1
|
Sung K, Jeong MJ, Yoo T, Jung JH, Kang S, Yoo JY, Kim HJ, Park K, Pyo JH, Lee HY, Koo N, Choi SH, Kim JH. ErbB4 precludes the occurrence of PTSD-like fear responses by supporting the bimodal activity of the central amygdala. Exp Mol Med 2024; 56:2703-2713. [PMID: 39623093 DOI: 10.1038/s12276-024-01365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 12/28/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) often arises after exposure to traumatic events and is characterized by dysregulated fear responses. Although the associations of erb-b2 receptor tyrosine kinase 4 (ErbB4) with various neuropsychiatric diseases, including schizophrenia and bipolar disorder, have been widely examined, the physiological roles of ErbB4 in PTSD and fear responses remain unclear. Using Cre-dependent ErbB4 knockout (KO) mice, we observed that PTSD-like fear behaviors emerged in ErbB4-deficient mice, particularly in inhibitory neurons. Specifically, the loss of ErbB4 in somatostatin-expressing (SST+) neurons was sufficient to induce PTSD-like fear responses. We also adopted the CRISPR/Cas9 system for region-specific KO of ErbB4, which revealed that ErbB4 deletion in SST+ neurons of the lateral division of the amygdala (CeL) caused elevated anxiety and PTSD-like fear generalization. Consistent with its physiological role, ErbB4 expression was diminished in CeLSST neurons from mice that exhibited PTSD-like phenotypes. While fear On and Off cells identified in the CeL displayed distinct responses to conditioned and novel cues, as previously shown, the selectivity of those On and Off cells was compromised in SSTErbB4-/- and stressed mice, which displayed strong fear generalization. Therefore, the bimodal activity that CeL On/Off cells display is likely required for proper discrimination of fearful stimuli from ambient stimuli, which should be sustained by the presence of ErbB4. Taken together, our data substantiate the correlation between PTSD-like fear responses and ErbB4 expression in CeLSST neurons and further underscore the functional effects of ErbB4 in CeLSST neurons, supporting the bimodal responses of CeL neurons.
Collapse
Affiliation(s)
- Kibong Sung
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Min-Jae Jeong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Taesik Yoo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jung Hoon Jung
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Sumin Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jong-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyun Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Kyunghyun Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jung Hyun Pyo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyun-Yong Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Noah Koo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Soo-Hee Choi
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Joung-Hun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
- Institute of Convergence Science, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Batista-Brito R, Majumdar A, Nuño A, Ward C, Barnes C, Nikouei K, Vinck M, Cardin JA. Developmental loss of ErbB4 in PV interneurons disrupts state-dependent cortical circuit dynamics. Mol Psychiatry 2023; 28:3133-3143. [PMID: 37069344 PMCID: PMC10618960 DOI: 10.1038/s41380-023-02066-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
GABAergic inhibition plays an important role in the establishment and maintenance of cortical circuits during development. Neuregulin 1 (Nrg1) and its interneuron-specific receptor ErbB4 are key elements of a signaling pathway critical for the maturation and proper synaptic connectivity of interneurons. Using conditional deletions of the ERBB4 gene in mice, we tested the role of this signaling pathway at two developmental timepoints in parvalbumin-expressing (PV) interneurons, the largest subpopulation of cortical GABAergic cells. Loss of ErbB4 in PV interneurons during embryonic, but not late postnatal development leads to alterations in the activity of excitatory and inhibitory cortical neurons, along with severe disruption of cortical temporal organization. These impairments emerge by the end of the second postnatal week, prior to the complete maturation of the PV interneurons themselves. Early loss of ErbB4 in PV interneurons also results in profound dysregulation of excitatory pyramidal neuron dendritic architecture and a redistribution of spine density at the apical dendritic tuft. In association with these deficits, excitatory cortical neurons exhibit normal tuning for sensory inputs, but a loss of state-dependent modulation of the gain of sensory responses. Together these data support a key role for early developmental Nrg1/ErbB4 signaling in PV interneurons as a powerful mechanism underlying the maturation of both the inhibitory and excitatory components of cortical circuits.
Collapse
Affiliation(s)
- Renata Batista-Brito
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
- Department of Psychiatry and Behavioral Sciences, Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA.
- Department of Genetics, Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA.
| | - Antara Majumdar
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Road, Oxford, OX1 3PT, England
| | - Alejandro Nuño
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
| | - Claire Ward
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA
| | - Clayton Barnes
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
| | - Kasra Nikouei
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Vinck
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528, Frankfurt, Germany
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
- Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven, CT, 06520, USA.
- Wu Tsai Institute, Yale University, 100 College St., New Haven, CT, 06520, USA.
| |
Collapse
|
3
|
Sotoyama H, Namba H, Tohmi M, Nawa H. Schizophrenia Animal Modeling with Epidermal Growth Factor and Its Homologs: Their Connections to the Inflammatory Pathway and the Dopamine System. Biomolecules 2023; 13:biom13020372. [PMID: 36830741 PMCID: PMC9953688 DOI: 10.3390/biom13020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Epidermal growth factor (EGF) and its homologs, such as neuregulins, bind to ErbB (Her) receptor kinases and regulate glial differentiation and dopaminergic/GABAergic maturation in the brain and are therefore implicated in schizophrenia neuropathology involving these cell abnormalities. In this review, we summarize the biological activities of the EGF family and its neuropathologic association with schizophrenia, mainly overviewing our previous model studies and the related articles. Transgenic mice as well as the rat/monkey models established by perinatal challenges of EGF or its homologs consistently exhibit various behavioral endophenotypes relevant to schizophrenia. In particular, post-pubertal elevation in baseline dopaminergic activity may illustrate the abnormal behaviors relevant to positive and negative symptoms as well as to the timing of this behavioral onset. With the given molecular interaction and transactivation of ErbB receptor kinases with Toll-like receptors (TLRs), EGF/ErbB signals are recruited by viral infection and inflammatory diseases such as COVID-19-mediated pneumonia and poxvirus-mediated fibroma and implicated in the immune-inflammatory hypothesis of schizophrenia. Finally, we also discuss the interaction of clozapine with ErbB receptor kinases as well as new antipsychotic development targeting these receptors.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiology, School of Medicine, Niigata University, Niigata 951-8122, Japan
- Correspondence: (H.N.); (H.S.)
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
| | - Manavu Tohmi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
- Correspondence: (H.N.); (H.S.)
| |
Collapse
|
4
|
Luo B, Liu Z, Lin D, Chen W, Ren D, Yu Z, Xiong M, Zhao C, Fei E, Li B. ErbB4 promotes inhibitory synapse formation by cell adhesion, independent of its kinase activity. Transl Psychiatry 2021; 11:361. [PMID: 34226493 PMCID: PMC8257755 DOI: 10.1038/s41398-021-01485-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
The precise control of the nervous system function under the vitality of synapses is extremely critical. Efforts have been taken to explore the underlying cellular and molecular mechanisms for synapse formation. Cell adhesion molecules have been found important for synapse assembly in the brain. Many trans-adhesion complexes have been identified to modulate excitatory synapse formation. However, little is known about the synaptogenic mechanisms for inhibitory synapses. ErbB4 is a receptor tyrosine kinase enriched in interneurons. Here, we showed that overexpressing ErbB4 in HEK293T cells induced gephyrin or GABAAR α1 puncta in co-cultured primary hippocampal neurons. This induction of ErbB4 was independent of its kinase activity. K751M, a kinase-dead mutant of ErbB4, can also induce gephyrin or GABAAR α1 puncta in the co-culture system. We further constructed K751M knock-in mice and found that the homozygous were viable at birth and fertile without changes in gross brain structure. The number of interneurons and inhibitory synapses onto pyramidal neurons (PyNs) were comparable between K751M and wild-type mice but decreased in ErbB4-Null mice. Moreover, ErbB4 can interact in trans with Slitrk3, a transmembrane postsynaptic protein at inhibitory synapses, through the extracellular RLD domain of ErbB4. The deletion of RLD diminished the induction of gephyrin or GABAAR α1 puncta by ErbB4. Finally, disruption of ErbB4-Slitrk3 interaction through neutralization of Slitrk3 by secretable RLD decreased inhibitory synapses onto PyNs and impaired GABAergic transmission. These results identify that ErbB4, as a cell adhesion molecule, promotes inhibitory synapse formation onto PyNs by interacting with Slitrk3 and in a kinase-independent manner, providing an unexpected mechanism of ErbB4 in inhibitory synapse formation.
Collapse
Affiliation(s)
- Bin Luo
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Ziyang Liu
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Dong Lin
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Wenbing Chen
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Dongyan Ren
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Zheng Yu
- grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Mingtao Xiong
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Changqin Zhao
- grid.260463.50000 0001 2182 8825School of Life Sciences, Nanchang University, Nanchang, China ,grid.260463.50000 0001 2182 8825Institute of Life Science, Nanchang University, Nanchang, China
| | - Erkang Fei
- School of Life Sciences, Nanchang University, Nanchang, China. .,Institute of Life Science, Nanchang University, Nanchang, China.
| | - Baoming Li
- School of Life Sciences, Nanchang University, Nanchang, China. .,Institute of Life Science, Nanchang University, Nanchang, China. .,Department of Psychology and Institute of Brain Science, School of Education, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
5
|
Götze T, Soto-Bernardini MC, Zhang M, Mießner H, Linhoff L, Brzózka MM, Velanac V, Dullin C, Ramos-Gomes F, Peng M, Husseini H, Schifferdecker E, Fledrich R, Sereda MW, Willig K, Alves F, Rossner MJ, Nave KA, Zhang W, Schwab MH. Hyperactivity is a Core Endophenotype of Elevated Neuregulin-1 Signaling in Embryonic Glutamatergic Networks. Schizophr Bull 2021; 47:1409-1420. [PMID: 33871014 PMCID: PMC8379540 DOI: 10.1093/schbul/sbab027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The neuregulin 1 (NRG1) ErbB4 module is at the core of an "at risk" signaling pathway in schizophrenia. Several human studies suggest hyperstimulation of NRG1-ErbB4 signaling as a plausible pathomechanism; however, little is known about the significance of stage-, brain area-, or neural cell type-specific NRG1-ErbB4 hyperactivity for disease-relevant brain endophenotypes. To address these spatiotemporal aspects, we generated transgenic mice for Cre recombinase-mediated overexpression of cystein-rich domain (CRD) NRG1, the most prominent NRG1 isoform in the brain. A comparison of "brain-wide" vs cell type-specific CRD-NRG1 overexpressing mice revealed that pathogenic CRD-NRG1 signals for ventricular enlargement and neuroinflammation originate outside glutamatergic neurons and suggests a subcortical function of CRD-NRG1 in the control of body weight. Embryonic onset of CRD-NRG1 in glutamatergic cortical networks resulted in reduced inhibitory neurotransmission and locomotor hyperactivity. Our findings identify ventricular enlargement and locomotor hyperactivity, 2 main endophenotypes of schizophrenia, as specific consequences of spatiotemporally distinct expression profiles of hyperactivated CRD-NRG1 signaling.
