1
|
Allam A, Allam V, Reddy S, Rohren EM, Sheth SA, Froudarakis E, Papageorgiou TD. Individualized functional magnetic resonance imaging neuromodulation enhances visuospatial perception: a proof-of-concept study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230083. [PMID: 39428879 PMCID: PMC11491853 DOI: 10.1098/rstb.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
This proof-of-concept study uses individualized functional magnetic resonance imaging neuromodulation (iNM) to explore the mechanisms that enhance BOLD signals in visuospatial perception (VP) networks that are crucial for navigation. Healthy participants (n = 8) performed a VP up- and down-direction discrimination task at full and subthreshold coherence through peripheral vision, and superimposed direction through visual imagery (VI) at central space under iNM and control conditions. iNM targets individualized anatomical and functional middle- and medial-superior temporal (MST) networks that control VP. We found that iNM engaged selective exteroceptive and interoceptive attention (SEIA) and motor planning (MP) networks. Specifically, iNM increased overall: (i) area under the curve of the BOLD magnitude: 100% in VP (but decreased for weak coherences), 21-47% in VI, 26-59% in MP and 48-76% in SEIA through encoding; and (ii) classification performance for each direction, coherence and network through decoding, predicting stimuli from brain maps. Our findings, derived from encoding and decoding models, suggest that mechanisms induced by iNM are causally linked in enhancing visuospatial networks and demonstrate iNM as a feasibility treatment for low-vision patients with cortical blindness or visuospatial impairments that precede cognitive decline.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Anthony Allam
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Vincent Allam
- Department of Computer Science, University of Texas at Austin, Austin, TX, USA
| | - Sandy Reddy
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Eric M. Rohren
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A. Sheth
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Emmanouil Froudarakis
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - T. Dorina Papageorgiou
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
| |
Collapse
|
2
|
Chunharas C, Wolff MJ, Hettwer MD, Rademaker RL. A gradual transition toward categorical representations along the visual hierarchy during working memory, but not perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.18.541327. [PMID: 37292916 PMCID: PMC10245673 DOI: 10.1101/2023.05.18.541327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability to stably maintain visual information over brief delays is central to healthy cognitive functioning, as is the ability to differentiate such internal representations from external inputs. One possible way to achieve both is via multiple concurrent mnemonic representations along the visual hierarchy that differ systematically from the representations of perceptual inputs. To test this possibility, we examine orientation representations along the visual hierarchy during perception and working memory. Human participants directly viewed, or held in mind, oriented grating patterns, and the similarity between fMRI activation patterns for different orientations was calculated throughout retinotopic cortex. During direct viewing of grating stimuli, similarity was relatively evenly distributed amongst all orientations, while during working memory the similarity was higher around oblique orientations. We modeled these differences in representational geometry based on the known distribution of orientation information in the natural world: The "veridical" model uses an efficient coding framework to capture hypothesized representations during visual perception. The "categorical" model assumes that different "psychological distances" between orientations result in orientation categorization relative to cardinal axes. During direct perception, the veridical model explained the data well. During working memory, the categorical model gradually gained explanatory power over the veridical model for increasingly anterior retinotopic regions. Thus, directly viewed images are represented veridically, but once visual information is no longer tethered to the sensory world there is a gradual progression to more categorical mnemonic formats along the visual hierarchy.
Collapse
Affiliation(s)
- Chaipat Chunharas
- Department of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Michael J Wolff
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt, Germany
| | - Meike D Hettwer
- Max Planck School of Cognition, Max Planck Institute of Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Rosanne L Rademaker
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt, Germany
| |
Collapse
|
3
|
Gao Y, Cai YC, Liu DY, Yu J, Wang J, Li M, Xu B, Wang T, Chen G, Northoff G, Bai R, Song XM. GABAergic inhibition in human hMT+ predicts visuo-spatial intelligence mediated through the frontal cortex. eLife 2024; 13:RP97545. [PMID: 39352734 PMCID: PMC11444681 DOI: 10.7554/elife.97545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
The prevailing opinion emphasizes fronto-parietal network (FPN) is key in mediating general fluid intelligence (gF). Meanwhile, recent studies show that human MT complex (hMT+), located at the occipito-temporal border and involved in 3D perception processing, also plays a key role in gF. However, the underlying mechanism is not clear, yet. To investigate this issue, our study targets visuo-spatial intelligence, which is considered to have high loading on gF. We use ultra-high field magnetic resonance spectroscopy (MRS) to measure GABA/Glu concentrations in hMT+ combining resting-state fMRI functional connectivity (FC), behavioral examinations including hMT+ perception suppression test and gF subtest in visuo-spatial component. Our findings show that both GABA in hMT+ and frontal-hMT+ functional connectivity significantly correlate with the performance of visuo-spatial intelligence. Further, serial mediation model demonstrates that the effect of hMT+ GABA on visuo-spatial gF is fully mediated by the hMT+ frontal FC. Together our findings highlight the importance in integrating sensory and frontal cortices in mediating the visuo-spatial component of general fluid intelligence.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Chun Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Yu Liu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Juan Yu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jue Wang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Bin Xu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tengfei Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Gang Chen
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Hangzhou, China
| | - Ruiliang Bai
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Parto-Dezfouli M, Vanegas I, Zarei M, Nesse WH, Clark KL, Noudoost B. Prefrontal working memory signal primarily controls phase-coded information within extrastriate cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610140. [PMID: 39257783 PMCID: PMC11383686 DOI: 10.1101/2024.08.28.610140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In order to understand how prefrontal cortex provides the benefits of working memory (WM) for visual processing we examined the influence of WM on the representation of visual signals in V4 neurons in two macaque monkeys. We found that WM induces strong β oscillations in V4 and that the timing of action potentials relative to this oscillation reflects sensory information- i.e., a phase coding of visual information. Pharmacologically inactivating the Frontal Eye Field part of prefrontal cortex, we confirmed the necessity of prefrontal signals for the WM-driven boost in phase coding of visual information. Indeed, changes in the average firing rate of V4 neurons could be accounted for by WM-induced oscillatory changes. We present a network model to describe how WM signals can recruit sensory areas primarily by inducing oscillations within these areas and discuss the implications of these findings for a sensory recruitment theory of WM through coherence.
Collapse
Affiliation(s)
- Mohsen Parto-Dezfouli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Isabel Vanegas
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Mohammad Zarei
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - William H. Nesse
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Kelsey L. Clark
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, John Moran Eye Center, University of Utah, Salt Lake City, UT, United States
- Lead
| |
Collapse
|
5
|
Roshanaei M, Bahmani Z, Clark K, Daliri MR, Noudoost B. Working memory expedites the processing of visual signals within the extrastriate cortex. iScience 2024; 27:110489. [PMID: 39100691 PMCID: PMC11295472 DOI: 10.1016/j.isci.2024.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Working memory is the ability to maintain information in the absence of sensory input. In this study, we investigated how working memory benefits processing in visual areas. Using a measure of phase consistency to detect the arrival time of visual signals to the middle temporal (MT) area, we assessed the impact of working memory on the speed of sensory processing. We recorded from MT neurons in two monkeys during a spatial working memory task with visual probes. When the memorized location closely matches the receptive field center of the recording site, visual input arrives sooner, but if the memorized location does not match the receptive field center then the arrival of visual information is delayed. Thus, working memory expedites the arrival of visual input in MT. These results reveal that even in the absence of firing rate changes, working memory can still benefit the processing of information within sensory areas.
Collapse
Affiliation(s)
- Majid Roshanaei
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Zahra Bahmani
- Department of Electrical & Computer Engineering, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Mohammad Reza Daliri
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
6
|
Mendoza-Halliday D, Xu H, Azevedo FAC, Desimone R. Dissociable neuronal substrates of visual feature attention and working memory. Neuron 2024; 112:850-863.e6. [PMID: 38228138 PMCID: PMC10939754 DOI: 10.1016/j.neuron.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Attention and working memory (WM) are distinct cognitive functions, yet given their close interactions, it is often assumed that they share the same neuronal mechanisms. We show that in macaques performing a WM-guided feature attention task, the activity of most neurons in areas middle temporal (MT), medial superior temporal (MST), lateral intraparietal (LIP), and posterior lateral prefrontal cortex (LPFC-p) displays attentional modulation or WM coding and not both. One area thought to play a role in both functions is LPFC-p. To test this, we optogenetically inactivated LPFC-p bilaterally during different task periods. Attention period inactivation reduced attentional modulation in LPFC-p, MST, and LIP neurons and impaired task performance. In contrast, WM period inactivation did not affect attentional modulation or performance and minimally affected WM coding. Our results suggest that feature attention and WM have dissociable neuronal substrates and that LPFC-p plays a critical role in feature attention, but not in WM.
