1
|
Strohman A, Isaac G, Payne B, Verdonk C, Khalsa SS, Legon W. Low-intensity focused ultrasound to the insula differentially modulates the heartbeat-evoked potential: A proof-of-concept study. Clin Neurophysiol 2024:S1388-2457(24)00265-7. [PMID: 39366795 DOI: 10.1016/j.clinph.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVE The heartbeat evoked potential (HEP) is a brain response time-locked to the heartbeat and a potential marker of interoceptive processing that may be generated in the insula and dorsal anterior cingulate cortex (dACC). Low-intensity focused ultrasound (LIFU) can selectively modulate sub-regions of the insula and dACC to better understand their contributions to the HEP. METHODS Healthy participants (n = 16) received stereotaxically targeted LIFU to the anterior insula (AI), posterior insula (PI), dACC, or Sham at rest during continuous electroencephalography (EEG) and electrocardiography (ECG) recording on separate days. Primary outcome was HEP amplitudes. Relationships between LIFU pressure and HEP changes and effects of LIFU on heart rate and heart rate variability (HRV) were also explored. RESULTS Relative to sham, LIFU to the PI, but not AI or dACC, decreased HEP amplitudes; PI effects were partially explained by increased LIFU pressure. LIFU did not affect heart rate or HRV. CONCLUSIONS These results demonstrate the ability to modulate HEP amplitudes via non-invasive targeting of key interoceptive brain regions. SIGNIFICANCE Our findings have implications for the causal role of these areas in bottom-up heart-brain communication that could guide future work investigating the HEP as a marker of interoceptive processing in healthy and clinical populations.
Collapse
Affiliation(s)
- Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA
| | - Gabriel Isaac
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
| | - Charles Verdonk
- Laureate Institute for Brain Research, Tulsa, OK, USA; VIFASOM (EA 7330 Vigilance Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris, France; French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Sahib S Khalsa
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA; Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016, USA; Department of Neurosurgery, Carilion Clinic, Roanoke, VA 24016, USA.
| |
Collapse
|
2
|
Lemos MD, Barbosa LM, Andrade DCD, Lucato LT. Contributions of neuroimaging in central poststroke pain: a review. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-11. [PMID: 39216489 DOI: 10.1055/s-0044-1789225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Central neuropathic poststroke pain (CNPSP) affects up to 12% of patients with stroke in general and up to 18% of patients with sensory deficits. This pain syndrome is often incapacitating and refractory to treatment. Brain computed tomography and magnetic resonance imaging (MRI) are widely used methods in the evaluation of CNPSP. OBJECTIVE The present study aims to review the role of neuroimaging methods in CNPSP. METHODS We performed a literature review of the main clinical aspects of CNPSP and the contribution of neuroimaging methods to study its pathophysiology, commonly damaged brain sites, and possible differential diagnoses. Lastly, we briefly mention how neuroimaging can contribute to the non-pharmacological CNPSP treatment. Additionally, we used a series of MRI from our institution to illustrate this review. RESULTS Imaging has been used to explain CNPSP pathogenesis based on spinothalamic pathway damage and connectome dysfunction. Imaging locations associated with CNPSP include the brainstem (mainly the dorsolateral medulla), thalamus (especially the ventral posterolateral/ventral posteromedial nuclei), cortical areas such as the posterior insula and the parietal operculum, and, more recently, the thalamocortical white matter in the posterior limb of the internal capsule. Imaging also brings the prospect of helping search for new targets for non-pharmacological treatments for CNPSP. Other neuropathic pain causes identified by imaging include syringomyelia, multiple sclerosis, and herniated intervertebral disc. CONCLUSION Imaging is a valuable tool in the complimentary evaluation of CNPSP patients in clinical and research scenarios.
Collapse
Affiliation(s)
- Marcelo Delboni Lemos
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, São Paulo SP, Brazil
| | - Luciana Mendonça Barbosa
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil
| | - Daniel Ciampi de Andrade
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil
| | - Leandro Tavares Lucato
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, São Paulo SP, Brazil
| |
Collapse
|
3
|
Hagiwara K. [Insular lobe epilepsy. Part 1: semiology]. Rinsho Shinkeigaku 2024; 64:527-539. [PMID: 39069491 DOI: 10.5692/clinicalneurol.cn-001930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The insula is often referred to as "the fifth lobe" of the brain, and its accessibility used to be very limited due to the deep location under the opercula as well as the sylvian vasculature. It was not until the availability of modern stereo-electroencephalography (SEEG) technique that the intracranial electrodes could be safely and chronically implanted within the insula, thereby enabling anatomo-electro-clinical correlations in seizures of this deep origin. Since the first report of SEEG-recorded insular seizures in late 1990s, the knowledge of insular lobe epilepsy (ILE) has rapidly expanded. Being on the frontline for the diagnosis and management of epilepsy, neurologists should have a precise understanding of ILE to differentiate it from epilepsies of other lobes or non-epileptic conditions. Owing to the multimodal nature and rich anatomo-functional connections of the insula, ILE has a wide range of clinical presentations. The following symptoms should heighten the suspicion of ILE: somatosensory symptoms involving a large/bilateral cutaneous territory or taking on thermal/painful character, and cervico-laryngeal discomfort. The latter ranges from slight dyspnea to a strong sensation of strangulation (laryngeal constriction). Other symptoms include epigastric discomfort/nausea, hypersalivation, auditory, vestibular, gustatory, and aphasic symptoms. However, most of these insulo-opercular symptoms can easily be masked by those of extra-insular seizure propagation. Indeed, sleep-related hyperkinetic (hypermotor) epilepsy (SHE) is a common clinical presentation of ILE, which shows predominant hyperkinetic and/or tonic-dystonic features that are often indistinguishable from those of fronto-mesial seizures. Subtle objective signs, such as constrictive throat noise (i.e., laryngeal constriction) or aversive behavior (e.g., facial grimacing suggesting pain), are often the sole clue in diagnosing insular SHE. Insular-origin seizures should also be considered in temporal-like seizures without frank anatomo-electro-clinical correlations. All in all, ILE is not the epilepsy of an isolated island but rather of a crucial hub involved in the multifaceted roles of the brain.
Collapse
|
4
|
Du Y, Lin SD, Wu XQ, Xue BY, Ding YL, Zhang JH, Tan B, Lou GD, Hu WW, Chen Z, Zhang SH. Ventral posteromedial nucleus of the thalamus gates the spread of trigeminal neuropathic pain. J Headache Pain 2024; 25:140. [PMID: 39192198 DOI: 10.1186/s10194-024-01849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Widespread neuropathic pain usually affects a wide range of body areas and inflicts huge suffering on patients. However, little is known about how it happens and effective therapeutic interventions are lacking. METHODS Widespread neuropathic pain was induced by partial infraorbital nerve transection (p-IONX) and evaluated by measuring nociceptive thresholds. In vivo/vitro electrophysiology were used to evaluate neuronal activity. Virus tracing strategies, combined with optogenetics and chemogenetics, were used to clarify the role of remodeling circuit in widespread neuropathic pain. RESULTS We found that in mice receiving p-IONX, along with pain sensitization spreading from the orofacial area to distal body parts, glutamatergic neurons in the ventral posteromedial nucleus of the thalamus (VPMGlu) were hyperactive and more responsive to stimulations applied to the hind paw or tail. Tracing experiments revealed that a remodeling was induced by p-IONX in the afferent circuitry of VPMGlu, notably evidenced by more projections from glutamatergic neurons in the dorsal column nuclei (DCNGlu). Moreover, VPMGlu receiving afferents from the DCN extended projections further to glutamatergic neurons in the posterior insular cortex (pIC). Selective inhibition of the terminals of DCNGlu in the VPM, the soma of VPMGlu or the terminals of VPMGlu in the pIC all alleviated trigeminal and widespread neuropathic pain. CONCLUSION These results demonstrate that hyperactive VPMGlu recruit new afferents from the DCN and relay the extra-cephalic input to the pIC after p-IONX, thus hold a key position in trigeminal neuropathic pain and its spreading. This study provides novel insights into the circuit mechanism and preclinical evidence for potential therapeutic targets of widespread neuropathic pain.
Collapse
Affiliation(s)
- Yu Du
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shi-Da Lin
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bao-Yu Xue
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi-La Ding
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jia-Hang Zhang
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guo-Dong Lou
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Wei-Wei Hu
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shi-Hong Zhang
- Department of Pharmacology, Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
5
|
In A, Strohman A, Payne B, Legon W. Low-intensity focused ultrasound to the posterior insula reduces temporal summation of pain. Brain Stimul 2024; 17:911-924. [PMID: 39089647 PMCID: PMC11452899 DOI: 10.1016/j.brs.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The insula and dorsal anterior cingulate cortex (dACC) are core brain regions involved in pain processing and central sensitization, a shared mechanism across various chronic pain conditions. Methods to modulate these regions may serve to reduce central sensitization, though it is unclear which target may be most efficacious for different measures of central sensitization. OBJECTIVE/HYPOTHESIS Investigate the effect of low-intensity focused ultrasound (LIFU) to the anterior insula (AI), posterior insula (PI), or dACC on conditioned pain modulation (CPM) and temporal summation of pain (TSP). METHODS N = 16 volunteers underwent TSP and CPM pain tasks pre/post a 10 min LIFU intervention to either the AI, PI, dACC or Sham stimulation. Pain ratings were collected pre/post LIFU. RESULTS Only LIFU to the PI significantly attenuated pain ratings during the TSP protocol. No effects were found for the CPM task for any of the LIFU targets. LIFU pressure modulated group means but did not affect overall group differences. CONCLUSIONS LIFU to the PI reduced temporal summation of pain. This may, in part, be due to dosing (pressure) of LIFU. Inhibition of the PI with LIFU may be a future potential therapy in chronic pain populations demonstrating central sensitization. The minimal effective dose of LIFU for efficacious neuromodulation will help to translate LIFU for therapeutic options.
Collapse
Affiliation(s)
- Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA; Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA.
| |
Collapse
|
6
|
Legon W, Strohman A, In A, Payne B. Noninvasive neuromodulation of subregions of the human insula differentially affect pain processing and heart-rate variability: a within-subjects pseudo-randomized trial. Pain 2024; 165:1625-1641. [PMID: 38314779 PMCID: PMC11189760 DOI: 10.1097/j.pain.0000000000003171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 02/07/2024]
Abstract
ABSTRACT The insula is an intriguing target for pain modulation. Unfortunately, it lies deep to the cortex making spatially specific noninvasive access difficult. Here, we leverage the high spatial resolution and deep penetration depth of low-intensity focused ultrasound (LIFU) to nonsurgically modulate the anterior insula (AI) or posterior insula (PI) in humans for effect on subjective pain ratings, electroencephalographic (EEG) contact heat-evoked potentials, as well as autonomic measures including heart-rate variability (HRV). In a within-subjects, repeated-measures, pseudo-randomized trial design, 23 healthy volunteers received brief noxious heat pain stimuli to the dorsum of their right hand during continuous heart-rate, electrodermal, electrocardiography and EEG recording. Low-intensity focused ultrasound was delivered to the AI (anterior short gyrus), PI (posterior longus gyrus), or under an inert Sham condition. The primary outcome measure was pain rating. Low-intensity focused ultrasound to both AI and PI similarly reduced pain ratings but had differential effects on EEG activity. Low-intensity focused ultrasound to PI affected earlier EEG amplitudes, whereas LIFU to AI affected later EEG amplitudes. Only LIFU to the AI affected HRV as indexed by an increase in SD of N-N intervals and mean HRV low-frequency power. Taken together, LIFU is an effective noninvasive method to individually target subregions of the insula in humans for site-specific effects on brain biomarkers of pain processing and autonomic reactivity that translates to reduced perceived pain to a transient heat stimulus.