Collapse
Affiliation(s)
- Tilmann Götze
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany,Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Maria Clara Soto-Bernardini
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany,Present address: Center for Research in Biotechnology (CIB)/Costa Rica Institute of Technology (TEC), Cartago, Costa Rica
| | - Mingyue Zhang
- Laboratory of Molecular Psychiatry, Department of Mental Health, Westfälische Wilhelm-University of Münster, Münster, Germany
| | - Hendrik Mießner
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany,Present address: Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Lisa Linhoff
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany,Department of Neurology, University Medicine Göttingen (UMG), Göttingen, Germany
| | - Magdalena M Brzózka
- Department of Psychiatry, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Viktorija Velanac
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany
| | - Christian Dullin
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Goettingen, Germany,Translational Molecular Imaging, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany,Italian Synchrotron “Elettra,"Trieste, Italy
| | - Fernanda Ramos-Gomes
- Translational Molecular Imaging, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany
| | - Maja Peng
- Laboratory of Molecular Psychiatry, Department of Mental Health, Westfälische Wilhelm-University of Münster, Münster, Germany
| | - Hümeyra Husseini
- Laboratory of Molecular Psychiatry, Department of Mental Health, Westfälische Wilhelm-University of Münster, Münster, Germany
| | - Eva Schifferdecker
- Laboratory of Molecular Psychiatry, Department of Mental Health, Westfälische Wilhelm-University of Münster, Münster, Germany
| | - Robert Fledrich
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Michael W Sereda
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany,Department of Neurology, University Medicine Göttingen (UMG), Göttingen, Germany
| | - Katrin Willig
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany,Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Frauke Alves
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Goettingen, Germany,Translational Molecular Imaging, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany
| | - Moritz J Rossner
- Department of Psychiatry, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Mental Health, Westfälische Wilhelm-University of Münster, Münster, Germany
| | - Markus H Schwab
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany,Cellular Neurophysiology, Hannover Medical School, Hannover, Germany,Department of Neuropathology, University Hospital Leipzig, Leipzig, Germany,To whom correspondence should be addressed; tel: +49-341-97-25677; fax: +49-341-97-15049, e-mail:
| |
Collapse
|
6
|
Grieco SF, Qiao X, Johnston KG, Chen L, Nelson RR, Lai C, Holmes TC, Xu X. Neuregulin signaling mediates the acute and sustained antidepressant effects of subanesthetic ketamine. Transl Psychiatry 2021; 11:144. [PMID: 33627623 PMCID: PMC7904825 DOI: 10.1038/s41398-021-01255-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 02/01/2021] [Indexed: 01/03/2023] Open
Abstract
Subanesthetic ketamine evokes rapid antidepressant effects in human patients that persist long past ketamine's chemical half-life of ~2 h. Ketamine's sustained antidepressant action may be due to modulation of cortical plasticity. We find that ketamine ameliorates depression-like behavior in the forced swim test in adult mice, and this depends on parvalbumin-expressing (PV) neuron-directed neuregulin-1 (NRG1)/ErbB4 signaling. Ketamine rapidly downregulates NRG1 expression in PV inhibitory neurons in mouse medial prefrontal cortex (mPFC) following a single low-dose ketamine treatment. This NRG1 downregulation in PV neurons co-tracks with the decreases in synaptic inhibition to mPFC excitatory neurons for up to a week. This results from reduced synaptic excitation to PV neurons, and is blocked by exogenous NRG1 as well as by PV targeted ErbB4 receptor knockout. Thus, we conceptualize that ketamine's effects are mediated through rapid and sustained cortical disinhibition via PV-specific NRG1 signaling. Our findings reveal a novel neural plasticity-based mechanism for ketamine's acute and long-lasting antidepressant effects.
Collapse
Affiliation(s)
- Steven F. Grieco
- grid.266093.80000 0001 0668 7243Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275 USA
| | - Xin Qiao
- grid.266093.80000 0001 0668 7243Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275 USA
| | - Kevin G. Johnston
- grid.266093.80000 0001 0668 7243Department of Mathematics, University of California, Irvine, CA 92697-3875 USA
| | - Lujia Chen
- grid.266093.80000 0001 0668 7243Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275 USA
| | - Renetta R. Nelson
- grid.266093.80000 0001 0668 7243Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275 USA
| | - Cary Lai
- grid.411377.70000 0001 0790 959XDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405-7000 USA
| | - Todd C. Holmes
- grid.19006.3e0000 0000 9632 6718Department of Physiology and Biophysics, School of Medicine, Universityof California, Irvine, CA 92697- 4560 USA ,grid.266093.80000 0001 0668 7243The Center for Neural Circuit Mapping, University of California, Irvine, CA 92697 USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697-1275, USA. .,The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA. .,Department of Biomedical Engineering, University of California, Irvine, CA, 92697-2715, USA. .,Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA. .,Department of Computer Science, University of California, Irvine, CA, 92697-3435, USA.
| |
Collapse
|
7
|
Ueda D, Yonemochi N, Kamata T, Shibasaki M, Kamei J, Waddington JL, Ikeda H. Increase in neuropeptide Y activity impairs social behaviour in association with glutamatergic dysregulation in diabetic mice. Br J Pharmacol 2020; 178:726-740. [PMID: 33197050 DOI: 10.1111/bph.15326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients with diabetes mellitus are reported to show a raised prevalence of mental disorders, which may be reflected in impaired social interaction. However, the mechanisms underlying such impairment in diabetes are unknown. EXPERIMENTAL APPROACH The present study investigated whether social interaction is impaired in diabetic mice and whether central neuropeptide Y (NPY) and glutamatergic function are involved in such impairment. KEY RESULTS In the three-chamber test, social novelty preference, but not sociability, was impaired in streptozotocin (STZ)-induced diabetic mice. The mRNA level of NPY in the hypothalamus was increased in STZ-induced diabetic mice. Injection of the NPY Y2 receptor agonist NPY 13-36 into naïve mice impaired social novelty preference, but not sociability, and this effect was inhibited by the Y2 receptor antagonist BIIE 0246. BIIE 0246 also reversed the impairment of social novelty preference in STZ-induced diabetic mice. Similarly, injection of the AMPA receptor agonist AMPA into naïve mice impaired social novelty preference, but not sociability, and this effect was inhibited by the AMPA receptor antagonist NBQX. Impairment of social novelty preference induced by NPY 13-36 was inhibited by NBQX, whereas impairment of social novelty preference induced by AMPA was not inhibited by BIIE 0246. Finally, impairment of social novelty preference in STZ-induced diabetic mice was reversed by NBQX. CONCLUSION AND IMPLICATIONS These findings suggest that NPY neurons are activated in diabetic mice and that this may impair social novelty preference by promoting glutamatergic function through Y2 receptors.
Collapse
Affiliation(s)
- Daiki Ueda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Naomi Yonemochi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Tomohiro Kamata
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Masahiro Shibasaki
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hiroko Ikeda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
8
|
Grieco SF, Qiao X, Zheng X, Liu Y, Chen L, Zhang H, Yu Z, Gavornik JP, Lai C, Gandhi SP, Holmes TC, Xu X. Subanesthetic Ketamine Reactivates Adult Cortical Plasticity to Restore Vision from Amblyopia. Curr Biol 2020; 30:3591-3603.e8. [PMID: 32822611 PMCID: PMC7925140 DOI: 10.1016/j.cub.2020.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/07/2020] [Accepted: 07/01/2020] [Indexed: 12/09/2022]
Abstract
Subanesthetic ketamine evokes rapid and long-lasting antidepressant effects in human patients. The mechanism for ketamine's effects remains elusive, but ketamine may broadly modulate brain plasticity processes. We show that single-dose ketamine reactivates adult mouse visual cortical plasticity and promotes functional recovery of visual acuity defects from amblyopia. Ketamine specifically induces downregulation of neuregulin-1 (NRG1) expression in parvalbumin-expressing (PV) inhibitory neurons in mouse visual cortex. NRG1 downregulation in PV neurons co-tracks both the fast onset and sustained decreases in synaptic inhibition to excitatory neurons, along with reduced synaptic excitation to PV neurons in vitro and in vivo following a single ketamine treatment. These effects are blocked by exogenous NRG1 as well as PV targeted receptor knockout. Thus, ketamine reactivation of adult visual cortical plasticity is mediated through rapid and sustained cortical disinhibition via downregulation of PV-specific NRG1 signaling. Our findings reveal the neural plasticity-based mechanism for ketamine-mediated functional recovery from adult amblyopia.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, USA
| | - Xin Qiao
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, USA
| | - Xiaoting Zheng
- Department of Neurobiology and Behavior, School of Biology, University of California, Irvine, CA 92697-1275, USA
| | - Yongjun Liu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, USA; Key Laboratory of Pollinating Insect Biology, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Lujia Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, USA
| | - Hai Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, USA
| | - Zhaoxia Yu
- Department of Statistics, University of California, Irvine, CA 92697-1250, USA
| | | | - Cary Lai
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405-7000, USA
| | - Sunil P Gandhi
- Department of Neurobiology and Behavior, School of Biology, University of California, Irvine, CA 92697-1275, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697- 4560, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697-2715, USA; Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA.
| |
Collapse
|
9
|
Neuregulins 1, 2, and 3 Promote Early Neurite Outgrowth in ErbB4-Expressing Cortical GABAergic Interneurons. Mol Neurobiol 2020; 57:3568-3588. [PMID: 32542595 DOI: 10.1007/s12035-020-01966-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022]
Abstract
The neuregulins (Nrgs 1-4) are a family of signaling molecules that play diverse roles in the nervous system. Nrg1 has been implicated in the formation of synapses and in synaptic plasticity. Previous studies have shown Nrg1 can affect neurite outgrowth in several neuronal populations, while the role of Nrg2 and Nrg3 in this process has remained understudied. The Nrgs can bind and activate the ErbB4 receptor tyrosine kinase which is preferentially expressed in GABAergic interneurons in the rodent hippocampus and cerebral cortex. In the present study, we evaluated the effects of Nrgs 1, 2, and 3 on neurite outgrowth of dissociated rat cortical ErbB4-positive (+)/GABA+ interneurons in vitro. All three Nrgs were able to promote neurite outgrowth during the first 2 days in vitro, with increases detected for both the axon (116-120%) and other neurites (100-120%). Increases in the average number of primary and secondary neurites were also observed. Treatment with the Nrgs for an additional 3 days promoted an increase in axonal length (86-96%), with only minimal effects on the remaining neurites (8-13%). ErbB4 expression persisted throughout the dendritic arbor and cell soma at all stages examined, while its expression in the axon was transient and declined with cell maturation. ErbB4 overexpression in GABAergic neurons promoted neurite outgrowth, an effect that was potentiated by Nrg treatment. These results show that Nrgs 1, 2, and 3 are each capable of influencing dendritic and axonal growth at early developmental stages in GABAergic neurons grown in vitro.
Collapse
|
10
|
Namba H, Nawa H. Post-pubertal Difference in Nigral Dopaminergic Cells Firing in the Schizophrenia Model Prepared by Perinatal Challenges of a Cytokine, EGF. Neuroscience 2020; 441:22-32. [PMID: 32531471 DOI: 10.1016/j.neuroscience.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022]
Abstract
Schizophrenia in humans typically develops during and after adolescence; however, the biological underpinning for the specificity of this onset time window remains to be determined. In the present study, we investigated this knowledge gap using our own animal model for schizophrenia. Rodents and monkeys challenged with a cytokine, epidermal growth factor (EGF), as neonates are known to exhibit various behavioral and cognitive abnormalities at the post-pubertal stage. We used the EGF-challenged mice as an animal model for schizophrenia to evaluate the electrophysiological impact of this modeling on nigral dopamine neurons before and after puberty. In vivo single unit recording revealed that the burst firing of putative dopamine neurons in substantia nigra pars compacta was significantly higher in the post-pubertal stage of the EGF model than in that of control mice; in contrast, this difference was not observed in the pre-pubertal stage. The increase in burst firing was accompanied by a decline in Ca2+-activated K+ (ISK) currents, which influence the firing pattern of dopamine neurons. In vivo local application of the SK channel blocker apamin (80 μM) to the substantia nigra was less effective at increasing burst firing in the EGF model than in control mice, suggesting the pathologic role of the ISK decrease in this model. Thus, these results suggest that the aberrant post-pubertal hyperactivity of midbrain dopaminergic neurons is associated with the temporal specificity of the behavioral deficit of this model, and support the hypothesis that this dopaminergic aberration could be implicated in the adolescent onset of schizophrenia.
