1
|
Collaro E, Barton RA, Ainge JA, Easton A. Measuring episodic memory and mental time travel: crossing the species gap. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230406. [PMID: 39278250 PMCID: PMC11449166 DOI: 10.1098/rstb.2023.0406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 09/18/2024] Open
Abstract
Mental time travel is the projection of the mind into the past or future, and relates to experiential aspects of episodic memory, and episodic future thinking. Framing episodic memory and future thinking in this way causes a challenge when studying memory in animals, where demonstration of this mental projection is prevented by the absence of language. However, there is good evidence that non-human animals pass tests of episodic memory that are based on behavioural criteria, meaning a better understanding needs to be had of the relationship between episodic memory and mental time travel. We argue that mental time travel and episodic memory are not synonymous, and that mental time travel is neither a requirement of, nor an irrelevance to, episodic memory. Mental time travel can allow improved behavioural choices based on episodic memory, and work in all species (including humans) should include careful consideration of the behavioural outputs being measured. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Eli Collaro
- Department of Anthropology, Durham University , Durham, UK
| | | | - James A Ainge
- School of Psychology and Neuroscience, University of St Andrews , St Andrews, UK
| | | |
Collapse
|
2
|
Davies JR, Clayton NS. Is episodic-like memory like episodic memory? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230397. [PMID: 39278246 PMCID: PMC11449162 DOI: 10.1098/rstb.2023.0397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 09/18/2024] Open
Abstract
Episodic memory involves the conscious recollection of personally experienced events and when absent, results in profound losses to the typical human conscious experience. Over the last 2.5 decades, the debate surrounding whether episodic memory is unique to humans has seen a lot of controversy and accordingly has received significant research attention. Various behavioural paradigms have been developed to test episodic-like memory; a term designed to reflect the behavioural characteristics of episodic memory in the absence of evidence for consciously experienced recall. In this review, we first outline the most influential paradigms that have been developed to assess episodic-like memory across a variety of non-human taxa (including mammals, birds and cephalopods), namely the what-where-when memory, incidental encoding and unexpected question, and source memory paradigms. Then, we examine whether various key features of human episodic memory are conceptually represented in episodic-like memory across phylogenetically and neurologically diverse taxa, identifying similarities, differences and gaps in the literature. We conclude that the evidence is mixed, and as episodic memory encompasses a variety of cognitive structures and processes, research on episodic-like memory in non-humans should follow this multifaceted approach and assess evidence across various behavioural paradigms that each target different aspects of human episodic memory.This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- James R Davies
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Nicola S Clayton
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
3
|
Mueller D, Giglio E, Chen CS, Holm A, Ebitz RB, Grissom NM. Touchscreen response precision is sensitive to the explore/exploit tradeoff. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619903. [PMID: 39484597 PMCID: PMC11526980 DOI: 10.1101/2024.10.23.619903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The explore/exploit tradeoff is a fundamental property of choice selection during reward-guided decision making. In perceptual decision making, higher certainty decisions are more motorically precise, even when the decision does not require motor accuracy. However, while we can parametrically control uncertainty in perceptual tasks, we do not know what variables - if any - shape motor precision and reflect subjective certainty during reward-guided decision making. Touchscreens are increasingly used across species to measure choice, but provide no tactile feedback on whether an action is precise or not, and therefore provide a valuable opportunity to determine whether actions differ in precision due to explore/exploit state, reward, or individual variables. We find all three of these factors exert independent drives towards increased precision. During exploit states, successive touches to the same choice are closer together than those made in an explore state, consistent with exploit states reflecting higher certainty and/or motor stereotypy in responding. However, exploit decisions might be expected to be rewarded more frequently than explore decisions. We find that exploit choice precision is increased independently of a separate increase in precision due to immediate past reward, suggesting multiple mechanisms regulating choice precision. Finally, we see evidence that male mice in general are less precise in their interactions with the touchscreen than females, even when exploiting a choice. These results suggest that as exploit behavior emerges in reward-guided decision making, individuals become more motorically precise reflecting increased certainty, even when decision choice does not require additional motor accuracy, but this is influenced by individual differences and prior reward. These data uncover the hidden potential for touchscreen tasks in any species to uncover the latent neural states that unite cognition and movement.
Collapse
|
4
|
Wanjia G, Han S, Kuhl BA. Repulsion of CA3 / dentate gyrus representations is driven by distinct internal beliefs in the face of ambiguous sensory input. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619862. [PMID: 39484581 PMCID: PMC11527005 DOI: 10.1101/2024.10.23.619862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Recent human neuroimaging studies of episodic memory have revealed a counterintuitive phenomenon in the hippocampus: when events are highly similar, corresponding hippocampal activity patterns are sometimes less correlated than activity patterns associated with unrelated events. This phenomenon- repulsion- is not accounted for by most theories of the hippocampus, and the conditions that trigger repulsion remain poorly understood. Here, we used a spatial route-learning task and high-resolution fMRI in humans to test whether hippocampal repulsion is fundamentally driven by internal beliefs about the environment. By precisely measuring participants' internal beliefs and actively manipulating them, we show that repulsion selectively occurred in hippocampal subfields CA3 and dentate gyrus when visual input was ambiguous-or even identical -but internal beliefs were distinct. These findings firmly establish conditions that elicit repulsion and have broad relevance to theories of hippocampal function and to the fields of human episodic memory and rodent spatial navigation.
Collapse
|
5
|
Russo E, Becker N, Domanski APF, Howe T, Freud K, Durstewitz D, Jones MW. Integration of rate and phase codes by hippocampal cell-assemblies supports flexible encoding of spatiotemporal context. Nat Commun 2024; 15:8880. [PMID: 39438461 PMCID: PMC11496817 DOI: 10.1038/s41467-024-52988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Spatial information is encoded by location-dependent hippocampal place cell firing rates and sub-second, rhythmic entrainment of spike times. These rate and temporal codes have primarily been characterized in low-dimensional environments under limited cognitive demands; but how is coding configured in complex environments when individual place cells signal several locations, individual locations contribute to multiple routes and functional demands vary? Quantifying CA1 population dynamics of male rats during a decision-making task, here we show that the phase of individual place cells' spikes relative to the local theta rhythm shifts to differentiate activity in different place fields. Theta phase coding also disambiguates repeated visits to the same location during different routes, particularly preceding spatial decisions. Using unsupervised detection of cell assemblies alongside theoretical simulation, we show that integrating rate and phase coding mechanisms dynamically recruits units to different assemblies, generating spiking sequences that disambiguate episodes of experience and multiplexing spatial information with cognitive context.
Collapse
Affiliation(s)
- Eleonora Russo
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025, Pisa, Italy.
- Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany.
| | - Nadine Becker
- School of Physiology, Pharmacology & Neuroscience, Faculty of Health and Life Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- Nanion Technologies GmbH, Ganghoferstr. 70A, D-80339, Munich, Germany
| | - Aleks P F Domanski
- School of Physiology, Pharmacology & Neuroscience, Faculty of Health and Life Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Timothy Howe
- School of Physiology, Pharmacology & Neuroscience, Faculty of Health and Life Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kipp Freud
- School of Computer Science, Merchant Venturers Building, University of Bristol, Woodland Road, Bristol, BS8 1UB, UK
| | - Daniel Durstewitz
- Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Matthew W Jones
- School of Physiology, Pharmacology & Neuroscience, Faculty of Health and Life Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
6
|
Comrie AE, Monroe EJ, Kahn AE, Denovellis EL, Joshi A, Guidera JA, Krausz TA, Berke JD, Daw ND, Frank LM. Hippocampal representations of alternative possibilities are flexibly generated to meet cognitive demands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.613567. [PMID: 39386651 PMCID: PMC11463554 DOI: 10.1101/2024.09.23.613567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The cognitive ability to go beyond the present to consider alternative possibilities, including potential futures and counterfactual pasts, can support adaptive decision making. Complex and changing real-world environments, however, have many possible alternatives. Whether and how the brain can select among them to represent alternatives that meet current cognitive needs remains unknown. We therefore examined neural representations of alternative spatial locations in the rat hippocampus during navigation in a complex patch foraging environment with changing reward probabilities. We found representations of multiple alternatives along paths ahead and behind the animal, including in distant alternative patches. Critically, these representations were modulated in distinct patterns across successive trials: alternative paths were represented proportionate to their evolving relative value and predicted subsequent decisions, whereas distant alternatives were prevalent during value updating. These results demonstrate that the brain modulates the generation of alternative possibilities in patterns that meet changing cognitive needs for adaptive behavior.
Collapse
Affiliation(s)
- Alison E Comrie
- Neuroscience Graduate Program, University of California San Francisco; San Francisco, CA 94158, USA
| | - Emily J Monroe
- Department of Physiology and Psychiatry, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Ari E Kahn
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
| | | | | | - Jennifer A Guidera
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Timothy A Krausz
- Neuroscience Graduate Program, University of California San Francisco; San Francisco, CA 94158, USA
| | - Joshua D Berke
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Neurology and Department of Psychiatry and Behavioral Science, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Psychology, Princeton University; Princeton, NJ 08544, USA
| | - Loren M Frank
- Department of Physiology and Psychiatry, University of California, San Francisco; San Francisco, CA 94158, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
7
|
Velázquez-Vargas CA, Taylor JA. Learning to Move and Plan like the Knight: Sequential Decision Making with a Novel Motor Mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610359. [PMID: 39257833 PMCID: PMC11383687 DOI: 10.1101/2024.08.29.610359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Many skills that humans acquire throughout their lives, such as playing video games or sports, require substantial motor learning and multi-step planning. While both processes are typically studied separately, they are likely to interact during the acquisition of complex motor skills. In this work, we studied this interaction by assessing human performance in a sequential decision-making task that requires the learning of a non-trivial motor mapping. Participants were tasked to move a cursor from start to target locations in a grid world, using a standard keyboard. Notably, the specific keys were arbitrarily mapped to a movement rule resembling the Knight chess piece. In Experiment 1, we showed the learning of this mapping in the absence of planning, led to significant improvements in the task when presented with sequential decisions at a later stage. Computational modeling analysis revealed that such improvements resulted from an increased learning rate about the state transitions of the motor mapping, which also resulted in more flexible planning from trial to trial (less perseveration or habitual responses). In Experiment 2, we showed that incorporating mapping learning into the planning process, allows us to capture (1) differential task improvements for distinct planning horizons and (2) overall lower performance for longer horizons. Additionally, model analysis suggested that participants may limit their search to three steps ahead. We hypothesize that this limitation in planning horizon arises from capacity constraints in working memory, and may be the reason complex skills are often broken down into individual subroutines or components during learning.