Collapse
Affiliation(s)
- Diego Mendoza-Halliday
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Haoran Xu
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Frederico A C Azevedo
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Desimone
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Nesse WH, Clark KL, Noudoost B. Information representation in an oscillating neural field model modulated by working memory signals. Front Comput Neurosci 2024; 17:1253234. [PMID: 38303900 PMCID: PMC10830742 DOI: 10.3389/fncom.2023.1253234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/27/2023] [Indexed: 02/03/2024] Open
Abstract
We study how stimulus information can be represented in the dynamical signatures of an oscillatory model of neural activity-a model whose activity can be modulated by input akin to signals involved in working memory (WM). We developed a neural field model, tuned near an oscillatory instability, in which the WM-like input can modulate the frequency and amplitude of the oscillation. Our neural field model has a spatial-like domain in which an input that preferentially targets a point-a stimulus feature-on the domain will induce feature-specific activity changes. These feature-specific activity changes affect both the mean rate of spikes and the relative timing of spiking activity to the global field oscillation-the phase of the spiking activity. From these two dynamical signatures, we define both a spike rate code and an oscillatory phase code. We assess the performance of these two codes to discriminate stimulus features using an information-theoretic analysis. We show that global WM input modulations can enhance phase code discrimination while simultaneously reducing rate code discrimination. Moreover, we find that the phase code performance is roughly two orders of magnitude larger than that of the rate code defined for the same model solutions. The results of our model have applications to sensory areas of the brain, to which prefrontal areas send inputs reflecting the content of WM. These WM inputs to sensory areas have been established to induce oscillatory changes similar to our model. Our model results suggest a mechanism by which WM signals may enhance sensory information represented in oscillatory activity beyond the comparatively weak representations based on the mean rate activity.
Collapse
Affiliation(s)
- William H. Nesse
- Department of Mathematics, University of Utah, Salt Lake City, UT, United States
| | - Kelsey L. Clark
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, United States
| | - Behrad Noudoost
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Sanhedrai H, Havlin S, Dvir H. Mechanistic description of spontaneous loss of memory persistent activity based on neuronal synaptic strength. Heliyon 2024; 10:e23949. [PMID: 38223719 PMCID: PMC10787259 DOI: 10.1016/j.heliyon.2023.e23949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/06/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024] Open
Abstract
Persistent neural activity associated with working memory (WM) lasts for a limited time duration. Current theories suggest that its termination is actively obtained via inhibitory currents, and there is currently no theory regarding the possibility of a passive memory-loss mechanism that terminates memory persistent activity. Here, we develop an analytical-framework, based on synaptic strength, and show via simulations and fitting to wet-lab experiments, that passive memory-loss might be a result of an ionic-current long-term plateau, i.e., very slow reduction of memory followed by abrupt loss. We describe analytically the plateau, when the memory state is just below criticality. These results, including the plateau, are supported by experiments performed on rats. Moreover, we show that even just above criticality, forgetfulness can occur due to neuronal noise with ionic-current fluctuations, yielding a plateau, representing memory with very slow decay, and eventually a fast memory decay. Our results could have implications for developing new medications, targeted against memory impairments, through modifying neuronal noise.
Collapse
Affiliation(s)
| | - Shlomo Havlin
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
| | - Hila Dvir
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
9
|
Ceccarelli F, Ferrucci L, Londei F, Ramawat S, Brunamonti E, Genovesio A. Static and dynamic coding in distinct cell types during associative learning in the prefrontal cortex. Nat Commun 2023; 14:8325. [PMID: 38097560 PMCID: PMC10721651 DOI: 10.1038/s41467-023-43712-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
The prefrontal cortex maintains information in memory through static or dynamic population codes depending on task demands, but whether the population coding schemes used are learning-dependent and differ between cell types is currently unknown. We investigate the population coding properties and temporal stability of neurons recorded from male macaques in two mapping tasks during and after stimulus-response associative learning, and then we use a Strategy task with the same stimuli and responses as control. We identify a heterogeneous population coding for stimuli, responses, and novel associations: static for putative pyramidal cells and dynamic for putative interneurons that show the strongest selectivity for all the variables. The population coding of learned associations shows overall the highest stability driven by cell types, with interneurons changing from dynamic to static coding after successful learning. The results support that prefrontal microcircuitry expresses mixed population coding governed by cell types and changes its stability during associative learning.
Collapse
Affiliation(s)
- Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
| | - Fabrizio Londei
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
- PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy
| | - Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy.
| |
Collapse
|
10
|
Thrower L, Dang W, Jaffe RG, Sun JD, Constantinidis C. Decoding working memory information from neurons with and without persistent activity in the primate prefrontal cortex. J Neurophysiol 2023; 130:1392-1402. [PMID: 37910532 PMCID: PMC11068397 DOI: 10.1152/jn.00290.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
Persistent activity of neurons in the prefrontal cortex has been thought to represent the information maintained in working memory, though alternative models have challenged this idea. Theories that depend on the dynamic representation of information posit that stimulus information may be maintained by the activity pattern of neurons whose firing rate is not significantly elevated above their baseline during the delay period of working memory tasks. We thus tested the ability of neurons that do and do not generate persistent activity in the prefrontal cortex of monkeys to represent spatial and object information in working memory. Neurons that generated persistent activity represented more information about the stimuli in both spatial and object working memory tasks. The amount of information that could be decoded from neural activity depended on the choice of decoder and parameters used but neurons with persistent activity outperformed non-persistent neurons consistently. Averaged across all neurons and stimuli, the firing rate did not appear clearly elevated above baseline during the maintenance of neural activity particularly for object working memory; however, this grand average masked neurons that generated persistent activity selective for their preferred stimuli, which carried the majority of stimulus information. These results reveal that prefrontal neurons that generate persistent activity maintain information more reliably during working memory.NEW & NOTEWORTHY Competing theories suggest that neurons that generate persistent activity or do not are primarily responsible for the maintenance of information, particularly regarding object working memory. Although the two models have been debated on theoretical terms, direct comparison of empirical results has been lacking. Analysis of neural activity in a large database of prefrontal recordings revealed that neurons that generate persistent activity were primarily responsible for the maintenance of both spatial and object working memory.
Collapse
Affiliation(s)
- Lilianna Thrower
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Wenhao Dang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Rye G Jaffe
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Jasmine D Sun
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
11
|
Li S, Rosen MC, Chang S, David S, Freedman DJ. Alterations of neural activity in the prefrontal cortex associated with deficits in working memory performance. Front Behav Neurosci 2023; 17:1213435. [PMID: 37915531 PMCID: PMC10616307 DOI: 10.3389/fnbeh.2023.1213435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023] Open
Abstract
Working memory (WM), a core cognitive function, enables the temporary holding and manipulation of information in mind to support ongoing behavior. Neurophysiological recordings conducted in nonhuman primates have revealed neural correlates of this process in a network of higher-order cortical regions, particularly the prefrontal cortex (PFC). Here, we review the circuit mechanisms and functional importance of WM-related activity in these areas. Recent neurophysiological data indicates that the absence of these neural correlates at different stages of WM is accompanied by distinct behavioral deficits, which are characteristic of various disease states/normal aging and which we review here. Finally, we discuss emerging evidence of electrical stimulation ameliorating these WM deficits in both humans and non-human primates. These results are important for a basic understanding of the neural mechanisms supporting WM, as well as for translational efforts to developing therapies capable of enhancing healthy WM ability or restoring WM from dysfunction.
Collapse
Affiliation(s)
- Sihai Li
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Matthew C. Rosen
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Suha Chang
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Samuel David
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - David J. Freedman
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
- Neuroscience Institute, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
Huang L, Wang J, He Q, Li C, Sun Y, Seger CA, Zhang X. A source for category-induced global effects of feature-based attention in human prefrontal cortex. Cell Rep 2023; 42:113080. [PMID: 37659080 DOI: 10.1016/j.celrep.2023.113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023] Open
Abstract
Global effects of feature-based attention (FBA) are generally limited to stimuli sharing the same or similar features, as hypothesized in the "feature-similarity gain model." Visual perception, however, often reflects categories acquired via experience/learning; whether the global-FBA effect can be induced by the categorized features remains unclear. Here, human subjects were trained to classify motion directions into two discrete categories and perform a classical motion-based attention task. We found a category-induced global-FBA effect in both the middle temporal area (MT+) and frontoparietal areas, where attention to a motion direction globally spread to unattended motion directions within the same category, but not to those in a different category. Effective connectivity analysis showed that the category-induced global-FBA effect in MT+ was derived by feedback from the inferior frontal junction (IFJ). Altogether, our study reveals a category-induced global-FBA effect and identifies a source for this effect in human prefrontal cortex, implying that FBA is of greater ecological significance than previously thought.
