1
|
Bibineyshvili Y, Vajtay TJ, Salsabilian S, Fliss N, Suvarnakar A, Fang J, Teng S, Alder J, Najafizadeh L, Margolis DJ. Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. Exp Physiol 2025; 110:321-344. [PMID: 39576175 PMCID: PMC11782206 DOI: 10.1113/ep092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behaviour are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI-induced activation at the injury site, followed by a massive slow wave of calcium signal activation that travelled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two-photon calcium imaging in the primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI-induced travelling wave. A depression of calcium signals followed the wave, during which we observed the atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker-evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioural measures. Neural and behavioural changes mostly recovered over hours to days in our M1-TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanaesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Thomas J. Vajtay
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shiva Salsabilian
- Department of Electrical and Computer EngineeringRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Nicholas Fliss
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Aastha Suvarnakar
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jennifer Fang
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shavonne Teng
- Department of Neuroscience and Cell BiologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Janet Alder
- Department of Neuroscience and Cell BiologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Laleh Najafizadeh
- Department of Electrical and Computer EngineeringRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - David J. Margolis
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
2
|
Zahacy R, Ma Y, Winship IR, Jackson J, Chan AW. Claustrum modulation drives altered prefrontal cortex dynamics and connectivity. Commun Biol 2024; 7:1556. [PMID: 39578634 PMCID: PMC11584859 DOI: 10.1038/s42003-024-07256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
This study delves into the claustrum's role in modulating spontaneous and sensory-evoked network activity across cortical regions. Using mesoscale calcium imaging and Gi and Gq DREADDs in anesthetized mice, we show that decreasing claustral activity enhances prefrontal cortical activity, while activation reduces prefrontal cortical activity. This claustrum modulation also caused changes to the brain's large-scale functional networks, emphasizing the claustrum's ability to influence long-range functional connectivity in the cortex. Claustrum inhibition increased the local coupling between frontal cortex areas, but reduced the correlation between anterior medial regions and lateral/posterior regions, while also enhancing sensory-evoked responses in the visual cortex. These findings indicate the claustrum can participate in orchestrating neural communication across cortical regions through modulation of prefrontal cortical activity. These insights deepen our understanding of the claustrum's impact on prefrontal connectivity, large-scale network dynamics, and sensory processing, positioning the claustrum as a key node modulating large-scale cortical dynamics.
Collapse
Affiliation(s)
- Ryan Zahacy
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Yonglie Ma
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Jesse Jackson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.
| | - Allen W Chan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Martineau É, Malescot A, Elmkinssi N, Rungta RL. Distal activity patterns shape the spatial specificity of neurovascular coupling. Nat Neurosci 2024; 27:2101-2114. [PMID: 39232066 DOI: 10.1038/s41593-024-01756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Neurovascular coupling links brain activity to local changes in blood flow, forming the basis for non-invasive brain mapping. Using multiscale imaging, we investigated how vascular activity spatially relates to neuronal activity elicited by single whiskers across different columns and layers of mouse cortex. Here we show that mesoscopic hemodynamic signals quantitatively reflect neuronal activity across space but are composed of a highly heterogeneous pattern of responses across individual vessel segments that is poorly predicted by local neuronal activity. Rather, this heterogeneity is dependent on vessel directionality, specifically in thalamocortical input layer 4, where capillaries respond preferentially to neuronal activity patterns along their downstream perfusion domain. Thus, capillaries fine-tune blood flow based on distant activity and encode laminar-specific activity patterns. These findings imply that vascular anatomy sets a resolution limit on functional imaging signals, where individual blood vessels inaccurately report neuronal activity in their immediate vicinity but, instead, integrate activity patterns along the vascular arbor.
Collapse
Affiliation(s)
- Éric Martineau
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Université de Montréal, Montréal, Quebec, Canada
- Department of Physiology and Pharmacology, Université de Montréal, Montréal, Quebec, Canada
| | - Antoine Malescot
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Université de Montréal, Montréal, Quebec, Canada
- Department of Physiology and Pharmacology, Université de Montréal, Montréal, Quebec, Canada
| | - Nouha Elmkinssi
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Université de Montréal, Montréal, Quebec, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Quebec, Canada
| | - Ravi L Rungta
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Université de Montréal, Montréal, Quebec, Canada.
- Department of Neuroscience, Université de Montréal, Montréal, Quebec, Canada.
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
4
|
Li Y, An X, Mulcahey PJ, Qian Y, Xu XH, Zhao S, Mohan H, Suryanarayana SM, Bachschmid-Romano L, Brunel N, Whishaw IQ, Huang ZJ. Cortico-thalamic communication for action coordination in a skilled motor sequence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.25.563871. [PMID: 37961483 PMCID: PMC10634836 DOI: 10.1101/2023.10.25.563871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The coordination of forelimb and orofacial movements to compose an ethological reach-to-consume behavior likely involves neural communication across brain regions. Leveraging wide-field imaging and photo-inhibition to survey across the cortex, we identified a cortical network and a high-order motor area (MOs-c), which coordinate action progression in a mouse reach-and-withdraw-to-drink (RWD) behavior. Electrophysiology and photo-inhibition across multiple projection neuron types within the MOs-c revealed differential contributions of pyramidal tract and corticothalamic (CTMOs) output channels to action progression and hand-mouth coordination. Notably, CTMOs display sustained firing throughout RWD sequence and selectively enhance RWD-relevant activity in postsynaptic thalamus neurons, which also contribute to action coordination. CTMOs receive converging monosynaptic inputs from forelimb and orofacial sensorimotor areas and are reciprocally connected to thalamic neurons, which project back to the cortical network. Therefore, motor cortex corticothalamic channel may selectively amplify the thalamic integration of cortical and subcortical sensorimotor streams to coordinate a skilled motor sequence.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xu An
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Yongjun Qian
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Current affiliation: College of Future technology, Peking-Tsinghua Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Center of RNA Biology, Peking University, China
| | - X. Hermione Xu
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Hemanth Mohan
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | | | | | - Nicolas Brunel
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Ian Q. Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Research, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Z. Josh Huang
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| |
Collapse
|
5
|
Bibineyshvili Y, Vajtay TJ, Salsabilian S, Fliss N, Suvarnakar A, Fang J, Teng S, Alder J, Najafizadeh L, Margolis DJ. Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590835. [PMID: 38712183 PMCID: PMC11071467 DOI: 10.1101/2024.04.24.590835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behavior are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI-induced activation at the injury site, followed by a massive slow wave of calcium signal activation that traveled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two-photon calcium imaging in primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI-induced traveling wave. A depression of calcium signals followed the wave, during which we observed atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker-evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioral measures. Neural and behavioral changes mostly recovered over hours to days in our M1-TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Thomas J. Vajtay
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Shiva Salsabilian
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicholas Fliss
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Aastha Suvarnakar
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Jennifer Fang
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David J. Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| |
Collapse
|
6
|
Wang X, Padawer-Curry JA, Bice AR, Kim B, Rosenthal ZP, Lee JM, Goyal MS, Macauley SL, Bauer AQ. Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain. Cell Rep 2024; 43:114723. [PMID: 39277861 PMCID: PMC11523563 DOI: 10.1016/j.celrep.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.g., resting-state functional connectivity [RSFC]) because it is unclear whether changes in NMC/NVC affect RSFC measures. We leverage wide-field optical imaging in Thy1-jRGECO1a mice to map cortical calcium activity in pyramidal neurons, flavoprotein autofluorescence (representing oxidative metabolism), and hemodynamic activity during wake and ketamine/xylazine anesthesia. Spontaneous dynamics of all contrasts exhibit patterns consistent with RSFC. NMC/NVC relative to excitatory activity varies over the cortex. Ketamine/xylazine profoundly alters NVC but not NMC. Compared to awake RSFC, ketamine/xylazine affects metabolic-based connectomes moreso than hemodynamic-based measures of RSFC. Anesthesia-related differences in NMC/NVC timing do not appreciably alter RSFC structure.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jonah A Padawer-Curry
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zachary P Rosenthal
- Department of Psychiatry, University of Pennsylvania Health System Penn Medicine, Philadelphia, PA 19104, USA
| | - Jin-Moo Lee
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Manu S Goyal
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
7
|
Doran PR, Fomin-Thunemann N, Tang RP, Balog D, Zimmerman B, Kılıç K, Martin EA, Kura S, Fisher HP, Chabbott G, Herbert J, Rauscher BC, Jiang JX, Sakadzic S, Boas DA, Devor A, Chen IA, Thunemann M. Widefield in vivo imaging system with two fluorescence and two reflectance channels, a single sCMOS detector, and shielded illumination. NEUROPHOTONICS 2024; 11:034310. [PMID: 38881627 PMCID: PMC11177117 DOI: 10.1117/1.nph.11.3.034310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Significance Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale ("mesoscopic") imaging of different aspects of neuronal activity with spectrally compatible fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. Aim We aim to develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. Approach Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625-nm light-emitting diodes positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. Results We demonstrate the performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake, head-fixed mice with a curved "crystal skull" window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensorGRAB ACh 3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. Conclusions Our widefield microscope design with a single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.