Collapse
Affiliation(s)
- Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| |
Collapse
|
11
|
Shi P, Nie J, Liu H, Li Y, Lu X, Shen X, Ge F, Yuan TF, Guan X. Adolescent cocaine exposure enhances the GABAergic transmission in the prelimbic cortex of adult mice. FASEB J 2019; 33:8614-8622. [PMID: 31034782 DOI: 10.1096/fj.201802192rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have recently shown in rats that adolescent cocaine exposure induces prolonged modifications on synapses in medial prefrontal cortex (mPFC), which might contribute to long-term behavioral outcomes in adulthood. In this study, we further investigated the molecular mechanisms underlying adolescent cocaine exposure-related psychiatric problems in adulthood, especially focusing on the alterations of GABAergic transmission in prelimbic cortex (PrL), 1 subregion of mPFC. Consistent with a previous study, adolescent cocaine-exposed mice exhibited enhanced anxiety-like behaviors in their adulthood. In the same mice models, depression-like behaviors increased as well, but the conditioned place preference formed normally. In parallel, activities of pyramidal neurons at layer V of PrL were reduced after adolescent cocaine exposure, accompanied by an increase in the percentage of symmetric synapses in PrL of adult mice. Additionally, miniature inhibitory postsynaptic currents rather than miniature excitatory postsynaptic currents were increased on these pyramidal neurons, and increased levels of GABA were found in adult PrL. The molecules in the GABAergic system in adult PrL were also changed by adolescent cocaine use, as indicated by increased glutamate decarboxylase 67 kDa, GABAA-α1, and decreased GABA transporter 1. In the same mice, some regulators to GABAergic transmission such as neuregulin 1/ErbB4 signals were heightened as well. Collectively, these findings revealed that adolescent cocaine exposure results in permanent enhancement of GABAergic transmission on pyramidal neurons in PrL, which subsequently attenuate the activities of these neurons and ultimately contributes to the development of psychiatric disorders in later life.-Shi, P., Nie, J., Liu, H., Li, Y., Lu, X., Shen, X., Ge, F., Yuan, T.-F., Guan, X. Adolescent cocaine exposure enhances the GABAergic transmission in the prelimbic cortex of adult mice.
Collapse
Affiliation(s)
- Pengbo Shi
- Department of Human Anatomy and Histoembryology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaxun Nie
- Department of Human Anatomy and Histoembryology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hou Liu
- Department of Psychology, School of Psychology, Nanjing Normal University, Nanjing, China
| | - Yuehan Li
- Department of Human Anatomy and Histoembryology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue Lu
- Department of Human Anatomy and Histoembryology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Shen
- Department of Human Anatomy and Histoembryology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Ju J, Liu L, Zhang Y, Zhou Q. Effect of age onset on schizophrenia-like phenotypes and underlying mechanisms in model mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:465-474. [PMID: 30025793 DOI: 10.1016/j.pnpbp.2018.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 10/28/2022]
Abstract
In humans, schizophrenia with onset in adolescence or adult has distinct features. To understand whether schizophrenia with either adolescence- or adult-onset have distinct phenotypes and cellular mechanisms in schizophrenia model mice, we altered Nrg1 signaling during either adolescence or adult mice via injection of anti-Nrg1 antibodies. We found that in either early-onset schizophrenia (EOS)- or late-onset schizophrenia (LOS)-like mice, certain behavior phenotypes are shared including hyperlocomotion, impaired working memory and impaired fear conditioning. Anxiety appears to be largely unaffected. In vitro electrophysiology in brain slices showed altered excitation/inhibition balance in EOS-like mice towards enhanced synaptic excitation, but intrinsic excitability of the fast-spiking GABAergic neurons was elevated in the LOS-like mice. Thus, although schizophrenia-like main phenotypes appear to be preserved in both age onset model mice, there are distinct differences in cellular mechanisms between them. We suggest that these differences are important for more precise diagnosis and more effective treatment of schizophrenia.
Collapse
Affiliation(s)
- Jun Ju
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Luping Liu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yujie Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
13
|
Grieco SF, Holmes TC, Xu X. Neuregulin directed molecular mechanisms of visual cortical plasticity. J Comp Neurol 2019; 527:668-678. [PMID: 29464684 PMCID: PMC6103898 DOI: 10.1002/cne.24414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 02/06/2023]
Abstract
Experience-dependent critical period (CP) plasticity has been extensively studied in the visual cortex. Monocular deprivation during the CP affects ocular dominance, limits visual performance, and contributes to the pathological etiology of amblyopia. Neuregulin-1 (NRG1) signaling through its tyrosine kinase receptor ErbB4 is essential for the normal development of the nervous system and has been linked to neuropsychiatric disorders such as schizophrenia. We discovered recently that NRG1/ErbB4 signaling in PV neurons is critical for the initiation of CP visual cortical plasticity by controlling excitatory synaptic inputs onto PV neurons and thus PV-cell mediated cortical inhibition that occurs following visual deprivation. Building on this discovery, we review the existing literature of neuregulin signaling in developing and adult cortex and address the implication of NRG/ErbB4 signaling in visual cortical plasticity at the cellular and circuit levels. NRG-directed research may lead to therapeutic approaches to reactivate plasticity in the adult cortex.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| | - Todd C Holmes
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| |
Collapse
|
14
|
Levels of peripheral Neuregulin 1 are increased in non-medicated autism spectrum disorder patients. J Clin Neurosci 2018; 57:43-45. [PMID: 30150060 DOI: 10.1016/j.jocn.2018.08.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
Abstract
Though schizophrenia and autism spectrum disorders (ASD) are separate diseases, they have some common clinical manifestations and common pathogenic mechanisms. Numerous genes are associated with these conditions. Among these genes, Neuregulin-1 forms a risk for schizophrenia and some studies have shown polymorphism of this gene accompanies schizophrenia. NRG1 has a wide variety of functions, including neuronal migration, axon guidance, synaptic transmission, oligodendroglial maturation, and neurite outgrowth. To date, NRG1 levels have not been researched in ASD patients and considering the neurodevelopmental effects of NRG1, this study aimed to research the peripheral NRG1 levels in ASD patients. The study compared 32 ASD patients and 32 healthy controls. Serum NRG-1 levels were measured with ELISA. In ASD patients (mean ± SD, 10.80 ± 4.78 ng/ml), the NRG1 levels were found to be statistically significantly high compared to the health control group (mean ± SD, 6.92 ± 4.91 ng/ml) (p = 0.004). According to the results we obtained, NRG1 was shown to play a possible role in ASD pathogenesis. There is a need for advanced studies on the possible role of NRG1 in ASD patients. This study is significant as it is the first study to measure peripheral NRG1 in ASD patients.
Collapse
|
15
|
Müller T, Braud S, Jüttner R, Voigt BC, Paulick K, Sheean ME, Klisch C, Gueneykaya D, Rathjen FG, Geiger JR, Poulet JF, Birchmeier C. Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons. EMBO J 2018; 37:embj.201798858. [PMID: 30049711 PMCID: PMC6120667 DOI: 10.15252/embj.201798858] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023] Open
Abstract
Hippocampal GABAergic interneurons are crucial for cortical network function and have been implicated in psychiatric disorders. We show here that Neuregulin 3 (Nrg3), a relatively little investigated low-affinity ligand, is a functionally dominant interaction partner of ErbB4 in parvalbumin-positive (PV) interneurons. Nrg3 and ErbB4 are located pre- and postsynaptically, respectively, in excitatory synapses on PV interneurons in vivo Additionally, we show that ablation of Nrg3 results in a similar phenotype as the one described for ErbB4 ablation, including reduced excitatory synapse numbers on PV interneurons, altered short-term plasticity, and disinhibition of the hippocampal network. In culture, presynaptic Nrg3 increases excitatory synapse numbers on ErbB4+ interneurons and affects short-term plasticity. Nrg3 mutant neurons are poor donors of presynaptic terminals in the presence of competing neurons that produce recombinant Nrg3, and this bias requires postsynaptic ErbB4 but not ErbB4 kinase activity. Furthermore, when presented by non-neuronal cells, Nrg3 induces postsynaptic membrane specialization. Our data indicate that Nrg3 provides adhesive cues that facilitate excitatory neurons to synapse onto ErbB4+ interneurons.
Collapse
Affiliation(s)
- Thomas Müller
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Stephanie Braud
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - René Jüttner
- Developmental Neurobiology Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Birgit C Voigt
- Neural Circuits and Behaviour Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Katharina Paulick
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Maria E Sheean
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Constantin Klisch
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dilansu Gueneykaya
- Cellular Neuroscience Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Fritz G Rathjen
- Developmental Neurobiology Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| | - Jörg Rp Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - James Fa Poulet
- Neural Circuits and Behaviour Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany.,Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction Group, Max-Delbrueck-Centrum in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
16
|
Antibody-mediated stabilization of NRG1 induces behavioral and electrophysiological alterations in adult mice. Sci Rep 2018; 8:8239. [PMID: 29844389 PMCID: PMC5974084 DOI: 10.1038/s41598-018-26492-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/08/2018] [Indexed: 01/14/2023] Open
Abstract
Neuregulin 1 (NRG1) is required for development of the central and peripheral nervous system and regulates neurotransmission in the adult. NRG1 and the gene encoding its receptor, ERBB4, are risk genes for schizophrenia, although how alterations in these genes disrupt their function has not been fully established. Studies of knockout and transgenic mice have yielded conflicting results, with both gain and loss of function resulting in similar behavioral and electrophysiological phenotypes. Here, we used high affinity antibodies to NRG1 and ErbB4 to perturb the function of the endogenous proteins in adult mice. Treatment with NRG1 antibodies that block receptor binding caused behavioral alterations associated with schizophrenia, including, hyper-locomotion and impaired pre-pulse inhibition of startle (PPI). Electrophysiological analysis of brain slices from anti-NRG1 treated mice revealed reduced synaptic transmission and enhanced paired-pulse facilitation. In contrast, mice treated with more potent ErbB4 function blocking antibodies did not display behavioral alterations, suggesting a receptor independent mechanism of the anti-NRG1-induced phenotypes. We demonstrate that anti-NRG1 causes accumulation of the full-length transmembrane protein and increases phospho-cofilin levels, which has previously been linked to impaired synaptic transmission, indicating enhancement of non-canonical NRG1 signaling could mediate the CNS effects.
Collapse
|
17
|
Modulation of Neuronal Activity on Intercalated Neurons of Amygdala Might Underlie Anxiolytic Activity of a Standardized Extract of Centella asiatica ECa233. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3853147. [PMID: 29849706 PMCID: PMC5941724 DOI: 10.1155/2018/3853147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/07/2018] [Accepted: 03/25/2018] [Indexed: 11/18/2022]
Abstract
GABAergic intercalated neurons of amygdala (ITCs) have recently been shown to be important in the suppression of fear-like behavior. Effects of ECa233 (a standardized extract of Centella asiatica), previously demonstrated anxiolytic activity, were then investigated on ITCs. Cluster of GABAergic neurons expressing fluorescence of GFP was identified in GAD67-GFP knock-in mice. We found that neurons of medial paracapsular ITC were GABAergic neurons exhibiting certain intrinsic electrophysiological properties similar to those demonstrated by ITC neurons at the same location in C57BL/6J mice. Therefore, we conducted experiments in both C57BL/6J mice and GAD67-GFP knock-in mice. Excitatory postsynaptic currents (EPSCs) were evoked by stimulation of the external capsule during the whole cell patch-clamp recordings from ITC neurons in brain slices. ECa233 was found to increase the EPSC peak amplitude in the ITC neurons by about 120%. The EPSCs in ITC neurons were completely abolished by the application of an AMPA receptor antagonist. Morphological assessment of the ITC neurons with biocytin demonstrated that most axons of the recorded neurons innervated the central nucleus of the amygdala (CeA). Therefore, it is highly likely that anxiolytic activity of ECa233 was mediated by increasing activation, via AMPA receptors, of excitatory synaptic input to the GABAergic ITC leading to depression of CeA neurons.