Collapse
|
8
|
Chen Y, Zhang H, Cameron M, Sejnowski T. Predictive sequence learning in the hippocampal formation. Neuron 2024; 112:2645-2658.e4. [PMID: 38917804 DOI: 10.1016/j.neuron.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/21/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
The hippocampus receives sequences of sensory inputs from the cortex during exploration and encodes the sequences with millisecond precision. We developed a predictive autoencoder model of the hippocampus including the trisynaptic and monosynaptic circuits from the entorhinal cortex (EC). CA3 was trained as a self-supervised recurrent neural network to predict its next input. We confirmed that CA3 is predicting ahead by analyzing the spike coupling between simultaneously recorded neurons in the dentate gyrus, CA3, and CA1 of the mouse hippocampus. In the model, CA1 neurons signal prediction errors by comparing CA3 predictions to the next direct EC input. The model exhibits the rapid appearance and slow fading of CA1 place cells and displays replay and phase precession from CA3. The model could be learned in a biologically plausible way with error-encoding neurons. Similarities between the hippocampal and thalamocortical circuits suggest that such computation motif could also underlie self-supervised sequence learning in the cortex.
Collapse
Affiliation(s)
- Yusi Chen
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, CA 92037, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Computational Neuroscience Center, University of Washington, Seattle, WA 98195, USA.
| | - Huanqiu Zhang
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mia Cameron
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, CA 92037, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Terrence Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, CA 92037, USA; Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Demchuk AM, Esteves IM, Chang H, Sun J, McNaughton BL. Hierarchical Gradients of Encoded Spatial and Sensory Information in the Neocortex Are Attenuated by Dorsal Hippocampal Lesions. J Neurosci 2024; 44:e1619232024. [PMID: 38942472 PMCID: PMC11293447 DOI: 10.1523/jneurosci.1619-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/16/2024] [Accepted: 05/13/2024] [Indexed: 06/30/2024] Open
Abstract
During navigation, the neocortex actively integrates learned spatial context with current sensory experience to guide behaviors. However, the relative encoding of spatial and sensorimotor information among cortical cells, and whether hippocampal feedback continues to modify these properties after learning, remains poorly understood. Thus, two-photon microscopy of male and female Thy1-GCaMP6s mice was used to longitudinally image neurons spanning superficial retrosplenial cortex and layers II-Va of primary and secondary motor cortices before and after bilateral dorsal hippocampal lesions. During behavior on a familiar cued treadmill, the locations of two obstacles were interchanged to decouple place-tuning from cue-tuning among position-correlated cells with fields at those locations. Subpopulations of place and cue cells each formed interareal gradients such that higher-level cortical regions exhibited higher fractions of place cells, whereas lower-level regions exhibited higher fractions of cue cells. Position-correlated cells in the motor cortex also formed translaminar gradients; more superficial cells were more likely to exhibit fields and were more sparsely and precisely tuned than deeper cells. After dorsal hippocampal lesions, a neural representation of the learned environment persisted, but retrosplenial cortex exhibited significantly increased cue-tuning, and, in motor cortices, both position-correlated cell recruitment and population activity at the unstable obstacle locations became more homogeneously elevated across laminae. Altogether, these results support that the hippocampus continues to modulate cortical responses in familiar environments, and the relative impact of descending feedback obeys hierarchical interareal and interlaminar gradients opposite to the flow of ascending sensory inputs.
Collapse
Affiliation(s)
- Aubrey M Demchuk
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Ingrid M Esteves
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - HaoRan Chang
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jianjun Sun
- Hotchkiss Brain Institute, University of Calgary Foothills, Calgary, Alberta T2N 4N1, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Department of Neurobiology and Behaviour, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
10
|
Rosenblum HL, Kim S, Stout JJ, Klintsova A, Griffin AL. Deliberative Behaviors and Prefrontal-Hippocampal Coupling are Disrupted in a Rat Model of Fetal Alcohol Spectrum Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605480. [PMID: 39131304 PMCID: PMC11312474 DOI: 10.1101/2024.07.28.605480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Fetal alcohol spectrum disorders (FASDs) are characterized by a range of physical, cognitive, and behavioral impairments. Determining how temporally specific alcohol exposure (AE) affects neural circuits is crucial to understanding the FASD phenotype. Third trimester AE can be modeled in rats by administering alcohol during the first two postnatal weeks, which damages the medial prefrontal cortex (mPFC), thalamic nucleus reuniens, and hippocampus (HPC), structures whose functional interactions are required for working memory and executive function. Therefore, we hypothesized that AE during this period would impair working memory, disrupt choice behaviors, and alter mPFC-HPC oscillatory synchrony. To test this hypothesis, we recorded local field potentials from the mPFC and dorsal HPC as AE and sham intubated (SI) rats performed a spatial working memory task in adulthood and implemented algorithms to detect vicarious trial and errors (VTEs), behaviors associated with deliberative decision-making. We found that, compared to the SI group, the AE group performed fewer VTEs and demonstrated a disturbed relationship between VTEs and choice outcomes, while spatial working memory was unimpaired. This behavioral disruption was accompanied by alterations to mPFC and HPC oscillatory activity in the theta and beta bands, respectively, and a reduced prevalence of mPFC-HPC synchronous events. When trained on multiple behavioral variables, a machine learning algorithm could accurately predict whether rats were in the AE or SI group, thus characterizing a potential phenotype following third trimester AE. Together, these findings indicate that third trimester AE disrupts mPFC-HPC oscillatory interactions and choice behaviors.
Collapse
Affiliation(s)
- Hailey L Rosenblum
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - SuHyeong Kim
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - John J Stout
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Anna Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
11
|
Jones EAA, Low IIC, Cho FS, Giocomo LM. Entorhinal cortex represents task-relevant remote locations independent of CA1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604815. [PMID: 39091781 PMCID: PMC11291150 DOI: 10.1101/2024.07.23.604815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Neurons can collectively represent the current sensory experience while an animal is exploring its environment or remote experiences while the animal is immobile. These remote representations can reflect learned associations1-3 and be required for learning4. Neurons in the medial entorhinal cortex (MEC) reflect the animal's current location during movement5, but little is known about what MEC neurons collectively represent during immobility. Here, we recorded thousands of neurons in superficial MEC and dorsal CA1 as mice learned to associate two pairs of rewarded locations. We found that during immobility, the MEC neural population frequently represented positions far from the animal's location, which we defined as 'non-local coding'. Cells with spatial firing fields at remote locations drove non-local coding, even as cells representing the current position remained active. While MEC non-local coding has been reported during sharp-wave ripples in downstream CA16, we observed non-local coding more often outside of ripples. In fact, CA1 activity was less coordinated with MEC during non-local coding. We further observed that non-local coding was pertinent to the task, as MEC preferentially represented remote task-relevant locations at appropriate times, while rarely representing task-irrelevant locations. Together, this work raises the possibility that MEC non-local coding could strengthen associations between locations independently from CA1.
Collapse
Affiliation(s)
- Emily A. Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Isabel I. C. Low
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Frances S. Cho
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
12
|
Chu T, Ji Z, Zuo J, Mi Y, Zhang WH, Huang T, Bush D, Burgess N, Wu S. Firing rate adaptation affords place cell theta sweeps, phase precession, and procession. eLife 2024; 12:RP87055. [PMID: 39037765 PMCID: PMC11262797 DOI: 10.7554/elife.87055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between 'bimodal cells' showing interleaved phase precession and procession, and 'unimodal cells' in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells' firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.
Collapse
Affiliation(s)
- Tianhao Chu
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Zilong Ji
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Junfeng Zuo
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Yuanyuan Mi
- Department of Psychology, Tsinghua UniversityBeijingChina
| | - Wen-hao Zhang
- Lyda Hill Department of Bioinformatics, O’Donnell Brain Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Tiejun Huang
- School of Computer Science, Peking UniversityBeijingChina
| | - Daniel Bush
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Si Wu
- School of Psychological and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| |
Collapse
|
13
|
Ibáñez Alcalá RJ, Beck DW, Salcido AA, Davila LD, Giri A, Heaton CN, Villarreal Rodriguez K, Rakocevic LI, Hossain SB, Reyes NF, Batson SA, Macias AY, Drammis SM, Negishi K, Zhang Q, Umashankar Beck S, Vara P, Joshi A, Franco AJ, Hernandez Carbajal BJ, Ordonez MM, Ramirez FY, Lopez JD, Lozano N, Ramirez A, Legaspy L, Cruz PL, Armenta AA, Viel SN, Aguirre JI, Quintanar O, Medina F, Ordonez PM, Munoz AE, Martínez Gaudier GE, Naime GM, Powers RE, O'Dell LE, Moschak TM, Goosens KA, Friedman A. RECORD, a high-throughput, customizable system that unveils behavioral strategies leveraged by rodents during foraging-like decision-making. Commun Biol 2024; 7:822. [PMID: 38971889 PMCID: PMC11227549 DOI: 10.1038/s42003-024-06489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
Translational studies benefit from experimental designs where laboratory organisms use human-relevant behaviors. One such behavior is decision-making, however studying complex decision-making in rodents is labor-intensive and typically restricted to two levels of cost/reward. We design a fully automated, inexpensive, high-throughput framework to study decision-making across multiple levels of rewards and costs: the REward-COst in Rodent Decision-making (RECORD) system. RECORD integrates three components: 1) 3D-printed arenas, 2) custom electronic hardware, and 3) software. We validated four behavioral protocols without employing any food or water restriction, highlighting the versatility of our system. RECORD data exposes heterogeneity in decision-making both within and across individuals that is quantifiably constrained. Using oxycodone self-administration and alcohol-consumption as test cases, we reveal how analytic approaches that incorporate behavioral heterogeneity are sensitive to detecting perturbations in decision-making. RECORD is a powerful approach to studying decision-making in rodents, with features that facilitate translational studies of decision-making in psychiatric disorders.