Collapse
Affiliation(s)
- Patrick R. Doran
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Rockwell P. Tang
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Dora Balog
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Bernhard Zimmerman
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Emily A. Martin
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sreekanth Kura
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Harrison P. Fisher
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Grace Chabbott
- Boston University, Undergraduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - Joel Herbert
- Boston University, Undergraduate Program in Neuroscience, Boston, Massachusetts, United States
| | - Bradley C. Rauscher
- Boston University, Graduate Program in Biomedical Engineering, Boston, Massachusetts, United States
| | - John X. Jiang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Ichun Anderson Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| |
Collapse
|
8
|
Yan Y, Murphy TH. Decoding state-dependent cortical-cerebellar cellular functional connectivity in the mouse brain. Cell Rep 2024; 43:114348. [PMID: 38865245 DOI: 10.1016/j.celrep.2024.114348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024] Open
Abstract
The cortex and cerebellum form multi-synaptic reciprocal connections. We investigate the functional connectivity between single spiking cerebellar neurons and the population activity of the mouse dorsal cortex using mesoscale imaging. Cortical representations of individual cerebellar neurons vary significantly across different brain states but are drawn from a common set of cortical networks. These cortical-cerebellar connectivity features are observed in mossy fibers and Purkinje cells as well as neurons in different cerebellar lobules, albeit with variations across cell types and regions. Complex spikes of Purkinje cells preferably associate with the sensorimotor cortex, whereas simple spikes display more diverse cortical connectivity patterns. The spontaneous functional connectivity patterns align with cerebellar neurons' functional responses to external stimuli in a modality-specific manner. The tuning properties of subsets of cerebellar neurons differ between anesthesia and awake states, mirrored by state-dependent changes in their long-range functional connectivity patterns with mesoscale cortical activity.
Collapse
Affiliation(s)
- Yuhao Yan
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Sharma S, Kalyani N, Dutta T, Velázquez-González JS, Llamas-Garro I, Ung B, Bas J, Dubey R, Mishra SK. Optical Devices for the Diagnosis and Management of Spinal Cord Injuries: A Review. BIOSENSORS 2024; 14:296. [PMID: 38920599 PMCID: PMC11201428 DOI: 10.3390/bios14060296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
Throughout the central nervous system, the spinal cord plays a very important role, namely, transmitting sensory and motor information inwardly so that it can be processed by the brain. There are many different ways this structure can be damaged, such as through traumatic injury or surgery, such as scoliosis correction, for instance. Consequently, damage may be caused to the nervous system as a result of this. There is no doubt that optical devices such as microscopes and cameras can have a significant impact on research, diagnosis, and treatment planning for patients with spinal cord injuries (SCIs). Additionally, these technologies contribute a great deal to our understanding of these injuries, and they are also essential in enhancing the quality of life of individuals with spinal cord injuries. Through increasingly powerful, accurate, and minimally invasive technologies that have been developed over the last decade or so, several new optical devices have been introduced that are capable of improving the accuracy of SCI diagnosis and treatment and promoting a better quality of life after surgery. We aim in this paper to present a timely overview of the various research fields that have been conducted on optical devices that can be used to diagnose spinal cord injuries as well as to manage the associated health complications that affected individuals may experience.
Collapse
Affiliation(s)
- Sonika Sharma
- Department of Physics, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India;
| | - Neeti Kalyani
- Department of Biotechnology and Biomedicine, Denmark Technical University, 2800 Kongens Lyngby, Denmark;
| | - Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howarh 711103, West Bengal, India;
| | - Jesús Salvador Velázquez-González
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (J.S.V.-G.); (I.L.-G.)
| | - Ignacio Llamas-Garro
- Navigation and Positioning, Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain; (J.S.V.-G.); (I.L.-G.)
| | - Bora Ung
- Electrical Engineering Department, Ecole de Technologie Superieure, Montreal, QC H3C 1K3, Canada;
| | - Joan Bas
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| | - Rakesh Dubey
- Institute of Physics, University of Szczecin, 70-453 Szczecin, Poland;
| | - Satyendra K. Mishra
- Space and Resilient Communications and Systems (SRCOM), Center Technologic de Telecomunicacions de Catalunya (CTTC), Avinguda Carl Friedrich Gauss, 11, 08860 Castelldefels, Spain;
| |
Collapse
|
10
|
Lazari A, Tachrount M, Valverde JM, Papp D, Beauchamp A, McCarthy P, Ellegood J, Grandjean J, Johansen-Berg H, Zerbi V, Lerch JP, Mars RB. The mouse motor system contains multiple premotor areas and partially follows human organizational principles. Cell Rep 2024; 43:114191. [PMID: 38717901 DOI: 10.1016/j.celrep.2024.114191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/10/2023] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
While humans are known to have several premotor cortical areas, secondary motor cortex (M2) is often considered to be the only higher-order motor area of the mouse brain and is thought to combine properties of various human premotor cortices. Here, we show that axonal tracer, functional connectivity, myelin mapping, gene expression, and optogenetics data contradict this notion. Our analyses reveal three premotor areas in the mouse, anterior-lateral motor cortex (ALM), anterior-lateral M2 (aM2), and posterior-medial M2 (pM2), with distinct structural, functional, and behavioral properties. By using the same techniques across mice and humans, we show that ALM has strikingly similar functional and microstructural properties to human anterior ventral premotor areas and that aM2 and pM2 amalgamate properties of human pre-SMA and cingulate cortex. These results provide evidence for the existence of multiple premotor areas in the mouse and chart a comparative map between the motor systems of humans and mice.
Collapse
Affiliation(s)
- Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Mohamed Tachrount
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Juan Miguel Valverde
- DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70150 Kuopio, Finland
| | - Daniel Papp
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Antoine Beauchamp
- Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Paul McCarthy
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Joanes Grandjean
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering (STI), EPFL, 1015 Lausanne, Switzerland; CIBM Center for Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
11
|
Doran PR, Fomin-Thunemann N, Tang RP, Balog D, Zimmerman B, Kilic K, Martin EA, Kura S, Fisher HP, Chabbott G, Herbert J, Rauscher BC, Jiang JX, Sakadzic S, Boas DA, Devor A, Chen IA, Thunemann M. Widefield in vivo imaging system with two fluorescence and two reflectance channels, a single sCMOS detector, and shielded illumination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566086. [PMID: 37986755 PMCID: PMC10659277 DOI: 10.1101/2023.11.07.566086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
SIGNIFICANCE Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale (mesoscopic) imaging of neuronal activity with fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. AIM Develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. APPROACH Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625nm LEDs positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. RESULTS We demonstrate performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake head-fixed mice with a curved crystal skull window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor GRABACh3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. CONCLUSIONS Our widefield microscope design with single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.
Collapse
|
12
|
Bottom-Tanzer S, Corella S, Meyer J, Sommer M, Bolaños L, Murphy T, Quiñones S, Heiney S, Shtrahman M, Whalen M, Oren R, Higley MJ, Cardin JA, Noubary F, Armbruster M, Dulla C. Traumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model. Cereb Cortex 2024; 34:bhae038. [PMID: 38365273 PMCID: PMC11486687 DOI: 10.1093/cercor/bhae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions. In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI. Combining CCI with widefield cortical imaging provides us with unprecedented access to characterize network connectivity changes throughout the entire injured cortex over time. Our data demonstrate that CCI profoundly disrupts functional connectivity immediately after injury, followed by partial recovery over 3 weeks. Examining discrete periods of locomotion and stillness reveals that CCI alters functional connectivity and reduces theta power only during periods of behavioral stillness. Together, these findings demonstrate that TBI causes dynamic, behavioral state-dependent changes in functional connectivity and ECoG activity across the cortex.
Collapse
Affiliation(s)
- Samantha Bottom-Tanzer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- MD/PhD Program, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Sofia Corella
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
- MD/PhD Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Jochen Meyer
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Luis Bolaños
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy Murphy
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Sadi Quiñones
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Shane Heiney
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Matthew Shtrahman
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States
| | - Michael Whalen
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, United States
| | - Rachel Oren
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, United States
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Farzad Noubary
- Department of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Chris Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| |
Collapse
|
13
|
Vafaii H, Mandino F, Desrosiers-Grégoire G, O'Connor D, Markicevic M, Shen X, Ge X, Herman P, Hyder F, Papademetris X, Chakravarty M, Crair MC, Constable RT, Lake EMR, Pessoa L. Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization. Nat Commun 2024; 15:229. [PMID: 38172111 PMCID: PMC10764905 DOI: 10.1038/s41467-023-44363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employ wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determine cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks exhibit overlapping organization. We find that there is considerable network overlap (both modalities) in addition to disjoint organization. Our results show that multiple BOLD networks are detected via Ca2+ signals, and networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks. In addition, the principal gradient of functional connectivity is nearly identical for BOLD and Ca2+ signals. Despite similarities, important differences are also detected across modalities, such as in measures of functional connectivity strength and diversity. In conclusion, Ca2+ imaging uncovers overlapping functional cortical organization in the mouse that reflects several, but not all, properties observed with fMRI-BOLD signals.
Collapse
Affiliation(s)
- Hadi Vafaii
- Department of Physics, University of Maryland, College Park, MD, 20742, USA.
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Gabriel Desrosiers-Grégoire
- Computional Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
| | - David O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Marija Markicevic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xinxin Ge
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Section of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mallar Chakravarty
- Computional Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Michael C Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, 06510, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA.
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA.
- Maryland Neuroimaging Center, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
14
|
Horváth C, Ulbert I, Fiáth R. Propagating population activity patterns during spontaneous slow waves in the thalamus of rodents. Neuroimage 2024; 285:120484. [PMID: 38061688 DOI: 10.1016/j.neuroimage.2023.120484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Slow waves (SWs) represent the most prominent electrophysiological events in the thalamocortical system under anesthesia and during deep sleep. Recent studies have revealed that SWs have complex spatiotemporal dynamics and propagate across neocortical regions. However, it is still unclear whether neuronal activity in the thalamus exhibits similar propagation properties during SWs. Here, we report propagating population activity in the thalamus of ketamine/xylazine-anesthetized rats and mice visualized by high-density silicon probe recordings. In both rodent species, propagation of spontaneous thalamic activity during up-states was most frequently observed in dorsal thalamic nuclei such as the higher order posterior (Po), lateral posterior (LP) or laterodorsal (LD) nuclei. The preferred direction of thalamic activity spreading was along the dorsoventral axis, with over half of the up-states exhibiting a gradual propagation in the ventral-to-dorsal direction. Furthermore, simultaneous neocortical and thalamic recordings collected under anesthesia demonstrated that there is a weak but noticeable interrelation between propagation patterns observed during cortical up-states and those displayed by thalamic population activity. In addition, using chronically implanted silicon probes, we detected propagating activity patterns in the thalamus of naturally sleeping rats during slow-wave sleep. However, in comparison to propagating up-states observed under anesthesia, these propagating patterns were characterized by a reduced rate of occurrence and a faster propagation speed. Our findings suggest that the propagation of spontaneous population activity is an intrinsic property of the thalamocortical network during synchronized brain states such as deep sleep or anesthesia. Additionally, our data implies that the neocortex may have partial control over the formation of propagation patterns within the dorsal thalamus under anesthesia.