Collapse
Affiliation(s)
- Ling Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Jingyi Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Qionghua He
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Chu Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yueling Sun
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Carol A Seger
- School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China; Department of Psychology, Colorado State University, Fort Collins, CO 80523, USA
| | - Xilin Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, Guangdong 510631, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China.
| |
Collapse
|
13
|
Comeaux P, Clark K, Noudoost B. A recruitment through coherence theory of working memory. Prog Neurobiol 2023; 228:102491. [PMID: 37393039 PMCID: PMC10530428 DOI: 10.1016/j.pneurobio.2023.102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The interactions between prefrontal cortex and other areas during working memory have been studied for decades. Here we outline a conceptual framework describing interactions between these areas during working memory, and review evidence for key elements of this model. We specifically suggest that a top-down signal sent from prefrontal to sensory areas drives oscillations in these areas. Spike timing within sensory areas becomes locked to these working-memory-driven oscillations, and the phase of spiking conveys information about the representation available within these areas. Downstream areas receiving these phase-locked spikes from sensory areas can recover this information via a combination of coherent oscillations and gating of input efficacy based on the phase of their local oscillations. Although the conceptual framework is based on prefrontal interactions with sensory areas during working memory, we also discuss the broader implications of this framework for flexible communication between brain areas in general.
Collapse
Affiliation(s)
- Phillip Comeaux
- Dept. of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT 84112, USA; Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Kelsey Clark
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
14
|
Stavropoulos A, Lakshminarasimhan KJ, Angelaki DE. Belief embodiment through eye movements facilitates memory-guided navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554107. [PMID: 37662309 PMCID: PMC10473632 DOI: 10.1101/2023.08.21.554107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Neural network models optimized for task performance often excel at predicting neural activity but do not explain other properties such as the distributed representation across functionally distinct areas. Distributed representations may arise from animals' strategies for resource utilization, however, fixation-based paradigms deprive animals of a vital resource: eye movements. During a naturalistic task in which humans use a joystick to steer and catch flashing fireflies in a virtual environment lacking position cues, subjects physically track the latent task variable with their gaze. We show this strategy to be true also during an inertial version of the task in the absence of optic flow and demonstrate that these task-relevant eye movements reflect an embodiment of the subjects' dynamically evolving internal beliefs about the goal. A neural network model with tuned recurrent connectivity between oculomotor and evidence-integrating frontoparietal circuits accounted for this behavioral strategy. Critically, this model better explained neural data from monkeys' posterior parietal cortex compared to task-optimized models unconstrained by such an oculomotor-based cognitive strategy. These results highlight the importance of unconstrained movement in working memory computations and establish a functional significance of oculomotor signals for evidence-integration and navigation computations via embodied cognition.
Collapse
Affiliation(s)
| | | | - Dora E. Angelaki
- Center for Neural Science, New York University, New York, NY, USA
- Tandon School of Engineering, New York University, New York, NY, USA
| |
Collapse
|
15
|
Thrower L, Dang W, Jaffe RG, Sun JD, Constantinidis C. Decoding working memory information from persistent and activity-silent neurons in the primate prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550371. [PMID: 37546782 PMCID: PMC10402050 DOI: 10.1101/2023.07.25.550371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Persistent activity of neurons in the prefrontal cortex has been thought to represent the information maintained in working memory, though alternative models have recently challenged this idea. Activity-silent theories posit that stimulus information may be maintained by the activity pattern of neurons that do not produce firing rate significantly elevated about their baseline during the delay period of working memory tasks. We thus tested the ability of neurons that do and do not generate persistent activity in the prefrontal cortex of monkeys to represent spatial and object information in working memory. Neurons that generated persistent activity represented more information about the stimuli in both spatial and object working memory tasks. The amount of information that could be decoded from neural activity depended on the choice of decoder and parameters used but neurons with persistent activity outperformed non-persistent neurons consistently. Although averaged across all neurons and stimuli, firing rate did not appear clearly elevated above baseline during the maintenance of neural activity particularly for object working memory, this grant average masked neurons that generated persistent activity selective for their preferred stimuli, which carried the majority of information about the stimulus identity. These results reveal that prefrontal neurons with generate persistent activity constitute the primary mechanism of working memory maintenance in the cortex. NEW AND NOTEWORTHY Competing theories suggest that neurons that generate persistent activity or do not are primarily responsible for the maintenance of information, particularly regarding object working memory. While the two models have been debated on theoretical terms, direct comparison of empirical results have been lacking. Analysis of neural activity in a large database of prefrontal recordings revealed that neurons that generate persistent activity were primarily responsible for the maintenance of both spatial and object working memory.
Collapse
|
16
|
Singh B, Wang Z, Constantinidis C. Neuronal selectivity for stimulus information determines prefrontal LFP gamma power regardless of task execution. Commun Biol 2023; 6:505. [PMID: 37169826 PMCID: PMC10175284 DOI: 10.1038/s42003-023-04855-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Local field potential (LFP) power in the gamma frequency is modulated by cognitive variables during task execution. We sought to examine whether such modulations only emerge when task rules are established. We therefore analyzed neuronal firing and LFPs in different prefrontal subdivisions before and after the same monkeys were trained to perform cognitive tasks. Prior to task rule learning, sites containing neurons selective for stimuli already exhibited increased gamma power during and after the passive viewing of stimuli compared to the baseline period. Unexpectedly, when the same monkeys learned to maintain these stimuli in working memory, the elevation of gamma power above the baseline was diminished, despite an overall increase in firing rate. Learning and executing the task further decoupled LFP power from single neuron firing. Gamma power decreased at the time when subjects needed to make a judgment about whether two stimuli were the same or not, and differential gamma power was observed for matching and nonmatching stimuli. Our results indicate that prefrontal gamma power emerges spontaneously, not necessarily tied to a cognitive task being executed.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN, 37235, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
17
|
Benozzo D, Ferrucci L, Genovesio A. Effects of contraction bias on the decision process in the macaque prefrontal cortex. Cereb Cortex 2023; 33:2958-2968. [PMID: 35718538 DOI: 10.1093/cercor/bhac253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Our representation of magnitudes such as time, distance, and size is not always veridical because it is affected by multiple biases. From a Bayesian perspective, estimation errors are considered to be the result of an optimization mechanism for the behavior in a noisy environment by integrating previous experience with the incoming sensory information. One influence of the distribution of past stimuli on perceptual decisions is represented by the regression toward the mean, a type of contraction bias. Using a spatial discrimination task with 2 stimuli presented sequentially at different distances from the center, we show that this bias is also present in macaques when comparing the magnitude of 2 distances. We found that the contraction of the first stimulus magnitude toward the center of the distribution accounted for some of the changes in performance, even more so than the effect of difficulty related to the ratio between stimulus magnitudes. At the neural level in the dorsolateral prefrontal cortex, the coding of the decision after the presentation of the second stimulus reflected the effect of the contraction bias on the discriminability of the stimuli at the behavioral level.
Collapse
Affiliation(s)
- Danilo Benozzo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
18
|
Mendoza-Halliday D, Xu H, Azevedo FAC, Desimone R. Dissociable neuronal substrates of visual feature attention and working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530719. [PMID: 36909606 PMCID: PMC10002769 DOI: 10.1101/2023.03.01.530719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Attention and working memory (WM) are distinct cognitive functions, yet given their close interactions, it has been proposed that they share the same neuronal mechanisms. Here we show that in macaques performing a WM-guided feature attention task, the activity of most neurons in areas middle temporal (MT), medial superior temporal (MST), lateral intraparietal (LIP), and posterior lateral prefrontal cortex (LPFC-p) displays either WM coding or attentional modulation, but not both. One area thought to play a role in both functions is LPFC-p. To test this, we optogenetically inactivated LPFC-p bilaterally during the attention or WM periods of the task. Attention period inactivation reduced attentional modulation in LPFC-p, MST, and LIP neurons, and impaired task performance. WM period inactivation did not affect attentional modulation nor performance, and minimally reduced WM coding. Our results suggest that feature attention and WM have dissociable neuronal substrates, and that LPFC-p plays a critical role in attention but not WM.
Collapse
|
19
|
Vivekanandhan G, Mehrabbeik M, Rajagopal K, Jafari S, Lomber SG, Merrikhi Y. Applying machine learning techniques to detect the deployment of spatial working memory from the spiking activity of MT neurons. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:3216-3236. [PMID: 36899578 DOI: 10.3934/mbe.2023151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neural signatures of working memory have been frequently identified in the spiking activity of different brain areas. However, some studies reported no memory-related change in the spiking activity of the middle temporal (MT) area in the visual cortex. However, recently it was shown that the content of working memory is reflected as an increase in the dimensionality of the average spiking activity of the MT neurons. This study aimed to find the features that can reveal memory-related changes with the help of machine-learning algorithms. In this regard, different linear and nonlinear features were obtained from the neuronal spiking activity during the presence and absence of working memory. To select the optimum features, the Genetic algorithm, Particle Swarm Optimization, and Ant Colony Optimization methods were employed. The classification was performed using the Support Vector Machine (SVM) and the K-Nearest Neighbor (KNN) classifiers. Our results suggest that the deployment of spatial working memory can be perfectly detected from spiking patterns of MT neurons with an accuracy of 99.65±0.12 using the KNN and 99.50±0.26 using the SVM classifiers.