Collapse
Affiliation(s)
- Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Andrew Strohman
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| |
Collapse
|
7
|
Yu Q, Kong Z, Zou L, Herold F, Ludyga S, Zhang Z, Hou M, Kramer AF, Erickson KI, Taubert M, Hillman CH, Mullen SP, Gerber M, Müller NG, Kamijo K, Ishihara T, Schinke R, Cheval B, McMorris T, Wong KK, Shi Q, Nie J. Imaging body-mind crosstalk in young adults. Int J Clin Health Psychol 2024; 24:100498. [PMID: 39290876 PMCID: PMC11407095 DOI: 10.1016/j.ijchp.2024.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Objective There is evidence that complex relationships exist between motor functions, brain structure, and cognitive functions, particularly in the aging population. However, whether such relationships observed in older adults could extend to other age groups (e.g., younger adults) remains to be elucidated. Thus, the current study addressed this gap in the literature by investigating potential associations between motor functions, brain structure, and cognitive functions in a large cohort of young adults. Methods In the current study, data from 910 participants (22-35 yr) were retrieved from the Human Connectome Project. Interactions between motor functions (i.e., cardiorespiratory fitness, gait speed, hand dexterity, and handgrip strength), brain structure (i.e., cortical thickness, surface area, and subcortical volumes), and cognitive functions were examined using linear mixed-effects models and mediation analyses. The performance of different machine-learning classifiers to discriminate young adults at three different levels (related to each motor function) was compared. Results Cardiorespiratory fitness and hand dexterity were positively associated with fluid and crystallized intelligence in young adults, whereas gait speed and handgrip strength were correlated with specific measures of fluid intelligence (e.g., inhibitory control, flexibility, sustained attention, and spatial orientation; false discovery rate [FDR] corrected, p < 0.05). The relationships between cardiorespiratory fitness and domains of cognitive function were mediated by surface area and cortical volume in regions involved in the default mode, sensorimotor, and limbic networks (FDR corrected, p < 0.05). Associations between handgrip strength and fluid intelligence were mediated by surface area and volume in regions involved in the salience and limbic networks (FDR corrected, p < 0.05). Four machine-learning classifiers with feature importance ranking were built to discriminate young adults with different levels of cardiorespiratory fitness (random forest), gait speed, hand dexterity (support vector machine with the radial kernel), and handgrip strength (artificial neural network). Conclusions In summary, similar to observations in older adults, the current study provides empirical evidence (i) that motor functions in young adults are positively related to specific measures of cognitive functions, and (ii) that such relationships are at least partially mediated by distinct brain structures. Furthermore, our analyses suggest that machine-learning classifier has a promising potential to be used as a classification tool and decision support for identifying populations with below-average motor and cognitive functions.
Collapse
Affiliation(s)
- Qian Yu
- Faculty of Education, University of Macau, Macao, 999078, China
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, 999078, China
| | - Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Fabian Herold
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, 14476, Germany
| | - Sebastian Ludyga
- Department of Sport, Exercise and Health, Sport Science Section, University of Basel, Grosse Allee 6, Basel, CH, 4052, Switzerland
| | - Zhihao Zhang
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Meijun Hou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Arthur F Kramer
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, 02115, USA
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Kirk I Erickson
- AdventHealth Research Institute, Neuroscience, Orlando, FL, 32101, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Marco Taubert
- Department Sport Science, Institute III, Faculty for Humanities, Center for Behavioral and Brain Sciences, Otto von Guericke University, Magdeburg, 39106, Germany
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, 02115, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Sean P Mullen
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois, Urbana, Champaign, 61820, USA
| | - Markus Gerber
- Department of Sport, Exercise and Health, Sport Science Section, University of Basel, Grosse Allee 6, Basel, CH, 4052, Switzerland
| | - Notger G Müller
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, 14476, Germany
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya, 466-8666, Japan
| | - Toru Ishihara
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan
| | - Robert Schinke
- School of Kinesiology and Health Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, Geneva CH-12114, Switzerland
- Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva CH-12114, Switzerland
| | - Terry McMorris
- Department Sport and Exercise Science, Institute for Sport, University of Chichester, College Lane, West Sussex, Chichester, PO19 6PE, United Kingdom
| | - Ka Kit Wong
- Faculty of Education, University of Macau, Macao, 999078, China
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, 999078, Macao, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, 999078, Macao, China
| |
Collapse
|
8
|
Meylakh N, Crawford LS, Mills EP, Macefield VG, Vickers ER, Macey PM, Keay KA, Henderson LA. Altered Corticobrainstem Connectivity during Spontaneous Fluctuations in Pain Intensity in Painful Trigeminal Neuropathy. eNeuro 2024; 11:ENEURO.0522-23.2024. [PMID: 38997145 PMCID: PMC11277291 DOI: 10.1523/eneuro.0522-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
Chronic neuropathic pain can result from nervous system injury and can persist in the absence of external stimuli. Although ongoing pain characterizes the disorder, in many individuals, the intensity of this ongoing pain fluctuates dramatically. Previously, it was identified that functional magnetic resonance imaging signal covariations between the midbrain periaqueductal gray (PAG) matter, rostral ventromedial medulla (RVM), and spinal trigeminal nucleus are associated with moment-to-moment fluctuations in pain intensity in individuals with painful trigeminal neuropathy (PTN). Since this brainstem circuit is modulated by higher brain input, we sought to determine which cortical sites might be influencing this brainstem network during spontaneous fluctuations in pain intensity. Over 12 min, we recorded the ongoing pain intensity in 24 PTN participants and classified them as fluctuating (n = 13) or stable (n = 11). Using a PAG seed, we identified connections between the PAG and emotional-affective sites such as the hippocampal and posterior cingulate cortices, the sensory-discriminative posterior insula, and cognitive-affective sites such as the dorsolateral prefrontal (dlPFC) and subgenual anterior cingulate cortices that were altered dependent on spontaneous high and low pain intensity. Additionally, sliding-window functional connectivity analysis revealed that the dlPFC-PAG connection anticorrelated with perceived pain intensity over the entire 12 min period. These findings reveal cortical systems underlying moment-to-moment changes in perceived pain in PTN, which likely cause dysregulation in the brainstem circuits previously identified, and consequently alter the appraisal of pain across time.
Collapse
Affiliation(s)
- Noemi Meylakh
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Lewis S Crawford
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Emily P Mills
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Vaughan G Macefield
- Department of Neuroscience, Monash University, Melbourne, Victoria 3800, Australia
| | - E Russell Vickers
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Paul M Macey
- UCLA School of Nursing and Brain Research Institute, University of California, Los Angeles, California 90095
| | - Kevin A Keay
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2050, Australia
| |
Collapse
|
9
|
Chan HH, Mathews ND, Khanna H, Mandava N, Hogue O, Machado AG, Baker KB. The role of dorsolateral striatum in the effects of deep cerebellar stimulation-mediated motor recovery following ischemic stroke in rodents. Exp Neurol 2024; 376:114751. [PMID: 38484864 DOI: 10.1016/j.expneurol.2024.114751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/18/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Despite great advances in acute care and rehabilitation, stroke remains the leading cause of motor impairment in the industrialized world. We have developed a deep brain stimulation (DBS)-based approach for post-stroke rehabilitation that has shown reproducible effects in rodent models and has been recently translated to humans. Mechanisms underlying the rehabilitative effects of this novel therapy have been largely focused on the ipsilesional cortex, including cortical reorganization, synaptogenesis, neurogenesis and greater expression of markers of long-term potentiation. The role of subcortical structures on its therapeutic benefits, particularly the striatum, remain unclear. In this study, we compared the motor rehabilitative effects of deep cerebellar stimulation in two rodent models of cerebral ischemia: a) cortical ischemia; and b) combined striatal and cortical ischemia. All animals underwent the same procedures, including implantation of the electrodes and tethered connections for stimulation. Both experimental groups received four weeks of continuous lateral cerebellar nucleus (LCN) DBS and each was paired with a no stimulation, sham, group. Fine motor function was indexed using the pasta matrix task. Brain tissue was harvested for histology and immunohistochemical analyses. In the cortical-only ischemia, the average pasta matrix performance of both sham and stimulated groups reduced from 19 to 24 pieces to 7-8 pieces following the stroke induction. At the end of the four-week treatment, the performance of stimulated group was significantly greater than that of sham group (14 pieces vs 7 pieces, p < 0.0001). Similarly, in the combined cortical and striatal ischemia, the performance of both sham and stimulated groups reduced from 29 to 30 pieces to 7-11 pieces following the stroke induction. However, at the end of the four-week treatment, the performance of stimulated group was not significantly greater than that of sham group (15 pieces vs 11 pieces, p = 0.452). In the post-mortem analysis, the number of cells expressing CaMKIIα at the perilesional cortical and striatum of the LCN DBS treated animals receiving cortical-only stroke elevated but not those receiving cortical+striatal stroke. The current findings suggested that the observed, LCN DBS-enhanced motor recovery and perilesional plasticity may involve striatal mechanisms.
Collapse
Affiliation(s)
- Hugh H Chan
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Nicole D Mathews
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Hemen Khanna
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Nymisha Mandava
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Andre G Machado
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Neurological Institute, Cleveland Clinic, USA
| | - Kenneth B Baker
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Neurological Institute, Cleveland Clinic, USA.
| |
Collapse
|
10
|
Adamic EM, Teed AR, Avery JA, de la Cruz F, Khalsa SS. Hemispheric divergence of interoceptive processing across psychiatric disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.08.570759. [PMID: 38105986 PMCID: PMC10723463 DOI: 10.1101/2023.12.08.570759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals, whereas during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e., when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Further, the dysgranular mid-insula may indeed be a "locus of disruption" for psychiatric disorders.
Collapse
Affiliation(s)
- Emily M Adamic
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
- Department of Biological Sciences, University of Tulsa, Tulsa, OK, USA, 74104
| | - Adam R Teed
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
| | - Jason A Avery
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA, 20814
| | - Feliberto de la Cruz
- Laboratory for Autonomic Neuroscience, Imaging, and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Thuringia, Germany, 07743
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA, 74136
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA, 74119
| |
Collapse
|
11
|
Wu H, Dai W, Hong Z, Qin Y, Yang M, Wang B, Liao J. Higher-order sensorimotor circuit of the whole-brain functional network involved in pruritus regulation in atopic dermatitis. J Eur Acad Dermatol Venereol 2024; 38:873-882. [PMID: 38069553 DOI: 10.1111/jdv.19691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/09/2023] [Indexed: 04/26/2024]
Abstract
BACKGROUND Little is known about the neural mechanisms underlying pruritus regulation in Atopic dermatitis (AD). OBJECTIVE To investigate the functional changes of the resting-state whole brain network of AD participants and the mechanisms by which they were involved in pruritus regulation. METHOD Based on the functional magnetic resonance imaging data from 19 AD participants and 37 healthy controls (HC), a graph-theoretical measure of degree centrality (DC) conjoined with a voxel-level seed-based functional connectivity (FC) method was used to identify abnormal higher-order nodes and the functionally relevant circuit in AD participants compared to healthy controls (HC). RESULTS Of 64 participants screened, 19 AD participants (12M/7F, median [IQR] age, 27 [14] years) and 36 HCs (13M/23F, median [IQR] age, 20 [1] years) were enrolled. DC values of the left superior frontal gyrus (LSFG) increased in AD participants and exhibited a negative correlation with the SCORAD score (r = -0.561, p = 0.012) compared with HC. In the FC analysis with LSFG as the seed, FC values of several sensory and motor regions increased in AD participants, highly overlapping with the anatomical distribution of the inferior fronto-occipital fascicle (IFOF). AD participants with severe pruritus exhibited lower levels of DC (T = -2.316, p = 0.033) and FC between the LSFG and left insula (T = -2.203, p = 0.042) than those with mild-to- moderate pruritus. CONCLUSIONS AND RELEVANCE LSFG was involved in pruritus regulation in AD by forming a high-order sensorimotor circuit through the IFOF, a white matter fascicle that proved to provide multimodal integration in motor control and sensory information processing. These results offer more mechanism-guided treatment targets for severe pruritus in AD.