Collapse
Affiliation(s)
- Csaba Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | - Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
15
|
Benisty H, Barson D, Moberly AH, Lohani S, Tang L, Coifman RR, Crair MC, Mishne G, Cardin JA, Higley MJ. Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior. Nat Neurosci 2024; 27:148-158. [PMID: 38036743 PMCID: PMC11316935 DOI: 10.1038/s41593-023-01498-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Experimental work across species has demonstrated that spontaneously generated behaviors are robustly coupled to variations in neural activity within the cerebral cortex. Functional magnetic resonance imaging data suggest that temporal correlations in cortical networks vary across distinct behavioral states, providing for the dynamic reorganization of patterned activity. However, these data generally lack the temporal resolution to establish links between cortical signals and the continuously varying fluctuations in spontaneous behavior observed in awake animals. Here, we used wide-field mesoscopic calcium imaging to monitor cortical dynamics in awake mice and developed an approach to quantify rapidly time-varying functional connectivity. We show that spontaneous behaviors are represented by fast changes in both the magnitude and correlational structure of cortical network activity. Combining mesoscopic imaging with simultaneous cellular-resolution two-photon microscopy demonstrated that correlations among neighboring neurons and between local and large-scale networks also encode behavior. Finally, the dynamic functional connectivity of mesoscale signals revealed subnetworks not predicted by traditional anatomical atlas-based parcellation of the cortex. These results provide new insights into how behavioral information is represented across the neocortex and demonstrate an analytical framework for investigating time-varying functional connectivity in neural networks.
Collapse
Affiliation(s)
- Hadas Benisty
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel Barson
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew H Moberly
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Sweyta Lohani
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Lan Tang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Ronald R Coifman
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Gal Mishne
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Jose A, Cheung PY, Laouby Z, Vanholsbeeck F, Cheyne JE. Low-cost reversible tandem lens mesoscope for brain imaging in rodents. NEUROPHOTONICS 2024; 11:014306. [PMID: 38464865 PMCID: PMC10924044 DOI: 10.1117/1.nph.11.1.014306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
Significance The development of imaging systems that are cost-efficient and modular is essential for modern neuroscience research. Aim In the current study, we designed, developed, and characterized a low-cost reversible tandem lens mesoscope for brain imaging in rodents. Approach Using readily available components, we assembled a robust imaging system that is highly efficient and cost-effective. We developed a mesoscope that offers high-resolution structural and functional imaging with cost-effective lenses and CMOS camera. Results The reversible tandem lens configuration of the mesoscope offers two fields of view (FOVs), which can be achieved by swapping the objective and imaging lenses. The large FOV configuration of 12.6 × 10.5 mm provides a spatial resolution up to 4.92 μ m , and the small FOV configuration of 6 × 5 mm provides a resolution of up to 2.46 μ m . We demonstrate the efficiency of our system for imaging neuronal calcium activity in both rat and mouse brains in vivo. Conclusions The careful selection of the mesoscope components ensured its compactness, portability, and versatility, meaning that different types of samples and sample holders can be easily accommodated, enabling a range of different experiments both in vivo and in vitro. The custom-built reversible FOV mesoscope is cost-effective and was developed for under US$10,000 with excellent performance.
Collapse
Affiliation(s)
- Ashly Jose
- University of Auckland, Department of Physics, Auckland, New Zealand
- Dodd-Walls Centre for Photonic and Quantum Technologies (DWC), Dunedin, New Zealand
| | - Pang Ying Cheung
- Dodd-Walls Centre for Photonic and Quantum Technologies (DWC), Dunedin, New Zealand
- University of Auckland, Department of Physiology, Auckland, New Zealand
| | - Zahra Laouby
- Dodd-Walls Centre for Photonic and Quantum Technologies (DWC), Dunedin, New Zealand
- University of Auckland, Department of Physiology, Auckland, New Zealand
| | - Frédérique Vanholsbeeck
- University of Auckland, Department of Physics, Auckland, New Zealand
- Dodd-Walls Centre for Photonic and Quantum Technologies (DWC), Dunedin, New Zealand
| | - Juliette E. Cheyne
- Dodd-Walls Centre for Photonic and Quantum Technologies (DWC), Dunedin, New Zealand
- University of Auckland, Department of Physiology, Auckland, New Zealand
| |
Collapse
|
17
|
Michelson NJ, Bolaños F, Bolaños LA, Balbi M, LeDue JM, Murphy TH. Meso-Py: Dual Brain Cortical Calcium Imaging in Mice during Head-Fixed Social Stimulus Presentation. eNeuro 2023; 10:ENEURO.0096-23.2023. [PMID: 38053472 PMCID: PMC10731520 DOI: 10.1523/eneuro.0096-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
We present a cost-effective, compact foot-print, and open-source Raspberry Pi-based widefield imaging system. The compact nature allows the system to be used for close-proximity dual-brain cortical mesoscale functional-imaging to simultaneously observe activity in two head-fixed animals in a staged social touch-like interaction. We provide all schematics, code, and protocols for a rail system where head-fixed mice are brought together to a distance where the macrovibrissae of each mouse make contact. Cortical neuronal functional signals (GCaMP6s; genetically encoded Ca2+ sensor) were recorded from both mice simultaneously before, during, and after the social contact period. When the mice were together, we observed bouts of mutual whisking and cross-mouse correlated cortical activity across the cortex. Correlations were not observed in trial-shuffled mouse pairs, suggesting that correlated activity was specific to individual interactions. Whisking-related cortical signals were observed during the period where mice were together (closest contact). The effects of social stimulus presentation extend outside of regions associated with mutual touch and have global synchronizing effects on cortical activity.
Collapse
Affiliation(s)
- Nicholas J Michelson
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Federico Bolaños
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Luis A Bolaños
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Matilde Balbi
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jeffrey M LeDue
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
18
|
Tanguay E, Bouchard SJ, Lévesque M, De Koninck P, Breton-Provencher V. Shining light on the noradrenergic system. NEUROPHOTONICS 2023; 10:044406. [PMID: 37766924 PMCID: PMC10519836 DOI: 10.1117/1.nph.10.4.044406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Despite decades of research on the noradrenergic system, our understanding of its impact on brain function and behavior remains incomplete. Traditional recording techniques are challenging to implement for investigating in vivo noradrenergic activity, due to the relatively small size and the position in the brain of the locus coeruleus (LC), the primary location for noradrenergic neurons. However, recent advances in optical and fluorescent methods have enabled researchers to study the LC more effectively. Use of genetically encoded calcium indicators to image the activity of noradrenergic neurons and biosensors that monitor noradrenaline release with fluorescence can be an indispensable tool for studying noradrenergic activity. In this review, we examine how these methods are being applied to record the noradrenergic system in the rodent brain during behavior.
Collapse
Affiliation(s)
| | | | - Martin Lévesque
- CERVO Brain Research Centre, Quebec, Quebec, Canada
- Université Laval, Department of Psychiatry and Neuroscience, Faculty of Medicine, Quebec, Quebec, Canada
| | - Paul De Koninck
- CERVO Brain Research Centre, Quebec, Quebec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Faculty of Science and Engineering, Quebec, Quebec, Canada
| | - Vincent Breton-Provencher
- CERVO Brain Research Centre, Quebec, Quebec, Canada
- Université Laval, Department of Psychiatry and Neuroscience, Faculty of Medicine, Quebec, Quebec, Canada
| |
Collapse
|
19
|
Bakker ME, Djerourou I, Belanger S, Lesage F, Vanni MP. Alteration of functional connectivity despite preserved cerebral oxygenation during acute hypoxia. Sci Rep 2023; 13:13269. [PMID: 37582847 PMCID: PMC10427674 DOI: 10.1038/s41598-023-40321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Resting state networks (RSN), which show the connectivity in the brain in the absence of any stimuli, are increasingly important to assess brain function. Here, we investigate the changes in RSN as well as the hemodynamic changes during acute, global hypoxia. Mice were imaged at different levels of oxygen (21, 12, 10 and 8%) over the course of 10 weeks, with hypoxia and normoxia acquisitions interspersed. Simultaneous GCaMP and intrinsic optical imaging allowed tracking of both neuronal and hemodynamic changes. During hypoxic conditions, we found a global increase of both HbO and HbR in the brain. The saturation levels of blood dropped after the onset of hypoxia, but surprisingly climbed back to levels similar to baseline within the 10-min hypoxia period. Neuronal activity also showed a peak at the onset of hypoxia, but dropped back to baseline as well. Despite regaining baseline sO2 levels, changes in neuronal RSN were observed. In particular, the connectivity as measured with GCaMP between anterior and posterior parts of the brain decreased. In contrast, when looking at these same connections with HbO measurements, an increase in connectivity in anterior-posterior brain areas was observed suggesting a potential neurovascular decoupling.
Collapse
Affiliation(s)
- Marleen E Bakker
- École d'Optométrie, Université de Montréal, 2500 Chem. De Polytechnique, Montréal, QC, H3T 1J4, Canada.
