants. Importantly, the presence of diabetic polyneuropathy impacted the abundance of plasma complex lipids, including acylcarnitines and sphingolipids. INTERPRETATION Our explorative study suggests that diabetic polyneuropathy in type 2 diabetes is associated with novel alterations in plasma metabolites related to lipid metabolism.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Kai Guo
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
- Department of Biomedical SciencesUniversity of North DakotaGrand ForksNorth Dakota
| | - Fadhl M. Alakwaa
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | | | - Evan L. Reynolds
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Marit E. Jørgensen
- Steno Diabetes Center CopenhagenGentofteDenmark
- University of Southern DenmarkOdenseDenmark
| | - Daniel R. Witte
- Department of Public HealthAarhus UniversityAarhusDenmark
- Danish Diabetes AcademyOdenseDenmark
| | - Hatice Tankisi
- Department of Clinical NeurophysiologyAarhus UniversityAarhusDenmark
| | - Morten Charles
- Department of Public HealthAarhus UniversityAarhusDenmark
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Brian C. Callaghan
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Troels S. Jensen
- Danish Pain Research CenterDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
41
|
Sajic M, Rumora AE, Kanhai AA, Dentoni G, Varatharajah S, Casey C, Brown RDR, Peters F, Hinder LM, Savelieff MG, Feldman EL, Smith KJ. High Dietary Fat Consumption Impairs Axonal Mitochondrial Function In Vivo. J Neurosci 2021; 41:4321-4334. [PMID: 33785643 PMCID: PMC8143198 DOI: 10.1523/jneurosci.1852-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/11/2021] [Accepted: 03/15/2021] [Indexed: 01/25/2023] Open
Abstract
Peripheral neuropathy (PN) is the most common complication of prediabetes and diabetes. PN causes severe morbidity for Type 2 diabetes (T2D) and prediabetes patients, including limb pain followed by numbness resulting from peripheral nerve damage. PN in T2D and prediabetes is associated with dyslipidemia and elevated circulating lipids; however, the molecular mechanisms underlying PN development in prediabetes and T2D are unknown. Peripheral nerve sensory neurons rely on axonal mitochondria to provide energy for nerve impulse conduction under homeostatic conditions. Models of dyslipidemia in vitro demonstrate mitochondrial dysfunction in sensory neurons exposed to elevated levels of exogenous fatty acids. Herein, we evaluated the effect of dyslipidemia on mitochondrial function and dynamics in sensory axons of the saphenous nerve of a male high-fat diet (HFD)-fed murine model of prediabetes to identify mitochondrial alterations that correlate with PN pathogenesis in vivo We found that the HFD decreased mitochondrial membrane potential (MMP) in axonal mitochondria and reduced the ability of sensory neurons to conduct at physiological frequencies. Unlike mitochondria in control axons, which dissipated their MMP in response to increased impulse frequency (from 1 to 50 Hz), HFD mitochondria dissipated less MMP in response to axonal energy demand, suggesting a lack of reserve capacity. The HFD also decreased sensory axonal Ca2+ levels and increased mitochondrial lengthening and expression of PGC1α, a master regulator of mitochondrial biogenesis. Together, these results suggest that mitochondrial dysfunction underlies an imbalance of axonal energy and Ca2+ levels and impairs impulse conduction within the saphenous nerve in prediabetic PN.SIGNIFICANCE STATEMENT Diabetes and prediabetes are leading causes of peripheral neuropathy (PN) worldwide. PN has no cure, but development in diabetes and prediabetes is associated with dyslipidemia, including elevated levels of saturated fatty acids. Saturated fatty acids impair mitochondrial dynamics and function in cultured neurons, indicating a role for mitochondrial dysfunction in PN progression; however, the effect of elevated circulating fatty acids on the peripheral nervous system in vivo is unknown. In this study, we identify early pathogenic events in sensory nerve axons of mice with high-fat diet-induced PN, including alterations in mitochondrial function, axonal conduction, and intra-axonal calcium, that provide important insight into potential PN mechanisms associated with prediabetes and dyslipidemia in vivo.