Collapse
Affiliation(s)
| | - Mahtab Mehrabbeik
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Karthikeyan Rajagopal
- Centre for Nonlinear Systems, Chennai Institute of Technology, India
- Department of Electronics and Communications Engineering and University Centre of Research & Development, Chandigarh University, Mohali 140413, Punjab
| | - Sajad Jafari
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
- Health Technology Research Institute, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Stephen G Lomber
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, H3G 1Y6, Canada
| | - Yaser Merrikhi
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, H3G 1Y6, Canada
| |
Collapse
|
20
|
Dynamic and stable population coding of attentional instructions coexist in the prefrontal cortex. Proc Natl Acad Sci U S A 2022; 119:e2202564119. [PMID: 36161937 DOI: 10.1073/pnas.2202564119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A large body of recent work suggests that neural representations in prefrontal cortex (PFC) are changing over time to adapt to task demands. However, it remains unclear whether and how such dynamic coding schemes depend on the encoded variable and are influenced by anatomical constraints. Using a cued attention task and multivariate classification methods, we show that neuronal ensembles in PFC encode and retain in working memory spatial and color attentional instructions in an anatomically specific manner. Spatial instructions could be decoded both from the frontal eye field (FEF) and the ventrolateral PFC (vlPFC) population, albeit more robustly from FEF, whereas color instructions were decoded more robustly from vlPFC. Decoding spatial and color information from vlPFC activity in the high-dimensional state space indicated stronger dynamics for color, across the cue presentation and memory periods. The change in the color code was largely due to rapid changes in the network state during the transition to the delay period. However, we found that dynamic vlPFC activity contained time-invariant color information within a low-dimensional subspace of neural activity that allowed for stable decoding of color across time. Furthermore, spatial attention influenced decoding of stimuli features profoundly in vlPFC, but less so in visual area V4. Overall, our results suggest that dynamic population coding of attentional instructions within PFC is shaped by anatomical constraints and can coexist with stable subspace coding that allows time-invariant decoding of information about the future target.
Collapse
|
21
|
Burk DC, Sheinberg DL. Neurons in inferior temporal cortex are sensitive to motion trajectory during degraded object recognition. Cereb Cortex Commun 2022; 3:tgac034. [PMID: 36168516 PMCID: PMC9499820 DOI: 10.1093/texcom/tgac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Our brains continuously acquire sensory information and make judgments even when visual information is limited. In some circumstances, an ambiguous object can be recognized from how it moves, such as an animal hopping or a plane flying overhead. Yet it remains unclear how movement is processed by brain areas involved in visual object recognition. Here we investigate whether inferior temporal (IT) cortex, an area known for its relevance in visual form processing, has access to motion information during recognition. We developed a matching task that required monkeys to recognize moving shapes with variable levels of shape degradation. Neural recordings in area IT showed that, surprisingly, some IT neurons responded stronger to degraded shapes than clear ones. Furthermore, neurons exhibited motion sensitivity at different times during the presentation of the blurry target. Population decoding analyses showed that motion patterns could be decoded from IT neuron pseudo-populations. Contrary to previous findings, these results suggest that neurons in IT can integrate visual motion and shape information, particularly when shape information is degraded, in a way that has been previously overlooked. Our results highlight the importance of using challenging multifeature recognition tasks to understand the role of area IT in naturalistic visual object recognition.
Collapse
Affiliation(s)
- Diana C Burk
- Department of Neuroscience, Brown University , Providence, RI 02912 , United States
| | - David L Sheinberg
- Department of Neuroscience, Brown University , Providence, RI 02912 , United States
- Carney Institute for Brain Science, Brown University , Providence, RI 02912 , United States
| |
Collapse
|
22
|
Abstract
Voluntary attention selects behaviorally relevant signals for further processing while filtering out distracter signals. Neural correlates of voluntary visual attention have been reported across multiple areas of the primate visual processing streams, with the earliest and strongest effects isolated in the prefrontal cortex. In this article, I review evidence supporting the hypothesis that signals guiding the allocation of voluntary attention emerge in areas of the prefrontal cortex and reach upstream areas to modulate the processing of incoming visual information according to its behavioral relevance. Areas located anterior and dorsal to the arcuate sulcus and the frontal eye fields produce signals that guide the allocation of spatial attention. Areas located anterior and ventral to the arcuate sulcus produce signals for feature-based attention. Prefrontal microcircuits are particularly suited to supporting voluntary attention because of their ability to generate attentional template signals and implement signal gating and their extensive connectivity with the rest of the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julio Martinez-Trujillo
- Department of Physiology, Pharmacology and Psychiatry, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada;
| |
Collapse
|
23
|
Shushruth S, Zylberberg A, Shadlen MN. Sequential sampling from memory underlies action selection during abstract decision-making. Curr Biol 2022; 32:1949-1960.e5. [PMID: 35354066 PMCID: PMC9090972 DOI: 10.1016/j.cub.2022.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
The study of perceptual decision-making in monkeys has provided insights into the process by which sensory evidence is integrated toward a decision. When monkeys make decisions with the knowledge of the motor actions the decisions bear upon, the process of evidence integration is instantiated by neurons involved in the selection of said actions. It is less clear how monkeys make decisions when unaware of the actions required to communicate their choice-what we refer to as "abstract" decisions. We investigated this by training monkeys to associate the direction of motion of a noisy random-dot display with the color of two targets. Crucially, the targets were displayed at unpredictable locations after the motion stimulus was extinguished. We found that the monkeys postponed decision formation until the targets were revealed. Neurons in the parietal association area LIP represented the integration of evidence leading to a choice, but as the stimulus was no longer visible, the samples of evidence must have been retrieved from short-term memory. Our results imply that when decisions are temporally unyoked from the motor actions they bear upon, decision formation is protracted until they can be framed in terms of motor actions.
Collapse
Affiliation(s)
- S Shushruth
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, New York, NY 10027, USA.
| | - Ariel Zylberberg
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, New York, NY 10027, USA.
| | - Michael N Shadlen
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, New York, NY 10027, USA; Howard Hughes Medical Institute, New York, NY 10027, USA; Kavli Institute, Columbia University, 612 West 130th Street, New York, NY 10027, USA.
| |
Collapse
|
24
|
Kapoor V, Dwarakanath A, Safavi S, Werner J, Besserve M, Panagiotaropoulos TI, Logothetis NK. Decoding internally generated transitions of conscious contents in the prefrontal cortex without subjective reports. Nat Commun 2022; 13:1535. [PMID: 35318323 PMCID: PMC8940963 DOI: 10.1038/s41467-022-28897-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
A major debate about the neural correlates of conscious perception concerns its cortical organization, namely, whether it includes the prefrontal cortex (PFC), which mediates executive functions, or it is constrained within posterior cortices. It has been suggested that PFC activity during paradigms investigating conscious perception is conflated with post-perceptual processes associated with reporting the contents of consciousness or feedforward signals originating from exogenous stimulus manipulations and relayed via posterior cortical areas. We addressed this debate by simultaneously probing neuronal populations in the rhesus macaque (Macaca mulatta) PFC during a no-report paradigm, capable of instigating internally generated transitions in conscious perception, without changes in visual stimulation. We find that feature-selective prefrontal neurons are modulated concomitantly with subjective perception and perceptual suppression of their preferred stimulus during both externally induced and internally generated changes in conscious perception. Importantly, this enables reliable single-trial, population decoding of conscious contents. Control experiments confirm significant decoding of stimulus contents, even when oculomotor responses, used for inferring perception, are suppressed. These findings suggest that internally generated changes in the contents of conscious visual perception are reliably reflected within the activity of prefrontal populations in the absence of volitional reports or changes in sensory input. The role of the prefrontal cortex in conscious perception is debated because of its involvement in task relevant behaviour, such as subjective perceptual reports. Here, the authors show that prefrontal activity in rhesus macaques correlates with subjective perception and the contents of consciousness can be decoded from prefrontal population activity even without reports.
Collapse
Affiliation(s)
- Vishal Kapoor
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany. .,International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China.
| | - Abhilash Dwarakanath
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany
| | - Shervin Safavi
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.,International Max Planck Research School, Tübingen, 72076, Germany
| | - Joachim Werner
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany
| | - Michel Besserve
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.,Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076, Tübingen, Germany
| | - Theofanis I Panagiotaropoulos
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany. .,Cognitive Neuroimaging Unit, CEA, DSV/I2BM, INSERM, Universite Paris-Sud, Universite Paris-Saclay, Neurospin Center, 91191, Gif/Yvette, France.