Collapse
|
18
|
Kotzadimitriou D, Nissen W, Paizs M, Newton K, Harrison PJ, Paulsen O, Lamsa K. Neuregulin 1 Type I Overexpression Is Associated with Reduced NMDA Receptor-Mediated Synaptic Signaling in Hippocampal Interneurons Expressing PV or CCK. eNeuro 2018; 5:ENEURO.0418-17.2018. [PMID: 29740596 PMCID: PMC5938717 DOI: 10.1523/eneuro.0418-17.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 11/21/2022] Open
Abstract
Hypofunction of N-methyl-d-aspartate receptors (NMDARs) in inhibitory GABAergic interneurons is implicated in the pathophysiology of schizophrenia (SZ), a heritable disorder with many susceptibility genes. However, it is still unclear how SZ risk genes interfere with NMDAR-mediated synaptic transmission in diverse inhibitory interneuron populations. One putative risk gene is neuregulin 1 (NRG1), which signals via the receptor tyrosine kinase ErbB4, itself a schizophrenia risk gene. The type I isoform of NRG1 shows increased expression in the brain of SZ patients, and ErbB4 is enriched in GABAergic interneurons expressing parvalbumin (PV) or cholecystokinin (CCK). Here, we investigated ErbB4 expression and synaptic transmission in interneuronal populations of the hippocampus of transgenic mice overexpressing NRG1 type I (NRG1tg-type-I mice). Immunohistochemical analyses confirmed that ErbB4 was coexpressed with either PV or CCK in hippocampal interneurons, but we observed a reduced number of ErbB4-immunopositive interneurons in the NRG1tg-type-I mice. NMDAR-mediated currents in interneurons expressing PV (including PV+ basket cells) or CCK were reduced in NRG1tg-type-I mice compared to their littermate controls. We found no difference in AMPA receptor-mediated currents. Optogenetic activation (5 pulses at 20 Hz) of local glutamatergic fibers revealed a decreased NMDAR-mediated contribution to disynaptic GABAergic inhibition of pyramidal cells in the NRG1tg-type-I mice. GABAergic synaptic transmission from either PV+ or CCK+ interneurons, and glutamatergic transmission onto pyramidal cells, did not significantly differ between genotypes. The results indicate that synaptic NMDAR-mediated signaling in hippocampal interneurons is sensitive to chronically elevated NGR1 type I levels. This may contribute to the pathophysiological consequences of increased NRG1 expression in SZ.
Collapse
Affiliation(s)
| | - Wiebke Nissen
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Melinda Paizs
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, 6720, Hungary
| | - Kathryn Newton
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Paul J. Harrison
- Department of Psychiatry, University of Oxford, and Oxford Health NHS Foundation Trust, Oxford, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Karri Lamsa
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, 6720, Hungary
| |
Collapse
|
19
|
Batista-Brito R, Vinck M, Ferguson KA, Chang JT, Laubender D, Lur G, Mossner JM, Hernandez VG, Ramakrishnan C, Deisseroth K, Higley MJ, Cardin JA. Developmental Dysfunction of VIP Interneurons Impairs Cortical Circuits. Neuron 2017; 95:884-895.e9. [PMID: 28817803 DOI: 10.1016/j.neuron.2017.07.034] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 07/08/2017] [Accepted: 07/27/2017] [Indexed: 02/01/2023]
Abstract
GABAergic interneurons play important roles in cortical circuit development. However, there are multiple populations of interneurons and their respective developmental contributions remain poorly explored. Neuregulin 1 (NRG1) and its interneuron-specific receptor ERBB4 are critical genes for interneuron maturation. Using a conditional ErbB4 deletion, we tested the role of vasoactive intestinal peptide (VIP)-expressing interneurons in the postnatal maturation of cortical circuits in vivo. ErbB4 removal from VIP interneurons during development leads to changes in their activity, along with severe dysregulation of cortical temporal organization and state dependence. These alterations emerge during adolescence, and mature animals in which VIP interneurons lack ErbB4 exhibit reduced cortical responses to sensory stimuli and impaired sensory learning. Our data support a key role for VIP interneurons in cortical circuit development and suggest a possible contribution to pathophysiology in neurodevelopmental disorders. These findings provide a new perspective on the role of GABAergic interneuron diversity in cortical development. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Renata Batista-Brito
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Martin Vinck
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
| | - Katie A Ferguson
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Jeremy T Chang
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - David Laubender
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Gyorgy Lur
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - James M Mossner
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Victoria G Hernandez
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; HHMI, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael J Higley
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Jessica A Cardin
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA.
| |
Collapse
|
20
|
Neuregulin-Dependent Regulation of Fast-Spiking Interneuron Excitability Controls the Timing of the Critical Period. J Neurosci 2017; 36:10285-10295. [PMID: 27707966 DOI: 10.1523/jneurosci.4242-15.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Maturation of excitatory drive onto fast-spiking interneurons (FS INs) in the visual cortex has been implicated in the control of the timing of the critical period for ocular dominance plasticity. However, the mechanisms that regulate the strength of these synapses over cortical development are not understood. Here we use a mouse model to show that neuregulin (NRG) and the receptor tyrosine kinase erbB4 regulate the timing of the critical period. NRG1 enhanced the strength of excitatory synapses onto FS INs, which inhibited ocular dominance plasticity during the critical period but rescued plasticity in transgenics with hypoexcitable FS INs. Blocking the effects of endogenous neuregulin via inhibition of erbBs rescued ocular dominance plasticity in postcritical period adults, allowing recovery from amblyopia induced by chronic monocular deprivation. Thus, the strength of excitation onto FS INs is a key determinant of critical period plasticity and is maintained at high levels by NRG-erbB4 signaling to constrain plasticity in adulthood. SIGNIFICANCE STATEMENT Despite decades of experimentation, the mechanisms by which critical periods of enhanced synaptic plasticity are initiated and terminated are not completely understood. Here we show that neuregulin (NRG) and the receptor tyrosine kinase erbB4 determine critical period timing by controlling the strength of excitatory synapses onto FS INs. NRG1 enhanced excitatory drive onto fast spiking interneurons, which inhibited ocular dominance plasticity in juveniles but rescued plasticity in transgenics with hypoexcitable FS INs. Blocking the effects of endogenous neuregulin via inhibition of erbBs rescued ocular dominance plasticity in adults, allowing recovery from amblyopia induced by chronic monocular deprivation. Thus, in contrast to prevailing views of the termination of the critical period, active maintenance of strong excitation onto FS INs constrains plasticity in adults.
Collapse
|
21
|
Namba H, Nagano T, Jodo E, Eifuku S, Horie M, Takebayashi H, Iwakura Y, Sotoyama H, Takei N, Nawa H. Epidermal growth factor signals attenuate phenotypic and functional development of neocortical GABA neurons. J Neurochem 2017; 142:886-900. [PMID: 28608461 DOI: 10.1111/jnc.14097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 04/24/2017] [Accepted: 05/23/2017] [Indexed: 01/21/2023]
Abstract
Phenotypic development of neocortical GABA neurons is highly plastic and promoted by various neurotrophic factors such as neuregulin-1. A subpopulation of GABA neurons expresses not only neuregulin receptor (ErbB4) but also epidermal growth factor (EGF) receptor (ErbB1) during development, but the neurobiological action of EGF on this cell population is less understood than that of neuregulin-1. Here, we examined the effects of exogenous EGF on immature GABA neurons both in culture and in vivo and also explored physiological consequences in adults. We prepared low density cultures from the neocortex of rat embryos and treated neocortical neurons with EGF. EGF decreased protein levels of glutamic acid decarboxylases (GAD65 and GAD67), and EGF influences on neuronal survival and glial proliferation were negligible or limited. The EGF treatment also diminished the frequency of miniature inhibitory postsynaptic currents (mIPSCs). In vivo administration of EGF to mouse pups reproduced the above GABAergic phenomena in neocortical culture. In EGF-injected postnatal mice, GAD- and parvalbumin-immunoreactivities were reduced in the frontal cortex. In addition, postnatal EGF treatment decreased mIPSC frequency in, and the density of, GABAergic terminals on pyramidal cells. Although these phenotypic influences on GABA neurons became less marked during development, it later resulted in the reduced β- and γ-powers of sound-evoked electroencephalogram in adults, which is regulated by parvalbumin-positive GABA neurons and implicated in the schizophrenia pathophysiology. These findings suggest that, in contrast to the ErbB4 ligand of neuregulin-1, the ErbB1 ligand of EGF exerts unique maturation-attenuating influences on developing cortical GABAergic neurons.
Collapse
Affiliation(s)
- Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata, Japan
| | - Tadasato Nagano
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata, Japan.,Department of Health and Nutrition, University of Niigata Prefecture, Higashi-ku, Niigata, Japan
| | - Eiichi Jodo
- Department of Neurophysiology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Satoshi Eifuku
- Department of Neurophysiology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masao Horie
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata, Japan
| | - Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Chuo-ku, Niigata, Japan
| |
Collapse
|
22
|
Chen YH, Lan YJ, Zhang SR, Li WP, Luo ZY, Lin S, Zhuang JP, Li XW, Li SJ, Yang JM, Gao TM. ErbB4 signaling in the prelimbic cortex regulates fear expression. Transl Psychiatry 2017; 7:e1168. [PMID: 28675393 PMCID: PMC5538119 DOI: 10.1038/tp.2017.139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 12/31/2022] Open
Abstract
Many psychiatric diseases such as post-traumatic stress disorder (PTSD) are characterized by abnormal processing of emotional stimuli particularly fear. The medial prefrontal cortex (mPFC) is critically involved in fear expression. However, the molecular mechanisms underlying this process are largely unknown. Neuregulin-1 (NRG1) reportedly regulates pyramidal neuronal activity via ErbB4 receptors, which are abundant in parvalbumin (PV)-expressing interneurons in the PFC. In this study, we aimed to determine how NRG1/ErbB4 signaling in the mPFC modulates fear expression and found that tone-cued fear conditioning increased NRG1 expression in the mPFC. Tone-cued fear conditioning was inhibited following neutralization of endogenous NRG1 and specific inhibition or genetic ablation of ErbB4 in the prelimbic (PL) cortex but not in the infralimbic cortex. Furthermore, ErbB4 deletion specifically in PV neurons impaired tone-cued fear conditioning. Notably, overexpression of ErbB4 in the PL cortex is sufficient to reverse impaired fear conditioning in PV-Cre;ErbB4-/- mice. Together, these findings identify a previously unknown signaling pathway in the PL cortex that regulates fear expression. As both NRG1 and ErbB4 are risk genes for schizophrenia, our study may shed new light on the pathophysiology of this disorder and help to improve treatments for psychiatric disorders such as PTSD.