Collapse
Affiliation(s)
- Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhaoyi Hong
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Yue Qin
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bolun Wang
- Scientific Research Program of Hunan Provincial Health Commission, Department of Radiology, Clinical Research Center for Medical Imaging in Hunan Province, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jieyue Liao
- Department of Dermatology, Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Kittleson AR, Woodward ND, Heckers S, Sheffield JM. The insula: Leveraging cellular and systems-level research to better understand its roles in health and schizophrenia. Neurosci Biobehav Rev 2024; 160:105643. [PMID: 38531518 DOI: 10.1016/j.neubiorev.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Schizophrenia is a highly heterogeneous disorder characterized by a multitude of complex and seemingly non-overlapping symptoms. The insular cortex has gained increasing attention in neuroscience and psychiatry due to its involvement in a diverse range of fundamental human experiences and behaviors. This review article provides an overview of the insula's cellular and anatomical organization, functional and structural connectivity, and functional significance. Focusing on specific insula subregions and using knowledge gained from humans and preclinical studies of insular tracings in non-human primates, we review the literature and discuss the functional roles of each subregion, including in somatosensation, interoception, salience processing, emotional processing, and social cognition. Building from this foundation, we then extend these findings to discuss reported abnormalities of these functions in individuals with schizophrenia, implicating insular involvement in schizophrenia pathology. This review underscores the insula's vast role in the human experience and how abnormal insula structure and function could result in the wide-ranging symptoms observed in schizophrenia.
Collapse
Affiliation(s)
- Andrew R Kittleson
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37235, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
13
|
Toussaint B, Heinzle J, Stephan KE. A computationally informed distinction of interoception and exteroception. Neurosci Biobehav Rev 2024; 159:105608. [PMID: 38432449 DOI: 10.1016/j.neubiorev.2024.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
While interoception is of major neuroscientific interest, its precise definition and delineation from exteroception continue to be debated. Here, we propose a functional distinction between interoception and exteroception based on computational concepts of sensor-effector loops. Under this view, the classification of sensory inputs as serving interoception or exteroception depends on the sensor-effector loop they feed into, for the control of either bodily (physiological and biochemical) or environmental states. We explain the utility of this perspective by examining the perception of skin temperature, one of the most challenging cases for distinguishing between interoception and exteroception. Specifically, we propose conceptualising thermoception as inference about the thermal state of the body (including the skin), which is directly coupled to thermoregulatory processes. This functional view emphasises the coupling to regulation (control) as a defining property of perception (inference) and connects the definition of interoception to contemporary computational theories of brain-body interactions.
Collapse
Affiliation(s)
- Birte Toussaint
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| | - Jakob Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland; Max Planck Institute for Metabolism Research, Cologne, Germany
| |
Collapse
|
14
|
Chen H, Bleimeister IH, Nguyen EK, Li J, Cui AY, Stratton HJ, Smith KM, Baccei ML, Ross SE. The functional and anatomical characterization of three spinal output pathways of the anterolateral tract. Cell Rep 2024; 43:113829. [PMID: 38421871 PMCID: PMC11025583 DOI: 10.1016/j.celrep.2024.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
The nature of spinal output pathways that convey nociceptive information to the brain has been the subject of controversy. Here, we provide anatomical, molecular, and functional characterizations of two distinct anterolateral pathways: one, ascending in the lateral spinal cord, triggers nociceptive behaviors, and the other one, ascending in the ventral spinal cord, when inhibited, leads to sensorimotor deficits. Moreover, the lateral pathway consists of at least two subtypes. The first is a contralateral pathway that extends to the periaqueductal gray (PAG) and thalamus; the second is a bilateral pathway that projects to the bilateral parabrachial nucleus (PBN). Finally, we present evidence showing that activation of the contralateral pathway is sufficient for defensive behaviors such as running and freezing, whereas the bilateral pathway is sufficient for attending behaviors such as licking and guarding. This work offers insight into the complex organizational logic of the anterolateral system in the mouse.
Collapse
Affiliation(s)
- Haichao Chen
- Tsinghua Medicine, Tsinghua University, Beijing 100084, China; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Isabel H Bleimeister
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eileen K Nguyen
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Abby Yilin Cui
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Harrison J Stratton
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kelly M Smith
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mark L Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Sarah E Ross
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
15
|
Strohman A, Isaac G, Payne B, Verdonk C, Khalsa SS, Legon W. Low-intensity focused ultrasound to the human insular cortex differentially modulates the heartbeat-evoked potential: a proof-of-concept study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584152. [PMID: 38559271 PMCID: PMC10979877 DOI: 10.1101/2024.03.08.584152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The heartbeat evoked potential (HEP) is a brain response time-locked to the heartbeat and a potential marker of interoceptive processing. The insula and dorsal anterior cingulate cortex (dACC) are brain regions that may be involved in generating the HEP. Low-intensity focused ultrasound (LIFU) is a non-invasive neuromodulation technique that can selectively target sub-regions of the insula and dACC to better understand their contributions to the HEP. Objective Proof-of-concept study to determine whether LIFU modulation of the anterior insula (AI), posterior insula (PI), and dACC influences the HEP. Methods In a within-subject, repeated-measures design, healthy human participants (n=16) received 10 minutes of stereotaxically targeted LIFU to the AI, PI, dACC or Sham at rest during continuous electroencephalography (EEG) and electrocardiography (ECG) recording on separate days. Primary outcome was change in HEP amplitudes. Relationships between LIFU pressure and HEP changes were examined using linear mixed modelling. Peripheral indices of visceromotor output including heart rate and heart rate variability (HRV) were explored between conditions. Results Relative to sham, LIFU to the PI, but not AI or dACC, decreased HEP amplitudes; this was partially explained by increased LIFU pressure. LIFU did not affect time or frequency dependent measures of HRV. Conclusions These results demonstrate the ability to modulate HEP amplitudes via non-invasive targeting of key interoceptive brain regions. Our findings have implications for the causal role of these areas in bottom-up heart-brain communication that could guide future work investigating the HEP as a marker of interoceptive processing in healthy and clinical populations.
Collapse
Affiliation(s)
- Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Gabriel Isaac
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Charles Verdonk
- Laureate Institute for Brain Research, Tulsa, OK, USA
- VIFASOM (EA 7330 Vigilance Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris, France
- French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
- Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA
| |
Collapse
|
16
|
Kadakia F, Khadka A, Yazell J, Davidson S. Chemogenetic Modulation of Posterior Insula CaMKIIa Neurons Alters Pain and Thermoregulation. THE JOURNAL OF PAIN 2024; 25:766-780. [PMID: 37832899 PMCID: PMC10922377 DOI: 10.1016/j.jpain.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
The posterior insular cortex (PIC) is well positioned to perform somatosensory-limbic integration; yet, the function of neuronal subsets within the PIC in processing the sensory and affective dimensions of pain remains unclear. Here, we employ bidirectional chemogenetic modulation to characterize the function of PIC CaMKIIa-expressing excitatory neurons in a comprehensive array of sensory, affective, and thermoregulatory behaviors. Excitatory pyramidal neurons in the PIC were found to be sensitized under inflammatory pain conditions. Chemogenetic activation of excitatory CaMKIIa-expressing PIC neurons in non-injured conditions produced an increase in reflexive and affective pain- and anxiety-like behaviors. Moreover, activation of PIC CaMKIIa-expressing neurons during inflammatory pain conditions exacerbated hyperalgesia and decreased pain tolerance. However, Chemogenetic activation did not alter heat nociception via hot plate latency or body temperature. Conversely, inhibiting CaMKIIa-expressing neurons did not alter either sensory or affective pain-like behaviors in non-injured or under inflammatory pain conditions, but it did decrease body temperature and decreased hot plate latency. Our findings reveal that PIC CaMKIIa-expressing neurons are a critical hub for producing both sensory and affective pain-like behaviors and important for thermoregulatory processing. PERSPECTIVE: The present study reveals that activation of the posterior insula produces hyperalgesia and negative affect, and has a role in thermal tolerance and thermoregulation. These findings highlight the insula as a key player in contributing to the multidimensionality of pain.
Collapse
Affiliation(s)
- Feni Kadakia
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Akansha Khadka
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Jake Yazell
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Steve Davidson
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Anesthesiology and Pain Research Center, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
17
|
Mandonnet V, Obaid S, Descoteaux M, St-Onge E, Devaux B, Levé C, Froelich S, Rheault F, Mandonnet E. Electrostimulation of the white matter of the posterior insula and medial operculum: perception of vibrations, heat, and pain. Pain 2024; 165:565-572. [PMID: 37862047 DOI: 10.1097/j.pain.0000000000003069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/02/2023] [Indexed: 10/21/2023]
Abstract
ABSTRACT This study aimed to characterize the sensory responses observed when electrically stimulating the white matter surrounding the posterior insula and medial operculum (PIMO). We reviewed patients operated on under awake conditions for a glioma located in the temporoparietal junction. Patients' perceptions were retrieved from operative reports. Stimulation points were registered in the Montreal Neurological Institute template. A total of 12 stimulation points in 8 patients were analyzed. Painful sensations in the contralateral leg were reported (5 sites in 5 patients) when stimulating the white matter close to the parcel OP2/3 of the Glasser atlas. Pain had diverse qualities: burning, tingling, crushing, or electric shock. More laterally, in the white matter of OP1, pain and heat sensations in the upper part of the body were described (5 sites in 2 patients). Intermingled with these sites, vibration sensations were also reported (3 sites in 2 patients). Based on the tractograms of 44 subjects from the Human Connectome Project data set, we built a template of the pathways linking the thalamus to OP2/3 and OP1. Pain sites were located in the thalamo-OP2/3 and thalamo-OP1 tracts. Heat sites were located in the thalamo-OP1 tract. In the 227 awake surgeries performed for a tumor located outside of the PIMO region, no patients ever reported pain or heat sensations when stimulating the white matter. Thus, we propose that the thalamo-PIMO connections constitute the main cortical inputs for nociception and thermoception and emphasize that preserving these fibers is of utmost importance to prevent the postoperative onset of a debilitating insulo-opercular pain syndrome.