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, 72076, Germany.,International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China.,Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
25
|
Xu R, Bichot NP, Takahashi A, Desimone R. The cortical connectome of primate lateral prefrontal cortex. Neuron 2022; 110:312-327.e7. [PMID: 34739817 PMCID: PMC8776613 DOI: 10.1016/j.neuron.2021.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/09/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023]
Abstract
The lateral prefrontal cortex (LPFC) of primates plays an important role in executive control, but how it interacts with the rest of the cortex remains unclear. To address this, we densely mapped the cortical connectome of LPFC, using electrical microstimulation combined with functional MRI (EM-fMRI). We found isomorphic mappings between LPFC and five major processing domains composing most of the cerebral cortex except early sensory and motor areas. An LPFC grid of ∼200 stimulation sites topographically mapped to separate grids of activation sites in the five domains, coarsely resembling how the visual cortex maps the retina. The temporal and parietal maps largely overlapped in LPFC, suggesting topographically organized convergence of the ventral and dorsal streams, and the other maps overlapped at least partially. Thus, the LPFC contains overlapping, millimeter-scale maps that mirror the organization of major cortical processing domains, supporting LPFC's role in coordinating activity within and across these domains.
Collapse
Affiliation(s)
- Rui Xu
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Narcisse P Bichot
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atsushi Takahashi
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Desimone
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Rezayat E, Clark K, Dehaqani MRA, Noudoost B. Dependence of Working Memory on Coordinated Activity Across Brain Areas. Front Syst Neurosci 2022; 15:787316. [PMID: 35095433 PMCID: PMC8792503 DOI: 10.3389/fnsys.2021.787316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Neural signatures of working memory (WM) have been reported in numerous brain areas, suggesting a distributed neural substrate for memory maintenance. In the current manuscript we provide an updated review of the literature focusing on intracranial neurophysiological recordings during WM in primates. Such signatures of WM include changes in firing rate or local oscillatory power within an area, along with measures of coordinated activity between areas based on synchronization between oscillations. In comparing the ability of various neural signatures in any brain area to predict behavioral performance, we observe that synchrony between areas is more frequently and robustly correlated with WM performance than any of the within-area neural signatures. We further review the evidence for alteration of inter-areal synchrony in brain disorders, consistent with an important role for such synchrony during behavior. Additionally, results of causal studies indicate that manipulating synchrony across areas is especially effective at influencing WM task performance. Each of these lines of research supports the critical role of inter-areal synchrony in WM. Finally, we propose a framework for interactions between prefrontal and sensory areas during WM, incorporating a range of experimental findings and offering an explanation for the observed link between intra-areal measures and WM performance.
Collapse
Affiliation(s)
- Ehsan Rezayat
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Mohammad-Reza A. Dehaqani
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Behrad Noudoost,
| |
Collapse
|
27
|
Tang H, Riley MR, Singh B, Qi XL, Blake DT, Constantinidis C. Prefrontal cortical plasticity during learning of cognitive tasks. Nat Commun 2022; 13:90. [PMID: 35013248 PMCID: PMC8748623 DOI: 10.1038/s41467-021-27695-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
Training in working memory tasks is associated with lasting changes in prefrontal cortical activity. To assess the neural activity changes induced by training, we recorded single units, multi-unit activity (MUA) and local field potentials (LFP) with chronic electrode arrays implanted in the prefrontal cortex of two monkeys, throughout the period they were trained to perform cognitive tasks. Mastering different task phases was associated with distinct changes in neural activity, which included recruitment of larger numbers of neurons, increases or decreases of their firing rate, changes in the correlation structure between neurons, and redistribution of power across LFP frequency bands. In every training phase, changes induced by the actively learned task were also observed in a control task, which remained the same across the training period. Our results reveal how learning to perform cognitive tasks induces plasticity of prefrontal cortical activity, and how activity changes may generalize between tasks.
Collapse
Affiliation(s)
- Hua Tang
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
- Laboratory of Neuropsychology, National Institutes of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Mitchell R Riley
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Balbir Singh
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Xue-Lian Qi
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - David T Blake
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Neuroscience Program, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
28
|
Roussy M, Mendoza-Halliday D, Martinez-Trujillo JC. Neural Substrates of Visual Perception and Working Memory: Two Sides of the Same Coin or Two Different Coins? Front Neural Circuits 2021; 15:764177. [PMID: 34899197 PMCID: PMC8662382 DOI: 10.3389/fncir.2021.764177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Visual perception occurs when a set of physical signals emanating from the environment enter the visual system and the brain interprets such signals as a percept. Visual working memory occurs when the brain produces and maintains a mental representation of a percept while the physical signals corresponding to that percept are not available. Early studies in humans and non-human primates demonstrated that lesions of the prefrontal cortex impair performance during visual working memory tasks but not during perceptual tasks. These studies attributed a fundamental role in working memory and a lesser role in visual perception to the prefrontal cortex. Indeed, single cell recording studies have found that neurons in the lateral prefrontal cortex of macaques encode working memory representations via persistent firing, validating the results of lesion studies. However, other studies have reported that neurons in some areas of the parietal and temporal lobe-classically associated with visual perception-similarly encode working memory representations via persistent firing. This prompted a line of enquiry about the role of the prefrontal and other associative cortices in working memory and perception. Here, we review evidence from single neuron studies in macaque monkeys examining working memory representations across different areas of the visual hierarchy and link them to studies examining the role of the same areas in visual perception. We conclude that neurons in early visual areas of both ventral (V1-V2-V4) and dorsal (V1-V3-MT) visual pathways of macaques mainly encode perceptual signals. On the other hand, areas downstream from V4 and MT contain subpopulations of neurons that encode both perceptual and/or working memory signals. Differences in cortical architecture (neuronal types, layer composition, and synaptic density and distribution) may be linked to the differential encoding of perceptual and working memory signals between early visual areas and higher association areas.
Collapse
Affiliation(s)
- Megan Roussy
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Julio C. Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
29
|
Wang XJ. 50 years of mnemonic persistent activity: quo vadis? Trends Neurosci 2021; 44:888-902. [PMID: 34654556 PMCID: PMC9087306 DOI: 10.1016/j.tins.2021.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Half a century ago persistent spiking activity in the neocortex was discovered to be a neural substrate of working memory. Since then scientists have sought to understand this core cognitive function across biological and computational levels. Studies are reviewed here that cumulatively lend support to a synaptic theory of recurrent circuits for mnemonic persistent activity that depends on various cellular and network substrates and is mathematically described by a multiple-attractor network model. Crucially, a mnemonic attractor state of the brain is consistent with temporal variations and heterogeneity across neurons in a subspace of population activity. Persistent activity should be broadly understood as a contrast to decaying transients. Mechanisms in the absence of neural firing ('activity-silent state') are suitable for passive short-term memory but not for working memory - which is characterized by executive control for filtering out distractors, limited capacity, and internal manipulation of information.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 20003, USA.
| |
Collapse
|
30
|
Abstract
Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training-induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Russell J Jaffe
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
31
|
Zhou Y, Rosen MC, Swaminathan SK, Masse NY, Zhu O, Freedman DJ. Distributed functions of prefrontal and parietal cortices during sequential categorical decisions. eLife 2021; 10:e58782. [PMID: 34491201 PMCID: PMC8423442 DOI: 10.7554/elife.58782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Comparing sequential stimuli is crucial for guiding complex behaviors. To understand mechanisms underlying sequential decisions, we compared neuronal responses in the prefrontal cortex (PFC), the lateral intraparietal (LIP), and medial intraparietal (MIP) areas in monkeys trained to decide whether sequentially presented stimuli were from matching (M) or nonmatching (NM) categories. We found that PFC leads M/NM decisions, whereas LIP and MIP appear more involved in stimulus evaluation and motor planning, respectively. Compared to LIP, PFC showed greater nonlinear integration of currently visible and remembered stimuli, which correlated with the monkeys' M/NM decisions. Furthermore, multi-module recurrent networks trained on the same task exhibited key features of PFC and LIP encoding, including nonlinear integration in the PFC-like module, which was causally involved in the networks' decisions. Network analysis found that nonlinear units have stronger and more widespread connections with input, output, and within-area units, indicating putative circuit-level mechanisms for sequential decisions.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Neurobiology, The University of ChicagoChicagoUnited States
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| | - Matthew C Rosen
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | | | - Nicolas Y Masse
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - Ou Zhu
- Department of Neurobiology, The University of ChicagoChicagoUnited States
| | - David J Freedman
- Department of Neurobiology, The University of ChicagoChicagoUnited States
- Neuroscience Institute, The University of ChicagoChicagoUnited States
| |
Collapse
|
32
|
Cloherty SL, Yates JL, Graf D, DeAngelis GC, Mitchell JF. Motion Perception in the Common Marmoset. Cereb Cortex 2021; 30:2658-2672. [PMID: 31828299 DOI: 10.1093/cercor/bhz267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
Visual motion processing is a well-established model system for studying neural population codes in primates. The common marmoset, a small new world primate, offers unparalleled opportunities to probe these population codes in key motion processing areas, such as cortical areas MT and MST, because these areas are accessible for imaging and recording at the cortical surface. However, little is currently known about the perceptual abilities of the marmoset. Here, we introduce a paradigm for studying motion perception in the marmoset and compare their psychophysical performance with human observers. We trained two marmosets to perform a motion estimation task in which they provided an analog report of their perceived direction of motion with an eye movement to a ring that surrounded the motion stimulus. Marmosets and humans exhibited similar trade-offs in speed versus accuracy: errors were larger and reaction times were longer as the strength of the motion signal was reduced. Reverse correlation on the temporal fluctuations in motion direction revealed that both species exhibited short integration windows; however, marmosets had substantially less nondecision time than humans. Our results provide the first quantification of motion perception in the marmoset and demonstrate several advantages to using analog estimation tasks.