Collapse
Affiliation(s)
- Y-H Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Y-J Lan
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - S-R Zhang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - W-P Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Z-Y Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - S Lin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - J-P Zhuang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - X-W Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - S-J Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - J-M Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China,State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, 1023S Shatai Road, Guangzhou 510515, China. E-mail: or
| | - T-M Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, Guangzhou, China,State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Science, Southern Medical University, 1023S Shatai Road, Guangzhou 510515, China. E-mail: or
| |
Collapse
|
23
|
Iwakura Y, Wang R, Inamura N, Araki K, Higashiyama S, Takei N, Nawa H. Glutamate-dependent ectodomain shedding of neuregulin-1 type II precursors in rat forebrain neurons. PLoS One 2017; 12:e0174780. [PMID: 28350885 PMCID: PMC5370147 DOI: 10.1371/journal.pone.0174780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/15/2017] [Indexed: 01/30/2023] Open
Abstract
The neurotrophic factor neuregulin 1 (NRG1) regulates neuronal development, glial differentiation, and excitatory synapse maturation. NRG1 is synthesized as a membrane-anchored precursor and is then liberated by proteolytic processing or exocytosis. Mature NRG1 then binds to its receptors expressed by neighboring neurons or glial cells. However, the molecular mechanisms that govern this process in the nervous system are not defined in detail. Here we prepared neuron-enriched and glia-enriched cultures from embryonic rat neocortex to investigate the role of neurotransmitters that regulate the liberation/release of NRG1 from the membrane of neurons or glial cells. Using a two-site enzyme immunoassay to detect soluble NRG1, we show that, of various neurotransmitters, glutamate was the most potent inducer of NRG1 release in neuron-enriched cultures. NRG1 release in glia-enriched cultures was relatively limited. Furthermore, among glutamate receptor agonists, N-Methyl-D-Aspartate (NMDA) and kainate (KA), but not AMPA or tACPD, mimicked the effects of glutamate. Similar findings were acquired from analysis of the hippocampus of rats with KA-induced seizures. To evaluate the contribution of members of a disintegrin and metalloproteinase (ADAM) families to NRG1 release, we transfected primary cultures of neurons with cDNA vectors encoding NRG1 types I, II, or III precursors, each tagged with the alkaline phosphatase reporter. Analysis of alkaline phosphatase activity revealed that the NRG1 type II precursor was subjected to tumor necrosis factor-α-converting enzyme (TACE) / a Disintegrin And Metalloproteinase 17 (ADAM17) -dependent ectodomain shedding in a protein kinase C-dependent manner. These results suggest that glutamatergic neurotransmission positively regulates the ectodomain shedding of NRG1 type II precursors and liberates the active NRG1 domain in an activity-dependent manner.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail:
| | - Ran Wang
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Naoko Inamura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuaki Araki
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
24
|
Axonal Type III Nrg1 Controls Glutamate Synapse Formation and GluA2 Trafficking in Hippocampal-Accumbens Connections. eNeuro 2017; 4:eN-NWR-0232-16. [PMID: 28275713 PMCID: PMC5329619 DOI: 10.1523/eneuro.0232-16.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Altered neuregulin 1 (Nrg1)/ErbB signaling and glutamatergic hypofunction have been implicated in the pathophysiology of schizophrenia. Here, we employed gene chimeric ventral hippocampus (vHipp)-nucleus accumbens (nAcc) coculture from mouse, electrophysiology, immunocytochemistry, FM1-43 vesicle fusion, and electron microscopy techniques to examine the pre- and postsynaptic mechanisms of genetic deficits in Nrg1/ErbB signaling-induced glutamatergic dysfunctions. Reduced presynaptic type III Nrg1 expression along vHipp axons decreases the number of glutamate synapses and impairs GluA2 trafficking in the postsynaptic nAcc neurons, resulting in decreased frequency and amplitude of miniature EPSCs (mEPSCs). Reduced expression of axonal type III Nrg1 along vHipp projections also decreases functional synaptic vesicle (SV) clustering and vesicular trafficking to presynaptic vHipp axonal terminals. These findings suggest that Nrg1/ErbB signaling modulate glutamatergic transmission via both pre- and postsynaptic mechanisms.
Collapse
|
25
|
Sun Y, Ikrar T, Davis MF, Gong N, Zheng X, Luo ZD, Lai C, Mei L, Holmes TC, Gandhi SP, Xu X. Neuregulin-1/ErbB4 Signaling Regulates Visual Cortical Plasticity. Neuron 2016; 92:160-173. [PMID: 27641496 DOI: 10.1016/j.neuron.2016.08.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/17/2016] [Accepted: 08/08/2016] [Indexed: 12/14/2022]
Abstract
Experience alters cortical networks through neural plasticity mechanisms. During a developmental critical period, the most dramatic consequence of occluding vision through one eye (monocular deprivation) is a rapid loss of excitatory synaptic inputs to parvalbumin-expressing (PV) inhibitory neurons in visual cortex. Subsequent cortical disinhibition by reduced PV cell activity allows for excitatory ocular dominance plasticity. However, the molecular mechanisms underlying critical period synaptic plasticity are unclear. Here we show that brief monocular deprivation during the critical period downregulates neuregulin-1(NRG1)/ErbB4 signaling in PV neurons, causing retraction of excitatory inputs to PV neurons. Exogenous NRG1 rapidly restores excitatory inputs onto deprived PV cells through downstream PKC-dependent activation and AMPA receptor exocytosis, thus enhancing PV neuronal inhibition to excitatory neurons. NRG1 treatment prevents the loss of deprived eye visual cortical responsiveness in vivo. Our findings reveal molecular, cellular, and circuit mechanisms of NRG1/ErbB4 in regulating the initiation of critical period visual cortical plasticity.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA
| | - Taruna Ikrar
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA
| | - Melissa F Davis
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Nian Gong
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, Irvine, CA 92697-4265, USA
| | - Xiaoting Zheng
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Z David Luo
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, Irvine, CA 92697-4265, USA
| | - Cary Lai
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4560, USA
| | - Sunil P Gandhi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-2715, USA; Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-2715, USA.
| |
Collapse
|
26
|
Mostaid MS, Lloyd D, Liberg B, Sundram S, Pereira A, Pantelis C, Karl T, Weickert CS, Everall IP, Bousman CA. Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci Biobehav Rev 2016; 68:387-409. [DOI: 10.1016/j.neubiorev.2016.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
|
27
|
Effects of neuregulin-1 administration on neurogenesis in the adult mouse hippocampus, and characterization of immature neurons along the septotemporal axis. Sci Rep 2016; 6:30467. [PMID: 27469430 PMCID: PMC4965755 DOI: 10.1038/srep30467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022] Open
Abstract
Adult hippocampal neurogenesis is associated with learning and affective behavioural regulation. Its diverse functionality is segregated along the septotemporal axis from the dorsal to ventral hippocampus. However, features distinguishing immature neurons in these regions have yet to be characterized. Additionally, although we have shown that administration of the neurotrophic factor neuregulin-1 (NRG1) selectively increases proliferation and overall neurogenesis in the mouse ventral dentate gyrus (DG), likely through ErbB3, NRG1's effects on intermediate neurogenic stages in immature neurons are unknown. We examined whether NRG1 administration increases DG ErbB3 phosphorylation. We labeled adultborn cells using BrdU, then administered NRG1 to examine in vivo neurogenic effects on immature neurons with respect to cell survival, morphology, and synaptogenesis. We also characterized features of immature neurons along the septotemporal axis. We found that neurogenic effects of NRG1 are temporally and subregionally specific to proliferation in the ventral DG. Particular morphological features differentiate immature neurons in the dorsal and ventral DG, and cytogenesis differed between these regions. Finally, we identified synaptic heterogeneity surrounding the granule cell layer. These results indicate neurogenic involvement of NRG1-induced antidepressant-like behaviour is particularly associated with increased ventral DG cell proliferation, and identify novel distinctions between dorsal and ventral hippocampal neurogenic development.
Collapse
|
28
|
Bidirectional Signaling of Neuregulin-2 Mediates Formation of GABAergic Synapses and Maturation of Glutamatergic Synapses in Newborn Granule Cells of Postnatal Hippocampus. J Neurosci 2016; 35:16479-93. [PMID: 26674872 DOI: 10.1523/jneurosci.1585-15.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Expression of neuregulin-2 (NRG2) is intense in a few regions of the adult brain where neurogenesis persists; however, little is understood about its role in developments of newborn neurons. To study the role of NRG2 in synaptogenesis at different developmental stages, newborn granule cells in rat hippocampal slice cultures were labeled with retrovirus encoding tetracycline-inducible microRNA targeting NRG2 and treated with doxycycline (Dox) at the fourth or seventh postinfection day (dpi). The developmental increase of GABAergic postsynaptic currents (GPSCs) was suppressed by the early Dox treatment (4 dpi), but not by late treatment (7 dpi). The late Dox treatment was used to study the effect of NRG2 depletion specific to excitatory synaptogenesis. The Dox effect on EPSCs emerged 4 d after the impairment in dendritic outgrowth became evident (10 dpi). Notably, Dox treatment abolished the developmental increases of AMPA-receptor mediated EPSCs and the AMPA/NMDA ratio, indicating impaired maturation of glutamatergic synapses. In contrast to GPSCs, Dox effects on EPSCs and dendritic growth were independent of ErbB4 and rescued by concurrent overexpression of NRG2 intracellular domain. These results suggest that forward signaling of NRG2 mediates GABAergic synaptogenesis and its reverse signaling contributes to dendritic outgrowth and maturation of glutamatergic synapses. SIGNIFICANCE STATEMENT The hippocampal dentate gyrus is one of special brain regions where neurogenesis persists throughout adulthood. Synaptogenesis is a critical step for newborn neurons to be integrated into preexisting neural network. Because neuregulin-2 (NRG2), a growth factor, is intensely expressed in these regions, we investigated whether it plays a role in synaptogenesis and dendritic growth. We found that NRG2 has dual roles in the development of newborn neurons. For GABAergic synaptogenesis, the extracellular domain of NRG2 acts as a ligand for a receptor on GABAergic neurons. In contrast, its intracellular domain was essential for dendritic outgrowth and glutamatergic synapse maturation. These results imply that NRG2 may play a critical role in network integration of newborn neurons.
Collapse
|
29
|
Namba H, Okubo T, Nawa H. Perinatal Exposure to Neuregulin-1 Results in Disinhibition of Adult Midbrain Dopaminergic Neurons: Implication in Schizophrenia Modeling. Sci Rep 2016; 6:22606. [PMID: 26935991 PMCID: PMC4776181 DOI: 10.1038/srep22606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/17/2016] [Indexed: 11/22/2022] Open
Abstract
Aberrant neuregulin-1 (NRG1) signals are suggested to associate with the neuropathophysiology of schizophrenia. Employing a mouse schizophrenia model established by neonatal neuregulin-1 challenge, we analysed postpubertal consequence of the NRG1 pretreatment for the electrophysiological property of nigral dopamine neurons. In vivo single unit recordings from anaesthetized NRG1-pretreated mice revealed increased spike bursting of nigral dopamine neurons. In slice preparations from NRG1-pretreated mice, spontaneous firing was elevated relative to controls. The relative increase in firing rates was abolished by a GABAA receptor antagonist. Whole-cell recording showed that perinatal NRG1 pretreatment diminished inhibitory miniature synaptic currents as well as GABAA receptor sensitivity. These results collectively suggest that perinatal exposure to neuregulin-1 results in the disinhibition of nigral dopamine neurons to influence their firing properties at the adult stage when the behavioral deficits are evident.