Collapse
Affiliation(s)
- Valéry Mandonnet
- Frontlab, Paris Brain Institute, CNRS UMR 7225, INSERM U1127, Paris, France
- Department of Neurosurgery, Lariboisière Hospital, Paris, France
- Université de Paris Cité, Paris, France
| | - Sami Obaid
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- Neuroscience Research Axis, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Department of Computer Science, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Imeka Solutions, Sherbrooke, QC, Canada
| | - Etienne St-Onge
- Neuroimaging and Surgical Technologies Laboratory (NIST), Montreal Neurological Institute (MNI), Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Computer Science and Engineering, Université du Québec en Outaouais, Saint-Jérôme, QC, Canada
| | - Bertrand Devaux
- Department of Neurosurgery, Lariboisière Hospital, Paris, France
- Université de Paris Cité, Paris, France
| | - Charlotte Levé
- Department of Anesthesiology, Lariboisière Hospital, Paris, France
| | - Sébastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, Paris, France
- Université de Paris Cité, Paris, France
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab, Department of Computer Science, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmanuel Mandonnet
- Frontlab, Paris Brain Institute, CNRS UMR 7225, INSERM U1127, Paris, France
- Department of Neurosurgery, Lariboisière Hospital, Paris, France
- Université de Paris Cité, Paris, France
| |
Collapse
|
18
|
Strohman A, Payne B, In A, Stebbins K, Legon W. Low-Intensity Focused Ultrasound to the Human Dorsal Anterior Cingulate Attenuates Acute Pain Perception and Autonomic Responses. J Neurosci 2024; 44:e1011232023. [PMID: 38182418 PMCID: PMC10883612 DOI: 10.1523/jneurosci.1011-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
The dorsal anterior cingulate cortex (dACC) is a critical brain area for pain and autonomic processing, making it a promising noninvasive therapeutic target. We leverage the high spatial resolution and deep focal lengths of low-intensity focused ultrasound (LIFU) to noninvasively modulate the dACC for effects on behavioral and cardiac autonomic responses using transient heat pain stimuli. A N = 16 healthy human volunteers (6 M/10 F) received transient contact heat pain during either LIFU to the dACC or Sham stimulation. Continuous electroencephalogram (EEG), electrocardiogram (ECG), and electrodermal response (EDR) were recorded. Outcome measures included pain ratings, heart rate variability, EDR response, blood pressure, and the amplitude of the contact heat-evoked potential (CHEP).LIFU reduced pain ratings by 1.09 ± 0.20 points relative to Sham. LIFU increased heart rate variability indexed by the standard deviation of normal sinus beats (SDNN), low-frequency (LF) power, and the low-frequency/high-frequency (LF/HF) ratio. There were no effects on the blood pressure or EDR. LIFU resulted in a 38.1% reduction in the P2 CHEP amplitude. Results demonstrate LIFU to the dACC reduces pain and alters autonomic responses to acute heat pain stimuli. This has implications for the causal understanding of human pain and autonomic processing in the dACC and potential future therapeutic options for pain relief and modulation of homeostatic signals.
Collapse
Affiliation(s)
- Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| | - Katelyn Stebbins
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
19
|
Khalilian M, Toba MN, Roussel M, Tasseel-Ponche S, Godefroy O, Aarabi A. Age-related differences in structural and resting-state functional brain network organization across the adult lifespan: A cross-sectional study. AGING BRAIN 2024; 5:100105. [PMID: 38273866 PMCID: PMC10809105 DOI: 10.1016/j.nbas.2023.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
We investigated age-related trends in the topology and hierarchical organization of brain structural and functional networks using diffusion-weighted imaging and resting-state fMRI data from a large cohort of healthy aging adults. At the cross-modal level, we explored age-related patterns in the RC involvement of different functional subsystems using a high-resolution functional parcellation. We further assessed age-related differences in the structure-function coupling as well as the network vulnerability to damage to rich club connectivity. Regardless of age, the structural and functional brain networks exhibited a rich club organization and small-world topology. In older individuals, we observed reduced integration and segregation within the frontal-occipital regions and the cerebellum along the brain's medial axis. Additionally, functional brain networks displayed decreased integration and increased segregation in the prefrontal, centrotemporal, and occipital regions, and the cerebellum. In older subjects, structural networks also exhibited decreased within-network and increased between-network RC connectivity. Furthermore, both within-network and between-network RC connectivity decreased in functional networks with age. An age-related decline in structure-function coupling was observed within sensory-motor, cognitive, and subcortical networks. The structural network exhibited greater vulnerability to damage to RC connectivity within the language-auditory, visual, and subcortical networks. Similarly, for functional networks, increased vulnerability was observed with damage to RC connectivity in the cerebellum, language-auditory, and sensory-motor networks. Overall, the network vulnerability decreased significantly in subjects older than 70 in both networks. Our findings underscore significant age-related differences in both brain functional and structural RC connectivity, with distinct patterns observed across the adult lifespan.
Collapse
Affiliation(s)
- Maedeh Khalilian
- Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center (CURS), University of Picardy Jules Verne, Amiens, France
| | - Monica N. Toba
- Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center (CURS), University of Picardy Jules Verne, Amiens, France
- Faculty of Medicine, University of Picardy Jules Verne, Amiens, France
| | - Martine Roussel
- Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center (CURS), University of Picardy Jules Verne, Amiens, France
| | - Sophie Tasseel-Ponche
- Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center (CURS), University of Picardy Jules Verne, Amiens, France
- Neurological Physical Medicine and Rehabilitation Department, Amiens University Hospital, University of Picardy Jules Verne, Amiens, France
| | - Olivier Godefroy
- Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center (CURS), University of Picardy Jules Verne, Amiens, France
- Faculty of Medicine, University of Picardy Jules Verne, Amiens, France
- Neurology Department, Amiens University Hospital, Amiens, France
| | - Ardalan Aarabi
- Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center (CURS), University of Picardy Jules Verne, Amiens, France
- Faculty of Medicine, University of Picardy Jules Verne, Amiens, France
| |
Collapse
|
20
|
Fauchon C, Bastuji H, Peyron R, Garcia-Larrea L. Fractal Similarity of Pain Brain Networks. ADVANCES IN NEUROBIOLOGY 2024; 36:639-657. [PMID: 38468056 DOI: 10.1007/978-3-031-47606-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The conscious perception of pain is the result of dynamic interactions of neural activities from local brain regions to distributed brain networks. Mapping out the networks of functional connections between brain regions that form and disperse when an experimental participant received nociceptive stimulations allow to characterize the pattern of network connections related to the pain experience.Although the pattern of intra- and inter-areal connections across the brain are incredibly complex, they appear also largely scale free, with "fractal" connectivity properties reproducing at short and long-time scales. Our results combining intracranial recordings and functional imaging in humans during pain indicate striking similarities in the activity and topological representation of networks at different orders of temporality, with reproduction of patterns of activation from the millisecond to the multisecond range. The connectivity analyzed using graph theory on fMRI data was organized in four sets of brain regions matching those identified through iEEG (i.e., sensorimotor, default mode, central executive, and amygdalo-hippocampal).Here, we discuss similarities in brain network organization at different scales or "orders," in participants as they feel pain. Description of this fractal-like organization may provide clues about how our brain regions work together to create the perception of pain and how pain becomes chronic when its organization is altered.
Collapse
Affiliation(s)
- Camille Fauchon
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France.
- Université Jean Monnet, Inserm, CRNL, NeuroPain, Saint-Etienne, France.
| | - Hélène Bastuji
- Université Claude Bernard Lyon 1, UJM, Inserm, CRNL, NeuroPain, Bron, France
| | - Roland Peyron
- Université Jean Monnet, Inserm, CRNL, NeuroPain, Saint-Etienne, France
- CHU, centre de la douleur, Saint-Etienne, France
| | - Luis Garcia-Larrea
- Université Claude Bernard Lyon 1, UJM, Inserm, CRNL, NeuroPain, Bron, France
| |
Collapse
|
21
|
Tsai SF, Kuo YM. The Role of Central Oxytocin in Autonomic Regulation. CHINESE J PHYSIOL 2024; 67:3-14. [PMID: 38780268 DOI: 10.4103/ejpi.ejpi-d-23-00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/10/2023] [Indexed: 05/25/2024] Open
Abstract
Oxytocin (OXT), a neuropeptide originating from the hypothalamus and traditionally associated with peripheral functions in parturition and lactation, has emerged as a pivotal player in the central regulation of the autonomic nervous system (ANS). This comprehensive ANS, comprising sympathetic, parasympathetic, and enteric components, intricately combines sympathetic and parasympathetic influences to provide unified control. The central oversight of sympathetic and parasympathetic outputs involves a network of interconnected regions spanning the neuroaxis, playing a pivotal role in the real-time regulation of visceral function, homeostasis, and adaptation to challenges. This review unveils the significant involvement of the central OXT system in modulating autonomic functions, shedding light on diverse subpopulations of OXT neurons within the paraventricular nucleus of the hypothalamus and their intricate projections. The narrative progresses from the basics of central ANS regulation to a detailed discussion of the central controls of sympathetic and parasympathetic outflows. The subsequent segment focuses specifically on the central OXT system, providing a foundation for exploring the central role of OXT in ANS regulation. This review synthesizes current knowledge, paving the way for future research endeavors to unravel the full scope of autonomic control and understand multifaceted impact of OXT on physiological outcomes.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
22
|
Rosner J, de Andrade DC, Davis KD, Gustin SM, Kramer JLK, Seal RP, Finnerup NB. Central neuropathic pain. Nat Rev Dis Primers 2023; 9:73. [PMID: 38129427 PMCID: PMC11329872 DOI: 10.1038/s41572-023-00484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Central neuropathic pain arises from a lesion or disease of the central somatosensory nervous system such as brain injury, spinal cord injury, stroke, multiple sclerosis or related neuroinflammatory conditions. The incidence of central neuropathic pain differs based on its underlying cause. Individuals with spinal cord injury are at the highest risk; however, central post-stroke pain is the most prevalent form of central neuropathic pain worldwide. The mechanisms that underlie central neuropathic pain are not fully understood, but the pathophysiology likely involves intricate interactions and maladaptive plasticity within spinal circuits and brain circuits associated with nociception and antinociception coupled with neuronal hyperexcitability. Modulation of neuronal activity, neuron-glia and neuro-immune interactions and targeting pain-related alterations in brain connectivity, represent potential therapeutic approaches. Current evidence-based pharmacological treatments include antidepressants and gabapentinoids as first-line options. Non-pharmacological pain management options include self-management strategies, exercise and neuromodulation. A comprehensive pain history and clinical examination form the foundation of central neuropathic pain classification, identification of potential risk factors and stratification of patients for clinical trials. Advanced neurophysiological and neuroimaging techniques hold promise to improve the understanding of mechanisms that underlie central neuropathic pain and as predictive biomarkers of treatment outcome.
Collapse
Affiliation(s)
- Jan Rosner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Daniel C de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Karen D Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia M Gustin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - John L K Kramer
- International Collaboration on Repair Discoveries, ICORD, University of British Columbia, Vancouver, Canada
- Department of Anaesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Rebecca P Seal
- Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
23
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
24
|
Komboz F, Mehsein Z, Kobaïter-Maarrawi S, Chehade HD, Maarrawi J. Epidural Posterior Insular Stimulation Alleviates Neuropathic Pain Manifestations in Rats With Spared Nerve Injury Through Endogenous Opioid System. Neuromodulation 2023; 26:1602-1611. [PMID: 35219569 DOI: 10.1016/j.neurom.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Neuropathic pain (NP) is defined as constant disabling pain secondary to a lesion or disease of the somatosensory nervous system. This condition is particularly difficult to treat because it often remains resistant to most treatment strategies. Despite the recent diversification of neurostimulation methods, some patients still suffer from refractory pain syndromes. The central role of the posterior insular cortex (PI) in the modulation of pain signaling and perception has been repeatedly suggested. The objective of this study is to assess whether epidural insular stimulation (IS) could reverse NP behavior. MATERIALS AND METHODS A total of 53 adult Sprague-Dawley rats received left-sided spared nerve injury (SNI) or Sham-SNI to induce NP symptoms. Afterward, epidural electrodes were implanted over the right PI. After two weeks of postoperative recovery, three groups of SNI-operated rats each received a different stimulation modality: Sham-IS, low-frequency-IS (LF-IS), or high-frequency-IS (HF-IS). Behavioral and functional tests were conducted before and after IS. They comprised the acetone test, pinprick test, von Frey test, and sciatic functional index. An additional LF-IS group received a dose of opioid antagonist naloxone before IS. Intergroup means were compared through independent-samples t-tests, and pre- and post-IS means in the same group were compared through paired t-tests. RESULTS We found a significant reduction of cold allodynia (p = 0.019), mechanical hyperalgesia (p = 0.040), and functional disability (p = 0.005) after LF-IS but not HF-IS. Mechanical allodynia only showed a tendency to decrease after LF-IS. The observed analgesic effects were reversed by opioid antagonist administration. CONCLUSION These results suggest a significant reversal of NP symptoms after LF-IS and offer additional evidence that IS might be beneficial in the treatment of resistant NP syndromes through endogenous opioid secretion. Relying on our novel epidural IS model, further fine tuning of stimulation parameters might be necessary to achieve optimal therapeutic effects.