Collapse
Affiliation(s)
- Shaun L Cloherty
- Department of Brain and Cognitive Sciences, University of Rochester, New York, NY 14627, USA.,Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jacob L Yates
- Department of Brain and Cognitive Sciences, University of Rochester, New York, NY 14627, USA
| | - Dina Graf
- Department of Brain and Cognitive Sciences, University of Rochester, New York, NY 14627, USA
| | - Gregory C DeAngelis
- Department of Brain and Cognitive Sciences, University of Rochester, New York, NY 14627, USA
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, New York, NY 14627, USA
| |
Collapse
|
33
|
Hallenbeck GE, Sprague TC, Rahmati M, Sreenivasan KK, Curtis CE. Working memory representations in visual cortex mediate distraction effects. Nat Commun 2021; 12:4714. [PMID: 34354071 PMCID: PMC8342709 DOI: 10.1038/s41467-021-24973-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Although the contents of working memory can be decoded from visual cortex activity, these representations may play a limited role if they are not robust to distraction. We used model-based fMRI to estimate the impact of distracting visual tasks on working memory representations in several visual field maps in visual and frontoparietal association cortex. Here, we show distraction causes the fidelity of working memory representations to briefly dip when both the memorandum and distractor are jointly encoded by the population activities. Distraction induces small biases in memory errors which can be predicted by biases in neural decoding in early visual cortex, but not other regions. Although distraction briefly disrupts working memory representations, the widespread redundancy with which working memory information is encoded may protect against catastrophic loss. In early visual cortex, the neural representation of information in working memory and behavioral performance are intertwined, solidifying its importance in visual memory. The relative roles of visual, parietal, and frontal cortex in working memory have been actively debated. Here, the authors show that distraction impacts visual working memory representations in primary visual areas, indicating that these regions play a key role in the maintenance of working memory.
Collapse
Affiliation(s)
| | - Thomas C Sprague
- Department of Psychology, New York University, New York, NY, USA.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Masih Rahmati
- Department of Psychology, New York University, New York, NY, USA.,Center for Neural Science, New York University, New York, NY, USA
| | - Kartik K Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY, USA. .,Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
34
|
Feature-based attention processes in primate prefrontal cortex do not rely on feature similarity. Cell Rep 2021; 36:109470. [PMID: 34348162 DOI: 10.1016/j.celrep.2021.109470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/31/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022] Open
Abstract
Feature-based attention enables privileged processing of specific visual properties. During feature-based attention, neurons in visual cortices show "gain modulation" by enhancing neuronal responses to the features of attended stimuli due to top-down signals originating from prefrontal cortex (PFC). Attentional modulation in visual cortices requires "feature similarity:" neurons only increase their responses when the attended feature variable and the neurons' preferred feature coincide. However, whether gain modulation based on feature similarity is a general attentional mechanism is currently unknown. To address this issue, we record single-unit activity from PFC of macaques trained to switch attention between two conjunctive feature parameters. We find that PFC neurons experience gain modulation in response to attentional demands. However, this attentional gain modulation in PFC is independent of the feature-tuning preferences of neurons. These findings suggest that feature similarity is not a general mechanism in feature-based attention throughout the cortical processing hierarchy.
Collapse
|
35
|
Davoudi S, Parto Dezfouli M, Knight RT, Daliri MR, Johnson EL. Prefrontal Lesions Disrupt Posterior Alpha-Gamma Coordination of Visual Working Memory Representations. J Cogn Neurosci 2021; 33:1798-1810. [PMID: 34375418 DOI: 10.1162/jocn_a_01715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
How does the human brain prioritize different visual representations in working memory (WM)? Here, we define the oscillatory mechanisms supporting selection of "where" and "when" features from visual WM storage and investigate the role of pFC in feature selection. Fourteen individuals with lateral pFC damage and 20 healthy controls performed a visuospatial WM task while EEG was recorded. On each trial, two shapes were presented sequentially in a top/bottom spatial orientation. A retro-cue presented mid-delay prompted which of the two shapes had been in either the top/bottom spatial position or first/second temporal position. We found that cross-frequency coupling between parieto-occipital alpha (α; 8-12 Hz) oscillations and topographically distributed gamma (γ; 30-50 Hz) activity tracked selection of the distinct cued feature in controls. This signature of feature selection was disrupted in patients with pFC lesions, despite intact α-γ coupling independent of feature selection. These findings reveal a pFC-dependent parieto-occipital α-γ mechanism for the rapid selection of visual WM representations.
Collapse
Affiliation(s)
- Saeideh Davoudi
- University of Montréal, Quebec, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec, Canada.,Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mohsen Parto Dezfouli
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.,School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | | - Mohammad Reza Daliri
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.,School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Elizabeth L Johnson
- University of California, Berkeley.,Wayne State University, Detroit, Michigan
| |
Collapse
|
36
|
Pasternak T, Tadin D. Linking Neuronal Direction Selectivity to Perceptual Decisions About Visual Motion. Annu Rev Vis Sci 2021; 6:335-362. [PMID: 32936737 DOI: 10.1146/annurev-vision-121219-081816] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Psychophysical and neurophysiological studies of responses to visual motion have converged on a consistent set of general principles that characterize visual processing of motion information. Both types of approaches have shown that the direction and speed of target motion are among the most important encoded stimulus properties, revealing many parallels between psychophysical and physiological responses to motion. Motivated by these parallels, this review focuses largely on more direct links between the key feature of the neuronal response to motion, direction selectivity, and its utilization in memory-guided perceptual decisions. These links were established during neuronal recordings in monkeys performing direction discriminations, but also by examining perceptual effects of widespread elimination of cortical direction selectivity produced by motion deprivation during development. Other approaches, such as microstimulation and lesions, have documented the importance of direction-selective activity in the areas that are active during memory-guided direction comparisons, area MT and the prefrontal cortex, revealing their likely interactions during behavioral tasks.
Collapse
Affiliation(s)
- Tatiana Pasternak
- Department of Neuroscience, University of Rochester, Rochester, New York 14642, USA; , .,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627, USA.,Center for Visual Science, University of Rochester, Rochester, New York 14627, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14642, USA
| | - Duje Tadin
- Department of Neuroscience, University of Rochester, Rochester, New York 14642, USA; , .,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627, USA.,Center for Visual Science, University of Rochester, Rochester, New York 14627, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14642, USA.,Department of Ophthalmology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
37
|
Curtis CE, Sprague TC. Persistent Activity During Working Memory From Front to Back. Front Neural Circuits 2021; 15:696060. [PMID: 34366794 PMCID: PMC8334735 DOI: 10.3389/fncir.2021.696060] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
Working memory (WM) extends the duration over which information is available for processing. Given its importance in supporting a wide-array of high level cognitive abilities, uncovering the neural mechanisms that underlie WM has been a primary goal of neuroscience research over the past century. Here, we critically review what we consider the two major "arcs" of inquiry, with a specific focus on findings that were theoretically transformative. For the first arc, we briefly review classic studies that led to the canonical WM theory that cast the prefrontal cortex (PFC) as a central player utilizing persistent activity of neurons as a mechanism for memory storage. We then consider recent challenges to the theory regarding the role of persistent neural activity. The second arc, which evolved over the last decade, stemmed from sophisticated computational neuroimaging approaches enabling researchers to decode the contents of WM from the patterns of neural activity in many parts of the brain including early visual cortex. We summarize key findings from these studies, their implications for WM theory, and finally the challenges these findings pose. Our goal in doing so is to identify barriers to developing a comprehensive theory of WM that will require a unification of these two "arcs" of research.