Collapse
Affiliation(s)
- Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585
| | - Takeshi Okubo
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585
| |
Collapse
|
30
|
Kato T, Abe Y, Hirokawa S, Iwakura Y, Mizuno M, Namba H, Nawa H. Neurobehavioral Differences Between Mice Receiving Distinct Neuregulin Variants as Neonates; Impact on Sensitivity to MK-801. Curr Mol Med 2016; 15:222-36. [PMID: 25817857 PMCID: PMC4475761 DOI: 10.2174/1566524015666150330143300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 02/20/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022]
Abstract
Neuregulin-1 (NRG1) is a well-recognized risk gene for schizophrenia and is often implicated in the neurodevelopmental hypothesis of this illness. Alternative splicing and proteolytic processing of the NRG1 gene produce more than 30 structural variants; however, the neuropathological roles of individual variants remain to be characterized. On the basis of the neurodevelopmental hypothesis of schizophrenia, we administered eNRG1 (0.1~1.0 μg/g), a core epidermal growth factor-like (EGF) domain common for all splicing NRG1 variants, to neonatal mice and compared their behavioral performance with mice challenged with a full mature form of type 1 NRG1 variant. During the neonatal stage, recombinant eNRG1 protein administrated from the periphery passed the blood-brain barrier and activated its receptor (ErbB4) in the brain. In adults, the mice receiving the highest dose exhibited lower locomotor activity and deficits in prepulse inhibition and tonedependent fear learning, although the hearing reduction of the eNRG1-treated mice may explain these behavioral deficits. Neonatal eNRG1 treatment also significantly potentiated MK-801-driven locomotor activity in an eNRG1 dose-dependent manner. In parallel eNRG1 treatment enhanced MK-801-driven c-Fos induction and decreased immunoreactivity for NMDA receptor subunits in adult brain. In contrast, mice that had been treated with the same molar dose of a full mature form of type 1 NRG1 as neonates did not exhibit hypersensitivity to MK-801. However, both animal models exhibited similar hypersensitivity to methamphetamine. Collectively, our findings suggest that aberrant peripheral NRG1 signals during neurodevelopment alter later behavioral traits and auditory functions in the NRG1 subtype-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | - H Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Niigata 951-8585, Japan.
| |
Collapse
|
31
|
Nagano T, Mizuno M, Morita K, Nawa H. Pathological Implications of Oxidative Stress in Patients and Animal Models with Schizophrenia: The Role of Epidermal Growth Factor Receptor Signaling. Curr Top Behav Neurosci 2016; 29:429-446. [PMID: 26475158 DOI: 10.1007/7854_2015_399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proinflammatory cytokines perturb brain development and neurotransmission and are implicated in various psychiatric diseases, such as schizophrenia and depression. These cytokines often induce the production of reactive oxygen species (ROS) and regulate not only cell survival and proliferation but also inflammatory process and neurotransmission. Under physiological conditions, ROS are moderately produced in mitochondria but are rapidly scavenged by reducing agents in cells. However, brain injury, ischemia, infection, or seizure-like neural activities induce inflammatory cytokines and trigger the production of excessive amounts of ROS, leading to abnormal brain functions and psychiatric symptoms. Protein phosphatases, which are involved in the basal silencing of cytokine receptor activation, are the major targets of ROS. Consistent with this, several ROS scavengers, such as polyphenols and unsaturated fatty acids, attenuate both cytokine signaling and psychiatric abnormalities. In this review, we list the inducers, producers, targets, and scavengers of ROS in the brain and discuss the interaction between ROS and cytokine signaling implicated in schizophrenia and its animal models. In particular, we present an animal model of schizophrenia established by perinatal exposure to epidermal growth factor and illustrate the pathological role of ROS and antipsychotic actions of ROS scavengers, such as emodin and edaravone.
Collapse
Affiliation(s)
- Tadasato Nagano
- Faculty of Human Life Studies, University of Niigata Prefecture, 471 Ebigase, Higashi-ku, Niigata, 950-8680, Japan
| | - Makoto Mizuno
- Aichi Human Service Center, Institute for Developmental Research, Kasugai, Aichi, 480-0392, Japan
| | - Keisuke Morita
- Department of Molecular Biology, Brain Research Institute, Niigata University, Asahimachi-Dori 1-757, Niigata, 951-8585, Japan
| | - Hiroyuki Nawa
- Department of Molecular Biology, Brain Research Institute, Niigata University, Asahimachi-Dori 1-757, Niigata, 951-8585, Japan.
| |
Collapse
|
32
|
Chung DW, Volk DW, Arion D, Zhang Y, Sampson AR, Lewis DA. Dysregulated ErbB4 Splicing in Schizophrenia: Selective Effects on Parvalbumin Expression. Am J Psychiatry 2016; 173:60-8. [PMID: 26337038 PMCID: PMC5242561 DOI: 10.1176/appi.ajp.2015.15020150] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Alternative splicing of ErbB4 transcripts is dysregulated in the dorsolateral prefrontal cortex in schizophrenia. ErbB4 regulates the activity of parvalbumin interneurons, and therefore dysregulated ErbB4 splicing could contribute to lower parvalbumin interneuron activity and consequently lower parvalbumin levels in schizophrenia. However, ErbB4 is also present in calretinin interneurons, which are not affected in schizophrenia. Therefore, the authors hypothesized that dysregulated ErbB4 splicing occurs selectively in parvalbumin interneurons and is associated with lower parvalbumin levels in schizophrenia. METHOD Tissue samples enriched in calretinin and parvalbumin interneurons were laser microdissected from dorsolateral prefrontal cortex layers 2 and 4, respectively, from matched pairs of schizophrenia and comparison subjects. Transcript levels for pan-ErbB4, four ErbB4 splicing variants (JM-a, JM-b, CYT-1, CYT-2), parvalbumin, and calretinin were quantified by quantitative polymerase chain reaction (qPCR) in each layer. Transcript levels for myocardial infarction associated transcript (MIAT), which regulates ErbB4 splicing, were quantified in gray matter by qPCR and in parvalbumin interneurons by microarray. RESULTS Calretinin and parvalbumin mRNAs were preferentially expressed in layers 2 and 4, respectively. In schizophrenia subjects, lower parvalbumin levels, higher CYT-1 and JM-a levels, and lower CYT-2 and JM-b levels were detected selectively in layer 4. In layer 4, the JM-a/JM-b ratio was inversely correlated with parvalbumin levels in schizophrenia subjects. MIAT levels were preferentially higher in parvalbumin interneurons in schizophrenia subjects. CONCLUSIONS These findings suggest that elevated MIAT expression alters ErbB4 splicing selectively in parvalbumin interneurons in schizophrenia. Dysregulated ErbB4 splicing in schizophrenia may contribute to lower activity of parvalbumin interneurons and an activity-dependent down-regulation of parvalbumin expression.
Collapse
Affiliation(s)
- Daniel W Chung
- From the Translational Neuroscience Program, Department of Psychiatry, and the Medical Scientist Training Program, University of Pittsburgh School of Medicine; and the Department of Statistics, University of Pittsburgh
| | - David W Volk
- From the Translational Neuroscience Program, Department of Psychiatry, and the Medical Scientist Training Program, University of Pittsburgh School of Medicine; and the Department of Statistics, University of Pittsburgh
| | - Dominique Arion
- From the Translational Neuroscience Program, Department of Psychiatry, and the Medical Scientist Training Program, University of Pittsburgh School of Medicine; and the Department of Statistics, University of Pittsburgh
| | - Yun Zhang
- From the Translational Neuroscience Program, Department of Psychiatry, and the Medical Scientist Training Program, University of Pittsburgh School of Medicine; and the Department of Statistics, University of Pittsburgh
| | - Allan R Sampson
- From the Translational Neuroscience Program, Department of Psychiatry, and the Medical Scientist Training Program, University of Pittsburgh School of Medicine; and the Department of Statistics, University of Pittsburgh
| | - David A Lewis
- From the Translational Neuroscience Program, Department of Psychiatry, and the Medical Scientist Training Program, University of Pittsburgh School of Medicine; and the Department of Statistics, University of Pittsburgh
| |
Collapse
|
33
|
Barz CS, Bessaih T, Abel T, Feldmeyer D, Contreras D. Altered resonance properties of somatosensory responses in mice deficient for the schizophrenia risk gene Neuregulin 1. Brain Struct Funct 2015; 221:4383-4398. [PMID: 26721794 DOI: 10.1007/s00429-015-1169-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022]
Abstract
To reveal the neuronal underpinnings of sensory processing deficits in patients with schizophrenia, previous studies have investigated brain activity in response to sustained sensory stimulation at various frequencies. This paradigm evoked neural activity at the stimulation frequency and harmonics thereof. During visual and auditory stimulation that elicited enhanced or 'resonant' responses in healthy controls, patients with schizophrenia displayed reduced activity. The present study sought to elucidate the cellular basis of disease-related deficits in sensory resonance properties using mice heterozygous for the schizophrenia susceptibility gene Neuregulin 1 (NRG1). We applied repetitive whisker stimulation at 1-15 Hz, a range relevant to whisking behavior in mice, and measured cellular activity in the primary somatosensory cortex. At frequencies where control mice displayed enhancements in measures of response magnitude and precision, NRG1 (+/-) mutants showed reductions. Our results demonstrate for the first time a link between a mutation of a schizophrenia risk gene and altered neuronal resonance properties in sensory cortex.
Collapse
Affiliation(s)
- Claudia S Barz
- Function of Cortical Microcircuits Group, Institute for Neuroscience and Medicine, Research Centre Jülich, Leo-Brandt-Str., 52425, Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
- Department of Neuropathology, Medical School, RWTH Aachen University, Aachen, Germany.
- Department of Ophthalmology, Medical School, RWTH Aachen University, Aachen, Germany.
- IZKF Aachen, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Thomas Bessaih
- Sorbonne Universités, UPMC Univ Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
- INSERM, UMR-S 1130, Neuroscience Paris Seine, Paris, France
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France
- Université Pierre et Marie Curie, Laboratoire Neuroscience Paris Seine, 9 quai Staint Bernard, Bat B, 5e etage, Case courrier 16, 75005, Paris, France
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, USA
- 10-133 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA, 19104, USA
| | - Dirk Feldmeyer
- Function of Cortical Microcircuits Group, Institute for Neuroscience and Medicine, Research Centre Jülich, Leo-Brandt-Str., 52425, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
- Jülich Aachen Research Alliance (JARA)-Translational Brain Medicine, Aachen, Germany
| | - Diego Contreras
- Department of Neuroscience, School of Medicine, University of Pennsylvania, 215 Stemmler Hall, Philadelphia, PA, 19104-6074, USA
| |
Collapse
|
34
|
Interneuronal DISC1 regulates NRG1-ErbB4 signalling and excitatory-inhibitory synapse formation in the mature cortex. Nat Commun 2015; 6:10118. [PMID: 26656849 PMCID: PMC4682104 DOI: 10.1038/ncomms10118] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Neuregulin-1 (NRG1) and its receptor ErbB4 influence several processes of neurodevelopment, but the mechanisms regulating this signalling in the mature brain are not well known. DISC1 is a multifunctional scaffold protein that mediates many cellular processes. Here we present a functional relationship between DISC1 and NRG1-ErbB4 signalling in mature cortical interneurons. By cell type-specific gene modulation in vitro and in vivo including in a mutant DISC1 mouse model, we demonstrate that DISC1 inhibits NRG1-induced ErbB4 activation and signalling. This effect is likely mediated by competitive inhibition of binding of ErbB4 to PSD95. Finally, we show that interneuronal DISC1 affects NRG1-ErbB4-mediated phenotypes in the fast spiking interneuron-pyramidal neuron circuit. Post-mortem brain analyses and some genetic studies have reported interneuronal deficits and involvement of the DISC1, NRG1 and ErbB4 genes in schizophrenia, respectively. Our results suggest a mechanism by which cross-talk between DISC1 and NRG1-ErbB4 signalling may contribute to these deficits. Neuregulin-1 and DISC1 signalling pathways have both been linked to neurodevelopment and schizophrenia. Here, Seshadri et al. demonstrate that DISC1 negatively regulates NRG1-induced ErbB4 signalling in adult cortical interneurons both in vitro and in vivo, possibly via competitive binding to PSD95.