Collapse
Affiliation(s)
- Fares Komboz
- Laboratory of Research in Neuroscience, Pôle Technologie Santé, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Zeinab Mehsein
- Laboratory of Research in Neuroscience, Pôle Technologie Santé, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Sandra Kobaïter-Maarrawi
- Laboratory of Research in Neuroscience, Pôle Technologie Santé, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon.
| | - Hiba-Douja Chehade
- Laboratory of Research in Neuroscience, Pôle Technologie Santé, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Joseph Maarrawi
- Laboratory of Research in Neuroscience, Pôle Technologie Santé, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon; Department of Neurosurgery, Hôtel-Dieu de France Hospital, Beirut, Lebanon
| |
Collapse
|
25
|
Weiss T, Koehler H, Croy I. Pain and Reorganization after Amputation: Is Interoceptive Prediction a Key? Neuroscientist 2023; 29:665-675. [PMID: 35950521 PMCID: PMC10623598 DOI: 10.1177/10738584221112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an ongoing discussion on the relevance of brain reorganization following amputation for phantom limb pain. Recent attempts to provide explanations for seemingly controversial findings-specifically, maladaptive plasticity versus persistent functional representation as a complementary process-acknowledged that reorganization in the primary somatosensory cortex is not sufficient to explain phantom limb pain satisfactorily. Here we provide theoretical considerations that might help integrate the data reviewed and suppose a possible additional driver of the development of phantom limb pain-namely, an error in interoceptive predictions to somatosensory sensations and movements of the missing limb. Finally, we derive empirically testable consequences based on our considerations to guide future research.
Collapse
Affiliation(s)
- Thomas Weiss
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| | - Hanna Koehler
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Ilona Croy
- Department of Psychology, Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
26
|
Islam J, Kc E, Kim S, Chung MY, Park KS, Kim HK, Park YS. Optogenetic Inhibition of Glutamatergic Neurons in the Dysgranular Posterior Insular Cortex Modulates Trigeminal Neuropathic Pain in CCI-ION Rat. Neuromolecular Med 2023; 25:516-532. [PMID: 37700212 DOI: 10.1007/s12017-023-08752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023]
Abstract
In individuals with chronic neuropathic pain, the posterior insular cortex (PIC) has been found to exhibit increased glutamatergic activity, and the dysgranular portion of PIC (DPIC) has been investigated as a novel cortical target for pain modulation. However, the role of DPIC glutamatergic neurons (DPICg) in trigeminal neuropathic pain (TNP) remains unclear. Here, we examined the outcomes of DPICg inhibition in a rat model of chronic constriction injury of the infraorbital nerve (CCI-ION). Animals were randomly divided into TNP, sham, and control groups. TNP animals underwent CCI-ION surgery. Either optogenetic or null viruses were delivered to the contralateral DPICg of TNP and sham animals. In vivo single-unit extracellular recordings from the ipsilateral spinal trigeminal nucleus caudalis (TNC) and contralateral ventral posteromedial (VPM) thalamus were obtained under both "ON" and "OFF" stimulation states. Behavioral responses during the stimulation-OFF and stimulation-ON phases were examined. Expression of c-Fos, pERK, and CREB immunopositive neurons were also observed. Optogenetic inhibition of contralateral DPICg decreased the neural firing rate in both TNC and VPM thalamus, the expression of sensory-responsive cell bodies, and transcriptional factors in the DPIC of TNP group. Improvements in hyperalgesia, allodynia, and anxiety-like responses in TNP animals were also observed during stimulation-ON condition. In fine, descending pain processing is influenced by neuroanatomical projections from the DPIC to the pain matrix areas, and DPICg could play a necessary role in this neural circuitry. Therefore, the antinociceptive effect of DPICg inhibition in this study may provide evidence for the therapeutic potential of DPICg in TNP.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Elina Kc
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Soochong Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Moon Young Chung
- Department of Neurosurgery, Soonchunhyang University, Bucheon, Korea
| | - Ki Seok Park
- Department of Neurosurgery, Eulji University Hospital, Daejeon, Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, 776, 1 Sunhwanro, Seowon-gu, Cheongju, 28644, Korea.
| |
Collapse
|
27
|
Nowacki A, Zhang D, Barlatey S, Ai-Schläppi J, Rosner J, Arnold M, Pollo C. Deep Brain Stimulation of the Central Lateral and Ventral Posterior Thalamus for Central Poststroke Pain Syndrome: Preliminary Experience. Neuromodulation 2023; 26:1747-1756. [PMID: 36266180 DOI: 10.1016/j.neurom.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The beneficial effects of thalamic deep brain stimulation (DBS) at various target sites in treating chronic central neuropathic pain (CPSP) remain unclear. This study aimed to evaluate the effectiveness of DBS at a previously untested target site in the central lateral (CL) thalamus, together with classical sensory thalamic stimulation (ventral posterior [VP] complex). MATERIALS AND METHODS We performed a monocentric retrospective study of a consecutive series of six patients with CPSP who underwent combined DBS lead implantation of the CL and VP. Patient-reported outcome measures were recorded before and after surgery using the numeric rating scale (NRS), short-form McGill pain questionnaire (sf-MPQ), EuroQol 5-D quality-of-life questionnaire, and Beck Depression Inventory. DBS leads were reconstructed and projected onto a three-dimensional stereotactic atlas. RESULTS NRS-but not sf-MPQ-rated pain intensity-was significantly reduced throughout the follow-up period of 12 months compared with baseline (p = 0.005, and p = 0.06 respectively, Friedman test). At the last available follow-up (12 to 30 months), three patients described a more than 50% reduction. Two of the three long-term responders were stimulated in the CL (1000 Hz, 90 μs, 3.5-5.0 mA), whereas the third preferred VP complex stimulation (50 Hz, 200 μs, 0.7-1.2 mA). No persistent procedure- or stimulation-associated side effects were noted. CONCLUSIONS These preliminary findings suggest that DBS of the CL might constitute a promising alternative target in cases in which classical VP complex stimulation does not yield satisfactory postoperative pain reduction. The results need to be confirmed in larger, prospective series of patients.
Collapse
Affiliation(s)
- Andreas Nowacki
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland.
| | - David Zhang
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Sabry Barlatey
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Janine Ai-Schläppi
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Jan Rosner
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland; Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Marcel Arnold
- Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland
| |
Collapse
|
28
|
Kunz M, Chen JI, Lautenbacher S, Rainville P. Brain mechanisms associated with facial encoding of affective states. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1281-1290. [PMID: 37349604 PMCID: PMC10545577 DOI: 10.3758/s13415-023-01114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/24/2023]
Abstract
Affective states are typically accompanied by facial expressions, but these behavioral manifestations are highly variable. Even highly arousing and negative valent experiences, such as pain, show great instability in facial affect encoding. The present study investigated which neural mechanisms are associated with variations in facial affect encoding by focusing on facial encoding of sustained pain experiences. Facial expressions, pain ratings, and brain activity (BOLD-fMRI) during tonic heat pain were recorded in 27 healthy participants. We analyzed facial expressions by using the Facial Action Coding System (FACS) and examined brain activations during epochs of painful stimulation that were accompanied by facial expressions of pain. Epochs of facial expressions of pain were coupled with activity increase in motor areas (M1, premotor and SMA) as well as in areas involved in nociceptive processing, including primary and secondary somatosensory cortex, posterior and anterior insula, and the anterior part of the mid-cingulate cortex. In contrast, prefrontal structures (ventrolateral and medial prefrontal) were less activated during incidences of facial expressions, consistent with a role in down-regulating facial displays. These results indicate that incidences of facial encoding of pain reflect activity within nociceptive pathways interacting or possibly competing with prefrontal inhibitory systems that gate the level of expressiveness.
Collapse
Affiliation(s)
- Miriam Kunz
- Department of Medical Psychology and Sociology, University of Augsburg, Augsburg, Germany.
- Bamberger Living Lab Dementia (BamLiD), University of Bamberg, Bamberg, Germany.
| | - Jen-I Chen
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Université de Montréal, Montréal, Canada
- Department de stomatologie, Faculté de médecine dentaire, Université de Montréal, Montréal, Canada
| | - Stefan Lautenbacher
- Bamberger Living Lab Dementia (BamLiD), University of Bamberg, Bamberg, Germany
| | - Pierre Rainville
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Université de Montréal, Montréal, Canada
- Department de stomatologie, Faculté de médecine dentaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
29
|
Asci F, Di Stefano G, Di Santo A, Bianchini E, Leone C, La Cesa S, Zampogna A, Cruccu G, Suppa A. Pain-motor integration in chronic pain: A neurophysiological study. Clin Neurophysiol 2023; 154:107-115. [PMID: 37595480 DOI: 10.1016/j.clinph.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Chronic pain may lead to functional changes in several brain regions, including the primary motor cortex (M1). Our neurophysiological study aimed to probe M1 plasticity, through a non-invasive transcranial magnetic stimulation protocol, in a cohort of patients with chronic pain. METHODS Twenty patients with chronic pain (age ± SD: 62.9 ± 9.9) and 20 age- and sex-matched healthy controls (age ± SD: 59.6 ± 15.8) were recruited. Standardized scales were used for the evaluation of pain severity. Neurophysiological measures included laser-evoked potentials (LEPs) and motor-evoked potentials (MEPs) collected at baseline and over 60 minutes following a standardized Laser-paired associative stimulation (Laser-PAS) protocol. RESULTS LEPs and MEPs were comparable in patients with chronic pain and controls. The pain threshold was lower in patients than in controls. Laser-PAS elicited decreased responses in patients with chronic pain. The response to Laser-PAS was similar in subgroups of patients with different chronic pain phenotypes. CONCLUSIONS M1 plasticity, as tested by Laser-PAS, is altered in patients with chronic pain, possibly reflecting abnormal pain-motor integration processes. SIGNIFICANCE Chronic pain is associated with a disorder of M1 plasticity raising from abnormal pain-motor integration.
Collapse
Affiliation(s)
- Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed Institute, Via Atinense, 18, 86077 Pozzilli, IS, Italy.
| | - Giulia Di Stefano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Alessandro Di Santo
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Edoardo Bianchini
- Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | - Caterina Leone
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Silvia La Cesa
- Unit of Neurology, S. Camillo-Forlanini Hospital, Rome, Italy.
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Giorgio Cruccu
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed Institute, Via Atinense, 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
30
|
Engelen T, Solcà M, Tallon-Baudry C. Interoceptive rhythms in the brain. Nat Neurosci 2023; 26:1670-1684. [PMID: 37697110 DOI: 10.1038/s41593-023-01425-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
Sensing internal bodily signals, or interoception, is fundamental to maintain life. However, interoception should not be viewed as an isolated domain, as it interacts with exteroception, cognition and action to ensure the integrity of the organism. Focusing on cardiac, respiratory and gastric rhythms, we review evidence that interoception is anatomically and functionally intertwined with the processing of signals from the external environment. Interactions arise at all stages, from the peripheral transduction of interoceptive signals to sensory processing and cortical integration, in a network that extends beyond core interoceptive regions. Interoceptive rhythms contribute to functions ranging from perceptual detection up to sense of self, or conversely compete with external inputs. Renewed interest in interoception revives long-standing issues on how the brain integrates and coordinates information in distributed regions, by means of oscillatory synchrony, predictive coding or multisensory integration. Considering interoception and exteroception in the same framework paves the way for biological modes of information processing specific to living organisms.