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.
| | - Ismaël Djerourou
- École d'Optométrie, Université de Montréal, 2500 Chem. De Polytechnique, Montréal, QC, H3T 1J4, Canada
| | | | - Frédéric Lesage
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada
- Montréal Heart Institute, Montréal, Canada
| | - Matthieu P Vanni
- École d'Optométrie, Université de Montréal, 2500 Chem. De Polytechnique, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
20
|
Guillamón-Vivancos T, Vandael D, Torres D, López-Bendito G, Martini FJ. Mesoscale calcium imaging in vivo: evolution and contribution to developmental neuroscience. Front Neurosci 2023; 17:1210199. [PMID: 37592948 PMCID: PMC10427507 DOI: 10.3389/fnins.2023.1210199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Calcium imaging is commonly used to visualize neural activity in vivo. In particular, mesoscale calcium imaging provides large fields of view, allowing for the simultaneous interrogation of neuron ensembles across the neuraxis. In the field of Developmental Neuroscience, mesoscopic imaging has recently yielded intriguing results that have shed new light on the ontogenesis of neural circuits from the first stages of life. We summarize here the technical approaches, basic notions for data analysis and the main findings provided by this technique in the last few years, with a focus on brain development in mouse models. As new tools develop to optimize calcium imaging in vivo, basic principles of neural development should be revised from a mesoscale perspective, that is, taking into account widespread activation of neuronal ensembles across the brain. In the future, combining mesoscale imaging of the dorsal surface of the brain with imaging of deep structures would ensure a more complete understanding of the construction of circuits. Moreover, the combination of mesoscale calcium imaging with other tools, like electrophysiology or high-resolution microscopy, will make up for the spatial and temporal limitations of this technique.
Collapse
Affiliation(s)
- Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | | | | | | | - Francisco J. Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| |
Collapse
|
21
|
Shahsavarani S, Thibodeaux DN, Xu W, Kim SH, Lodgher F, Nwokeabia C, Cambareri M, Yagielski AJ, Zhao HT, Handwerker DA, Gonzalez-Castillo J, Bandettini PA, Hillman EMC. Cortex-wide neural dynamics predict behavioral states and provide a neural basis for resting-state dynamic functional connectivity. Cell Rep 2023; 42:112527. [PMID: 37243588 PMCID: PMC10592480 DOI: 10.1016/j.celrep.2023.112527] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/14/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023] Open
Abstract
Although resting-state functional magnetic resonance imaging (fMRI) studies have observed dynamically changing brain-wide networks of correlated activity, fMRI's dependence on hemodynamic signals makes results challenging to interpret. Meanwhile, emerging techniques for real-time recording of large populations of neurons have revealed compelling fluctuations in neuronal activity across the brain that are obscured by traditional trial averaging. To reconcile these observations, we use wide-field optical mapping to simultaneously record pan-cortical neuronal and hemodynamic activity in awake, spontaneously behaving mice. Some components of observed neuronal activity clearly represent sensory and motor function. However, particularly during quiet rest, strongly fluctuating patterns of activity across diverse brain regions contribute greatly to interregional correlations. Dynamic changes in these correlations coincide with changes in arousal state. Simultaneously acquired hemodynamics depict similar brain-state-dependent correlation shifts. These results support a neural basis for dynamic resting-state fMRI, while highlighting the importance of brain-wide neuronal fluctuations in the study of brain state.
Collapse
Affiliation(s)
- Somayeh Shahsavarani
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia University, New York, NY, USA; Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - David N Thibodeaux
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Weihao Xu
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Sharon H Kim
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fatema Lodgher
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Chinwendu Nwokeabia
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Morgan Cambareri
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Alexis J Yagielski
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hanzhi T Zhao
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Functional MRI Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth M C Hillman
- Mortimer B. Zuckerman Mind Brain Behavior Institute and Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
22
|
Weiser SC, Mullen BR, Ascencio D, Ackman JB. Data-driven segmentation of cortical calcium dynamics. PLoS Comput Biol 2023; 19:e1011085. [PMID: 37126531 PMCID: PMC10174627 DOI: 10.1371/journal.pcbi.1011085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/11/2023] [Accepted: 04/09/2023] [Indexed: 05/02/2023] Open
Abstract
Demixing signals in transcranial videos of neuronal calcium flux across the cerebral hemispheres is a key step before mapping features of cortical organization. Here we demonstrate that independent component analysis can optimally recover neural signal content in widefield recordings of neuronal cortical calcium dynamics captured at a minimum sampling rate of 1.5×106 pixels per one-hundred millisecond frame for seventeen minutes with a magnification ratio of 1:1. We show that a set of spatial and temporal metrics obtained from the components can be used to build a random forest classifier, which separates neural activity and artifact components automatically at human performance. Using this data, we establish functional segmentation of the mouse cortex to provide a map of ~115 domains per hemisphere, in which extracted time courses maximally represent the underlying signal in each recording. Domain maps revealed substantial regional motifs, with higher order cortical regions presenting large, eccentric domains compared with smaller, more circular ones in primary sensory areas. This workflow of data-driven video decomposition and machine classification of signal sources can greatly enhance high quality mapping of complex cerebral dynamics.
Collapse
Affiliation(s)
- Sydney C. Weiser
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Brian R. Mullen
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Desiderio Ascencio
- Department of Psychology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - James B. Ackman
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
23
|
Vafaii H, Mandino F, Desrosiers-Grégoire G, O’Connor D, Shen X, Ge X, Herman P, Hyder F, Papademetris X, Chakravarty M, Crair MC, Constable RT, Lake EMR, Pessoa L. Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization. RESEARCH SQUARE 2023:rs.3.rs-2823802. [PMID: 37162818 PMCID: PMC10168440 DOI: 10.21203/rs.3.rs-2823802/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employed wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determined cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks are overlapping rather than disjoint. Our results show that multiple BOLD networks are detected via Ca2+ signals; there is considerable network overlap (both modalities); networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks; and, despite similarities, important differences are detected across modalities (e.g., brain region "network diversity"). In conclusion, Ca2+ imaging uncovered overlapping functional cortical organization in the mouse that reflected several, but not all, properties observed with fMRI-BOLD signals.
Collapse
Affiliation(s)
- Hadi Vafaii
- Department of Physics, University of Maryland, College Park, MD, 20742, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Gabriel Desrosiers-Grégoire
- Comp. Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health Univ. Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
| | - David O’Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xinxin Ge
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Mallar Chakravarty
- Comp. Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health Univ. Institute, Montreal, QC, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 0G4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Michael C. Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, 06510, USA
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Evelyn MR. Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
24
|
Capone C, De Luca C, De Bonis G, Gutzen R, Bernava I, Pastorelli E, Simula F, Lupo C, Tonielli L, Resta F, Allegra Mascaro AL, Pavone F, Denker M, Paolucci PS. Simulations approaching data: cortical slow waves in inferred models of the whole hemisphere of mouse. Commun Biol 2023; 6:266. [PMID: 36914748 PMCID: PMC10011502 DOI: 10.1038/s42003-023-04580-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
The development of novel techniques to record wide-field brain activity enables estimation of data-driven models from thousands of recording channels and hence across large regions of cortex. These in turn improve our understanding of the modulation of brain states and the richness of traveling waves dynamics. Here, we infer data-driven models from high-resolution in-vivo recordings of mouse brain obtained from wide-field calcium imaging. We then assimilate experimental and simulated data through the characterization of the spatio-temporal features of cortical waves in experimental recordings. Inference is built in two steps: an inner loop that optimizes a mean-field model by likelihood maximization, and an outer loop that optimizes a periodic neuro-modulation via direct comparison of observables that characterize cortical slow waves. The model reproduces most of the features of the non-stationary and non-linear dynamics present in the high-resolution in-vivo recordings of the mouse brain. The proposed approach offers new methods of characterizing and understanding cortical waves for experimental and computational neuroscientists.
Collapse
Affiliation(s)
| | - Chiara De Luca
- INFN, Sezione di Roma, Rome, Italy
- PhD Program in Behavioural Neuroscience, "Sapienza" University of Rome, Rome, Italy
| | | | - Robin Gutzen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Francesco Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- University of Florence, Physics and Astronomy Department, Sesto Fiorentino, Italy
| | - Michael Denker
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | | |
Collapse
|
25
|
Musall S, Sun XR, Mohan H, An X, Gluf S, Li SJ, Drewes R, Cravo E, Lenzi I, Yin C, Kampa BM, Churchland AK. Pyramidal cell types drive functionally distinct cortical activity patterns during decision-making. Nat Neurosci 2023; 26:495-505. [PMID: 36690900 PMCID: PMC9991922 DOI: 10.1038/s41593-022-01245-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023]
Abstract
Understanding how cortical circuits generate complex behavior requires investigating the cell types that comprise them. Functional differences across pyramidal neuron (PyN) types have been observed within cortical areas, but it is not known whether these local differences extend throughout the cortex, nor whether additional differences emerge when larger-scale dynamics are considered. We used genetic and retrograde labeling to target pyramidal tract, intratelencephalic and corticostriatal projection neurons and measured their cortex-wide activity. Each PyN type drove unique neural dynamics, both at the local and cortex-wide scales. Cortical activity and optogenetic inactivation during an auditory decision task revealed distinct functional roles. All PyNs in parietal cortex were recruited during perception of the auditory stimulus, but, surprisingly, pyramidal tract neurons had the largest causal role. In frontal cortex, all PyNs were required for accurate choices but showed distinct choice tuning. Our results reveal that rich, cell-type-specific cortical dynamics shape perceptual decisions.
Collapse
Affiliation(s)
- Simon Musall
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, Jülich, Germany.