Collapse
Affiliation(s)
- Clayton E. Curtis
- Department of Psychology, New York University, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Thomas C. Sprague
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
38
|
Nesse WH, Bahmani Z, Clark K, Noudoost B. Differential Contributions of Inhibitory Subnetwork to Visual Cortical Modulations Identified via Computational Model of Working Memory. Front Comput Neurosci 2021; 15:632730. [PMID: 34093155 PMCID: PMC8173146 DOI: 10.3389/fncom.2021.632730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/13/2021] [Indexed: 11/30/2022] Open
Abstract
Extrastriate visual neurons show no firing rate change during a working memory (WM) task in the absence of sensory input, but both αβ oscillations and spike phase locking are enhanced, as is the gain of sensory responses. This lack of change in firing rate is at odds with many models of WM, or attentional modulation of sensory networks. In this article we devised a computational model in which this constellation of results can be accounted for via selective activation of inhibitory subnetworks by a top-down working memory signal. We confirmed the model prediction of selective inhibitory activation by segmenting cells in the experimental neural data into putative excitatory and inhibitory cells. We further found that this inhibitory activation plays a dual role in influencing excitatory cells: it both modulates the inhibitory tone of the network, which underlies the enhanced sensory gain, and also produces strong spike-phase entrainment to emergent network oscillations. Using a phase oscillator model we were able to show that inhibitory tone is principally modulated through inhibitory network gain saturation, while the phase-dependent efficacy of inhibitory currents drives the phase locking modulation. The dual contributions of the inhibitory subnetwork to oscillatory and non-oscillatory modulations of neural activity provides two distinct ways for WM to recruit sensory areas, and has relevance to theories of cortical communication.
Collapse
Affiliation(s)
- William H Nesse
- Department of Mathematics, University of Utah, Salt Lake City, UT, United States
| | - Zahra Bahmani
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Kelsey Clark
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, United States
| | - Behrad Noudoost
- Department of Ophthalmology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
39
|
Haque ZZ, Samandra R, Mansouri FA. Neural substrate and underlying mechanisms of working memory: insights from brain stimulation studies. J Neurophysiol 2021; 125:2038-2053. [PMID: 33881914 DOI: 10.1152/jn.00041.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The concept of working memory refers to a collection of cognitive abilities and processes involved in the short-term storage of task-relevant information to guide the ongoing and upcoming behavior and therefore describes an important aspect of executive control of behavior for achieving goals. Deficits in working memory and related cognitive abilities have been observed in patients with brain damage or neuropsychological disorders and therefore it is important to better understand neural substrate and underlying mechanisms of working memory. Working memory relies on neural mechanisms that enable encoding, maintenance, and manipulation of stored information as well as integrating them with ongoing and future goals. Recently, a surge in brain stimulation studies have led to development of various noninvasive techniques for localized stimulation of prefrontal and other cortical regions in humans. These brain stimulation techniques can potentially be tailored to influence neural activities in particular brain regions and modulate cognitive functions and behavior. Combined use of brain stimulation with neuroimaging and electrophysiological recording have provided a great opportunity to monitor neural activity in various brain regions and noninvasively intervene and modulate cognitive functions in cognitive tasks. These studies have shed more light on the neural substrate and underlying mechanisms of working memory in humans. Here, we review findings and insight from these brain stimulation studies about the contribution of brain regions, and particularly prefrontal cortex, to working memory.
Collapse
Affiliation(s)
- Zakia Z Haque
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
40
|
Benozzo D, La Camera G, Genovesio A. Slower prefrontal metastable dynamics during deliberation predicts error trials in a distance discrimination task. Cell Rep 2021; 35:108934. [PMID: 33826896 PMCID: PMC8083966 DOI: 10.1016/j.celrep.2021.108934] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/10/2021] [Accepted: 03/11/2021] [Indexed: 11/20/2022] Open
Abstract
Cortical activity related to erroneous behavior in discrimination or decision-making tasks is rarely analyzed, yet it can help clarify which computations are essential during a specific task. Here, we use a hidden Markov model (HMM) to perform a trial-by-trial analysis of the ensemble activity of dorsolateral prefrontal cortex (PFdl) neurons of rhesus monkeys performing a distance discrimination task. By segmenting the neural activity into sequences of metastable states, HMM allows us to uncover modulations of the neural dynamics related to internal computations. We find that metastable dynamics slow down during error trials, while state transitions at a pivotal point during the trial take longer in difficult correct trials. Both these phenomena occur during the decision interval, with errors occurring in both easy and difficult trials. Our results provide further support for the emerging role of metastable cortical dynamics in mediating complex cognitive functions and behavior.
Collapse
Affiliation(s)
- Danilo Benozzo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giancarlo La Camera
- Department of Neurobiology and Behavior, Center for Neural Circuit Dynamics and Institute for Advanced Computational Science, State University of New York at Stony Brook, Stony Brook, NY, USA.
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
41
|
Perceptual Learning beyond Perception: Mnemonic Representation in Early Visual Cortex and Intraparietal Sulcus. J Neurosci 2021; 41:4476-4486. [PMID: 33811151 DOI: 10.1523/jneurosci.2780-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
The ability to discriminate between stimuli relies on a chain of neural operations associated with perception, memory and decision-making. Accumulating studies show learning-dependent plasticity in perception or decision-making, yet whether perceptual learning modifies mnemonic processing remains unclear. Here, we trained human participants of both sexes in an orientation discrimination task, while using functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to separately examine training-induced changes in working memory (WM) representation. fMRI decoding revealed orientation-specific neural patterns during the delay period in primary visual cortex (V1) before, but not after, training, whereas neurodisruption of V1 during the delay period led to behavioral deficits in both phases. In contrast, both fMRI decoding and disruptive effect of TMS showed that intraparietal sulcus (IPS) represented WM content after, but not before, training. These results suggest that training does not affect the necessity of sensory area in representing WM information, consistent with the sensory recruitment hypothesis in WM, but likely alters the coding format of the stored stimulus in this region. On the other hand, training can render WM content to be maintained in higher-order parietal areas, complementing sensory area to support more robust maintenance of information.SIGNIFICANCE STATEMENT There has been accumulating progresses regarding experience-dependent plasticity in perception or decision-making, yet how perceptual experience moulds mnemonic processing of visual information remains less explored. Here, we provide novel findings that learning-dependent improvement of discriminability accompanies altered WM representation at different cortical levels. Critically, we suggest a role of training in modulating cortical locus of WM representation, providing a plausible explanation to reconcile the discrepant findings between human and animal studies regarding the recruitment of sensory or higher-order areas in WM.
Collapse
|
42
|
Lorenc ES, Sreenivasan KK. Reframing the debate: The distributed systems view of working memory. VISUAL COGNITION 2021. [DOI: 10.1080/13506285.2021.1899091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Kartik K. Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
43
|
Borra E, Luppino G. Comparative anatomy of the macaque and the human frontal oculomotor domain. Neurosci Biobehav Rev 2021; 126:43-56. [PMID: 33737106 DOI: 10.1016/j.neubiorev.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 11/15/2022]
Abstract
In non-human primates, at the junction of the prefrontal with the premotor cortex, there is a sector designated as frontal eye field (FEF), involved in controlling oculomotor behavior and spatial attention. Evidence for at least two FEFs in humans is at the basis of the still open issue of the possible homologies between the macaque and the human frontal oculomotor system. In this review article we address this issue suggesting a new view solidly grounded on evidence from the last decade showing that, in macaques, the FEF is at the core of an oculomotor domain in which several distinct areas, including areas 45A and 45B, provide the substrate for parallel processing of different aspects of oculomotor behavior. Based on comparative considerations, we will propose a correspondence between some of the macaque and the human oculomotor fields, thus suggesting sharing of neural substrate for oculomotor control, gaze processing, and orienting attention in space. Accordingly, this article could contribute to settle some aspects of the so-called "enigma" of the human FEF anatomy.
Collapse
Affiliation(s)
- Elena Borra
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy.
| | - Giuseppe Luppino
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy
| |
Collapse
|
44
|
Frontotemporal coordination predicts working memory performance and its local neural signatures. Nat Commun 2021; 12:1103. [PMID: 33597516 PMCID: PMC7889930 DOI: 10.1038/s41467-021-21151-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
Neurons in some sensory areas reflect the content of working memory (WM) in their spiking activity. However, this spiking activity is seldom related to behavioral performance. We studied the responses of inferotemporal (IT) neurons, which exhibit object-selective activity, along with Frontal Eye Field (FEF) neurons, which exhibit spatially selective activity, during the delay period of an object WM task. Unlike the spiking activity and local field potentials (LFPs) within these areas, which were poor predictors of behavioral performance, the phase-locking of IT spikes and LFPs with the beta band of FEF LFPs robustly predicted successful WM maintenance. In addition, IT neurons exhibited greater object-selective persistent activity when their spikes were locked to the phase of FEF LFPs. These results reveal that the coordination between prefrontal and temporal cortex predicts the successful maintenance of visual information during WM.