Collapse
Affiliation(s)
- Tahnée Engelen
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France
| | - Marco Solcà
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France
| | - Catherine Tallon-Baudry
- Cognitive and Computational Neuroscience Laboratory, Inserm, Ecole Normale Supérieure PSL University, Paris, France.
| |
Collapse
|
31
|
Garcia-Larrea L. Non-invasive cortical stimulation for drug-resistant pain. Curr Opin Support Palliat Care 2023; 17:142-149. [PMID: 37339516 DOI: 10.1097/spc.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
PURPOSE OF REVIEW Neuromodulation techniques are being increasingly used to alleviate pain and enhance quality of life. Non-invasive cortical stimulation was originally intended to predict the efficacy of invasive (neurosurgical) techniques, but has now gained a place as an analgesic procedure in its own right. RECENT FINDINGS Repetitive transcranial magnetic stimulation (rTMS): Evidence from 14 randomised, placebo-controlled trials (~750 patients) supports a significant analgesic effect of high-frequency motor cortex rTMS in neuropathic pain. Dorsolateral frontal stimulation has not proven efficacious so far. The posterior operculo-insular cortex is an attractive target but evidence remains insufficient. Short-term efficacy can be achieved with NNT (numbers needed to treat) ~2-3, but long-lasting efficacy remains a challenge.Like rTMS, transcranial direct-current stimulation (tDCS) induces activity changes in distributed brain networks and can influence various aspects of pain. Lower cost relative to rTMS, few safety issues and availability of home-based protocols are practical advantages. The limited quality of many published reports lowers the level of evidence, which will remain uncertain until more prospective controlled studies are available. SUMMARY Both rTMS and tDCS act preferentially upon abnormal hyperexcitable states of pain, rather than acute or experimental pain. For both techniques, M1 appears to be the best target for chronic pain relief, and repeated sessions over relatively long periods of time may be required to obtain clinically significant benefits. Patients responsive to tDCS may differ from those improved by rTMS.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Centre for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne
- University Hospital Pain Centre (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
32
|
Mishra A, Yang PF, Manuel TJ, Newton AT, Phipps MA, Luo H, Sigona MK, Reed JL, Gore JC, Grissom WA, Caskey CF, Chen LM. Disrupting nociceptive information processing flow through transcranial focused ultrasound neuromodulation of thalamic nuclei. Brain Stimul 2023; 16:1430-1444. [PMID: 37741439 PMCID: PMC10702144 DOI: 10.1016/j.brs.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND MRI-guided transcranial focused ultrasound (MRgFUS) as a next-generation neuromodulation tool can precisely target and stimulate deep brain regions with high spatial selectivity. Combined with MR-ARFI (acoustic radiation force imaging) and using fMRI BOLD signal as functional readouts, our previous studies have shown that low-intensity FUS can excite or suppress neural activity in the somatosensory cortex. OBJECTIVE To investigate whether low-intensity FUS can suppress nociceptive heat stimulation-induced responses in thalamic nuclei during hand stimulation, and to determine how this suppression influences the information processing flow within nociception networks. FINDINGS BOLD fMRI activations evoked by 47.5 °C heat stimulation of hand were detected in 24 cortical regions, which belong to sensory, affective, and cognitive nociceptive networks. Concurrent delivery of low-intensity FUS pulses (650 kHz, 550 kPa) to the predefined heat nociceptive stimulus-responsive thalamic centromedial_parafascicular (CM_para), mediodorsal (MD), ventral_lateral (VL_ and ventral_lateral_posteroventral (VLpv) nuclei suppressed their heat responses. Off-target cortical areas exhibited reduced, enhanced, or no significant fMRI signal changes, depending on the specific areas. Differentiable thalamocortical information flow during the processing of nociceptive heat input was observed, as indicated by the time to reach 10% or 30% of the heat-evoked BOLD signal peak. Suppression of thalamic heat responses significantly altered nociceptive processing flow and direction between the thalamus and cortical areas. Modulation of contralateral versus ipsilateral areas by unilateral thalamic activity differed. Signals detected in high-order cortical areas, such as dorsal frontal (DFC) and ventrolateral prefrontal (vlPFC) cortices, exhibited faster response latencies than sensory areas. CONCLUSIONS The concurrent delivery of FUS suppressed nociceptive heat response in thalamic nuclei and disrupted the nociceptive network. This study offers new insights into the causal functional connections within the thalamocortical networks and demonstrates the modulatory effects of low-intensity FUS on nociceptive information processing.
Collapse
Affiliation(s)
- Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas J Manuel
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Allen T Newton
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Anthony Phipps
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Huiwen Luo
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Michelle K Sigona
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
33
|
Cormie MA, Kaya B, Hadjis GE, Mouseli P, Moayedi M. Insula-cingulate structural and functional connectivity: an ultra-high field MRI study. Cereb Cortex 2023; 33:9787-9801. [PMID: 37429832 PMCID: PMC10656949 DOI: 10.1093/cercor/bhad244] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023] Open
Abstract
The insula and the cingulate are key brain regions with many heterogenous functions. Both regions are consistently shown to play integral roles in the processing of affective, cognitive, and interoceptive stimuli. The anterior insula (aINS) and the anterior mid-cingulate cortex (aMCC) are two key hubs of the salience network (SN). Beyond the aINS and aMCC, previous 3 Tesla (T) magnetic resonance imaging studies have suggested both structural connectivity (SC) and functional connectivity (FC) between other insular and cingulate subregions. Here, we investigate the SC and FC between insula and cingulate subregions using ultra-high field 7T diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI). DTI revealed strong SC between posterior INS (pINS) and posterior MCC (pMCC), and rs-fMRI revealed strong FC between the aINS and aMCC that was not supported by SC, indicating the likelihood of a mediating structure. Finally, the insular pole had the strongest SC to all cingulate subregions, with a slight preference for the pMCC, indicative of a potential relay node of the insula. Together these finding shed new light on the understanding of insula-cingulate functioning, both within the SN and other cortical processes, through a lens of its SC and FC.
Collapse
Affiliation(s)
- Matthew A Cormie
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Batu Kaya
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Georgia E Hadjis
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Pedram Mouseli
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Dentistry, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
34
|
Riganello F, Tonin P, Soddu A. I Feel! Therefore, I Am from Pain to Consciousness in DOC Patients. Int J Mol Sci 2023; 24:11825. [PMID: 37511583 PMCID: PMC10380260 DOI: 10.3390/ijms241411825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pain assessment and management in patients with disorders of consciousness (DOC) is a challenging and important aspect of care, with implications for detecting consciousness and promoting recovery. This narrative review explores the role of pain in consciousness, the challenges of pain assessment, pharmacological treatment in DOC, and the implications of pain assessment when detecting changes in consciousness. The review discusses the Nociception Coma Scale and its revised version, which are behavioral scales used to assess pain in DOC patients, and the challenges and controversies surrounding the appropriate pharmacological treatment of pain in these patients. Moreover, we highlight recent evidence suggesting that an accurate pain assessment may predict changes in the level of consciousness in unresponsive wakefulness syndrome/vegetative state patients, underscoring the importance of ongoing pain management in these patients.
Collapse
Affiliation(s)
- Francesco Riganello
- Research in Advanced Neurorehabilitation, S. Anna Institute, 88900 Crotone, Italy
| | - Paolo Tonin
- Research in Advanced Neurorehabilitation, S. Anna Institute, 88900 Crotone, Italy
| | - Andrea Soddu
- Physics, and Astronomy Department, Western Institute for Neuroscience, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
35
|
Guo Z, Ni H, Cui Z, Zhu Z, Kang J, Wang D, Ke Z. Pain sensitivity related to gamma oscillation of parvalbumin interneuron in primary somatosensory cortex in Dync1i1 -/- mice. Neurobiol Dis 2023:106170. [PMID: 37257662 DOI: 10.1016/j.nbd.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Cytoplasmic dynein is an important intracellular motor protein that plays an important role in neuronal growth, axonal polarity formation, dendritic differentiation, and dendritic spine development among others. The intermediate chain of dynein, encoded by Dync1i1, plays a vital role in the dynein complex. Therefore, we assessed the behavioral and related neuronal activities in mice with dync1i1 gene knockout. Neuronal activities in primary somatosensory cortex were recorded by in vivo electrophysiology and manipulated by optogenetic and chemogenetics. Nociception of mechanical, thermal, and cold pain in Dync1i1-/- mice were impaired. The activities of parvalbumin (PV) interneurons and gamma oscillation in primary somatosensory were also impaired when exposed to mechanical nociceptive stimulation. This neuronal dysfunction was rescued by optogenetic activation of PV neurons in Dync1i1-/- mice, and mimicked by suppressing PV neurons using chemogenetics in WT mice. Impaired pain sensations in Dync1i1-/- mice were correlated with impaired gamma oscillations due to a loss of interneurons, especially the PV type. This genotype-driven approach revealed an association between impaired pain sensation and cytoplasmic dynein complex.
Collapse
Affiliation(s)
- Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Ni
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengyu Cui
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 201203, China
| | - Zilu Zhu
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiansheng Kang
- Clinical Systems Biology Laboratories East District of The first affiliated hospital of ZhengZhou University, Zhengzhou 450018, China
| | - Deheng Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
36
|
Legon W, Strohman A, In A, Stebbins K, Payne B. Non-invasive neuromodulation of sub-regions of the human insula differentially affect pain processing and heart-rate variability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539593. [PMID: 37205396 PMCID: PMC10187309 DOI: 10.1101/2023.05.05.539593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The insula is a portion of the cerebral cortex folded deep within the lateral sulcus covered by the overlying opercula of the inferior frontal lobe and superior portion of the temporal lobe. The insula has been parsed into sub-regions based upon cytoarchitectonics and structural and functional connectivity with multiple lines of evidence supporting specific roles for each of these sub-regions in pain processing and interoception. In the past, causal interrogation of the insula was only possible in patients with surgically implanted electrodes. Here, we leverage the high spatial resolution combined with the deep penetration depth of low-intensity focused ultrasound (LIFU) to non-surgically modulate either the anterior insula (AI) or posterior insula (PI) in humans for effect on subjective pain ratings, electroencephalographic (EEG) contact head evoked potentials (CHEPs) and time-frequency power as well as autonomic measures including heart-rate variability (HRV) and electrodermal response (EDR). N = 23 healthy volunteers received brief noxious heat pain stimuli to the dorsum of their right hand during continuous heart-rate, EDR and EEG recording. LIFU was delivered to either the AI (anterior short gyrus), PI (posterior longus gyrus) or under an inert sham condition time-locked to the heat stimulus. Results demonstrate that single-element 500 kHz LIFU is capable of individually targeting specific gyri of the insula. LIFU to both AI and PI similarly reduced perceived pain ratings but had differential effects on EEG activity. LIFU to PI affected earlier EEG amplitudes around 300 milliseconds whereas LIFU to AI affected EEG amplitudes around 500 milliseconds. In addition, only LIFU to the AI affected HRV as indexed by an increase in standard deviation of N-N intervals (SDNN) and mean HRV low frequency power. There was no effect of LIFU to either AI or PI on EDR or blood pressure. Taken together, LIFU looks to be an effective method to individually target sub-regions of the insula in humans for site-specific effects on brain biomarkers of pain processing and autonomic reactivity that translates to reduced perceived pain to a transient heat stimulus. These data have implications for the treatment of chronic pain and several neuropsychological diseases like anxiety, depression and addiction that all demonstrate abnormal activity in the insula concomitant with dysregulated autonomic function.