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany.
| | - Xiaonan R Sun
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Hemanth Mohan
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Xu An
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Steven Gluf
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
| | - Shu-Jing Li
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
| | - Rhonda Drewes
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA
| | - Emma Cravo
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany
| | - Irene Lenzi
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, Jülich, Germany
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany
| | - Chaoqun Yin
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Björn M Kampa
- Department of Systems Neurophysiology, Institute for Zoology, RWTH Aachen University, Aachen, Germany
- JARA Brain, Institute for Neuroscience and Medicine (INM-10), Forschungszentrum Jülich, Jülich, Germany
| | - Anne K Churchland
- Cold Spring Harbor Laboratory, Neuroscience, Cold Spring Harbor, New York, NY, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Wang Q, Wang Y, Kuo HC, Xie P, Kuang X, Hirokawa KE, Naeemi M, Yao S, Mallory M, Ouellette B, Lesnar P, Li Y, Ye M, Chen C, Xiong W, Ahmadinia L, El-Hifnawi L, Cetin A, Sorensen SA, Harris JA, Zeng H, Koch C. Regional and cell-type-specific afferent and efferent projections of the mouse claustrum. Cell Rep 2023; 42:112118. [PMID: 36774552 PMCID: PMC10415534 DOI: 10.1016/j.celrep.2023.112118] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/17/2022] [Accepted: 01/30/2023] [Indexed: 02/13/2023] Open
Abstract
The claustrum (CLA) is a conspicuous subcortical structure interconnected with cortical and subcortical regions. Its regional anatomy and cell-type-specific connections in the mouse remain not fully determined. Using multimodal reference datasets, we confirmed the delineation of the mouse CLA as a single group of neurons embedded in the agranular insular cortex. We quantitatively investigated brain-wide inputs and outputs of CLA using bulk anterograde and retrograde viral tracing data and single neuron tracing data. We found that the prefrontal module has more cell types projecting to the CLA than other cortical modules, with layer 5 IT neurons predominating. We found nine morphological types of CLA principal neurons that topographically innervate functionally linked cortical targets, preferentially the midline cortical areas, secondary motor area, and entorhinal area. Together, this study provides a detailed wiring diagram of the cell-type-specific connections of the mouse CLA, laying a foundation for studying its functions at the cellular level.
Collapse
Affiliation(s)
- Quanxin Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Yun Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hsien-Chi Kuo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Peng Xie
- Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Xiuli Kuang
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | | | - Maitham Naeemi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Matt Mallory
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ben Ouellette
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Yaoyao Li
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Min Ye
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chao Chen
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wei Xiong
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | | | | | - Ali Cetin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Christof Koch
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
27
|
MacDowell CJ, Libby A, Jahn CI, Tafazoli S, Buschman TJ. Multiplexed Subspaces Route Neural Activity Across Brain-wide Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527772. [PMID: 36798411 PMCID: PMC9934668 DOI: 10.1101/2023.02.08.527772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Cognition is flexible. Behaviors can change on a moment-by-moment basis. Such flexibility is thought to rely on the brain's ability to route information through different networks of brain regions in order to support different cognitive computations. However, the mechanisms that determine which network of brain regions is engaged are unknown. To address this, we combined cortex-wide calcium imaging with high-density electrophysiological recordings in eight cortical and subcortical regions of mice. Different dimensions within the population activity of each brain region were functionally connected with different cortex-wide 'subspace networks' of regions. These subspace networks were multiplexed, allowing a brain region to simultaneously interact with multiple independent, yet overlapping, networks. Alignment of neural activity within a region to a specific subspace network dimension predicted how neural activity propagated between regions. Thus, changing the geometry of the neural representation within a brain region could be a mechanism to selectively engage different brain-wide networks to support cognitive flexibility.
Collapse
Affiliation(s)
- Camden J. MacDowell
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ
- Rutgers Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ
| | - Alexandra Libby
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ
| | - Caroline I. Jahn
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ
| | - Sina Tafazoli
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ
| | - Timothy J. Buschman
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ
- Department of Psychology, Princeton University, Washington Rd, Princeton, NJ
| |
Collapse
|
28
|
Nietz AK, Streng ML, Popa LS, Carter RE, Flaherty EB, Aronson JD, Ebner TJ. To be and not to be: wide-field Ca2+ imaging reveals neocortical functional segmentation combines stability and flexibility. Cereb Cortex 2023:7024718. [PMID: 36734268 DOI: 10.1093/cercor/bhac523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 02/04/2023] Open
Abstract
The stability and flexibility of the functional parcellation of the cerebral cortex is fundamental to how familiar and novel information is both represented and stored. We leveraged new advances in Ca2+ sensors and microscopy to understand the dynamics of functional segmentation in the dorsal cerebral cortex. We performed wide-field Ca2+ imaging in head-fixed mice and used spatial independent component analysis (ICA) to identify independent spatial sources of Ca2+ fluorescence. The imaging data were evaluated over multiple timescales and discrete behaviors including resting, walking, and grooming. When evaluated over the entire dataset, a set of template independent components (ICs) were identified that were common across behaviors. Template ICs were present across a range of timescales, from days to 30 seconds, although with lower occurrence probability at shorter timescales, highlighting the stability of the functional segmentation. Importantly, unique ICs emerged at the shorter duration timescales that could act to transiently refine the cortical network. When data were evaluated by behavior, both common and behavior-specific ICs emerged. Each behavior is composed of unique combinations of common and behavior-specific ICs. These observations suggest that cerebral cortical functional segmentation exhibits considerable spatial stability over time and behaviors while retaining the flexibility for task-dependent reorganization.
Collapse
Affiliation(s)
- Angela K Nietz
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Martha L Streng
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Evelyn B Flaherty
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street S.E., Minneapolis 55455, MN, United States
| |
Collapse
|
29
|
Ramandi D, Michelson NJ, Raymond LA, Murphy TH. Chronic multiscale resolution of mouse brain networks using combined mesoscale cortical imaging and subcortical fiber photometry. NEUROPHOTONICS 2023; 10:015001. [PMID: 36694618 PMCID: PMC9867602 DOI: 10.1117/1.nph.10.1.015001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Genetically encoded optical probes to image calcium levels in neurons in vivo are used widely as a real-time measure of neuronal activity in the brain. Mesoscale calcium imaging through a cranial window provides a method of studying the interaction of circuit activity between cortical areas but lacks access to subcortical regions. AIM We have developed an optical and surgical preparation that preserves wide-field imaging of the cortical surface while also permitting access to specific subcortical networks. APPROACH This was achieved using an optical fiber implanted in the striatum, along with a bilateral widefield cranial window, enabling simultaneous mesoscale cortical imaging and subcortical fiber photometry recording of calcium signals in a transgenic animal expressing GCaMP. Subcortical signals were collected from the dorsal regions of the striatum. We combined this approach with multiple sensory-motor tasks, including specific auditory and visual stimulation, and video monitoring of animal movements and pupillometry during head-fixed behaviors. RESULTS We found high correlations between cortical and striatal activity in response to sensory stimulation or movement. Furthermore, spontaneous activity recordings revealed that specific motifs of cortical activity are correlated with presynaptic activity recorded in the striatum, enabling us to select for corticostriatal activity motifs. CONCLUSION We believe that this method can be utilized to reveal not only global patterns but also cell-specific connectivity that provides insight into corticobasal ganglia circuit organization.
Collapse
Affiliation(s)
- Daniel Ramandi
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Vancouver, British Columbia, Canada
| | - Nicholas J. Michelson
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Vancouver, British Columbia, Canada
| | - Lynn A. Raymond
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Vancouver, British Columbia, Canada
| | - Timothy H. Murphy
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Padawer-Curry JA, Bowen RM, Jarang A, Wang X, Lee JM, Bauer AQ. Wide-Field Optical Imaging in Mouse Models of Ischemic Stroke. Methods Mol Biol 2023; 2616:113-151. [PMID: 36715932 DOI: 10.1007/978-1-0716-2926-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functional neuroimaging is a powerful tool for evaluating how local and global brain circuits evolve after focal ischemia and how these changes relate to functional recovery. For example, acutely after stroke, changes in functional brain organization relate to initial deficit and are predictive of recovery potential. During recovery, the reemergence and restoration of connections lost due to stroke correlate with recovery of function. Thus, information gleaned from functional neuroimaging can be used as a proxy for behavior and inform on the efficacy of interventional strategies designed to affect plasticity mechanisms after injury. And because these findings are consistently observed across species, bridge measurements can be made in animal models to enrich findings in human stroke populations. In mice, genetic engineering techniques have provided several new opportunities for extending optical neuroimaging methods to more direct measures of neuronal activity. These developments are especially useful in the context of stroke where neurovascular coupling can be altered, potentially limiting imaging measures based on hemodynamic activity alone. This chapter is designed to give an overview of functional wide-field optical imaging (WFOI) for applications in rodent models of stroke, primarily in the mouse. The goal is to provide a protocol for laboratories that want to incorporate an affordable functional neuroimaging assay into their current research thrusts, but perhaps lack the background knowledge or equipment for developing a new arm of research in their lab. Within, we offer a comprehensive guide developing and applying WFOI technology with the hope of facilitating accessibility of neuroimaging technology to other researchers in the stroke field.
Collapse
Affiliation(s)
- Jonah A Padawer-Curry
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Imaging Science PhD Program, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan M Bowen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Anmol Jarang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiaodan Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
- Imaging Science PhD Program, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
31
|
Yamada S, Wang Y, Monai H. Transcranial cortex-wide Ca 2+ imaging for the functional mapping of cortical dynamics. Front Neurosci 2023; 17:1119793. [PMID: 36875638 PMCID: PMC9975744 DOI: 10.3389/fnins.2023.1119793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Visualization and tracking of the information flow in the broader brain area are essential because nerve cells make a vast network in the brain. Fluorescence Ca2+ imaging is a simultaneous visualization of brain cell activities in a wide area. Instead of classical chemical indicators, developing various types of transgenic animals that express Ca2+-sensitive fluorescent proteins enables us to observe brain activities in living animals at a larger scale for a long time. Multiple kinds of literature have reported that transcranial imaging of such transgenic animals is practical for monitoring the wide-field information flow across the broad brain regions, although it has a lower spatial resolution. Notably, this technique is helpful for the initial evaluation of cortical function in disease models. This review will introduce fully intact transcranial macroscopic imaging and cortex-wide Ca2+ imaging as practical applications.