Collapse
Affiliation(s)
- Marija Sajic
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anish A Kanhai
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Giacomo Dentoni
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Sharlini Varatharajah
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Caroline Casey
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Ryan D R Brown
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Fabian Peters
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan 48109
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
| |
Collapse
|
42
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
43
|
Wang X, Zhong Z, Chen X, Hong Z, Lin W, Mu X, Hu X, Zheng H. High-Fat Diets with Differential Fatty Acids Induce Obesity and Perturb Gut Microbiota in Honey Bee. Int J Mol Sci 2021; 22:ijms22020834. [PMID: 33467664 PMCID: PMC7830725 DOI: 10.3390/ijms22020834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
Abstract
HFD (high-fat diet) induces obesity and metabolic disorders, which is associated with the alteration in gut microbiota profiles. However, the underlying molecular mechanisms of the processes are poorly understood. In this study, we used the simple model organism honey bee to explore how different amounts and types of dietary fats affect the host metabolism and the gut microbiota. Excess dietary fat, especially palm oil, elicited higher weight gain, lower survival rates, hyperglycemic, and fat accumulation in honey bees. However, microbiota-free honey bees reared on high-fat diets did not significantly change their phenotypes. Different fatty acid compositions in palm and soybean oil altered the lipid profiles of the honey bee body. Remarkably, dietary fats regulated lipid metabolism and immune-related gene expression at the transcriptional level. Gene set enrichment analysis showed that biological processes, including transcription factors, insulin secretion, and Toll and Imd signaling pathways, were significantly different in the gut of bees on different dietary fats. Moreover, a high-fat diet increased the relative abundance of Gilliamella, while the level of Bartonella was significantly decreased in palm oil groups. This study establishes a novel honey bee model of studying the crosstalk between dietary fat, gut microbiota, and host metabolism.
Collapse
|
44
|
Kazamel M, Stino AM, Smith AG. Metabolic syndrome and peripheral neuropathy. Muscle Nerve 2020; 63:285-293. [PMID: 33098165 DOI: 10.1002/mus.27086] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/02/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
Diabetic peripheral neuropathy and metabolic syndrome (MetS) are both global health challenges with well-established diagnostic criteria and significant impacts on quality of life. Clinical observations, epidemiologic evidence, and animal models of disease have strongly suggested MetS is associated with an elevated risk for cryptogenic sensory peripheral neuropathy (CSPN). MetS neuropathy preferentially affects small unmyelinated axons early in its course, and it may also affect autonomic and large fibers. CSPN risk is linked to MetS and several of its components including obesity, dyslipidemia, and prediabetes. MetS also increases neuropathy risk in patients with established type 1 and type 2 diabetes. In this review we present animal data regarding the role of inflammation and dyslipidemia in MetS neuropathy pathogenesis. Several studies suggest exercise-based lifestyle modification is a promising treatment approach for MetS neuropathy.
Collapse
Affiliation(s)
- Mohamed Kazamel
- Division of Neuromuscular Medicine, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amro Maher Stino
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Albert Gordon Smith
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
45
|
Hossain MJ, Kendig MD, Wild BM, Issar T, Krishnan AV, Morris MJ, Arnold R. Evidence of Altered Peripheral Nerve Function in a Rodent Model of Diet-Induced Prediabetes. Biomedicines 2020; 8:biomedicines8090313. [PMID: 32872256 PMCID: PMC7555926 DOI: 10.3390/biomedicines8090313] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathy (PN) is a debilitating complication of diabetes that affects >50% of patients. Recent evidence suggests that obesity and metabolic disease, which often precede diabetes diagnosis, may influence PN onset and severity. We examined this in a translationally relevant model of prediabetes induced by a cafeteria (CAF) diet in Sprague–Dawley rats (n = 15 CAF versus n = 15 control). Neuropathy phenotyping included nerve conduction, tactile sensitivity, intraepidermal nerve fiber density (IENFD) and nerve excitability testing, an in vivo measure of ion channel function and membrane potential. Metabolic phenotyping included body composition, blood glucose and lipids, plasma hormones and inflammatory cytokines. After 13 weeks diet, CAF-fed rats demonstrated prediabetes with significantly elevated fasting blood glucose, insulin and impaired glucose tolerance as well as obesity and dyslipidemia. Nerve conduction, tactile sensitivity and IENFD did not differ; however, superexcitability was significantly increased in CAF-fed rats. Mathematical modeling demonstrated this was consistent with a reduction in sodium–potassium pump current. Moreover, superexcitability correlated positively with insulin resistance and adiposity, and negatively with fasting high-density lipoprotein cholesterol. In conclusion, prediabetic rats over-consuming processed, palatable foods demonstrated altered nerve function that preceded overt PN. This work provides a relevant model for pathophysiological investigation of diabetic complications.
Collapse
Affiliation(s)
- Md Jakir Hossain
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
| | - Michael D. Kendig
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
| | - Brandon M. Wild
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
| | - Tushar Issar
- Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (T.I.); (A.V.K.)
| | - Arun V. Krishnan
- Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (T.I.); (A.V.K.)
| | - Margaret J. Morris
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
| | - Ria Arnold
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; (M.J.H.); (M.D.K.); (B.M.W.); (M.J.M.)