Collapse
Affiliation(s)
| | - Dirk W Beck
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Alexis A Salcido
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Luis D Davila
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Atanu Giri
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Cory N Heaton
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | | | - Lara I Rakocevic
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Safa B Hossain
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Neftali F Reyes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Serina A Batson
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Andrea Y Macias
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Sabrina M Drammis
- Artificial Intelligence Laboratory, Department of Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Qingyang Zhang
- Department of Biomedical Informatics, Harvard Medical School, Cambridge, MA, USA
| | | | - Paulina Vara
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Arnav Joshi
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Austin J Franco
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | | | - Miguel M Ordonez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Felix Y Ramirez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jonathan D Lopez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Nayeli Lozano
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Abigail Ramirez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Linnete Legaspy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Paulina L Cruz
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Abril A Armenta
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Stephanie N Viel
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jessica I Aguirre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Odalys Quintanar
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Fernanda Medina
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Pablo M Ordonez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Alfonzo E Munoz
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | | | - Gabriela M Naime
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Rosalie E Powers
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Laura E O'Dell
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - Travis M Moschak
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Ki A Goosens
- Department of Psychiatry, Center for Translational Medicine and Pharmacology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alexander Friedman
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
14
|
Cuttoli RDD, Issler O, Yakubov B, Jahan N, Abid A, Kasparov S, Granizo K, Ahmed S, Russo SJ, Nestler EJ, Sweis BM. Sex differences in change-of-mind neuroeconomic decision-making is modulated by LINC00473 in medial prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.592609. [PMID: 39005412 PMCID: PMC11244910 DOI: 10.1101/2024.05.08.592609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Changing one's mind is a complex cognitive phenomenon involving a continuous re-appraisal of the trade-off between past costs and future value. Recent work modeling this behavior across species has established associations between aspects of this choice process and their contributions to altered decision-making in psychopathology. Here, we investigated the actions in medial prefrontal cortex (mPFC) neurons of long intergenic non-coding RNA, LINC00473, known to induce stress resilience in a striking sex-dependent manner, but whose role in cognitive function is unknown. We characterized complex decision-making behavior in male and female mice longitudinally in our neuroeconomic foraging paradigm, Restaurant Row, following virus-mediated LINC00473 expression in mPFC neurons. On this task, mice foraged for their primary source of food among varying costs (delays) and subjective value (flavors) while on a limited time-budget during which decisions to accept and wait for rewards were separated into discrete stages of primary commitments and secondary re-evaluations. We discovered important differences in decision-making behavior between female and male mice. LINC00473 expression selectively influenced multiple features of re-evaluative choices, without affecting primary decisions, in female mice only. These behavioral effects included changing how mice (i) cached the value of the passage of time and (ii) weighed their history of economically disadvantageous choices. Both processes were uniquely linked to change-of-mind decisions and underlie the computational bases of distinct aspects of counterfactual thinking. These findings reveal a key bridge between a molecular driver of stress resilience and psychological mechanisms underlying sex-specific decision-making proclivities.
Collapse
|
15
|
Fan C, Chen X, Sun J, Luo W. The perceived controllability of negatively-valenced episodic future thinking modulates delay discounting. Cogn Emot 2024:1-11. [PMID: 38953160 DOI: 10.1080/02699931.2024.2370463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Intertemporal decision-making is important for both economy and physical health. Nevertheless, in daily life, individuals tend to prefer immediate and smaller rewards to delayed and larger rewards, which is known as delay discounting (DD). Episodic future thinking (EFT) has been proven to influence DD. However, there is still no inconsistent conclusion on the effect of negative EFT on DD. Considering the perceived controllability of negative EFT may address the issue (Controllability refers to the extent to which progress and result of an event could be controlled by ourselves). In the current study, we manipulated EFT conditions (baseline, neutral EFT, negative-controllable EFT and negative-uncontrollable EFT), delayed time (i.e. 1 week, 1 month, 3 months, 6 months, 1 year and 3 years) and reward magnitude (small, large). We mainly found that when experiencing negative-uncontrollable EFT compared to negative-controllable EFT in the delayed time of 6 months with large rewards, individuals chose more delayed rewards, suggesting that negative-uncontrollable EFT effectively reduced DD under conditions of both large-magnitude reward and longer delayed time. The current study provides new insight for healthy groups on optimising EFT. In that case, individuals are able to gain long-term benefits in financial management and healthcare.
Collapse
Affiliation(s)
- Cong Fan
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, People's Republic of China
- Key Laboratory of Brain and Cognitive Neuroscience Province, Dalian, People's Republic of China
| | - Xiwen Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, People's Republic of China
- Key Laboratory of Brain and Cognitive Neuroscience Province, Dalian, People's Republic of China
| | - Jiayi Sun
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, People's Republic of China
- Key Laboratory of Brain and Cognitive Neuroscience Province, Dalian, People's Republic of China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, People's Republic of China
- Key Laboratory of Brain and Cognitive Neuroscience Province, Dalian, People's Republic of China
| |
Collapse
|
16
|
McNaughton N, Bannerman D. The homogenous hippocampus: How hippocampal cells process available and potential goals. Prog Neurobiol 2024; 240:102653. [PMID: 38960002 DOI: 10.1016/j.pneurobio.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
We present here a view of the firing patterns of hippocampal cells that is contrary, both functionally and anatomically, to conventional wisdom. We argue that the hippocampus responds to efference copies of goals encoded elsewhere; and that it uses these to detect and resolve conflict or interference between goals in general. While goals can involve space, hippocampal cells do not encode spatial (or other special types of) memory, as such. We also argue that the transverse circuits of the hippocampus operate in an essentially homogeneous way along its length. The apparently different functions of different parts (e.g. memory retrieval versus anxiety) result from the different (situational/motivational) inputs on which those parts perform the same fundamental computational operations. On this view, the key role of the hippocampus is the iterative adjustment, via Papez-like circuits, of synaptic weights in cell assemblies elsewhere.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin 9054, New Zealand.
| | - David Bannerman
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, England, UK
| |
Collapse
|
17
|
Miles JT, Mullins GL, Mizumori SJY. Flexible decision-making is related to strategy learning, vicarious trial and error, and medial prefrontal rhythms during spatial set-shifting. Learn Mem 2024; 31:a053911. [PMID: 39038921 PMCID: PMC11369635 DOI: 10.1101/lm.053911.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/14/2024] [Indexed: 07/24/2024]
Abstract
Flexible decision-making requires a balance between exploring features of an environment and exploiting prior knowledge. Behavioral flexibility is typically measured by how long it takes subjects to consistently make accurate choices after reward contingencies switch or task rules change. This measure, however, only allows for tracking flexibility across multiple trials, and does not assess the degree of flexibility. Plus, although increases in decision-making accuracy are strong indicators of learning, other decision-making behaviors have also been suggested as markers of flexibility, such as the on-the-fly decision reversals known as vicarious trial and error (VTE) or switches to a different, but incorrect, strategy. We sought to relate flexibility, learning, and neural activity by comparing choice history-derived evaluation of strategy use with changes in decision-making accuracy and VTE behavior while recording from the medial prefrontal cortex (mPFC) in rats. Using a set-shifting task that required rats to repeatedly switch between spatial decision-making strategies, we show that a previously developed strategy likelihood estimation procedure could identify putative learning points based on decision history. We confirm the efficacy of learning point estimation by showing increases in decision-making accuracy aligned to the learning point. Additionally, we show increases in the rate of VTE behavior surrounding identified learning points. By calculating changes in strategy likelihoods across trials, we tracked flexibility on a trial-by-trial basis and show that flexibility scores also increased around learning points. Further, we demonstrate that VTE behaviors could be separated into indecisive and deliberative subtypes depending on whether they occurred during periods of high or low flexibility and whether they led to correct or incorrect choice outcomes. Field potential recordings from the mPFC during decisions exhibited increased beta band activity on trials with VTE compared to non-VTE trials, as well as increased gamma during periods when learned strategies could be exploited compared to prelearning, exploratory periods. This study demonstrates that increased behavioral flexibility and VTE rates are often aligned to task learning. These relationships can break down, however, suggesting that VTE is not always an indicator of deliberative decision-making. Additionally, we further implicate the mPFC in decision-making and learning by showing increased beta-based activity on VTE trials and increased gamma after learning.
Collapse
Affiliation(s)
- Jesse T Miles
- Neuroscience Graduate Program, University of Washington, Seattle, Washington 98195, USA
- Psychology Department, University of Washington, Seattle, Washington 98195, USA
| | - Ginger L Mullins
- Psychology Department, University of Washington, Seattle, Washington 98195, USA
| | - Sheri J Y Mizumori
- Neuroscience Graduate Program, University of Washington, Seattle, Washington 98195, USA
- Psychology Department, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
18
|
Durand-de Cuttoli R, Martínez-Rivera FJ, Li L, Minier-Toribio A, Dong Z, Cai DJ, Russo SJ, Nestler EJ, Sweis BM. A Double Hit of Social and Economic Stress in Mice Precipitates Changes in Decision-Making Strategies. Biol Psychiatry 2024; 96:67-78. [PMID: 38141911 PMCID: PMC11168892 DOI: 10.1016/j.biopsych.2023.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Economic stress can serve as a second hit for people who have already accumulated a history of adverse life experiences. How one recovers from a setback is a core feature of resilience but is seldom captured in animal studies. METHODS We challenged mice in a novel 2-hit stress model by first exposing them to chronic social defeat stress and then testing adaptations to increasing reward scarcity on a neuroeconomic task. Mice were tested across months on the Restaurant Row task, during which they foraged daily for their primary source of food while on a limited time budget in a closed-economy system. An abrupt transition into a reward-scarce environment elicits an economic challenge, precipitating a drop in food intake and body weight to which mice must respond to survive. RESULTS We found that mice with a history of social stress mounted a robust behavioral response to this economic challenge that was achieved through a complex redistribution of time allocation among competing opportunities. Interestingly, we found that mice with a history of social defeat displayed changes in the development of decision-making policies during the recovery process that are important not only for ensuring food security necessary for survival but also prioritizing subjective value and that these changes emerged only for certain types of choices. CONCLUSIONS These findings indicate that an individual's capacity to recover from economic challenges depends on that person's prior history of stress and can affect multiple decision-making aspects of subjective well-being, thus highlighting a motivational balance that may be altered in stress-related disorders such as depression.