Collapse
Affiliation(s)
- Serika Yamada
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan
| | - Yan Wang
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Hiromu Monai
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan.,Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
32
|
Water-Reaching Platform for Longitudinal Assessment of Cortical Activity and Fine Motor Coordination Defects in a Huntington Disease Mouse Model. eNeuro 2023; 10:ENEURO.0452-22.2022. [PMID: 36596592 PMCID: PMC9833054 DOI: 10.1523/eneuro.0452-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Huntington disease (HD), caused by dominantly inherited expansions of a CAG repeat results in characteristic motor dysfunction. Although gross motor defects have been extensively characterized in multiple HD mouse models using tasks such as rotarod and beam walking, less is known about forelimb deficits. We develop a high-throughput alternating reward/nonreward water-reaching task and training protocol conducted daily over approximately two months to simultaneously monitor forelimb impairment and mesoscale cortical changes in GCaMP activity, comparing female zQ175 (HD) and wild-type (WT) littermate mice, starting at ∼5.5 months. Behavioral analysis of the water-reaching task reveals that HD mice, despite learning the water-reaching task as proficiently as wild-type mice, take longer to learn the alternating event sequence as evident by impulsive (noncued) reaches and initially display reduced cortical activity associated with successful reaches. At this age gross motor defects determined by tapered beam assessment were not apparent. Although wild-type mice displayed no significant changes in cortical activity and reaching trajectory throughout the testing period, HD mice exhibited an increase in cortical activity, especially in the secondary motor and retrosplenial cortices, over time, as well as longer and more variable reaching trajectories by approximately seven months. HD mice also experienced a progressive reduction in successful performance. Tapered beam and rotarod tests as well as reduced DARPP-32 expression (striatal medium spiny neuron marker) after water-reaching assessment confirmed HD pathology. The water-reaching task can be used to inform on a daily basis, HD and other movement disorder onset and manifestation, therapeutic intervention windows, and test drug efficacy.
Collapse
|
33
|
Terstege DJ, Epp JR. Network Neuroscience Untethered: Brain-Wide Immediate Early Gene Expression for the Analysis of Functional Connectivity in Freely Behaving Animals. BIOLOGY 2022; 12:34. [PMID: 36671727 PMCID: PMC9855808 DOI: 10.3390/biology12010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Studying how spatially discrete neuroanatomical regions across the brain interact is critical to advancing our understanding of the brain. Traditional neuroimaging techniques have led to many important discoveries about the nature of these interactions, termed functional connectivity. However, in animal models these traditional neuroimaging techniques have generally been limited to anesthetized or head-fixed setups or examination of small subsets of neuroanatomical regions. Using the brain-wide expression density of immediate early genes (IEG), we can assess brain-wide functional connectivity underlying a wide variety of behavioural tasks in freely behaving animal models. Here, we provide an overview of the necessary steps required to perform IEG-based analyses of functional connectivity. We also outline important considerations when designing such experiments and demonstrate the implications of these considerations using an IEG-based network dataset generated for the purpose of this review.
Collapse
Affiliation(s)
| | - Jonathan R. Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
34
|
O'Connor D, Mandino F, Shen X, Horien C, Ge X, Herman P, Hyder F, Crair M, Papademetris X, Lake E, Constable RT. Functional network properties derived from wide-field calcium imaging differ with wakefulness and across cell type. Neuroimage 2022; 264:119735. [PMID: 36347441 PMCID: PMC9808917 DOI: 10.1016/j.neuroimage.2022.119735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
Abstract
To improve 'bench-to-bedside' translation, it is integral that knowledge flows bidirectionally-from animal models to humans, and vice versa. This requires common analytical frameworks, as well as open software and data sharing practices. We share a new pipeline (and test dataset) for the preprocessing of wide-field optical fluorescence imaging data-an emerging mode applicable in animal models-as well as results from a functional connectivity and graph theory analysis inspired by recent work in the human neuroimaging field. The approach is demonstrated using a dataset comprised of two test-cases: (1) data from animals imaged during awake and anesthetized conditions with excitatory neurons labeled, and (2) data from awake animals with different genetically encoded fluorescent labels that target either excitatory neurons or inhibitory interneuron subtypes. Both seed-based connectivity and graph theory measures (global efficiency, transitivity, modularity, and characteristic path-length) are shown to be useful in quantifying differences between wakefulness states and cell populations. Wakefulness state and cell type show widespread effects on canonical network connectivity with variable frequency band dependence. Differences between excitatory neurons and inhibitory interneurons are observed, with somatostatin expressing inhibitory interneurons emerging as notably dissimilar from parvalbumin and vasoactive polypeptide expressing cells. In sum, we demonstrate that our pipeline can be used to examine brain state and cell-type differences in mesoscale imaging data, aiding translational neuroscience efforts. In line with open science practices, we freely release the pipeline and data to encourage other efforts in the community.
Collapse
Affiliation(s)
- D O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - F Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - X Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - C Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - X Ge
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - P Herman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - F Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - M Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, USA
| | - X Papademetris
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Emr Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - R T Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Wang Z, Fei X, Liu X, Wang Y, Hu Y, Peng W, Wang YW, Zhang S, Xu M. REM sleep is associated with distinct global cortical dynamics and controlled by occipital cortex. Nat Commun 2022; 13:6896. [PMID: 36371399 PMCID: PMC9653484 DOI: 10.1038/s41467-022-34720-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebral cortex is spontaneously active during sleep, yet it is unclear how this global cortical activity is spatiotemporally organized, and whether such activity not only reflects sleep states but also contributes to sleep state switching. Here we report that cortex-wide calcium imaging in mice revealed distinct sleep stage-dependent spatiotemporal patterns of global cortical activity, and modulation of such patterns could regulate sleep state switching. In particular, elevated activation in the occipital cortical regions (including the retrosplenial cortex and visual areas) became dominant during rapid-eye-movement (REM) sleep. Furthermore, such pontogeniculooccipital (PGO) wave-like activity was associated with transitions to REM sleep, and optogenetic inhibition of occipital activity strongly promoted deep sleep by suppressing the NREM-to-REM transition. Thus, whereas subcortical networks are critical for initiating and maintaining sleep and wakefulness states, distinct global cortical activity also plays an active role in controlling sleep states.
Collapse
Affiliation(s)
- Ziyue Wang
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China ,grid.16821.3c0000 0004 0368 8293Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Xiang Fei
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaotong Liu
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yanjie Wang
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China ,grid.16821.3c0000 0004 0368 8293Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Yue Hu
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China ,grid.8547.e0000 0001 0125 2443Department of Anesthesiology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Wanling Peng
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Ying-wei Wang
- grid.8547.e0000 0001 0125 2443Department of Anesthesiology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Siyu Zhang
- grid.16821.3c0000 0004 0368 8293Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Min Xu
- grid.9227.e0000000119573309Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, China ,grid.511008.dShanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 201210 Shanghai, China
| |
Collapse
|
36
|
Nietz AK, Popa LS, Streng ML, Carter RE, Kodandaramaiah SB, Ebner TJ. Wide-Field Calcium Imaging of Neuronal Network Dynamics In Vivo. BIOLOGY 2022; 11:1601. [PMID: 36358302 PMCID: PMC9687960 DOI: 10.3390/biology11111601] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A central tenet of neuroscience is that sensory, motor, and cognitive behaviors are generated by the communications and interactions among neurons, distributed within and across anatomically and functionally distinct brain regions. Therefore, to decipher how the brain plans, learns, and executes behaviors requires characterizing neuronal activity at multiple spatial and temporal scales. This includes simultaneously recording neuronal dynamics at the mesoscale level to understand the interactions among brain regions during different behavioral and brain states. Wide-field Ca2+ imaging, which uses single photon excitation and improved genetically encoded Ca2+ indicators, allows for simultaneous recordings of large brain areas and is proving to be a powerful tool to study neuronal activity at the mesoscopic scale in behaving animals. This review details the techniques used for wide-field Ca2+ imaging and the various approaches employed for the analyses of the rich neuronal-behavioral data sets obtained. Also discussed is how wide-field Ca2+ imaging is providing novel insights into both normal and altered neural processing in disease. Finally, we examine the limitations of the approach and new developments in wide-field Ca2+ imaging that are bringing new capabilities to this important technique for investigating large-scale neuronal dynamics.
Collapse
Affiliation(s)
- Angela K. Nietz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S. Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martha L. Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E. Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
37
|
MacDowell CJ, Tafazoli S, Buschman TJ. A Goldilocks theory of cognitive control: Balancing precision and efficiency with low-dimensional control states. Curr Opin Neurobiol 2022; 76:102606. [PMID: 35870301 PMCID: PMC9653176 DOI: 10.1016/j.conb.2022.102606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/11/2022] [Accepted: 06/16/2022] [Indexed: 12/11/2022]
Abstract
Cognitive control orchestrates interactions between brain regions, guiding the transformation of information to support contextually appropriate and goal-directed behaviors. In this review, we propose a hierarchical model of cognitive control where low-dimensional control states direct the flow of high-dimensional representations between regions. This allows cognitive control to flexibly adapt to new environments and maintain the representational capacity to capture the richness of the world.
Collapse
Affiliation(s)
- Camden J MacDowell
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ, USA; Rutgers Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA. https://twitter.com/CamdenMacdowell
| | - Sina Tafazoli
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ, USA. https://twitter.com/tafazolisina
| | - Timothy J Buschman
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ, USA; Department of Psychology, Princeton University, Washington Rd, Princeton, NJ, USA.
| |
Collapse
|
38
|
Zhang YS, Takahashi DY, El Hady A, Liao DA, Ghazanfar AA. Active neural coordination of motor behaviors with internal states. Proc Natl Acad Sci U S A 2022; 119:e2201194119. [PMID: 36122243 PMCID: PMC9522379 DOI: 10.1073/pnas.2201194119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
The brain continuously coordinates skeletomuscular movements with internal physiological states like arousal, but how is this coordination achieved? One possibility is that the brain simply reacts to changes in external and/or internal signals. Another possibility is that it is actively coordinating both external and internal activities. We used functional ultrasound imaging to capture a large medial section of the brain, including multiple cortical and subcortical areas, in marmoset monkeys while monitoring their spontaneous movements and cardiac activity. By analyzing the causal ordering of these different time series, we found that information flowing from the brain to movements and heart-rate fluctuations were significantly greater than in the opposite direction. The brain areas involved in this external versus internal coordination were spatially distinct, but also extensively interconnected. Temporally, the brain alternated between network states for this regulation. These findings suggest that the brain's dynamics actively and efficiently coordinate motor behavior with internal physiology.