- Correspondence: ; Tel.: +61-293858709
| |
Collapse
|
46
|
Gonçalves NP, Jager SE, Richner M, Murray SS, Mohseni S, Jensen TS, Vaegter CB. Schwann cell p75 neurotrophin receptor modulates small fiber degeneration in diabetic neuropathy. Glia 2020; 68:2725-2743. [PMID: 32658363 DOI: 10.1002/glia.23881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Diabetic neuropathy has an incidence as high as 50% of diabetic patients and is characterized by damage to neurons, Schwann cells and blood vessels within the peripheral nervous system. The low-affinity neurotrophin receptor p75 (p75NTR ), particularly expressed by the Schwann cells in the peripheral nerve, has previously been reported to play a role in developmental myelination and cell survival/death. Increased levels of p75NTR , in the endoneurium and plasma from diabetic patients and rodent models of disease, have been observed, proposing that this receptor might be involved in the pathogenesis of diabetic neuropathy. Therefore, in this study, we addressed this hypothesis by utilizing a mouse model of selective nerve growth factor receptor (Ngfr) deletion in Schwann cells (SC-p75NTR -KO). Electron microscopy of sciatic nerves from mice with high fat diet induced obesity demonstrated how loss of Schwann cell-p75NTR aggravated axonal atrophy and loss of C-fibers. RNA sequencing disclosed several pre-clinical signaling alterations in the diabetic peripheral nerves, dependent on Schwann cell p75NTR signaling, specially related with lysosome, phagosome, and immune pathways. Morphological and biochemical analyses identified abundant lysosomes and autophagosomes in the C-fiber axoplasm of the diabetic SC-p75NTR -KO nerves, which together with increased Cathepsin B protein levels corroborates gene upregulation from the phagolysosomal pathways. Altogether, this study demonstrates that Schwann cell p75NTR deficiency amplifies diabetic neuropathy disease by triggering overactivation of immune-related pathways and increased lysosomal stress.
Collapse
Affiliation(s)
- Nádia P Gonçalves
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, Aarhus N, Denmark
| | - Sara E Jager
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Mette Richner
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
| | - Simon S Murray
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Simin Mohseni
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Troels S Jensen
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, Aarhus N, Denmark.,Department of Neurology and Danish Pain Research Center, Aarhus University, Aarhus C, Denmark
| | - Christian B Vaegter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark.,International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
47
|
Stino AM, Rumora AE, Kim B, Feldman EL. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy. J Peripher Nerv Syst 2020; 25:76-84. [PMID: 32412144 PMCID: PMC7375363 DOI: 10.1111/jns.12387] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most widespread and disabling neurological conditions, accounting for half of all neuropathy cases worldwide. Despite its high prevalence, no approved disease modifying therapies exist. There is now a growing body of evidence that DPN secondary to type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) represents different disease processes, with T2DM DPN best understood within the context of metabolic syndrome rather than hyperglycemia. In this review, we highlight currently understood mechanisms of DPN, along with their corresponding potential therapeutic targets. We frame this discussion within a practical overview of how the field evolved from initial human observations to murine pathomechanistic and therapeutic models into ongoing and human clinical trials, with particular emphasis on T2DM DPN and metabolic syndrome.
Collapse
Affiliation(s)
- Amro Maher Stino
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
- Division of Neuromuscular Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Amy E. Rumora
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Eva L. Feldman
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
- Division of Neuromuscular Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| |
Collapse
|
48
|
Callaghan BC, Gallagher G, Fridman V, Feldman EL. Diabetic neuropathy: what does the future hold? Diabetologia 2020; 63:891-897. [PMID: 31974731 PMCID: PMC7150623 DOI: 10.1007/s00125-020-05085-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022]
Abstract
Frustratingly, disease-modifying treatments for diabetic neuropathy remain elusive. Glycaemic control has a robust effect on preventing neuropathy in individuals with type 1 but not in those with type 2 diabetes, which constitute the vast majority of patients. Encouragingly, recent evidence points to new metabolic risk factors and mechanisms, and thus also at novel disease-modifying strategies, which are desperately needed. Obesity has emerged as the second most important metabolic risk factor for neuropathy (diabetes being the first) from consensus findings of seven observational studies in populations across the world. Moreover, dyslipidaemia and altered sphingolipid metabolism are emergent novel mechanisms of nerve injury that may lead to new targeted therapies. Clinical history and examination remain critical components of an accurate diagnosis of neuropathy. However, skin biopsies and corneal confocal microscopy are promising newer tests that have been used as outcome measures in research studies but have not yet demonstrated clear clinical utility. Given the emergence of obesity as a neuropathy risk factor, exercise and weight loss are potential interventions to treat and/or prevent neuropathy, although evidence supporting exercise currently outweighs data supporting weight loss. Furthermore, a consensus has emerged advocating tricyclic antidepressants, serotonin-noradrenaline (norepinephrine) reuptake inhibitors and gabapentinoids for treating neuropathic pain. Out-of-pocket costs should be considered when prescribing these medications since their efficacy and tolerability are similar. Finally, the downsides of opioid treatment for chronic, non-cancer pain are becoming increasingly evident. Despite these data, current clinical practice frequently initiates and continues opioid prescriptions for patients with neuropathic pain before prescribing guideline-recommended treatments.