Collapse
Affiliation(s)
- Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Long Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Angélica Minier-Toribio
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhe Dong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Denise J Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brian M Sweis
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
19
|
Jensen KT, Hennequin G, Mattar MG. A recurrent network model of planning explains hippocampal replay and human behavior. Nat Neurosci 2024; 27:1340-1348. [PMID: 38849521 PMCID: PMC11239510 DOI: 10.1038/s41593-024-01675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
When faced with a novel situation, people often spend substantial periods of time contemplating possible futures. For such planning to be rational, the benefits to behavior must compensate for the time spent thinking. Here, we capture these features of behavior by developing a neural network model where planning itself is controlled by the prefrontal cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by sampling imagined action sequences from its own policy, which we call 'rollouts'. In a spatial navigation task, the agent learns to plan when it is beneficial, which provides a normative explanation for empirical variability in human thinking times. Additionally, the patterns of policy rollouts used by the artificial agent closely resemble patterns of rodent hippocampal replays. Our work provides a theory of how the brain could implement planning through prefrontal-hippocampal interactions, where hippocampal replays are triggered by-and adaptively affect-prefrontal dynamics.
Collapse
Affiliation(s)
- Kristopher T Jensen
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK.
- Sainsbury Wellcome Centre, University College London, London, UK.
| | - Guillaume Hennequin
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Marcelo G Mattar
- Department of Cognitive Science, University of California, San Diego, CA, USA
- Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
20
|
Attaallah B, Petitet P, Zambellas R, Toniolo S, Maio MR, Ganse-Dumrath A, Irani SR, Manohar SG, Husain M. The role of the human hippocampus in decision-making under uncertainty. Nat Hum Behav 2024; 8:1366-1382. [PMID: 38684870 PMCID: PMC11272595 DOI: 10.1038/s41562-024-01855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
The role of the hippocampus in decision-making is beginning to be more understood. Because of its prospective and inferential functions, we hypothesized that it might be required specifically when decisions involve the evaluation of uncertain values. A group of individuals with autoimmune limbic encephalitis-a condition known to focally affect the hippocampus-were tested on how they evaluate reward against uncertainty compared to reward against another key attribute: physical effort. Across four experiments requiring participants to make trade-offs between reward, uncertainty and effort, patients with acute limbic encephalitis demonstrated blunted sensitivity to reward and effort whenever uncertainty was considered, despite demonstrating intact uncertainty sensitivity. By contrast, the valuation of these two attributes (reward and effort) was intact on uncertainty-free tasks. Reduced sensitivity to changes in reward under uncertainty correlated with the severity of hippocampal damage. Together, these findings provide evidence for a context-sensitive role of the hippocampus in value-based decision-making, apparent specifically under conditions of uncertainty.
Collapse
Affiliation(s)
- Bahaaeddin Attaallah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Pierre Petitet
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Rhea Zambellas
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sofia Toniolo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maria Raquel Maio
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Akke Ganse-Dumrath
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sarosh R Irani
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sanjay G Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Fenton AA. Remapping revisited: how the hippocampus represents different spaces. Nat Rev Neurosci 2024; 25:428-448. [PMID: 38714834 DOI: 10.1038/s41583-024-00817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
The representation of distinct spaces by hippocampal place cells has been linked to changes in their place fields (the locations in the environment where the place cells discharge strongly), a phenomenon that has been termed 'remapping'. Remapping has been assumed to be accompanied by the reorganization of subsecond cofiring relationships among the place cells, potentially maximizing hippocampal information coding capacity. However, several observations challenge this standard view. For example, place cells exhibit mixed selectivity, encode non-positional variables, can have multiple place fields and exhibit unreliable discharge in fixed environments. Furthermore, recent evidence suggests that, when measured at subsecond timescales, the moment-to-moment cofiring of a pair of cells in one environment is remarkably similar in another environment, despite remapping. Here, I propose that remapping is a misnomer for the changes in place fields across environments and suggest instead that internally organized manifold representations of hippocampal activity are actively registered to different environments to enable navigation, promote memory and organize knowledge.
Collapse
Affiliation(s)
- André A Fenton
- Center for Neural Science, New York University, New York, NY, USA.
- Neuroscience Institute at the NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
22
|
Huang J, Zhang Z, Ruan X. An Improved Dyna-Q Algorithm Inspired by the Forward Prediction Mechanism in the Rat Brain for Mobile Robot Path Planning. Biomimetics (Basel) 2024; 9:315. [PMID: 38921195 PMCID: PMC11202125 DOI: 10.3390/biomimetics9060315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024] Open
Abstract
The traditional Model-Based Reinforcement Learning (MBRL) algorithm has high computational cost, poor convergence, and poor performance in robot spatial cognition and navigation tasks, and it cannot fully explain the ability of animals to quickly adapt to environmental changes and learn a variety of complex tasks. Studies have shown that vicarious trial and error (VTE) and the hippocampus forward prediction mechanism in rats and other mammals can be used as key components of action selection in MBRL to support "goal-oriented" behavior. Therefore, we propose an improved Dyna-Q algorithm inspired by the forward prediction mechanism of the hippocampus to solve the above problems and tackle the exploration-exploitation dilemma of Reinforcement Learning (RL). This algorithm alternately presents the potential path in the future for mobile robots and dynamically adjusts the sweep length according to the decision certainty, so as to determine action selection. We test the performance of the algorithm in a two-dimensional maze environment with static and dynamic obstacles, respectively. Compared with classic RL algorithms like State-Action-Reward-State-Action (SARSA) and Dyna-Q, the algorithm can speed up spatial cognition and improve the global search ability of path planning. In addition, our method reflects key features of how the brain organizes MBRL to effectively solve difficult tasks such as navigation, and it provides a new idea for spatial cognitive tasks from a biological perspective.
Collapse
Affiliation(s)
- Jing Huang
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China
| | - Ziheng Zhang
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China
| | - Xiaogang Ruan
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China
| |
Collapse
|
23
|
Coulter ME, Gillespie AK, Chu J, Denovellis EL, Nguyen TTK, Liu DF, Wadhwani K, Sharma B, Wang K, Deng X, Eden UT, Kemere C, Frank LM. Closed-loop modulation of remote hippocampal representations with neurofeedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593085. [PMID: 38766135 PMCID: PMC11100667 DOI: 10.1101/2024.05.08.593085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Humans can remember specific events without acting on them and can influence which memories are retrieved based on internal goals. However, current animal models of memory typically present sensory cues to trigger retrieval and assess retrieval based on action 1-5 . As a result, it is difficult to determine whether measured patterns of neural activity relate to the cue(s), the retrieved memory, or the behavior. We therefore asked whether we could develop a paradigm to isolate retrieval-related neural activity in animals without retrieval cues or the requirement of a behavioral report. To do this, we focused on hippocampal "place cells." These cells primarily emit spiking patterns that represent the animal's current location (local representations), but they can also generate representations of previously visited locations distant from the animal's current location (remote representations) 6-13 . It is not known whether animals can deliberately engage specific remote representations, and if so, whether this engagement would occur during specific brain states. So, we used a closed-loop neurofeedback system to reward expression of remote representations that corresponded to uncued, experimenter-selected locations, and found that rats could increase the prevalence of these specific remote representations over time; thus, demonstrating memory retrieval modulated by internal goals in an animal model. These representations occurred predominately during periods of immobility but outside of hippocampal sharp-wave ripple (SWR) 13-15 events. This paradigm enables future direct studies of memory retrieval mechanisms in the healthy brain and in models of neurological disorders.
Collapse
|
24
|
Calvin OL, Erickson MT, Walters CJ, Redish AD. Dorsal hippocampus represents locations to avoid as well as locations to approach during approach-avoidance conflict. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584295. [PMID: 38559154 PMCID: PMC10979882 DOI: 10.1101/2024.03.10.584295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta sweeps. Similarly, important non-local information is represented during hippocampal high synchrony events (HSEs), which are correlated with sharp-wave ripples (SWRs). It is likely that potential future threats may be similarly represented. We examined how threats and rewards were represented within the hippocampus during approach-avoidance conflicts in rats faced with a predator-like robot guarding a food reward. We found representations of the pseudo-predator during HSEs when hesitating in the nest, and during theta prior to retreating as the rats approached the pseudo-predator. After the first attack, we observed new place fields appearing at the location of the robot (not the location the rat was when attacked). The anxiolytic diazepam reduced anxiety-like behavior and altered hippocampal local field potentials, including reducing SWRs, suggesting that one potential mechanism of diazepam's actions may be through altered representations of imagined threat. These results suggest that hippocampal representation of potential threats could be an important mechanism that underlies worry and a potential target for anxiolytics.