Collapse
Affiliation(s)
- Yisi S. Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Daniel Y. Takahashi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59076-550, Brazil
| | - Ahmed El Hady
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Center for Advanced Study of Collective Behavior, University of Konstanz, Konstanz 78464, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz 78464, Germany
| | - Diana A. Liao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Asif A. Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Department of Psychology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
39
|
Donaldson PD, Navabi ZS, Carter RE, Fausner SML, Ghanbari L, Ebner TJ, Swisher SL, Kodandaramaiah SB. Polymer Skulls With Integrated Transparent Electrode Arrays for Cortex-Wide Opto-Electrophysiological Recordings. Adv Healthc Mater 2022; 11:e2200626. [PMID: 35869830 PMCID: PMC9573805 DOI: 10.1002/adhm.202200626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Indexed: 01/27/2023]
Abstract
Electrophysiology and optical imaging provide complementary neural sensing capabilities - electrophysiological recordings have high temporal resolution, while optical imaging allows recording of genetically-defined populations at high spatial resolution. Combining these two modalities for simultaneous large-scale, multimodal sensing of neural activity across multiple brain regions can be very powerful. Here, transparent, inkjet-printed electrode arrays with outstanding optical and electrical properties are seamlessly integrated with morphologically conformant transparent polymer skulls. Implanted on transgenic mice expressing the Calcium (Ca2+ ) indicator GCaMP6f in excitatory neurons, these "eSee-Shells" provide a robust opto-electrophysiological interface for over 100 days. eSee-Shells enable simultaneous mesoscale Ca2+ imaging and electrocorticography (ECoG) acquisition from multiple brain regions covering 45 mm2 of cortex under anesthesia and in awake animals. The clarity and transparency of eSee-Shells allow recording single-cell Ca2+ signals directly below the electrodes and interconnects. Simultaneous multimodal measurement of cortical dynamics reveals changes in both ECoG and Ca2+ signals that depend on the behavioral state.
Collapse
Affiliation(s)
- Preston D. Donaldson
- Department of Electrical and Computer EngineeringUniversity of Minnesota Twin Cities200 Union St SEMinneapolisMN55455USA
| | - Zahra S. Navabi
- Department of Mechanical EngineeringUniversity of Minnesota Twin Cities117 Pleasant St SEMinneapolisMN55455USA
| | - Russell E. Carter
- Department of NeuroscienceUniversity of Minnesota, Twin Cities312 Church St. SE, 7–105 Nils Hasselmo HallMinneapolisMN55455USA
| | - Skylar M. L. Fausner
- Department of Mechanical EngineeringUniversity of Minnesota Twin Cities117 Pleasant St SEMinneapolisMN55455USA
| | - Leila Ghanbari
- Department of Mechanical EngineeringUniversity of Minnesota Twin Cities117 Pleasant St SEMinneapolisMN55455USA
| | - Timothy J. Ebner
- Department of NeuroscienceUniversity of Minnesota, Twin Cities312 Church St. SE, 7–105 Nils Hasselmo HallMinneapolisMN55455USA
| | - Sarah L. Swisher
- Department of Electrical and Computer EngineeringUniversity of Minnesota Twin Cities200 Union St SEMinneapolisMN55455USA
| | - Suhasa B. Kodandaramaiah
- Department of Mechanical EngineeringUniversity of Minnesota Twin Cities117 Pleasant St SEMinneapolisMN55455USA
- Department of NeuroscienceUniversity of Minnesota, Twin Cities312 Church St. SE, 7–105 Nils Hasselmo HallMinneapolisMN55455USA
- Department of Biomedical EngineeringUniversity of Minnesota Twin Cities321 Church St SEMinneapolisMN55455USA
| |
Collapse
|
40
|
Modular strategy for development of the hierarchical visual network in mice. Nature 2022; 608:578-585. [PMID: 35922512 DOI: 10.1038/s41586-022-05045-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/28/2022] [Indexed: 12/31/2022]
Abstract
Hierarchical and parallel networks are fundamental structures of the mammalian brain1-8. During development, lower- and higher-order thalamic nuclei and many cortical areas in the visual system form interareal connections and build hierarchical dorsal and ventral streams9-13. One hypothesis for the development of visual network wiring involves a sequential strategy wherein neural connections are sequentially formed alongside hierarchical structures from lower to higher areas14-17. However, this sequential strategy would be inefficient for building the entire visual network comprising numerous interareal connections. We show that neural pathways from the mouse retina to primary visual cortex (V1) or dorsal/ventral higher visual areas (HVAs) through lower- or higher-order thalamic nuclei form as parallel modules before corticocortical connections. Subsequently, corticocortical connections among V1 and HVAs emerge to combine these modules. Retina-derived activity propagating the initial parallel modules is necessary to establish retinotopic inter-module connections. Thus, the visual network develops in a modular manner involving initial establishment of parallel modules and their subsequent concatenation. Findings in this study raise the possibility that parallel modules from higher-order thalamic nuclei to HVAs act as templates for cortical ventral and dorsal streams and suggest that the brain has an efficient strategy for the development of a hierarchical network comprising numerous areas.
Collapse
|
41
|
Yeon C, Im JM, Kim M, Kim YR, Chung E. Cranial and Spinal Window Preparation for in vivo Optical Neuroimaging in Rodents and Related Experimental Techniques. Exp Neurobiol 2022; 31:131-146. [PMID: 35786637 PMCID: PMC9272117 DOI: 10.5607/en22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Optical neuroimaging provides an effective neuroscience tool for multi-scale investigation of the neural structures and functions, ranging from molecular, cellular activities to the inter-regional connectivity assessment. Amongst experimental preparations, the implementation of an artificial window to the central nervous system (CNS) is primarily required for optical visualization of the CNS and associated brain activities through the opaque skin and bone. Either thinning down or removing portions of the skull or spine is necessary for unobstructed long-term in vivo observations, for which types of the cranial and spinal window and applied materials vary depending on the study objectives. As diversely useful, a window can be designed to accommodate other experimental methods such as electrophysiology or optogenetics. Moreover, auxiliary apparatuses would allow the recording in synchrony with behavior of large-scale brain connectivity signals across the CNS, such as olfactory bulb, cerebral cortex, cerebellum, and spinal cord. Such advancements in the cranial and spinal window have resulted in a paradigm shift in neuroscience, enabling in vivo investigation of the brain function and dysfunction at the microscopic, cellular level. This Review addresses the types and classifications of windows used in optical neuroimaging while describing how to perform in vivo studies using rodent models in combination with other experimental modalities during behavioral tests. The cranial and spinal window has enabled longitudinal examination of evolving neural mechanisms via in situ visualization of the brain. We expect transformable and multi-functional cranial and spinal windows to become commonplace in neuroscience laboratories, further facilitating advances in optical neuroimaging systems.
Collapse
Affiliation(s)
- Chanmi Yeon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jeong Myo Im
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Minsung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Young Ro Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
42
|
West SL, Aronson JD, Popa LS, Feller KD, Carter RE, Chiesl WM, Gerhart ML, Shekhar AC, Ghanbari L, Kodandaramaiah SB, Ebner TJ. Wide-Field Calcium Imaging of Dynamic Cortical Networks during Locomotion. Cereb Cortex 2022; 32:2668-2687. [PMID: 34689209 PMCID: PMC9201596 DOI: 10.1093/cercor/bhab373] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Motor behavior results in complex exchanges of motor and sensory information across cortical regions. Therefore, fully understanding the cerebral cortex's role in motor behavior requires a mesoscopic-level description of the cortical regions engaged, their functional interactions, and how these functional interactions change with behavioral state. Mesoscopic Ca2+ imaging through transparent polymer skulls in mice reveals elevated activation of the dorsal cerebral cortex during locomotion. Using the correlations between the time series of Ca2+ fluorescence from 28 regions (nodes) obtained using spatial independent component analysis (sICA), we examined the changes in functional connectivity of the cortex from rest to locomotion with a goal of understanding the changes to the cortical functional state that facilitate locomotion. Both the transitions from rest to locomotion and from locomotion to rest show marked increases in correlation among most nodes. However, once a steady state of continued locomotion is reached, many nodes, including primary motor and somatosensory nodes, show decreases in correlations, while retrosplenial and the most anterior nodes of the secondary motor cortex show increases. These results highlight the changes in functional connectivity in the cerebral cortex, representing a series of changes in the cortical state from rest to locomotion and on return to rest.
Collapse
Affiliation(s)
- Sarah L West
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathryn D Feller
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Union College Biological Sciences Department, Schenectady, NY 12308, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - William M Chiesl
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Morgan L Gerhart
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aditya C Shekhar
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Leila Ghanbari
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Suhasa B Kodandaramaiah
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
43
|
Adams JK, Yan D, Wu J, Boominathan V, Gao S, Rodriguez AV, Kim S, Carns J, Richards-Kortum R, Kemere C, Veeraraghavan A, Robinson JT. In vivo lensless microscopy via a phase mask generating diffraction patterns with high-contrast contours. Nat Biomed Eng 2022; 6:617-628. [PMID: 35256759 PMCID: PMC9142365 DOI: 10.1038/s41551-022-00851-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
Abstract
The simple and compact optics of lensless microscopes and the associated computational algorithms allow for large fields of view and the refocusing of the captured images. However, existing lensless techniques cannot accurately reconstruct the typical low-contrast images of optically dense biological tissue. Here we show that lensless imaging of tissue in vivo can be achieved via an optical phase mask designed to create a point spread function consisting of high-contrast contours with a broad spectrum of spatial frequencies. We built a prototype lensless microscope incorporating the 'contour' phase mask and used it to image calcium dynamics in the cortex of live mice (over a field of view of about 16 mm2) and in freely moving Hydra vulgaris, as well as microvasculature in the oral mucosa of volunteers. The low cost, small form factor and computational refocusing capability of in vivo lensless microscopy may open it up to clinical uses, especially for imaging difficult-to-reach areas of the body.