Collapse
|
45
|
Is Activity Silent Working Memory Simply Episodic Memory? Trends Cogn Sci 2021; 25:284-293. [PMID: 33551266 DOI: 10.1016/j.tics.2021.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022]
Abstract
Working memory (WM) maintains task-relevant information in a state ready for processing. While traditional theories assume that sustained neuronal activity is responsible for WM, the Activity Silent WM (ASWM) account proposes that maintenance can also be supported by short-term synaptic weight changes. Here, we argue that the evidence for ASWM can be explained more parsimoniously by the involvement of episodic memory (EM) in WM tasks. Like ASWM, EM relies on rapid synaptic modification that is also activity silent; however, while ASWM posits transient synaptic modifications, EM traces persist over longer time periods. We discuss how, despite this difference, well-established EM mechanisms can account for the key findings attributed to ASWM, and describe predictions of this account.
Collapse
|
46
|
Correlates of Auditory Decision-Making in Prefrontal, Auditory, and Basal Lateral Amygdala Cortical Areas. J Neurosci 2020; 41:1301-1316. [PMID: 33303679 DOI: 10.1523/jneurosci.2217-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 11/21/2022] Open
Abstract
Spatial selective listening and auditory choice underlie important processes including attending to a speaker at a cocktail party and knowing how (or whether) to respond. To examine task encoding and the relative timing of potential neural substrates underlying these behaviors, we developed a spatial selective detection paradigm for monkeys, and recorded activity in primary auditory cortex (AC), dorsolateral prefrontal cortex (dlPFC), and the basolateral amygdala (BLA). A comparison of neural responses among these three areas showed that, as expected, AC encoded the side of the cue and target characteristics before dlPFC and BLA. Interestingly, AC also encoded the choice of the monkey before dlPFC and around the time of BLA. Generally, BLA showed weak responses to all task features except the choice. Decoding analyses suggested that errors followed from a failure to encode the target stimulus in both AC and dlPFC, but again, these differences arose earlier in AC. The similarities between AC and dlPFC responses were abolished during passive sensory stimulation with identical trial conditions, suggesting that the robust sensory encoding in dlPFC is contextually gated. Thus, counter to a strictly PFC-driven decision process, in this spatial selective listening task AC neural activity represents the sensory and decision information before dlPFC. Unlike in the visual domain, in this auditory task, the BLA does not appear to be robustly involved in selective spatial processing.SIGNIFICANCE STATEMENT We examined neural correlates of an auditory spatial selective listening task by recording single-neuron activity in behaving monkeys from the amygdala, dorsolateral prefrontal cortex, and auditory cortex. We found that auditory cortex coded spatial cues and choice-related activity before dorsolateral prefrontal cortex or the amygdala. Auditory cortex also had robust delay period activity. Therefore, we found that auditory cortex could support the neural computations that underlie the behavioral processes in the task.
Collapse
|
47
|
Khanna SB, Scott JA, Smith MA. Dynamic shifts of visual and saccadic signals in prefrontal cortical regions 8Ar and FEF. J Neurophysiol 2020; 124:1774-1791. [PMID: 33026949 DOI: 10.1152/jn.00669.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Active vision is a fundamental process by which primates gather information about the external world. Multiple brain regions have been studied in the context of simple active vision tasks in which a visual target's appearance is temporally separated from saccade execution. Most neurons have tight spatial registration between visual and saccadic signals, and in areas such as prefrontal cortex (PFC), some neurons show persistent delay activity that links visual and motor epochs and has been proposed as a basis for spatial working memory. Many PFC neurons also show rich dynamics, which have been attributed to alternative working memory codes and the representation of other task variables. Our study investigated the transition between processing a visual stimulus and generating an eye movement in populations of PFC neurons in macaque monkeys performing a memory guided saccade task. We found that neurons in two subregions of PFC, the frontal eye fields (FEF) and area 8Ar, differed in their dynamics and spatial response profiles. These dynamics could be attributed largely to shifts in the spatial profile of visual and motor responses in individual neurons. This led to visual and motor codes for particular spatial locations that were instantiated by different mixtures of neurons, which could be important in PFC's flexible role in multiple sensory, cognitive, and motor tasks.NEW & NOTEWORTHY A central question in neuroscience is how the brain transitions from sensory representations to motor outputs. The prefrontal cortex contains neurons that have long been implicated as important in this transition and in working memory. We found evidence for rich and diverse tuning in these neurons, which was often spatially misaligned between visual and saccadic responses. This feature may play an important role in flexible working memory capabilities.
Collapse
Affiliation(s)
- Sanjeev B Khanna
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan A Scott
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew A Smith
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Carnegie Mellon Neuroscience Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Stokes MG, Muhle-Karbe PS, Myers NE. Theoretical distinction between functional states in working memory and their corresponding neural states. VISUAL COGNITION 2020; 28:420-432. [PMID: 33223922 PMCID: PMC7655036 DOI: 10.1080/13506285.2020.1825141] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Working memory (WM) is important for guiding behaviour, but not always for the next possible action. Here we define a WM item that is currently relevant for guiding behaviour as the functionally "active" item; whereas items maintained in WM, but not immediately relevant to behaviour, are defined as functionally "latent". Traditional neurophysiological theories of WM proposed that content is maintained via persistent neural activity (e.g., stable attractors); however, more recent theories have highlighted the potential role for "activity-silent" mechanisms (e.g., short-term synaptic plasticity). Given these somewhat parallel dichotomies, functionally active and latent cognitive states of WM have been associated with storage based on persistent-activity and activity-silent neural mechanisms, respectively. However, in this article we caution against a one-to-one correspondence between functional and activity states. We argue that the principal theoretical requirement for active and latent WM is that the corresponding neural states play qualitatively different functional roles. We consider a number of candidate solutions, and conclude that the neurophysiological mechanisms for functionally active and latent WM items are theoretically independent of the distinction between persistent activity-based and activity-silent forms of WM storage.
Collapse
Affiliation(s)
- Mark G. Stokes
- Wellcome Centre for Integrative Neuroimaging and Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Paul S. Muhle-Karbe
- Wellcome Centre for Integrative Neuroimaging and Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Nicholas E. Myers
- Wellcome Centre for Integrative Neuroimaging and Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
49
|
Zhu J, Cheng Q, Chen Y, Fan H, Han Z, Hou R, Chen Z, Li CT. Transient Delay-Period Activity of Agranular Insular Cortex Controls Working Memory Maintenance in Learning Novel Tasks. Neuron 2020; 105:934-946.e5. [PMID: 32135091 DOI: 10.1016/j.neuron.2019.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
Whether transient or sustained neuronal activity during the delay period underlies working memory (WM) has been debated. Here, we report that transient, but not sustained, delay-period activity in mouse anterior agranular insular cortex (aAIC) plays a dominant role in maintaining WM information during learning of novel olfactory tasks. By optogenetic screening over 12 brain regions, we found that suppressing aAIC activity markedly impaired olfactory WM maintenance during learning. Single-unit recording showed that odor-selective aAIC neurons with predominantly transient firing patterns encoded WM information. Both WM task performance and transient-neuron proportion were enhanced and reduced by activating and suppressing the delay-period activity of the projection from medial prefrontal cortex (mPFC) to aAIC. The ability of mice to resist delay-period distractors also correlated with an increased percentage of transient neurons. Therefore, transient, but not sustained, aAIC neuronal activity during the delay period is largely responsible for maintaining information while learning novel WM tasks.
Collapse
Affiliation(s)
- Jia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Cheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulei Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China
| | - Hongmei Fan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China
| | - Zhe Han
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqing Hou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China
| | - Zhaoqin Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China
| | - Chengyu T Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
50
|
Romo R, Rossi-Pool R. Turning Touch into Perception. Neuron 2020; 105:16-33. [PMID: 31917952 DOI: 10.1016/j.neuron.2019.11.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
Many brain areas modulate their activity during vibrotactile tasks. The activity from these areas may code the stimulus parameters, stimulus perception, or perceptual reports. Here, we discuss findings obtained in behaving monkeys aimed to understand these processes. In brief, neurons from the somatosensory thalamus and primary somatosensory cortex (S1) only code the stimulus parameters during the stimulation periods. In contrast, areas downstream of S1 code the stimulus parameters during not only the task components but also perception. Surprisingly, the midbrain dopamine system is an actor not considered before in perception. We discuss the evidence that it codes the subjective magnitude of a sensory percept. The findings reviewed here may help us to understand where and how sensation transforms into perception in the brain.
Collapse
Affiliation(s)
- Ranulfo Romo
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico; El Colegio Nacional, 06020 Mexico City, Mexico.
| | - Román Rossi-Pool
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| |
Collapse
|