Collapse
Affiliation(s)
- Olivia L. Calvin
- Department of Neuroscience, University of Minnesota, Minneapolis MN 55455
| | | | | | - A. David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis MN 55455
| |
Collapse
|
25
|
Köster M. The theta-gamma code in predictive processing and mnemonic updating. Neurosci Biobehav Rev 2024; 158:105529. [PMID: 38176633 DOI: 10.1016/j.neubiorev.2023.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/22/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Predictive processing has become a leading theory about how the brain works. Yet, it remains an open question how predictive processes are realized in the brain. Here I discuss theta-gamma coupling as one potential neural mechanism for prediction and model updating. Building on Lisman and colleagues SOCRATIC model, theta-gamma coupling has been associated with phase precession and learning phenomena in medio-temporal lobe of rodents, where it completes and retains a sequence of places or items (i.e., predictive models). These sequences may be updated upon prediction errors (i.e., model updating), signaled by dopaminergic inputs from prefrontal networks. This framework, spanning the molecular to the network level, matches excitingly well with recent findings on predictive processing, mnemonic updating, and perceptual foraging for the theta-gamma code in human cognition. In sum, I use the case of theta-gamma coupling to link the predictive processing account, a very general concept of how the brain works, to specific neural processes which may implement predictive processing and model updating at the cognitive, network, cellular and molecular level.
Collapse
Affiliation(s)
- Moritz Köster
- University of Regensburg, Institute of Psychology, Sedanstraße 1, 93055 Regensburg, Germany.
| |
Collapse
|
26
|
Lai AT, Espinosa G, Wink GE, Angeloni CF, Dombeck DA, MacIver MA. A robot-rodent interaction arena with adjustable spatial complexity for ethologically relevant behavioral studies. Cell Rep 2024; 43:113671. [PMID: 38280195 DOI: 10.1016/j.celrep.2023.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 01/29/2024] Open
Abstract
Outside of the laboratory, animals behave in spaces where they can transition between open areas and coverage as they interact with others. Replicating these conditions in the laboratory can be difficult to control and record. This has led to a dominance of relatively simple, static behavioral paradigms that reduce the ethological relevance of behaviors and may alter the engagement of cognitive processes such as planning and decision-making. Therefore, we developed a method for controllable, repeatable interactions with others in a reconfigurable space. Mice navigate a large honeycomb lattice of adjustable obstacles as they interact with an autonomous robot coupled to their actions. We illustrate the system using the robot as a pseudo-predator, delivering airpuffs to the mice. The combination of obstacles and a mobile threat elicits a diverse set of behaviors, such as increased path diversity, peeking, and baiting, providing a method to explore ethologically relevant behaviors in the laboratory.
Collapse
Affiliation(s)
- Alexander T Lai
- Department of Biomedical Engineering, Technological Institute E311, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - German Espinosa
- Department of Computer Science, Northwestern University, Seeley Mudd 3219, 2233 Tech Drive, Evanston, IL 60208, USA
| | - Gabrielle E Wink
- Department of Mechanical Engineering, Technological Institute B224, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Christopher F Angeloni
- Department of Neurobiology, Northwestern University, Hogan 2-160, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Hogan 2-160, 2205 Tech Drive, Evanston, IL 60208, USA.
| | - Malcolm A MacIver
- Department of Biomedical Engineering, Technological Institute E311, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Computer Science, Northwestern University, Seeley Mudd 3219, 2233 Tech Drive, Evanston, IL 60208, USA; Department of Mechanical Engineering, Technological Institute B224, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Hogan 2-160, 2205 Tech Drive, Evanston, IL 60208, USA.
| |
Collapse
|
27
|
Grella SL, Donaldson TN. Contextual memory engrams, and the neuromodulatory influence of the locus coeruleus. Front Mol Neurosci 2024; 17:1342622. [PMID: 38375501 PMCID: PMC10875109 DOI: 10.3389/fnmol.2024.1342622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Here, we review the basis of contextual memory at a conceptual and cellular level. We begin with an overview of the philosophical foundations of traversing space, followed by theories covering the material bases of contextual representations in the hippocampus (engrams), exploring functional characteristics of the cells and subfields within. Next, we explore various methodological approaches for investigating contextual memory engrams, emphasizing plasticity mechanisms. This leads us to discuss the role of neuromodulatory inputs in governing these dynamic changes. We then outline a recent hypothesis involving noradrenergic and dopaminergic projections from the locus coeruleus (LC) to different subregions of the hippocampus, in sculpting contextual representations, giving a brief description of the neuroanatomical and physiological properties of the LC. Finally, we examine how activity in the LC influences contextual memory processes through synaptic plasticity mechanisms to alter hippocampal engrams. Overall, we find that phasic activation of the LC plays an important role in promoting new learning and altering mnemonic processes at the behavioral and cellular level through the neuromodulatory influence of NE/DA in the hippocampus. These findings may provide insight into mechanisms of hippocampal remapping and memory updating, memory processes that are potentially dysregulated in certain psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephanie L. Grella
- MNEME Lab, Department of Psychology, Program in Neuroscience, Loyola University Chicago, Chicago, IL, United States
| | - Tia N. Donaldson
- Systems Neuroscience and Behavior Lab, Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
28
|
Yang L, Chen X, Yang L, Li M, Shang Z. Phase-Amplitude Coupling between Theta Rhythm and High-Frequency Oscillations in the Hippocampus of Pigeons during Navigation. Animals (Basel) 2024; 14:439. [PMID: 38338082 PMCID: PMC10854523 DOI: 10.3390/ani14030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Navigation is a complex task in which the hippocampus (Hp), which plays an important role, may be involved in interactions between different frequency bands. However, little is known whether this cross-frequency interaction exists in the Hp of birds during navigation. Therefore, we examined the electrophysiological characteristics of hippocampal cross-frequency interactions of domestic pigeons (Columba livia domestica) during navigation. Two goal-directed navigation tasks with different locomotor modes were designed, and the local field potentials (LFPs) were recorded for analysis. We found that the amplitudes of high-frequency oscillations in Hp were dynamically modulated by the phase of co-occurring theta-band oscillations both during ground-based maze and outdoor flight navigation. The high-frequency amplitude sub-frequency bands modulated by the hippocampal theta phase were different at different tasks, and this process was independent of the navigation path and goal. These results suggest that phase-amplitude coupling (PAC) in the avian Hp may be more associated with the ongoing cognitive demands of navigational processes. Our findings contribute to the understanding of potential mechanisms of hippocampal PAC on multi-frequency informational interactions in avian navigation and provide valuable insights into cross-species evolution.
Collapse
Affiliation(s)
- Long Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Xi Chen
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Lifang Yang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Mengmeng Li
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
| | - Zhigang Shang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China; (L.Y.); (X.C.); (L.Y.)
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou 450001, China
- Institute of Medical Engineering Technology and Data Mining, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
29
|
Nwakama CA, Durand-de Cuttoli R, Oketokoun ZM, Brown SO, Haller JE, Méndez A, Farshbaf MJ, Cho YZ, Ahmed S, Leng S, Ables JL, Sweis BM. Diabetes alters neuroeconomically dissociable forms of mental accounting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574210. [PMID: 38260368 PMCID: PMC10802482 DOI: 10.1101/2024.01.04.574210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Those with diabetes mellitus are at high-risk of developing psychiatric disorders, yet the link between hyperglycemia and alterations in motivated behavior has not been explored in detail. We characterized value-based decision-making behavior of a streptozocin-induced diabetic mouse model on a naturalistic neuroeconomic foraging paradigm called Restaurant Row. Mice made self-paced choices while on a limited time-budget accepting or rejecting reward offers as a function of cost (delays cued by tone-pitch) and subjective value (flavors), tested daily in a closed-economy system across months. We found streptozocin-treated mice disproportionately undervalued less-preferred flavors and inverted their meal-consumption patterns shifted toward a more costly strategy that overprioritized high-value rewards. We discovered these foraging behaviors were driven by impairments in multiple decision-making systems, including the ability to deliberate when engaged in conflict and cache the value of the passage of time in the form of sunk costs. Surprisingly, diabetes-induced changes in behavior depended not only on the type of choice being made but also the salience of reward-scarcity in the environment. These findings suggest complex relationships between glycemic regulation and dissociable valuation algorithms underlying unique cognitive heuristics and sensitivity to opportunity costs can disrupt fundamentally distinct computational processes and could give rise to psychiatric vulnerabilities.
Collapse
|
30
|
Parrini M, Tricot G, Caroni P, Spolidoro M. Circuit mechanisms of navigation strategy learning in mice. Curr Biol 2024; 34:79-91.e4. [PMID: 38101403 DOI: 10.1016/j.cub.2023.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/09/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Navigation tasks involve the gradual selection and deployment of increasingly effective searching procedures to reach targets. The brain mechanisms underlying such complex behavior are poorly understood, but their elucidation might provide insights into the systems linking exploration and decision making in complex learning. Here, we developed a trial-by-trial goal-related search strategy analysis as mice learned to navigate identical water mazes encompassing distinct goal-related rules and monitored the strategy deployment process throughout learning. We found that navigation learning involved the following three distinct phases: an early phase during which maze-specific search strategies are deployed in a minority of trials, a second phase of preferential increasing deployment of one search strategy, and a final phase of increasing commitment to this strategy only. The three maze learning phases were affected differently by inhibition of retrosplenial cortex (RSC), dorsomedial striatum (DMS), or dorsolateral striatum (DLS). Through brain region-specific inactivation experiments and gain-of-function experiments involving activation of learning-related cFos+ ensembles, we unraveled how goal-related strategy selection relates to deployment throughout these sequential processes. We found that RSC is critically important for search strategy selection, DMS mediates strategy deployment, and DLS ensures searching consistency throughout maze learning. Notably, activation of specific learning-related ensembles was sufficient to direct strategy selection (RSC) or strategy deployment (DMS) in a different maze. Our results establish a goal-related search strategy deployment approach to dissect unsupervised navigation learning processes and suggest that effective searching in navigation involves evidence-based goal-related strategy direction by RSC, reinforcement-modulated strategy deployment through DMS, and online guidance through DLS.