Collapse
Affiliation(s)
- Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Andrew Strohman
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Katelyn Stebbins
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| |
Collapse
|
37
|
Sunzini F, Schrepf A, Clauw DJ, Basu N. The Biology of Pain: Through the Rheumatology Lens. Arthritis Rheumatol 2023; 75:650-660. [PMID: 36599071 DOI: 10.1002/art.42429] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
Chronic pain is a major socioeconomic burden globally. The most frequent origin of chronic pain is musculoskeletal. In inflammatory musculoskeletal diseases such as rheumatoid arthritis (RA), chronic pain is a primary determinant of deleterious quality of life. The pivotal role of peripheral inflammation in the initiation and perpetuation of nociceptive pain is well-established among patients with musculoskeletal diseases. However, the persistence of pain, even after the apparent resolution of peripheral inflammation, alludes to the coexistence of different pain states. Recent advances in neurobiology have highlighted the importance of nociplastic pain mechanisms. In this review we aimed to explore the biology of pain with a particular focus on nociplastic pain in RA.
Collapse
Affiliation(s)
- Flavia Sunzini
- Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Andrew Schrepf
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor
| | - Daniel J Clauw
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor
| | - Neil Basu
- Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| |
Collapse
|
38
|
Yang F, Jing JJ, Fu SY, Su XZ, Zhong YL, Chen DS, Wu XZ, Zou YQ. Spinal MCP-1 Contributes to Central Post-stroke Pain by Inducing Central Sensitization in Rats. Mol Neurobiol 2023; 60:2086-2098. [PMID: 36602702 DOI: 10.1007/s12035-022-03184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/18/2022] [Indexed: 01/06/2023]
Abstract
Central post-stroke pain (CPSP) is a highly refractory form of central neuropathic pain that has been poorly studied mechanistically. Recent observations have emphasized the critical role of the spinal dorsal horn in CPSP. However, the underlying mechanisms remain unclear. In this study, rats were subjected to thalamic hemorrhage to investigate the role of spinal monocyte chemoattractant protein-1 (MCP-1) and C-C motif chemokine receptor 2 (CCR2) in the development of CPSP. Immunohistochemical staining and ELISA were used to assess the expression changes of c-Fos, Iba-1, GFAP, MCP-1, and CCR2 in the dorsal horn of the lumbar spinal cord following thalamic hemorrhage, and the involvement of spinal MCP-1 in CPSP was examined by performing intrathecal anti-MCP-1 mAb injection to neutralize the spinal extracellular MCP-1. We demonstrated that intra-thalamic collagenase microinjection induced persistent bilateral mechanical pain hypersensitivity and facilitated the spontaneous pain behaviors evoked by intraplantar bee venom injection. Accompanying CPSP, the expression of c-Fos, Iba-1, and GFAP in the lumbar spinal dorsal horn was significantly increased up to 28 days post-intra-thalamic collagenase microinjection. Intrathecal injection of minocycline and fluorocitrate dramatically reverses the bilateral mechanical pain hypersensitivity. Moreover, intra-thalamic collagenase microinjection dramatically induced the up-regulation of MCP-1 but had no effect on the expression of CCR2 in the bilateral lumbar spinal dorsal horn, and MCP-1 was primarily localized in the neuron. Intrathecal injection of anti-MCP-1 mAb was also able to reverse CPSP and reduce the expression of c-Fos, Iba-1, and GFAP in the lumbar spinal dorsal horn. These findings indicated that spinal MCP-1 contributes to CPSP by mediating the activation of spinal neurons and glial cells following thalamic hemorrhage stroke, which may provide insights into pharmacologic treatment for CPSP.
Collapse
Affiliation(s)
- Fei Yang
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.,Pain Research Institute, Fujian Medical University, Fuzhou, 350025, China
| | - Jun-Jie Jing
- Department of Neurosurgery, Fujian Children's Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350025, China
| | - Si-Yin Fu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Xiu-Zhu Su
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Yu-Ling Zhong
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China.,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China
| | - Dong-Sheng Chen
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China. .,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China. .,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, Fuzong Clinical College/900th Hospital of the Joint Logistic Support Force, Fujian Medical University, Fuzhou, 350025, China. .,Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, China.
| |
Collapse
|
39
|
Fischer KB, Collins HK, Pang Y, Roy DS, Zhang Y, Feng G, Li SJ, Kepecs A, Callaway EM. Monosynaptic restriction of the anterograde herpes simplex virus strain H129 for neural circuit tracing. J Comp Neurol 2023; 531:584-595. [PMID: 36606699 PMCID: PMC10040246 DOI: 10.1002/cne.25451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
Identification of synaptic partners is a fundamental task for systems neuroscience. To date, few reliable techniques exist for whole brain labeling of downstream synaptic partners in a cell-type-dependent and monosynaptic manner. Herein, we describe a novel monosynaptic anterograde tracing system based on the deletion of the gene UL6 from the genome of a cre-dependent version of the anterograde Herpes Simplex Virus 1 strain H129. Given that this knockout blocks viral genome packaging and thus viral spread, we reasoned that co-infection of a HSV H129 ΔUL6 virus with a recombinant adeno-associated virus expressing UL6 in a cre-dependent manner would result in monosynaptic spread from target cre-expressing neuronal populations. Application of this system to five nonreciprocal neural circuits resulted in labeling of neurons in expected projection areas. While some caveats may preclude certain applications, this system provides a reliable method to label postsynaptic partners in a brain-wide fashion.
Collapse
Affiliation(s)
- Kyle B Fischer
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Hannah K Collins
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Yan Pang
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Dheeraj S Roy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ying Zhang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA
| | - Shu-Jing Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Adam Kepecs
- Departments of Neuroscience and Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
40
|
Gélébart J, Garcia-Larrea L, Frot M. Amygdala and anterior insula control the passage from nociception to pain. Cereb Cortex 2023; 33:3538-3547. [PMID: 35965070 DOI: 10.1093/cercor/bhac290] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/18/2023] Open
Abstract
Activation of the spinothalamic system does not always result in a subjective pain perception. While the cerebral network processing nociception is relatively well known, the one underlying its transition to conscious pain remains poorly described. We used intracranial electroencephalography in epileptic patients to investigate whether the amplitudes and functional connectivity of posterior and anterior insulae (PI and AI) and amygdala differ according to the subjective reports to laser stimuli delivered at a constant intensity set at nociceptive threshold. Despite the constant intensity of stimuli, all patients reported variable subjective perceptions from one stimulus to the other. Responses in the sensory PI remained stable throughout the experiment, hence reflecting accurately the stability of the stimulus. In contrast, both AI and amygdala responses showed significant enhancements associated with painful relative to nonpainful reports, in a time window corresponding to the conscious integration of the stimulus. Functional connectivity in the gamma band between these two regions increased significantly, both before and after stimuli perceived as painful. While the PI appears to transmit faithfully the actual stimulus intensity received via the spinothalamic tract, the AI and the amygdala appear to play a major role in the transformation of nociceptive signals into a painful perception.
Collapse
Affiliation(s)
- Juliette Gélébart
- Central Integration of Pain (Neuropain Lab) - Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, 69677 Bron cedex, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (Neuropain Lab) - Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, 69677 Bron cedex, France
- Centre d'Evaluation et de Traitement de la Douleur, Hospices Civils de Lyon, 69677 Bron cedex, France
| | - Maud Frot
- Central Integration of Pain (Neuropain Lab) - Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, 69677 Bron cedex, France
| |
Collapse
|
41
|
Labrakakis C. The Role of the Insular Cortex in Pain. Int J Mol Sci 2023; 24:ijms24065736. [PMID: 36982807 PMCID: PMC10056254 DOI: 10.3390/ijms24065736] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The transition from normal to chronic pain is believed to involve alterations in several brain areas that participate in the perception of pain. These plastic changes are then responsible for aberrant pain perception and comorbidities. The insular cortex is consistently found activated in pain studies of normal and chronic pain patients. Functional changes in the insula contribute to chronic pain; however, the complex mechanisms by which the insula is involved in pain perception under normal and pathological conditions are still not clear. In this review, an overview of the insular function is provided and findings on its role in pain from human studies are summarized. Recent progress on the role of the insula in pain from preclinical experimental models is reviewed, and the connectivity of the insula with other brain regions is examined to shed new light on the neuronal mechanisms of the insular cortex’s contribution to normal and pathological pain sensation. This review underlines the need for further studies on the mechanisms underlying the involvement of the insula in the chronicity of pain and the expression of comorbid disorders.
Collapse
Affiliation(s)
- Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
42
|
Liu N, Li Y, Hong Y, Huo J, Chang T, Wang H, Huang Y, Li W, Zhang Y. Altered brain activities in mesocorticolimbic pathway in primary dysmenorrhea patients of long-term menstrual pain. Front Neurosci 2023; 17:1098573. [PMID: 36793538 PMCID: PMC9922713 DOI: 10.3389/fnins.2023.1098573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
Background Patients with primary dysmenorrhea (PDM) often present with abnormalities other than dysmenorrhea including co-occurrence with other chronic pain conditions and central sensitization. Changes in brain activity in PDM have been demonstrated; however, the results are not consistent. Herein, this study probed into altered intraregional and interregional brain activity in patients with PDM and expounded more findings. Methods A total of 33 patients with PDM and 36 healthy controls (HCs) were recruited and underwent a resting-state functional magnetic resonance imaging scan. Regional homogeneity (ReHo) and mean amplitude of low-frequency fluctuation (mALFF) analysis were applied to compare the difference in intraregional brain activity between the two groups, and the regions with ReHo and mALFF group differences were used as seeds for functional connectivity (FC) analysis to explore the difference of interregional activity. Pearson's correlation analysis was conducted between rs-fMRI data and clinical symptoms in patients with PDM. Results Compared with HCs, patients with PDM showed altered intraregional activity in a series of brain regions, including the hippocampus, the temporal pole superior temporal gyrus, the nucleus accumbens, the pregenual anterior cingulate cortex, the cerebellum_8, the middle temporal gyrus, the inferior temporal gyrus, the rolandic operculum, the postcentral gyrus and the middle frontal gyrus (MFG), and altered interregional FC mainly between regions of the mesocorticolimbic pathway and regions associated with sensation and movement. The anxiety symptoms are correlated with the intraregional activity of the right temporal pole superior temporal gyrus and FC between MFG and superior frontal gyrus. Conclusion Our study showed a more comprehensive method to explore changes in brain activity in PDM. We found that the mesocorticolimbic pathway might play a key role in the chronic transformation of pain in PDM. We, therefore, speculate that the modulation of the mesocorticolimbic pathway may be a potential novel therapeutic mechanism for PDM.