Collapse
Affiliation(s)
- Jesse K Adams
- Applied Physics Program, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Dong Yan
- Applied Physics Program, Rice University, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Jimin Wu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Vivek Boominathan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Sibo Gao
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Alex V Rodriguez
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Soonyoung Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Jennifer Carns
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Rebecca Richards-Kortum
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Caleb Kemere
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ashok Veeraraghavan
- Applied Physics Program, Rice University, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Department of Computer Science, Rice University, Houston, TX, USA.
| | - Jacob T Robinson
- Applied Physics Program, Rice University, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
44
|
Lassagne H, Goueytes D, Shulz DE, Estebanez L, Ego-Stengel V. Continuity within the somatosensory cortical map facilitates learning. Cell Rep 2022; 39:110617. [PMID: 35385729 DOI: 10.1016/j.celrep.2022.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/03/2022] Open
Abstract
The topographic organization is a prominent feature of sensory cortices, but its functional role remains controversial. Particularly, it is not well determined how integration of activity within a cortical area depends on its topography during sensory-guided behavior. Here, we train mice expressing channelrhodopsin in excitatory neurons to track a photostimulation bar that rotated smoothly over the topographic whisker representation of the primary somatosensory cortex. Mice learn to discriminate angular positions of the light bar to obtain a reward. They fail not only when the spatiotemporal continuity of the photostimulation is disrupted in this area but also when cortical areas displaying map discontinuities, such as the trunk and legs, or areas without topographic map, such as the posterior parietal cortex, are photostimulated. In contrast, when cortical topographic continuity enables to predict future sensory activation, mice demonstrate anticipation of reward availability. These findings could be helpful for optimizing feedback while designing cortical neuroprostheses.
Collapse
Affiliation(s)
- Henri Lassagne
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Dorian Goueytes
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Daniel E Shulz
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Luc Estebanez
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Valerie Ego-Stengel
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France.
| |
Collapse
|
45
|
Cortical connectivity is embedded in resting state at columnar resolution. Prog Neurobiol 2022; 213:102263. [DOI: 10.1016/j.pneurobio.2022.102263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023]
|
46
|
DiNuzzo M, Mangia S, Giove F. Manipulations of sleep‐like slow‐wave activity by noninvasive brain stimulation. J Neurosci Res 2022; 100:1218-1225. [DOI: 10.1002/jnr.25029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mauro DiNuzzo
- Magnetic Resonance for Brain Investigation Laboratory Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Rome Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology University of Minnesota Minneapolis Minnesota USA
| | - Federico Giove
- Magnetic Resonance for Brain Investigation Laboratory Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Rome Italy
- Laboratory of Neurophysics and Neuroimaging Fondazione Santa Lucia IRCCS Rome Italy
| |
Collapse
|
47
|
Guinto MC, Haruta M, Kurauchi Y, Saigo T, Kurasawa K, Ryu S, Ohta Y, Kawahara M, Takehara H, Tashiro H, Sasagawa K, Katsuki H, Ohta J. Modular head-mounted cortical imaging device for chronic monitoring of intrinsic signals in mice. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:026501. [PMID: 35166087 PMCID: PMC8843356 DOI: 10.1117/1.jbo.27.2.026501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Intrinsic optical signals (IOS) generated in the cortical tissue as a result of various interacting metabolic processes are used extensively to elucidate the underlying mechanisms that govern neurovascular coupling. However, current IOS measurements still often rely on bulky, tabletop imaging systems, and there remains a dearth of studies in freely moving subjects. Lightweight, miniature head-mounted imaging devices provide unique opportunities for investigating cortical dynamics in small animals under a variety of naturalistic behavioral settings. AIM The aim of this work was to monitor IOS in the somatosensory cortex of wild-type mice by developing a lightweight, biocompatible imaging device that readily lends itself to animal experiments in freely moving conditions. APPROACH Herein we describe a method for realizing long-term IOS imaging in mice using a 0.54-g, compact, CMOS-based, head-mounted imager. The two-part module, consisting of a tethered sensor plate and a base plate, allows facile assembly prior to imaging sessions and disassembly when the sensor is not in use. LEDs integrated into the device were chosen to illuminate the cortical mantle at two different wavelengths in the visible regime (λcenter: 535 and 625 nm) for monitoring volume- and oxygenation state-dependent changes in the IOS, respectively. To test whether the system can detect robust cortical responses, we recorded sensory-evoked IOS from mechanical stimulation of the hindlimbs (HL) of anesthetized mice in both acute and long-term implantation conditions. RESULTS Cortical IOS recordings in the primary somatosensory cortex hindlimb receptive field (S1HL) of anesthetized mice under green and red LED illumination revealed robust, multiphasic profiles that were time-locked to the mechanical stimulation of the contralateral plantar hindpaw. Similar intrinsic signal profiles observed in S1HL at 40 days postimplantation demonstrated the viability of the approach for long-term imaging. Immunohistochemical analysis showed that the brain tissue did not exhibit appreciable immune response due to the device implantation and operation. A proof-of-principle imaging session in a freely behaving mouse showed minimal locomotor impediment for the animal and also enabled estimation of blood flow speed. CONCLUSIONS We demonstrate the utility of a miniature cortical imaging device for monitoring IOS and related hemodynamic processes in both anesthetized and freely moving mice, cueing potential for applications to some neuroscientific studies of sensation and naturalistic behavior.
Collapse
Affiliation(s)
- Mark Christian Guinto
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Makito Haruta
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Yuki Kurauchi
- Kumamoto University, Graduate School of Pharmaceutical Sciences, Department of Chemico-Pharmacological Sciences, Kumamoto, Japan
| | - Taisuke Saigo
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Kazuki Kurasawa
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Sumika Ryu
- Kumamoto University, Graduate School of Pharmaceutical Sciences, Department of Chemico-Pharmacological Sciences, Kumamoto, Japan
| | - Yasumi Ohta
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Mamiko Kawahara
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Hironari Takehara
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Hiroyuki Tashiro
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
- Kyushu University, Division of Medical Technology, Department of Health Sciences, Faculty of Medical Sciences, Fukuoka, Japan
| | - Kiyotaka Sasagawa
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Hiroshi Katsuki
- Kumamoto University, Graduate School of Pharmaceutical Sciences, Department of Chemico-Pharmacological Sciences, Kumamoto, Japan
| | - Jun Ohta
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| |
Collapse
|
48
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
49
|
Engel TA, Schölvinck ML, Lewis CM. The diversity and specificity of functional connectivity across spatial and temporal scales. Neuroimage 2021; 245:118692. [PMID: 34751153 PMCID: PMC9531047 DOI: 10.1016/j.neuroimage.2021.118692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
Macroscopic neuroimaging modalities in humans have revealed the organization of brain-wide activity into distributed functional networks that re-organize according to behavioral demands. However, the inherent coarse-graining of macroscopic measurements conceals the diversity and specificity in responses and connectivity of many individual neurons contained in each local region. New invasive approaches in animals enable recording and manipulating neural activity at meso- and microscale resolution, with cell-type specificity and temporal precision down to milliseconds. Determining how brain-wide activity patterns emerge from interactions across spatial and temporal scales will allow us to identify the key circuit mechanisms contributing to global brain states and how the dynamic activity of these states enables adaptive behavior.
Collapse
Affiliation(s)
- Tatiana A Engel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, United States.
| | - Marieke L Schölvinck
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany.
| | - Christopher M Lewis
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich, Zürich 8057, Switzerland.
| |
Collapse
|
50
|
Xiao D, Forys BJ, Vanni MP, Murphy TH. MesoNet allows automated scaling and segmentation of mouse mesoscale cortical maps using machine learning. Nat Commun 2021; 12:5992. [PMID: 34645817 PMCID: PMC8514445 DOI: 10.1038/s41467-021-26255-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/23/2021] [Indexed: 01/17/2023] Open
Abstract
Understanding the basis of brain function requires knowledge of cortical operations over wide spatial scales and the quantitative analysis of brain activity in well-defined brain regions. Matching an anatomical atlas to brain functional data requires substantial labor and expertise. Here, we developed an automated machine learning-based registration and segmentation approach for quantitative analysis of mouse mesoscale cortical images. A deep learning model identifies nine cortical landmarks using only a single raw fluorescent image. Another fully convolutional network was adapted to delimit brain boundaries. This anatomical alignment approach was extended by adding three functional alignment approaches that use sensory maps or spatial-temporal activity motifs. We present this methodology as MesoNet, a robust and user-friendly analysis pipeline using pre-trained models to segment brain regions as defined in the Allen Mouse Brain Atlas. This Python-based toolbox can also be combined with existing methods to facilitate high-throughput data analysis.
Collapse
Affiliation(s)
- Dongsheng Xiao
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, V6T 1Z3, British Columbia, Canada
| | - Brandon J Forys
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, V6T 1Z3, British Columbia, Canada
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthieu P Vanni
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, V6T 1Z3, British Columbia, Canada
- Université de Montréal, École d'Optométrie, 3744 Jean Brillant H3T 1P1, Montréal, Québec, Canada
| | - Timothy H Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, V6T 1Z3, British Columbia, Canada.
| |
Collapse
|