Collapse
Affiliation(s)
- Martina Parrini
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Guillaume Tricot
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Pico Caroni
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| | - Maria Spolidoro
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
31
|
Jarovi J, Pilkiw M, Takehara-Nishiuchi K. Prefrontal neuronal ensembles link prior knowledge with novel actions during flexible action selection. Cell Rep 2023; 42:113492. [PMID: 37999978 DOI: 10.1016/j.celrep.2023.113492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
We make decisions based on currently perceivable information or an internal model of the environment. The medial prefrontal cortex (mPFC) and its interaction with the hippocampus have been implicated in the latter, model-based decision-making; however, the underlying computational properties remain incompletely understood. We have examined mPFC spiking and hippocampal oscillatory activity while rats flexibly select new actions using a known associative structure of environmental cues and outcomes. During action selection, the mPFC reinstates representations of the associative structure. These awake reactivation events are accompanied by synchronous firings among neurons coding the associative structure and those coding actions. Moreover, their functional coupling is strengthened upon the reactivation events leading to adaptive actions. In contrast, only cue-coding neurons improve functional coupling during hippocampal sharp wave ripples. Thus, the lack of direct experience disconnects the mPFC from the hippocampus to independently form self-organized neuronal ensemble dynamics linking prior knowledge with novel actions.
Collapse
Affiliation(s)
- Justin Jarovi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Maryna Pilkiw
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Collaborative Program in Neuroscience, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
32
|
Veselic S, Muller TH, Gutierrez E, Behrens TEJ, Hunt LT, Butler JL, Kennerley SW. A cognitive map for value-guided choice in ventromedial prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571895. [PMID: 38168410 PMCID: PMC10760117 DOI: 10.1101/2023.12.15.571895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The prefrontal cortex is crucial for economic decision-making and representing the value of options. However, how such representations facilitate flexible decisions remains unknown. We reframe economic decision-making in prefrontal cortex in line with representations of structure within the medial temporal lobe because such cognitive map representations are known to facilitate flexible behaviour. Specifically, we framed choice between different options as a navigation process in value space. Here we show that choices in a 2D value space defined by reward magnitude and probability were represented with a grid-like code, analogous to that found in spatial navigation. The grid-like code was present in ventromedial prefrontal cortex (vmPFC) local field potential theta frequency and the result replicated in an independent dataset. Neurons in vmPFC similarly contained a grid-like code, in addition to encoding the linear value of the chosen option. Importantly, both signals were modulated by theta frequency - occurring at theta troughs but on separate theta cycles. Furthermore, we found sharp-wave ripples - a key neural signature of planning and flexible behaviour - in vmPFC, which were modulated by accuracy and reward. These results demonstrate that multiple cognitive map-like computations are deployed in vmPFC during economic decision-making, suggesting a new framework for the implementation of choice in prefrontal cortex.
Collapse
Affiliation(s)
- Sebastijan Veselic
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| | - Timothy H Muller
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| | - Elena Gutierrez
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| | - Timothy E J Behrens
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour College, University College London, London, UK
| | - Laurence T Hunt
- Department of Experimental Psychology, University of Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - James L Butler
- Department of Experimental Psychology, University of Oxford, UK
| | - Steven W Kennerley
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| |
Collapse
|
33
|
Nicholas J, Daw ND, Shohamy D. Proactive and reactive construction of memory-based preferences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570977. [PMID: 38106137 PMCID: PMC10723393 DOI: 10.1101/2023.12.10.570977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
We are often faced with decisions we have never encountered before, requiring us to infer possible outcomes before making a choice. Computational theories suggest that one way to make these types of decisions is by accessing and linking related experiences stored in memory. Past work has shown that such memory-based preference construction can occur at a number of different timepoints relative to the moment a decision is made. Some studies have found that memories are integrated at the time a decision is faced (reactively) while others found that memory integration happens earlier, when memories are encoded (proactively). Here we offer a resolution to this inconsistency. We demonstrate behavioral and neural evidence for both strategies and for how they tradeoff rationally depending on the associative structure of memory. Using fMRI to decode patterns of brain responses unique to categories of images in memory, we found that proactive memory access is more common and allows more efficient inference. However, participants also use reactive access when choice options are linked to more numerous memory associations. Together, these results indicate that the brain judiciously conducts proactive inference by accessing memories ahead of time in conditions when this strategy is most favorable.
Collapse
Affiliation(s)
- Jonathan Nicholas
- Department of Psychology, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY, USA
- Department of Psychology, New York University, New York, NY, USA
| | - Nathaniel D Daw
- Department of Psychology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Daphna Shohamy
- Department of Psychology, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY, USA
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Edelson MG, Hare TA. Goal-Dependent Hippocampal Representations Facilitate Self-Control. J Neurosci 2023; 43:7822-7830. [PMID: 37714706 PMCID: PMC10648530 DOI: 10.1523/jneurosci.0951-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Hippocampal activity linking past experiences and simulations of the future with current goals can play an important role in decision-making. The representation of information within the hippocampus may be especially critical in situations where one needs to overcome past rewarding experiences and exert self-control. Self-control success or failure may depend on how information is represented in the hippocampus and how effectively the representation process can be modified to achieve a specific goal. We test this hypothesis using representational similarity analyses of human (female/male) neuroimaging data during a dietary self-control task in which individuals must overcome taste temptations to choose healthy foods. We find that self-control is indeed associated with the way individuals represent taste information (valance) in the hippocampus and how taste representations there adapt to align with different goals/contexts. Importantly, individuals who were able to shift their hippocampal representations to a larger degree to align with the current motivation were better able to exert self-control when facing a dietary challenge. These results suggest an alternative or complementary neurobiological pathway leading to self-control success and indicate the need to update the classical view of self-control to continue to advance our understanding of its behavioral and neural underpinnings.SIGNIFICANCE STATEMENT The paper provides a new perspective on what leads to successful self-control at the behavioral and neurobiological levels. Our data suggest that self-control is enhanced when individuals adjust hippocampal processing to align with current goals.
Collapse
Affiliation(s)
- Micah G Edelson
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zürich, 8006, Switzerland
| | - Todd A Hare
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zürich, 8006, Switzerland
| |
Collapse
|
35
|
Eppinger B, Ruel A, Bolenz F. Diminished State Space Theory of Human Aging. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023:17456916231204811. [PMID: 37931229 DOI: 10.1177/17456916231204811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Many new technologies, such as smartphones, computers, or public-access systems (like ticket-vending machines), are a challenge for older adults. One feature that these technologies have in common is that they involve underlying, partially observable, structures (state spaces) that determine the actions that are necessary to reach a certain goal (e.g., to move from one menu to another, to change a function, or to activate a new service). In this work we provide a theoretical, neurocomputational account to explain these behavioral difficulties in older adults. Based on recent findings from age-comparative computational- and cognitive-neuroscience studies, we propose that age-related impairments in complex goal-directed behavior result from an underlying deficit in the representation of state spaces of cognitive tasks. Furthermore, we suggest that these age-related deficits in adaptive decision-making are due to impoverished neural representations in the orbitofrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Ben Eppinger
- Institute of Psychology, University of Greifswald
- Department of Psychology, Concordia University
- PERFORM Centre, Concordia University
- Faculty of Psychology, Technische Universität Dresden
| | - Alexa Ruel
- Department of Psychology, Concordia University
- PERFORM Centre, Concordia University
- Institute of Psychology, University of Hamburg
| | - Florian Bolenz
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
- Science of Intelligence/Cluster of Excellence, Technical University of Berlin
| |
Collapse
|
36
|
Lai C, Tanaka S, Harris TD, Lee AK. Volitional activation of remote place representations with a hippocampal brain-machine interface. Science 2023; 382:566-573. [PMID: 37917713 PMCID: PMC10683874 DOI: 10.1126/science.adh5206] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
The hippocampus is critical for recollecting and imagining experiences. This is believed to involve voluntarily drawing from hippocampal memory representations of people, events, and places, including maplike representations of familiar environments. However, whether representations in such "cognitive maps" can be volitionally accessed is unknown. We developed a brain-machine interface to test whether rats can do so by controlling their hippocampal activity in a flexible, goal-directed, and model-based manner. We found that rats can efficiently navigate or direct objects to arbitrary goal locations within a virtual reality arena solely by activating and sustaining appropriate hippocampal representations of remote places. This provides insight into the mechanisms underlying episodic memory recall, mental simulation and planning, and imagination and opens up possibilities for high-level neural prosthetics that use hippocampal representations.
Collapse
Affiliation(s)
- Chongxi Lai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Shinsuke Tanaka
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Timothy D. Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Albert K. Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
- Howard Hughes Medical Institute and Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
37
|
Prince SM, Yassine TA, Katragadda N, Roberts TC, Singer AC. New information triggers prospective codes to adapt for flexible navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564814. [PMID: 37961524 PMCID: PMC10634986 DOI: 10.1101/2023.10.31.564814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Navigating a dynamic world requires rapidly updating choices by integrating past experiences with new information. In hippocampus and prefrontal cortex, neural activity representing future goals is theorized to support planning. However, it remains unknown how prospective goal representations incorporate new, pivotal information. Accordingly, we designed a novel task that precisely introduces new information using virtual reality, and we recorded neural activity as mice flexibly adapted their planned destinations. We found that new information triggered increased hippocampal prospective representations of both possible goals; while in prefrontal cortex, new information caused prospective representations of choices to rapidly shift to the new choice. When mice did not flexibly adapt, prefrontal choice codes failed to switch, despite relatively intact hippocampal goal representations. Prospective code updating depended on the commitment to the initial choice and degree of adaptation needed. Thus, we show how prospective codes update with new information to flexibly adapt ongoing navigational plans.
Collapse
Affiliation(s)
- Stephanie M. Prince
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Teema A. Yassine
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Navya Katragadda
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Tyler C. Roberts
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Annabelle C. Singer
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
38
|
Krausz TA, Comrie AE, Kahn AE, Frank LM, Daw ND, Berke JD. Dual credit assignment processes underlie dopamine signals in a complex spatial environment. Neuron 2023; 111:3465-3478.e7. [PMID: 37611585 PMCID: PMC10841332 DOI: 10.1016/j.neuron.2023.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023]
Abstract
Animals frequently make decisions based on expectations of future reward ("values"). Values are updated by ongoing experience: places and choices that result in reward are assigned greater value. Yet, the specific algorithms used by the brain for such credit assignment remain unclear. We monitored accumbens dopamine as rats foraged for rewards in a complex, changing environment. We observed brief dopamine pulses both at reward receipt (scaling with prediction error) and at novel path opportunities. Dopamine also ramped up as rats ran toward reward ports, in proportion to the value at each location. By examining the evolution of these dopamine place-value signals, we found evidence for two distinct update processes: progressive propagation of value along taken paths, as in temporal difference learning, and inference of value throughout the maze, using internal models. Our results demonstrate that within rich, naturalistic environments dopamine conveys place values that are updated via multiple, complementary learning algorithms.