Collapse
Affiliation(s)
- Ni Liu
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yingqiu Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yueying Hong
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jianwei Huo
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tai Chang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Haoyuan Wang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yiran Huang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxun Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China,Wenxun Li ✉
| | - Yanan Zhang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,*Correspondence: Yanan Zhang ✉
| |
Collapse
|
43
|
Parallel Pathways Provide Hippocampal Spatial Information to Prefrontal Cortex. J Neurosci 2023; 43:68-81. [PMID: 36414405 PMCID: PMC9838712 DOI: 10.1523/jneurosci.0846-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/06/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Long-range synaptic connections define how information flows through neuronal networks. Here, we combined retrograde and anterograde trans-synaptic viruses to delineate areas that exert direct and indirect influence over the dorsal and ventral prefrontal cortex (PFC) of the rat (both sexes). Notably, retrograde tracing using pseudorabies virus (PRV) revealed that both dorsal and ventral areas of the PFC receive prominent disynaptic input from the dorsal CA3 (dCA3) region of the hippocampus. The PRV experiments also identified candidate anatomical relays for this disynaptic pathway, namely, the ventral hippocampus, lateral septum, thalamus, amygdala, and basal forebrain. To determine the viability of each of these relays, we performed three additional experiments. In the first, we injected the retrograde monosynaptic tracer Fluoro-Gold into the PFC and the anterograde monosynaptic tracer Fluoro-Ruby into the dCA3 to confirm the first-order connecting areas and revealed several potential relay regions between the PFC and dCA3. In the second, we combined PRV injection in the PFC with polysynaptic anterograde viral tracer (HSV-1) in the dCA3 to reveal colabeled connecting neurons, which were evident only in the ventral hippocampus. In the third, we combined retrograde adeno-associated virus (AAV) injections in the PFC with an anterograde AAV in the dCA3 to reveal anatomical relay neurons in the ventral hippocampus and dorsal lateral septum. Together, these findings reveal parallel disynaptic pathways from the dCA3 to the PFC, illuminating a new anatomical framework for understanding hippocampal-prefrontal interactions. We suggest that the representation of context and space may be a universal feature of prefrontal function.SIGNIFICANCE STATEMENT The known functions of the prefrontal cortex are shaped by input from multiple brain areas. We used transneuronal viral tracing to discover multiple prominent disynaptic pathways through which the dorsal hippocampus (specifically, the dorsal CA3) has the potential to shape the actions of the prefrontal cortex. The demonstration of neuronal relays in the ventral hippocampus and lateral septum presents a new foundation for understanding long-range influences over prefrontal interactions, including the specific contribution of the dorsal CA3 to prefrontal function.
Collapse
|
44
|
Wang M, Tang X, Li B, Wan T, Zhu X, Zhu Y, Lai X, He Y, Xia G. Dynamic local metrics changes in patients with toothache: A resting-state functional magnetic resonance imaging study. Front Neurol 2022; 13:1077432. [PMID: 36578304 PMCID: PMC9790921 DOI: 10.3389/fneur.2022.1077432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Objective To study the dynamic changes of local metrics in patients with toothache (TA, Toothache) in the resting state, in order to further understand the changes of central neural mechanism in patients with dental pain and its effect on cognition and emotion. Methods Thirty patients with TA and thirty matched healthy (HC) control volunteers were recruited, and resting-state functional magnetic resonance (rs-MRI) scans were performed on all subjects, and data were analyzed to compare group differences in three dynamic local indices: dynamic regional homogeneity (dReHO), dynamic low-frequency fluctuation amplitude (dALFF) and dynamic fractional low-frequency fluctuation amplitude (dfALFF). In addition, the association between dynamic local metrics in different brain regions of TA patients and scores on the Visual Analog Scale (VAS) and the Hospital Anxiety and Depression Scale (HADS) was investigated by Pearson correlation analysis. Results In this study, we found that The local metrics of TA patients changed with time Compared with the HC group, TA patients showed increased dReHo values in the left superior temporal gyrus, middle frontal gyrus, precentral gyrus, precuneus, angular gyrus, right superior frontal gyrus, middle temporal gyrus, postcentral gyrus and middle frontal gyrus, increased dALFF values in the right superior frontal gyrus, and increased dfALFF values in the right middle temporal gyrus, middle frontal gyrus and right superior occipital gyrus (p < 0.01, cluster level P < 0.05). Pearson correlation analysis showed that dReHo values of left precuneus and left angular gyrus were positively correlated with VAS scores in TA group. dReHo value of right posterior central gyrus was positively correlated with HADS score (P < 0.05). Conclusion There are differences in the patterns of neural activity changes in resting-state brain areas of TA patients, and the brain areas that undergo abnormal changes are mainly pain processing brain areas, emotion processing brain areas and pain cognitive modulation brain areas, which help to reveal their underlying neuropathological mechanisms. In the hope of further understanding its effects on cognition and emotion.
Collapse
Affiliation(s)
- Mengting Wang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Tang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tianyi Wan
- Medical Imaging Center, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Xuechao Zhu
- Medical Imaging Center, Jiangxi Cancer Hospital, Nanchang, China
| | - Yuping Zhu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xunfu Lai
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yulin He
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Yulin He
| | - Guojin Xia
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China,Guojin Xia
| |
Collapse
|
45
|
Liu Q, Wu Y, Wang H, Jia F, Xu F. Viral Tools for Neural Circuit Tracing. Neurosci Bull 2022; 38:1508-1518. [PMID: 36136267 PMCID: PMC9723069 DOI: 10.1007/s12264-022-00949-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/09/2022] [Indexed: 10/14/2022] Open
Abstract
Neural circuits provide an anatomical basis for functional networks. Therefore, dissecting the structure of neural circuits is essential to understanding how the brain works. Recombinant neurotropic viruses are important tools for neural circuit tracing with many advantages over non-viral tracers: they allow for anterograde, retrograde, and trans-synaptic delivery of tracers in a cell type-specific, circuit-selective manner. In this review, we summarize the recent developments in the viral tools for neural circuit tracing, discuss the key principles of using viral tools in neuroscience research, and highlight innovations for developing and optimizing viral tools for neural circuit tracing across diverse animal species, including nonhuman primates.
Collapse
Affiliation(s)
- Qing Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huadong Wang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Jia
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuqiang Xu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
46
|
Cao J, Wang X, Chen J, Zhang N, Liu Z. The vagus nerve mediates the stomach-brain coherence in rats. Neuroimage 2022; 263:119628. [PMID: 36113737 PMCID: PMC10008817 DOI: 10.1016/j.neuroimage.2022.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Interactions between the brain and the stomach shape both cognitive and digestive functions. Recent human studies report spontaneous synchronization between brain activity and gastric slow waves in the resting state. However, this finding has not been replicated in any animal models. The neural pathways underlying this apparent stomach-brain synchrony is also unclear. Here, we performed functional magnetic resonance imaging while simultaneously recording body-surface gastric slow waves from anesthetized rats in the fasted vs. postprandial conditions and performed a bilateral cervical vagotomy to assess the role of the vagus nerve. The coherence between brain fMRI signals and gastric slow waves was found in a distributed "gastric network", including subcortical and cortical regions in the sensory, motor, and limbic systems. The stomach-brain coherence was largely reduced by the bilateral vagotomy and was different between the fasted and fed states. These findings suggest that the vagus nerve mediates the spontaneous coherence between brain activity and gastric slow waves, which is likely a signature of real-time stomach-brain interactions. However, its functional significance remains to be established.
Collapse
Affiliation(s)
- Jiayue Cao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Jiande Chen
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, Huck Institutes of the life sciences, Pennsylvania State University, USA
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
47
|
Coghill RC. The distributed nociceptive system: a novel framework for understanding pain. Scand J Pain 2022; 22:679-680. [PMID: 36129140 DOI: 10.1515/sjpain-2022-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022]
Abstract
Our current understanding of central nervous system mechanisms supporting the experience of pain remains remarkably limited and produces substantial challenges when seeking to better diagnose and treat chronic pain. A new conceptual framework - The Distributed Nociceptive System - emphasizes system-level aspects of nociceptive processing by incorporating population coding and distributed process. The Distributed Nociceptive System provides a structure for understanding complex spatial aspects of chronic pain and provides a clear rationale for the further development of multi-disciplinary treatments for chronic pain.
Collapse
Affiliation(s)
- Robert C Coghill
- Pediatric Pain Research Center, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
48
|
Baran TM, Lin FV, Geha P. Functional brain mapping in patients with chronic back pain shows age-related differences. Pain 2022; 163:e917-e926. [PMID: 34799532 DOI: 10.1097/j.pain.0000000000002534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Low back pain is the most common pain condition and cause for disability in older adults. Older adults suffering from low back pain are more disabled than their healthy peers, are more predisposed to frailty, and tend to be undertreated. The cause of increased prevalence and severity of this chronic pain condition in older adults is unknown. Here, we draw on accumulating data demonstrating a critical role for brain limbic and sensory circuitries in the emergence and experience of chronic low back pain (CLBP) and the availability of resting-state brain activity data collected at different sites to study how brain activity patterns predictive of CLBP differ between age groups. We apply a data-driven multivariate searchlight analysis to amplitude of low-frequency fluctuation brain maps to classify patients with CLBP with >70% accuracy. We observe that the brain activity pattern including the paracingulate gyrus, insula/secondary somatosensory area, inferior frontal, temporal, and fusiform gyrus predicted CLBP. When separated by age groups, brain patterns predictive of older patients with CLBP showed extensive involvement of limbic brain areas including the ventromedial prefrontal cortex, the nucleus accumbens, and hippocampus, whereas only anterior insula paracingulate and fusiform gyrus predicted CLBP in the younger patients. In addition, we validated the relationships between back pain intensity ratings and CLBP brain activity patterns in an independent data set not included in our initial patterns' identification. Our results are the first to directly address how aging affects the neural signature of CLBP and point to an increased role of limbic brain areas in older patients with CLBP.
Collapse
Affiliation(s)
- Timothy M Baran
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Feng V Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Paul Geha
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Department of Neurology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Department of Psychiatry, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
| |
Collapse
|
49
|
Ahmed Mahmutoglu M, Rupp A, Naumgärtner U. Simultaneous EEG/MEG yields complementary information of nociceptive evoked responses. Clin Neurophysiol 2022; 143:21-35. [DOI: 10.1016/j.clinph.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2022]
|
50
|
Grillo M, Geminiani A, Alessandro C, D'Angelo E, Pedrocchi A, Casellato C. Bayesian Integration in a Spiking Neural System for Sensorimotor Control. Neural Comput 2022; 34:1893-1914. [PMID: 35896162 DOI: 10.1162/neco_a_01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/30/2022] [Indexed: 11/04/2022]
Abstract
The brain continuously estimates the state of body and environment, with specific regions that are thought to act as Bayesian estimator, optimally integrating noisy and delayed sensory feedback with sensory predictions generated by the cerebellum. In control theory, Bayesian estimators are usually implemented using high-level representations. In this work, we designed a new spike-based computational model of a Bayesian estimator. The state estimator receives spiking activity from two neural populations encoding the sensory feedback and the cerebellar prediction, and it continuously computes the spike variability within each population as a reliability index of the signal these populations encode. The state estimator output encodes the current state estimate. We simulated a reaching task at different stages of cerebellar learning. The activity of the sensory feedback neurons encoded a noisy version of the trajectory after actual movement, with an almost constant intrapopulation spiking variability. Conversely, the activity of the cerebellar output neurons depended on the phase of the learning process. Before learning, they fired at their baseline not encoding any relevant information, and the variability was set to be higher than that of the sensory feedback (more reliable, albeit delayed). When learning was complete, their activity encoded the trajectory before the actual execution, providing an accurate sensory prediction; in this case, the variability was set to be lower than that of the sensory feedback. The state estimator model optimally integrated the neural activities of the afferent populations, so that the output state estimate was primarily driven by sensory feedback in prelearning and by the cerebellar prediction in postlearning. It was able to deal even with more complex scenarios, for example, by shifting the dominant source during the movement execution if information availability suddenly changed. The proposed tool will be a critical block within integrated spiking, brain-inspired control systems for simulations of sensorimotor tasks.
Collapse
Affiliation(s)
- Massimo Grillo
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy
| | - Cristiano Alessandro
- Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy.,School of Medicine and Surgery/Sport and Exercise Science, University of Milano-Bicocca, 20126 Milan, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Alessandra Pedrocchi
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy
| |
Collapse
|