Collapse
Affiliation(s)
- Brian C Callaghan
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, 4021 BSRB, Ann Arbor, MI, 48104, USA
- Veterans Affairs Healthcare System, Ann Arbor, MI, USA
| | - Gary Gallagher
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, 4021 BSRB, Ann Arbor, MI, 48104, USA
| | - Vera Fridman
- Department of Neurology, University of Colorado, Denver, CO, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, 4021 BSRB, Ann Arbor, MI, 48104, USA.
| |
Collapse
|
49
|
Savelieff MG, Callaghan BC, Feldman EL. The emerging role of dyslipidemia in diabetic microvascular complications. Curr Opin Endocrinol Diabetes Obes 2020; 27:115-123. [PMID: 32073426 PMCID: PMC11533224 DOI: 10.1097/med.0000000000000533] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW To summarize recent advancements in our understanding of the impact of dyslipidemia on microvascular complications in type 2 diabetes (T2D), with an emphasis on peripheral neuropathy and nephropathy. RECENT FINDINGS Mounting evidence suggests that rigorous glycemic control only mitigates certain microvascular complications in T2D patients. Particularly, well regulated blood glucose levels only marginally improve peripheral neuropathy in the T2D setting. Dyslipidemia, an abnormal lipid profile, is emerging as a key factor in peripheral neuropathy. Furthermore, although glycemic control may prevent or slow nephropathy, recent developments demonstrate that dyslipidemia can also affect kidney outcomes in normoglycemic patients. Transcriptomic, epigenomic, and lipidomic investigations, as well as integrative approaches, are shedding light on potential pathomechanisms. These molecular studies are identifying possible targets for therapeutic intervention. Complementing molecular research, lifestyle interventions are on-going to assess whether dietary choices and/or exercise, weight-loss, or surgical interventions, such as bariatric surgery, can ameliorate peripheral neuropathy and nephropathy in T2D patients. SUMMARY Dyslipidemia is an emerging mechanism in microvascular complications in T2D. Elucidating the molecular pathomechanisms may pinpoint potential lipid-centric treatments. Interventional studies of dietary changes, exercise, or weight-loss surgery may also positively impact these highly prevalent and morbid complications.
Collapse
Affiliation(s)
- Masha G Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
50
|
Yue Y, Zhang Q, Wang J. Integrated Gas Chromatograph-Mass Spectrometry (GC/MS) and MS/MS-Based Molecular Networking Reveals the Analgesic and Anti-Inflammatory Phenotypes of the Sea Slater Ligia exotica. Mar Drugs 2019; 17:md17070395. [PMID: 31277424 PMCID: PMC6669569 DOI: 10.3390/md17070395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
The sea slater Ligia exotica is believed to have effects of reducing swelling and relieving pain in Chinese folk medicine. However, the scientific foundation of using the sea slater Ligia spp. as an analgesic and anti-inflammatory material remains elusive. In the present study, various organic extracts from sea slater L. exotica were subjected to biological screening employing in vitro and in vivo models, and chemical phenotypes of the biologically active extract were deciphered by integrated gas chromatograph-mass spectrometry (GC-MS) profiling and MS/MS-based molecular networking. The results demonstrated, for the first time, that petroleum ether extract (PE) from L. exotica possessed remarkable anti-inflammatory and analgesic effects. Moreover, intragastric administration of PE at 200 mg/kg produced analgesic effects in both the writhing test and hot plate test. GC-MS analysis revealed that Z-9-hexadecenoic acid and 6-octadecenoic acid dominated in the volatile compositions of PE. Molecular networking (MN) suggested great chemical diversity within L. exotica. In total, 69 known compounds were identified in Ligia extracts by MS/MS spectral matching, and at least 7 analogues from two clusters of nitrogen-containing compounds (MN3,4) were strongly suggested as novel compounds. The molecular families MN1,3,4 were almost exclusively detected in the biologically active PE and ethyl acetate extract (EE). Importantly, various known compounds identified in MN1 were reported to possess analgesic and anti-inflammatory effects in the literature, which may contribute to the observed analgesic and anti-inflammatory effects of L. exotica. The present study not only demonstrated the ethnopharmaceutical value of L. exotica for pain-relief in Chinese folk medicine, but also suggested that sea slaters may represent a promising source for discovery of novel analgesic and anti-inflammatory compounds in the near future.
Collapse
Affiliation(s)
- Yang Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Jing Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|