Collapse
Affiliation(s)
- Timothy A Krausz
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alison E Comrie
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ari E Kahn
- Department of Psychology, and Princeton Neuroscience Institute, Princeton University, Princeton, Princeton, NJ 08544, USA
| | - Loren M Frank
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nathaniel D Daw
- Department of Psychology, and Princeton Neuroscience Institute, Princeton University, Princeton, Princeton, NJ 08544, USA
| | - Joshua D Berke
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology and Department of Psychiatry and Behavioral Science, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
39
|
Kalhan S, Garrido MI, Hester R, Redish AD. Reward prediction-errors weighted by cue salience produces addictive behaviours in simulations, with asymmetrical learning and steeper delay discounting. Neural Netw 2023; 168:631-650. [PMID: 37844522 DOI: 10.1016/j.neunet.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/23/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
Dysfunction in learning and motivational systems are thought to contribute to addictive behaviours. Previous models have suggested that dopaminergic roles in learning and motivation could produce addictive behaviours through pharmacological manipulations that provide excess dopaminergic signalling towards these learning and motivational systems. Redish (2004) suggested a role based on dopaminergic signals of value prediction error, while (Zhang et al., 2009) suggested a role based on dopaminergic signals of motivation. However, both models present significant limitations. They do not explain the reduced sensitivity to drug-related costs/negative consequences, the increased impulsivity generally found in people with a substance use disorder, craving behaviours, and non-pharmacological dependence, all of which are key hallmarks of addictive behaviours. Here, we propose a novel mathematical definition of salience, that combines aspects of dopamine's role in both learning and motivation within the reinforcement learning framework. Using a single parameter regime, we simulated addictive behaviours that the (Zhang et al., 2009; Redish, 2004) models also produce but we went further in simulating the downweighting of drug-related negative prediction-errors, steeper delay discounting of drug rewards, craving behaviours and aspects of behavioural/non-pharmacological addictions. The current salience model builds on our recently proposed conceptual theory that salience modulates internal representation updating and may contribute to addictive behaviours by producing misaligned internal representations (Kalhan et al., 2021). Critically, our current mathematical model of salience argues that the seemingly disparate learning and motivational aspects of dopaminergic functioning may interact through a salience mechanism that modulates internal representation updating.
Collapse
Affiliation(s)
- Shivam Kalhan
- University of Melbourne, School of Psychological Sciences, Melbourne, Victoria, Australia.
| | - Marta I Garrido
- University of Melbourne, School of Psychological Sciences, Melbourne, Victoria, Australia; Graeme Clark Institute for Biomedical Engineering, Melbourne, Victoria, Australia
| | - Robert Hester
- University of Melbourne, School of Psychological Sciences, Melbourne, Victoria, Australia
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
40
|
Pasini FW, Busch AN, Mináč J, Padmanabhan K, Muller L. Algebraic approach to spike-time neural codes in the hippocampus. Phys Rev E 2023; 108:054404. [PMID: 38115483 DOI: 10.1103/physreve.108.054404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/14/2023] [Indexed: 12/21/2023]
Abstract
Although temporal coding through spike-time patterns has long been of interest in neuroscience, the specific structures that could be useful for spike-time codes remain highly unclear. Here, we introduce an analytical approach, using techniques from discrete mathematics, to study spike-time codes. As an initial example, we focus on the phenomenon of "phase precession" in the rodent hippocampus. During navigation and learning on a physical track, specific cells in a rodent's brain form a highly structured pattern relative to the oscillation of population activity in this region. Studies of phase precession largely focus on its role in precisely ordering spike times for synaptic plasticity, as the role of phase precession in memory formation is well established. Comparatively less attention has been paid to the fact that phase precession represents one of the best candidates for a spike-time neural code. The precise nature of this code remains an open question. Here, we derive an analytical expression for a function mapping points in physical space to complex-valued spikes by representing individual spike times as complex numbers. The properties of this function make explicit a specific relationship between past and future in spike patterns of the hippocampus. Importantly, this mathematical approach generalizes beyond the specific phenomenon studied here, providing a technique to study the neural codes within precise spike-time sequences found during sensory coding and motor behavior. We then introduce a spike-based decoding algorithm, based on this function, that successfully decodes a simulated animal's trajectory using only the animal's initial position and a pattern of spike times. This decoder is robust to noise in spike times and works on a timescale almost an order of magnitude shorter than typically used with decoders that work on average firing rate. These results illustrate the utility of a discrete approach, based on the structure and symmetries in spike patterns across finite sets of cells, to provide insight into the structure and function of neural systems.
Collapse
Affiliation(s)
- Federico W Pasini
- Department of Mathematics, Western University London, Ontario, Canada N6A 5B7
- Western Academy for Advanced Research, Western University, London, Ontario, Canada N6A 5B7
- Western Institute for Neuroscience, Western University, London, Ontario, Canada N6A 5B7
| | - Alexandra N Busch
- Department of Mathematics, Western University London, Ontario, Canada N6A 5B7
- Western Academy for Advanced Research, Western University, London, Ontario, Canada N6A 5B7
- Western Institute for Neuroscience, Western University, London, Ontario, Canada N6A 5B7
| | - Ján Mináč
- Department of Mathematics, Western University London, Ontario, Canada N6A 5B7
- Western Academy for Advanced Research, Western University, London, Ontario, Canada N6A 5B7
- Western Institute for Neuroscience, Western University, London, Ontario, Canada N6A 5B7
| | - Krishnan Padmanabhan
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Lyle Muller
- Department of Mathematics, Western University London, Ontario, Canada N6A 5B7
- Western Academy for Advanced Research, Western University, London, Ontario, Canada N6A 5B7
- Western Institute for Neuroscience, Western University, London, Ontario, Canada N6A 5B7
| |
Collapse
|
41
|
Schwartenbeck P, Baram A, Liu Y, Mark S, Muller T, Dolan R, Botvinick M, Kurth-Nelson Z, Behrens T. Generative replay underlies compositional inference in the hippocampal-prefrontal circuit. Cell 2023; 186:4885-4897.e14. [PMID: 37804832 PMCID: PMC10914680 DOI: 10.1016/j.cell.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/23/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
Human reasoning depends on reusing pieces of information by putting them together in new ways. However, very little is known about how compositional computation is implemented in the brain. Here, we ask participants to solve a series of problems that each require constructing a whole from a set of elements. With fMRI, we find that representations of novel constructed objects in the frontal cortex and hippocampus are relational and compositional. With MEG, we find that replay assembles elements into compounds, with each replay sequence constituting a hypothesis about a possible configuration of elements. The content of sequences evolves as participants solve each puzzle, progressing from predictable to uncertain elements and gradually converging on the correct configuration. Together, these results suggest a computational bridge between apparently distinct functions of hippocampal-prefrontal circuitry and a role for generative replay in compositional inference and hypothesis testing.
Collapse
Affiliation(s)
- Philipp Schwartenbeck
- University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Baden-Württemberg, Germany; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Alon Baram
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Yunzhe Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Shirley Mark
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| | - Timothy Muller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Raymond Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK; Department of Psychiatry, Universitätsmedizin Berlin (Campus Charité Mitte), Berlin, Germany
| | - Matthew Botvinick
- Google DeepMind, London, UK; Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Zeb Kurth-Nelson
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK; Google DeepMind, London, UK
| | - Timothy Behrens
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London W1T 4JG, UK
| |
Collapse
|
42
|
Liu C, Todorova R, Tang W, Oliva A, Fernandez-Ruiz A. Associative and predictive hippocampal codes support memory-guided behaviors. Science 2023; 382:eadi8237. [PMID: 37856604 PMCID: PMC10894649 DOI: 10.1126/science.adi8237] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023]
Abstract
Episodic memory involves learning and recalling associations between items and their spatiotemporal context. Those memories can be further used to generate internal models of the world that enable predictions to be made. The mechanisms that support these associative and predictive aspects of memory are not yet understood. In this study, we used an optogenetic manipulation to perturb the sequential structure, but not global network dynamics, of place cells as rats traversed specific spatial trajectories. This perturbation abolished replay of those trajectories and the development of predictive representations, leading to impaired learning of new optimal trajectories during memory-guided navigation. However, place cell assembly reactivation and reward-context associative learning were unaffected. Our results show a mechanistic dissociation between two complementary hippocampal codes: an associative code (through coactivity) and a predictive code (through sequences).
Collapse
Affiliation(s)
| | | | - Wenbo Tang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
43
|
Steudler JS, Ólafsdóttir HF. Cracking the neuronal code of episodic memory. Science 2023; 382:262-263. [PMID: 37856580 DOI: 10.1126/science.adk4642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Hierarchical organization of memory is observed in the brains of rats.
Collapse
Affiliation(s)
- Jasmin S Steudler
- Donders Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - H Freyja Ólafsdóttir
- Donders Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
44
|
Dabaghian Y. Grid cells, border cells, and discrete complex analysis. Front Comput Neurosci 2023; 17:1242300. [PMID: 37881247 PMCID: PMC10595009 DOI: 10.3389/fncom.2023.1242300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023] Open
Abstract
We propose a mechanism enabling the appearance of border cells-neurons firing at the boundaries of the navigated enclosures. The approach is based on the recent discovery of discrete complex analysis on a triangular lattice, which allows constructing discrete epitomes of complex-analytic functions and making use of their inherent ability to attain maximal values at the boundaries of generic lattice domains. As it turns out, certain elements of the discrete-complex framework readily appear in the oscillatory models of grid cells. We demonstrate that these models can extend further, producing cells that increase their activity toward the frontiers of the navigated environments. We also construct a network model of neurons with border-bound firing that conforms with the oscillatory models.