Collapse
|
35
|
Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons. Mol Psychiatry 2015; 20:959-73. [PMID: 25266126 DOI: 10.1038/mp.2014.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/01/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023]
Abstract
Neuregulin 1 (NRG1) is a trophic factor that has an essential role in the nervous system by modulating neurodevelopment, neurotransmission and synaptic plasticity. Despite the evidence that NRG1 and its receptors, ErbB tyrosine kinases, are expressed in mesencephalic dopaminergic nuclei and their functional alterations are reported in schizophrenia and Parkinson's disease, the role of NRG1/ErbB signalling in dopaminergic neurons remains unclear. Here we found that NRG1 selectively increases the metabotropic glutamate receptor 1 (mGluR1)-activated currents by inducing synthesis and trafficking to membrane of functional receptors and stimulates phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K-Akt-mTOR) pathway, which is required for mGluR1 function. Notably, an endogenous NRG1/ErbB tone is necessary to maintain mGluR1 function, by preserving its surface membrane expression in dopaminergic neurons. Consequently, it enables striatal mGluR1-induced dopamine outflow in in vivo conditions. Our results identify a novel role of NRG1 in the dopaminergic neurons, whose functional alteration might contribute to devastating diseases, such as schizophrenia and Parkinson's disease.
Collapse
|
36
|
Bi LL, Sun XD, Zhang J, Lu YS, Chen YH, Wang J, Geng F, Liu F, Zhang M, Liu JH, Li XW, Mei L, Gao TM. Amygdala NRG1-ErbB4 is critical for the modulation of anxiety-like behaviors. Neuropsychopharmacology 2015; 40:974-86. [PMID: 25308353 PMCID: PMC4330511 DOI: 10.1038/npp.2014.274] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/08/2014] [Accepted: 10/05/2014] [Indexed: 12/27/2022]
Abstract
Anxiety disorder is related to the pathophysiology of psychiatric diseases, including major depression, substance abuse, and schizophrenia. The amygdala is important for manifestation and modulation of anxiety. However, relatively little is known regarding the mechanisms that control the amygdala inhibitory activity that is involved in anxiety. We found that almost all ErbB4, which is the only autonomous receptor of neuregulin 1 (NRG1) in the basolateral amygdala (BLA), was expressed in GABAergic neurons. Endogenous NRG1-ErbB4 signaling pathway in the BLA could modulate anxiety-like behaviors and GABA release, whereas it had no effect on glutamatergic transmission. The administration of NRG1 into the BLA of high-anxiety mice alleviated their anxiety and enhanced GABAergic neurotransmission. Moreover, exogenous NRG1 also produced an anxiolytic effect in the stressed mice. Together, these observations indicated that NRG1-ErbB4 signaling is critical to maintaining GABAergic activity in the amygdala and thus to modulating anxiety-like behaviors. Because NRG1 and ErbB4 are susceptibility genes of schizophrenia, our findings might also help to explain the potential mechanism of emotional abnormality in schizophrenia.
Collapse
Affiliation(s)
- Lin-Lin Bi
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Dong Sun
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Jie Zhang
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Yi-Sheng Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Jue Wang
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Fei Geng
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Fang Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Meng Zhang
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Lin Mei
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA, Tel: +01 706 721 8775, Fax: +01 706 434 6432, E-mail:
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Key Laboratory of Psychiatric Disorders of Guangdong Province, Southern Medical University, Guangzhou, China,State Key Laboratory of Organ Failure Research, Department of Neurobiology, School of Basic Medical Sciences, Guangzhou 510515, China, Tel: +86 20 61648617, Fax: +86 20 61648161, E-mail:
| |
Collapse
|
37
|
Genetic labeling reveals novel cellular targets of schizophrenia susceptibility gene: distribution of GABA and non-GABA ErbB4-positive cells in adult mouse brain. J Neurosci 2015; 34:13549-66. [PMID: 25274830 DOI: 10.1523/jneurosci.2021-14.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuregulin 1 (NRG1) and its receptor ErbB4 are schizophrenia risk genes. NRG1-ErbB4 signaling plays a critical role in neural development and regulates neurotransmission and synaptic plasticity. Nevertheless, its cellular targets remain controversial. ErbB4 was thought to express in excitatory neurons, although recent studies disputed this view. Using mice that express a fluorescent protein under the promoter of the ErbB4 gene, we determined in what cells ErbB4 is expressed and their identity. ErbB4 was widely expressed in the mouse brain, being highest in amygdala and cortex. Almost all ErbB4-positive cells were GABAergic in cortex, hippocampus, basal ganglia, and most of amygdala in neonatal and adult mice, suggesting GABAergic transmission as a major target of NRG1-ErbB4 signaling in these regions. Non-GABAergic, ErbB4-positive cells were present in thalamus, hypothalamus, midbrain, and hindbrain. In particular, ErbB4 is expressed in serotoninergic neurons of raphe nuclei but not in norepinephrinergic neurons of the locus ceruleus. In hypothalamus, ErbB4 is present in neurons that express oxytocin. Finally, ErbB4 is expressed in a group of cells in the subcortical areas that are positive for S100 calcium binding protein β. These results identify novel cellular targets of NRG1-ErbB4 signaling.
Collapse
|
38
|
Lu Y, Sun XD, Hou FQ, Bi LL, Yin DM, Liu F, Chen YJ, Bean JC, Jiao HF, Liu X, Li BM, Xiong WC, Gao TM, Mei L. Maintenance of GABAergic Activity by Neuregulin 1-ErbB4 in Amygdala for Fear Memory. Neuron 2014; 84:835-46. [DOI: 10.1016/j.neuron.2014.09.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2014] [Indexed: 12/11/2022]
|
39
|
Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 2014; 83:27-49. [PMID: 24991953 DOI: 10.1016/j.neuron.2014.06.007] [Citation(s) in RCA: 426] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuregulins (NRGs) comprise a large family of growth factors that stimulate ERBB receptor tyrosine kinases. NRGs and their receptors, ERBBs, have been identified as susceptibility genes for diseases such as schizophrenia (SZ) and bipolar disorder. Recent studies have revealed complex Nrg/Erbb signaling networks that regulate the assembly of neural circuitry, myelination, neurotransmission, and synaptic plasticity. Evidence indicates there is an optimal level of NRG/ERBB signaling in the brain and deviation from it impairs brain functions. NRGs/ERBBs and downstream signaling pathways may provide therapeutic targets for specific neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany.
| |
Collapse
|
40
|
Paterson C, Law AJ. Transient overexposure of neuregulin 3 during early postnatal development impacts selective behaviors in adulthood. PLoS One 2014; 9:e104172. [PMID: 25093331 PMCID: PMC4122441 DOI: 10.1371/journal.pone.0104172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023] Open
Abstract
Neuregulin 3 (NRG3), a specific ligand for ErbB4 and a neuronal-enriched neurotrophin is implicated in the genetic predisposition to a broad spectrum of neurodevelopmental, neurocognitive and neuropsychiatric disorders, including Alzheimer's disease, autism and schizophrenia. Genetic studies in schizophrenia demonstrate that risk variants in NRG3 are associated with cognitive and psychotic symptom severity, accompanied by increased expression of prefrontal cortical NRG3. Despite our expanding knowledge of genetic involvement of NRG3 in neurological disorders, little is known about the neurodevelopmental mechanisms of risk. Here we exploited the fact that a paralog of NRG3, NRG1, readily penetrates the murine blood brain barrier (BBB). In this study we synthesized the bioactive epidermal growth factor (EGF) domain of NRG3, and using previously validated in-vivo peripheral injection methodologies in neonatal mice, demonstrate that NRG3 successfully crosses the BBB, where it activates its receptor ErbB4 and downstream Akt signaling at levels of bioactivity comparable to NRG1. To determine the impact of NRG3 overexpression during one critical developmental window, C57BL/6 male mice were subcutaneously injected daily with NRG1-EGF, NRG3-EGF or vehicle from postnatal days 2–10. Mice were tested in adulthood using a comprehensive battery of behavioral tasks relevant to neurocognitive and psychiatric disorders. In agreement with previous studies, developmental overexposure to NRG1 induced multiple non-CNS mediated peripheral effects as well as severely disrupting performance of prepulse inhibition of the startle response. In contrast, NRG3 had no effect on any peripheral measures investigated or sensorimotor gating. Specifically, developmental NRG3 overexposure produced an anxiogenic-like phenotype and deficits in social behavior in adulthood. These results provide primary data to support a role for NRG3 in brain development and function, which appears to be distinct from its paralog NRG1. Furthermore we demonstrate how perturbations in NRG3 expression at distinct developmental stages may contribute to the neurological deficits observed in brain disorders such as schizophrenia and autism.
Collapse
Affiliation(s)
- Clare Paterson
- Department of Psychiatry, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Amanda J. Law
- Department of Psychiatry, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- Department of Cell and Developmental Biology, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
41
|
Hu H, Gan J, Jonas P. Interneurons. Fast-spiking, parvalbumin⁺ GABAergic interneurons: from cellular design to microcircuit function. Science 2014; 345:1255263. [PMID: 25082707 DOI: 10.1126/science.1255263] [Citation(s) in RCA: 770] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The success story of fast-spiking, parvalbumin-positive (PV(+)) GABAergic interneurons (GABA, γ-aminobutyric acid) in the mammalian central nervous system is noteworthy. In 1995, the properties of these interneurons were completely unknown. Twenty years later, thanks to the massive use of subcellular patch-clamp techniques, simultaneous multiple-cell recording, optogenetics, in vivo measurements, and computational approaches, our knowledge about PV(+) interneurons became more extensive than for several types of pyramidal neurons. These findings have implications beyond the "small world" of basic research on GABAergic cells. For example, the results provide a first proof of principle that neuroscientists might be able to close the gaps between the molecular, cellular, network, and behavioral levels, representing one of the main challenges at the present time. Furthermore, the results may form the basis for PV(+) interneurons as therapeutic targets for brain disease in the future. However, much needs to be learned about the basic function of these interneurons before clinical neuroscientists will be able to use PV(+) interneurons for therapeutic purposes.
Collapse
Affiliation(s)
- Hua Hu
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Jian Gan
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Peter Jonas
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
42
|
Neuropathologic implication of peripheral neuregulin-1 and EGF signals in dopaminergic dysfunction and behavioral deficits relevant to schizophrenia: their target cells and time window. BIOMED RESEARCH INTERNATIONAL 2014; 2014:697935. [PMID: 24949465 PMCID: PMC4052624 DOI: 10.1155/2014/697935] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/10/2014] [Indexed: 01/01/2023]
Abstract
Neuregulin-1 and epidermal growth factor (EGF) are implicated in the pathogenesis of schizophrenia. To test the developmental hypothesis for schizophrenia, we administered these factors to rodent pups, juveniles, and adults and characterized neurobiological and behavioral consequences. These factors were also provided from their transgenes or infused into the adult brain. Here we summarize previous results from these experiments and discuss those from neuropathological aspects. In the neonatal stage but not the juvenile and adult stages, subcutaneously injected factors penetrated the blood-brain barrier and acted on brain neurons, which later resulted in persistent behavioral and dopaminergic impairments associated with schizophrenia. Neonatally EGF-treated animals exhibited persistent hyperdopaminergic abnormalities in the nigro-pallido-striatal system while neuregulin-1 treatment resulted in dopaminergic deficits in the corticolimbic dopamine system. Effects on GABAergic and glutamatergic systems were transient or limited. Even in the adult stage, intracerebral administration and transgenic expression of these factors produced similar but not identical behavioral impairments, although the effects of intracerebral administration were reversible. These findings suggest that dopaminergic development is highly vulnerable to circulating ErbB ligands in the pre- and perinatal stages. Once maldevelopment of the dopaminergic system is established during early development, dopamine-associating behavioral deficits become irreversible and manifest at postpubertal stages.