Collapse
Affiliation(s)
- Yuri Dabaghian
- Department of Neurology, The University of Texas, McGovern Medical Center at Houston, Houston, TX, United States
| |
Collapse
|
45
|
Dabaghian Y. Grid Cell Percolation. Neural Comput 2023; 35:1609-1626. [PMID: 37523457 DOI: 10.1162/neco_a_01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/10/2023] [Indexed: 08/02/2023]
Abstract
Grid cells play a principal role in enabling cognitive representations of ambient environments. The key property of these cells-the regular arrangement of their firing fields-is commonly viewed as a means for establishing spatial scales or encoding specific locations. However, using grid cells' spiking outputs for deducing geometric orderliness proves to be a strenuous task due to fairly irregular activation patterns triggered by the animal's sporadic visits to the grid fields. This article addresses statistical mechanisms enabling emergent regularity of grid cell firing activity from the perspective of percolation theory. Using percolation phenomena for modeling the effect of the rat's moves through the lattices of firing fields sheds new light on the mechanisms of spatial information processing, spatial learning, path integration, and establishing spatial metrics. It is also shown that physiological parameters required for spiking percolation match the experimental range, including the characteristic 2/3 ratio between the grid fields' size and the grid spacing, pointing at a biological viability of the approach.
Collapse
Affiliation(s)
- Yuri Dabaghian
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, U.S.A.
| |
Collapse
|
46
|
Mehrotra D, Dubé L. Accounting for multiscale processing in adaptive real-world decision-making via the hippocampus. Front Neurosci 2023; 17:1200842. [PMID: 37732307 PMCID: PMC10508350 DOI: 10.3389/fnins.2023.1200842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
For adaptive real-time behavior in real-world contexts, the brain needs to allow past information over multiple timescales to influence current processing for making choices that create the best outcome as a person goes about making choices in their everyday life. The neuroeconomics literature on value-based decision-making has formalized such choice through reinforcement learning models for two extreme strategies. These strategies are model-free (MF), which is an automatic, stimulus-response type of action, and model-based (MB), which bases choice on cognitive representations of the world and causal inference on environment-behavior structure. The emphasis of examining the neural substrates of value-based decision making has been on the striatum and prefrontal regions, especially with regards to the "here and now" decision-making. Yet, such a dichotomy does not embrace all the dynamic complexity involved. In addition, despite robust research on the role of the hippocampus in memory and spatial learning, its contribution to value-based decision making is just starting to be explored. This paper aims to better appreciate the role of the hippocampus in decision-making and advance the successor representation (SR) as a candidate mechanism for encoding state representations in the hippocampus, separate from reward representations. To this end, we review research that relates hippocampal sequences to SR models showing that the implementation of such sequences in reinforcement learning agents improves their performance. This also enables the agents to perform multiscale temporal processing in a biologically plausible manner. Altogether, we articulate a framework to advance current striatal and prefrontal-focused decision making to better account for multiscale mechanisms underlying various real-world time-related concepts such as the self that cumulates over a person's life course.
Collapse
Affiliation(s)
- Dhruv Mehrotra
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Laurette Dubé
- Desautels Faculty of Management, McGill University, Montréal, QC, Canada
- McGill Center for the Convergence of Health and Economics, McGill University, Montréal, QC, Canada
| |
Collapse
|
47
|
Mahr JB, van Bergen P, Sutton J, Schacter DL, Heyes C. Mnemicity: A Cognitive Gadget? PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:1160-1177. [PMID: 36649218 DOI: 10.1177/17456916221141352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Episodic representations can be entertained either as "remembered" or "imagined"-as outcomes of experience or as simulations of such experience. Here, we argue that this feature is the product of a dedicated cognitive function: the metacognitive capacity to determine the mnemicity of mental event simulations. We argue that mnemicity attribution should be distinguished from other metacognitive operations (such as reality monitoring) and propose that this attribution is a "cognitive gadget"-a distinctively human ability made possible by cultural learning. Cultural learning is a type of social learning in which traits are inherited through social interaction. In the case of mnemicity, one culturally learns to discriminate metacognitive "feelings of remembering" from other perceptual, emotional, action-related, and metacognitive feelings; to interpret feelings of remembering as indicators of memory rather than imagination; and to broadcast the interpreted feelings in culture- and context-specific ways, such as "I was there" or "I witnessed it myself." We review evidence from the literature on memory development and scaffolding, metacognitive learning and teaching, as well as cross-cultural psychology in support of this view before pointing out various open questions about the nature and development of mnemicity highlighted by our account.
Collapse
Affiliation(s)
| | | | - John Sutton
- Department of Philosophy, Macquarie University
| | | | - Cecilia Heyes
- All Souls College, University of Oxford
- Department of Experimental Psychology, University of Oxford
| |
Collapse
|
48
|
Parra-Barrero E, Vijayabaskaran S, Seabrook E, Wiskott L, Cheng S. A map of spatial navigation for neuroscience. Neurosci Biobehav Rev 2023; 152:105200. [PMID: 37178943 DOI: 10.1016/j.neubiorev.2023.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Spatial navigation has received much attention from neuroscientists, leading to the identification of key brain areas and the discovery of numerous spatially selective cells. Despite this progress, our understanding of how the pieces fit together to drive behavior is generally lacking. We argue that this is partly caused by insufficient communication between behavioral and neuroscientific researchers. This has led the latter to under-appreciate the relevance and complexity of spatial behavior, and to focus too narrowly on characterizing neural representations of space-disconnected from the computations these representations are meant to enable. We therefore propose a taxonomy of navigation processes in mammals that can serve as a common framework for structuring and facilitating interdisciplinary research in the field. Using the taxonomy as a guide, we review behavioral and neural studies of spatial navigation. In doing so, we validate the taxonomy and showcase its usefulness in identifying potential issues with common experimental approaches, designing experiments that adequately target particular behaviors, correctly interpreting neural activity, and pointing to new avenues of research.
Collapse
Affiliation(s)
- Eloy Parra-Barrero
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sandhiya Vijayabaskaran
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Eddie Seabrook
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Laurenz Wiskott
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
49
|
Etter G, Carmichael JE, Williams S. Linking temporal coordination of hippocampal activity to memory function. Front Cell Neurosci 2023; 17:1233849. [PMID: 37720546 PMCID: PMC10501408 DOI: 10.3389/fncel.2023.1233849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Oscillations in neural activity are widespread throughout the brain and can be observed at the population level through the local field potential. These rhythmic patterns are associated with cycles of excitability and are thought to coordinate networks of neurons, in turn facilitating effective communication both within local circuits and across brain regions. In the hippocampus, theta rhythms (4-12 Hz) could contribute to several key physiological mechanisms including long-range synchrony, plasticity, and at the behavioral scale, support memory encoding and retrieval. While neurons in the hippocampus appear to be temporally coordinated by theta oscillations, they also tend to fire in sequences that are developmentally preconfigured. Although loss of theta rhythmicity impairs memory, these sequences of spatiotemporal representations persist in conditions of altered hippocampal oscillations. The focus of this review is to disentangle the relative contribution of hippocampal oscillations from single-neuron activity in learning and memory. We first review cellular, anatomical, and physiological mechanisms underlying the generation and maintenance of hippocampal rhythms and how they contribute to memory function. We propose candidate hypotheses for how septohippocampal oscillations could support memory function while not contributing directly to hippocampal sequences. In particular, we explore how theta rhythms could coordinate the integration of upstream signals in the hippocampus to form future decisions, the relevance of such integration to downstream regions, as well as setting the stage for behavioral timescale synaptic plasticity. Finally, we leverage stimulation-based treatment in Alzheimer's disease conditions as an opportunity to assess the sufficiency of hippocampal oscillations for memory function.
Collapse
Affiliation(s)
| | | | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
50
|
Soula M, Maslarova A, Harvey RE, Valero M, Brandner S, Hamer H, Fernández‐Ruiz A, Buzsáki G. Interictal epileptiform discharges affect memory in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2023; 120:e2302676120. [PMID: 37590406 PMCID: PMC10450667 DOI: 10.1073/pnas.2302676120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023] Open
Abstract
Interictal epileptiform discharges (IEDs) are transient abnormal electrophysiological events commonly observed in epilepsy patients but are also present in other neurological diseases, such as Alzheimer's disease (AD). Understanding the role IEDs have on the hippocampal circuit is important for our understanding of the cognitive deficits seen in epilepsy and AD. We characterize and compare the IEDs of human epilepsy patients from microwire hippocampal recording with those of AD transgenic mice with implanted multilayer hippocampal silicon probes. Both the local field potential features and firing patterns of pyramidal cells and interneurons were similar in the mouse and human. We found that as IEDs emerged from the CA3-1 circuits, they recruited pyramidal cells and silenced interneurons, followed by post-IED suppression. IEDs suppressed the incidence and altered the properties of physiological sharp-wave ripples, altered their physiological properties, and interfered with the replay of place field sequences in a maze. In addition, IEDs in AD mice inversely correlated with daily memory performance. Together, our work implies that IEDs may present a common and epilepsy-independent phenomenon in neurodegenerative diseases that perturbs hippocampal-cortical communication and interferes with memory.
Collapse
Affiliation(s)
- Marisol Soula
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY10016
| | - Anna Maslarova
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY10016
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, 91054Erlangen, Germany
| | - Ryan E. Harvey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY14853
| | - Manuel Valero
- Hospital del Mar Medical Research Institute, Barcelona Biomedical Research Park, Barcelona08003, Spain
| | - Sebastian Brandner
- Department of Neurosurgery, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, 91054Erlangen, Germany
| | - Hajo Hamer
- Department of Neurology, Epilepsy Center, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nuremberg, 91054Erlangen, Germany
| | | | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY10016
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY10016
- Department of Neurology, Langone Medical Center, New York University, New York, NY10016
| |
Collapse
|