Collapse
|
43
|
Parodi EM, Kuhn B. Signalling between microvascular endothelium and cardiomyocytes through neuregulin. Cardiovasc Res 2014; 102:194-204. [PMID: 24477642 PMCID: PMC3989448 DOI: 10.1093/cvr/cvu021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/23/2013] [Accepted: 01/10/2014] [Indexed: 12/26/2022] Open
Abstract
Heterocellular communication in the heart is an important mechanism for matching circulatory demands with cardiac structure and function, and neuregulins (Nrgs) play an important role in transducing this signal between the hearts' vasculature and musculature. Here, we review the current knowledge regarding Nrgs, explaining their roles in transducing signals between the heart's microvasculature and cardiomyocytes. We highlight intriguing areas being investigated for developing new, Nrg-mediated strategies to heal the heart in acquired and congenital heart diseases, and note avenues for future research.
Collapse
Affiliation(s)
| | - Bernhard Kuhn
- Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Enders Building, Room 1212, Brookline, MA 02115, USA
| |
Collapse
|
44
|
Development of GABA circuitry of fast-spiking basket interneurons in the medial prefrontal cortex of erbb4-mutant mice. J Neurosci 2014; 33:19724-33. [PMID: 24336736 DOI: 10.1523/jneurosci.1584-13.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
erbb4 is a susceptibility gene for schizophrenia and ErbB4 signals have been hypothesized to function in a number of cortical developmental processes (Silberberg et al., 2006; Mei and Xiong, 2008). Several recent studies show that the expression of ErbB4 is mainly restricted to GABAergic interneurons (Yau et al., 2003; Woo et al., 2007), specifically, to parvalbumin-positive (PV) fast-spiking (FS) interneurons (Vullhorst et al., 2009; Fazzari et al., 2010), a large majority of which are PV FS basket cells (Kawaguchi, 1995; Taniguchi et al., 2013). However, in the medial prefrontal cortex (mPFC), a brain region that is closely associated with neuropsychiatric disorders including schizophrenia, little is known about the roles of ErbB4 signals during the development of GABAergic circuitry particularly that associated with PV FS basket cells. Here, using molecular genetics, biochemistry, and electrophysiology, we deleted ErbB4 receptors in GABAergic forebrain neurons during the embryonic period and demonstrated that in the mouse mPFC, ErbB4 signals were dispensable for the development of GABAergic synapses by PV FS basket cells. Interestingly, they were required for the final maturation rather than the initial formation of glutamatergic synapses on PV FS basket cells. Furthermore, activity-dependent GABAergic PV FS pyramidal neuron transmission was decreased, whereas activity of pyramidal neurons was increased in KO mice. Together, these data indicate that ErbB4 signals contribute to the development of GABAergic circuitry associated with FS basket cells in component- and stage-dependent manners in the mPFC in vivo, and may suggest a mechanism for neuropsychiatric disorders including schizophrenia.
Collapse
|
45
|
Neuregulin-1 impairs the long-term depression of hippocampal inhibitory synapses by facilitating the degradation of endocannabinoid 2-AG. J Neurosci 2013; 33:15022-31. [PMID: 24048832 DOI: 10.1523/jneurosci.5833-12.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endocannabinoids play essential roles in synaptic plasticity; thus, their dysfunction often causes impairments in memory or cognition. However, it is not well understood whether deficits in the endocannabinoid system account for the cognitive symptoms of schizophrenia. Here, we show that endocannabinoid-mediated synaptic regulation is impaired by the prolonged elevation of neuregulin-1, the abnormality of which is a hallmark in many patients with schizophrenia. When rat hippocampal slices were chronically treated with neuregulin-1, the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids, was enhanced due to the increased expression of its degradative enzyme, monoacylglycerol lipase. As a result, the time course of depolarization-induced 2-AG signaling was shortened, and the magnitude of 2-AG-dependent long-term depression of inhibitory synapses was reduced. Our study reveals that an alteration in the signaling of 2-AG contributes to hippocampal synaptic dysfunction in a hyper-neuregulin-1 condition and thus provides novel insights into potential schizophrenic therapeutics that target the endocannabinoid system.
Collapse
|
46
|
Belinsky GS, Rich MT, Sirois CL, Short SM, Pedrosa E, Lachman HM, Antic SD. Patch-clamp recordings and calcium imaging followed by single-cell PCR reveal the developmental profile of 13 genes in iPSC-derived human neurons. Stem Cell Res 2013; 12:101-18. [PMID: 24157591 DOI: 10.1016/j.scr.2013.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 12/13/2022] Open
Abstract
Molecular genetic studies are typically performed on homogenized biological samples, resulting in contamination from non-neuronal cells. To improve expression profiling of neurons we combined patch recordings with single-cell PCR. Two iPSC lines (healthy subject and 22q11.2 deletion) were differentiated into neurons. Patch electrode recordings were performed on 229 human cells from Day-13 to Day-88, followed by capture and single-cell PCR for 13 genes: ACTB, HPRT, vGLUT1, βTUBIII, COMT, DISC1, GAD1, PAX6, DTNBP1, ERBB4, FOXP1, FOXP2, and GIRK2. Neurons derived from both iPSC lines expressed βTUBIII, fired action potentials, and experienced spontaneous depolarizations (UP states) ~2 weeks before vGLUT1, GAD1 and GIRK2 appeared. Multisite calcium imaging revealed that these UP states were not synchronized among hESC-H9-derived neurons. The expression of FOXP1, FOXP2 and vGLUT1 was lost after 50 days in culture, in contrast to other continuously expressed genes. When gene expression was combined with electrophysiology, two subsets of genes were apparent; those irrelevant to spontaneous depolarizations (including vGLUT1, GIRK2, FOXP2 and DISC1) and those associated with spontaneous depolarizations (GAD1 and ERBB4). The results demonstrate that in the earliest stages of neuron development, it is useful to combine genetic analysis with physiological characterizations, on a cell-to-cell basis.
Collapse
Affiliation(s)
- Glenn S Belinsky
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Matthew T Rich
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Carissa L Sirois
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Shaina M Short
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Srdjan D Antic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
47
|
Yamada A, Inoue E, Deguchi-Tawarada M, Matsui C, Togawa A, Nakatani T, Ono Y, Takai Y. Necl-2/CADM1 interacts with ErbB4 and regulates its activity in GABAergic neurons. Mol Cell Neurosci 2013; 56:234-43. [DOI: 10.1016/j.mcn.2013.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 05/15/2013] [Accepted: 06/04/2013] [Indexed: 11/27/2022] Open
|
48
|
Type III neuregulin 1 is required for multiple forms of excitatory synaptic plasticity of mouse cortico-amygdala circuits. J Neurosci 2013; 33:9655-66. [PMID: 23739962 DOI: 10.1523/jneurosci.2888-12.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The amygdala plays an important role in the formation and storage of memories associated with emotional events. The cortical glutamatergic inputs onto pyramidal neurons in the basolateral nucleus of the amygdala (BLA) contribute to this process. As the interaction between neuregulin 1 (Nrg1) and its ErbB receptors has been implicated in the pathological mechanisms of schizophrenia, loss of Nrg1 may disrupt cortical-amygdala neural circuits, resulting in altered processing of salient memories. Here we show that Nrg1 is critical in multiple forms of plasticity of cortical projections to pyramidal neurons of the BLA. The miniature EPSCs in Nrg1 heterozygous animals have a faster time constant of decay and evoked synaptic currents have a smaller NMDA/AMPA ratio than those recorded in wild-type (WT) littermates. Both high-frequency electrical stimulation of cortical inputs and θ burst stimulation combined with nicotine exposure results in long-lasting potentiation in WT animals. However, the same manipulations have little to no effect on glutamatergic synaptic plasticity in the BLA from Nrg1 heterozygous mice. Comparison of WT, Nrg1 heterozygous animals and α7 nicotinic receptor heterozygous mice reveals that the sustained phase of potentiation of glutamatergic transmission after θ burst stimulation with or without nicotine only occurs in the WT mice. Together, these findings support the idea that type III Nrg1 is essential to multiple aspects of the modulation of excitatory plasticity at cortical-BLA synapses.
Collapse
|
49
|
Yin DM, Chen YJ, Lu YS, Bean JC, Sathyamurthy A, Shen C, Liu X, Lin TW, Smith CA, Xiong WC, Mei L. Reversal of behavioral deficits and synaptic dysfunction in mice overexpressing neuregulin 1. Neuron 2013; 78:644-57. [PMID: 23719163 DOI: 10.1016/j.neuron.2013.03.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 11/16/2022]
Abstract
Neuregulin 1 (Nrg1) is a susceptibility gene of schizophrenia, a disabling mental illness that affects 1% of the general population. Here, we show that ctoNrg1 mice, which mimic high levels of NRG1 observed in forebrain regions of schizophrenic patients, exhibit behavioral deficits and hypofunction of glutamatergic and GABAergic pathways. Intriguingly, these deficits were diminished when NRG1 expression returned to normal in adult mice, suggesting that damage which occurred during development is recoverable. Conversely, increase of NRG1 in adulthood was sufficient to cause glutamatergic impairment and behavioral deficits. We found that the glutamatergic impairment by NRG1 overexpression required LIM domain kinase 1 (LIMK1), which was activated in mutant mice, identifying a pathological mechanism. These observations demonstrate that synaptic dysfunction and behavioral deficits in ctoNrg1 mice require continuous NRG1 abnormality in adulthood, suggesting that relevant schizophrenia may benefit from therapeutic intervention to restore NRG1 signaling.
Collapse
Affiliation(s)
- Dong-Min Yin
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yao JJ, Sun J, Zhao QR, Wang CY, Mei YA. Neuregulin-1/ErbB4 signaling regulates Kv4.2-mediated transient outward K+ current through the Akt/mTOR pathway. Am J Physiol Cell Physiol 2013; 305:C197-206. [PMID: 23703525 DOI: 10.1152/ajpcell.00041.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuregulin-1 (NRG-1) is a member of a family of neurotrophic factors that is required for the differentiation, migration, and development of neurons. NRG-1 signaling is thought to contribute to both neuronal development and the neuropathology of schizophrenia, which is believed to be a neurodevelopmental disorder. However, few studies have investigated the role of NRG-1 on voltage-gated ion channels. In this study, we report that NRG-1 specifically increases the density of transient outward K(+) currents (IA) in rat cerebellar granule neurons (CGNs) in a time-dependent manner without modifying the activation or inactivation properties of IA channels. The increase in IA density is mediated by increased protein expression of Kv4.2, the main α-subunit of the IA channel, most likely by upregulation of translation. The effect of NRG-1 on IA density and Kv4.2 expression was only significant in immature neurons. Mechanistically, both Akt and mammalian target of rapamycin (mTOR) signaling pathways are required for the increased NRG-1-induced IA density and expression of Kv4.2. Moreover, pharmacological blockade of the ErbB4 receptor reduced the effect of NRG-1 on IA density and Kv4.2 induction. Our data reveal, for the first time, that stimulation of ErbB4 signaling by NRG-1 upregulates the expression of K(+) channel proteins via activation of the Akt/mTOR signaling pathway and plays an important role in neuronal development and maturation. NRG1 does not acutely change IA and delayed-rectifier outward (IK) of rat CGNs, suggesting that it may not alter excitability of immature neurons by altering potassium channel property.
Collapse
Affiliation(s)
- Jin-Jing Yao
- State Key Laboratory of Medical Neurobiology, School of Life Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|