1
|
Wolf M, Gotlieb RJM, Kim SA, Pedroza V, Rhinehart LV, Tempini MLG, Sears S. Towards a dynamic, comprehensive conceptualization of dyslexia. ANNALS OF DYSLEXIA 2024; 74:303-324. [PMID: 38217783 PMCID: PMC11413046 DOI: 10.1007/s11881-023-00297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
Here we build from the central strength of the existing definition of dyslexia-its emphasis on neurobiological origins-and proffer a set of seven core principles for a new, more comprehensive conceptualization of dyslexia. These principles derive from two major research directions: (1) the still evolving history of attempts to explain dyslexia, including in varied writing systems; and (2) the study of the reading brain circuit, its development, and its genetic and environmental influences. What emerges from connecting these two directions is a dynamic conceptualization of dyslexia that incorporates the extensive research on the heterogeneity of dyslexia and the interdependent contributions of multiple biological and socio-cultural risk and preventive factors. A new definition of dyslexia, therefore, needs to transcend both past unitary characterizations and past assumptions based largely on the English orthography. Such a conceptualization references the ways that different languages interact with the reading brain circuit to produce different sources of reading failure. Similarly, the characteristics and consequences of dyslexia that have been considered as secondary sequela (e.g., reduced reading comprehension, social-emotional issues) should be part of a more comprehensive narrative. Of critical importance, any definition of dyslexia should clarify persisting misconceptions that associate dyslexia with a lack of intelligence, potential to learn, or talents. Thus, the overall purpose of such a definition should serve as an instrument of knowledge and an enduring reason for pursuing growth in reading for the individual, the educator, and the public.
Collapse
Affiliation(s)
- Maryanne Wolf
- Department of Education, University of California, Moore Hall 2123, 405 Hilgard Avenue, Los Angeles, CA, 90095-1521, USA.
| | - Rebecca J M Gotlieb
- Department of Education, University of California, Moore Hall 2123, 405 Hilgard Avenue, Los Angeles, CA, 90095-1521, USA
| | - Sohyun An Kim
- Department of Education, University of California, Moore Hall 2123, 405 Hilgard Avenue, Los Angeles, CA, 90095-1521, USA
| | - Veronica Pedroza
- Department of Education, University of California, Moore Hall 2123, 405 Hilgard Avenue, Los Angeles, CA, 90095-1521, USA
| | - Laura V Rhinehart
- Department of Education, University of California, Moore Hall 2123, 405 Hilgard Avenue, Los Angeles, CA, 90095-1521, USA
| | | | - Sue Sears
- Michael D. Eisner College of Education, California State University, Northridge, USA
| |
Collapse
|
2
|
Duarte JMN. Concentrations of glutamate and N-acetylaspartate detected by magnetic resonance spectroscopy in the rat hippocampus correlate with hippocampal-dependent spatial memory performance. Front Mol Neurosci 2024; 17:1458070. [PMID: 39219740 PMCID: PMC11362093 DOI: 10.3389/fnmol.2024.1458070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Magnetic resonance spectroscopy (MRS) has been employed to investigate brain metabolite concentrations in vivo, and they vary during neuronal activation, across brain activity states, or upon disease with neurological impact. Whether resting brain metabolites correlate with functioning in behavioral tasks remains to be demonstrated in any of the widely used rodent models. This study tested the hypothesis that, in the absence of neurological disease or injury, the performance in a hippocampal-dependent memory task is correlated with the hippocampal levels of metabolites that are mainly synthesized in neurons, namely N-acetylaspartate (NAA), glutamate and GABA. Experimentally naïve rats were tested for hippocampal-dependent spatial memory performance by measuring spontaneous alternation in the Y-maze, followed by anatomical magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in the hippocampus and cortex. Memory performance correlated with hippocampal concentrations of NAA (p = 0.024) and glutamate (p = 0.014) but not GABA. Concentrations of glutamate in the cortex also correlated with spatial memory (p = 0.035). In addition, memory performance was also correlated with the relative volume of the hippocampus (p = 0.041). Altogether, this exploratory study suggests that levels of the neuronal maker NAA and the main excitatory neurotransmitter glutamate are associated with physiological functional capacity.
Collapse
Affiliation(s)
- João M. N. Duarte
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Nandakumar R, Shi X, Gu H, Kim Y, Raskind WH, Peter B, Dinu V. Joint exome and metabolome analysis in individuals with dyslexia: Evidence for associated dysregulations of olfactory perception and autoimmune functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600448. [PMID: 39005457 PMCID: PMC11244894 DOI: 10.1101/2024.06.27.600448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Dyslexia is a learning disability that negatively affects reading, writing, and spelling development at the word level in 5%-9% of children. The phenotype is variable and complex, involving several potential cognitive and physical concomitants such as sensory dysregulation and immunodeficiencies. The biological pathogenesis is not well-understood. Toward a better understanding of the biological drivers of dyslexia, we conducted the first joint exome and metabolome investigation in a pilot sample of 30 participants with dyslexia and 13 controls. In this analysis, eight metabolites of interest emerged (pyridoxine, kynurenic acid, citraconic acid, phosphocreatine, hippuric acid, xylitol, 2-deoxyuridine, and acetylcysteine). A metabolite-metabolite interaction analysis identified Krebs cycle intermediates that may be implicated in the development of dyslexia. Gene ontology analysis based on exome variants resulted in several pathways of interest, including the sensory perception of smell (olfactory) and immune system-related responses. In the joint exome and metabolite analysis, the olfactory transduction pathway emerged as the primary pathway of interest. Although the olfactory transduction and Krebs cycle pathways have not previously been described in dyslexia literature, these pathways have been implicated in other neurodevelopmental disorders including autism spectrum disorder and obsessive-compulsive disorder, suggesting the possibility of these pathways playing a role in dyslexia as well. Immune system response pathways, on the other hand, have been implicated in both dyslexia and other neurodevelopmental disorders.
Collapse
|
4
|
Liu R, Wan Y, Zhu B, Liu Q, Wang H, Jiang Q, Feng Y, Zhu K, Zhao S, Xiang Z, Zhu Y, Song R. Association between urinary BTEX metabolites and dyslexic odds among school-aged children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31443-31454. [PMID: 38630400 DOI: 10.1007/s11356-024-33268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/05/2024] [Indexed: 08/10/2024]
Abstract
Benzene, toluene, ethylbenzene, and xylene (BTEX) are ubiquitous in the environment, and all of them can cause neurotoxicity. However, the association between BTEX exposure and dyslexia, a disorder with language network-related regions in left hemisphere affected, remains unclear. We aimed to assess the relationship between BTEX exposure and dyslexic odds among school-aged children. A case-control study, including 355 dyslexics and 390 controls from three cities in China, was conducted. Six BTEX metabolites were measured in their urine samples. Logistic regression model was used to explore the association between the BTEX metabolites and the dyslexic odds. Urinary trans,trans-muconic acid (MU: a metabolite of benzene) was significantly associated with an increased dyslexic odds [odds ratio (OR) = 1.23, 95% confidence interval (CI): 1.01, 1.50], and the adjusted OR of the dyslexic odds in the third tertile was 1.72 (95% CI: 1.06, 2.77) compared to that in the lowest tertile regarding urinary MU concentration. Furthermore, the association between urinary MU level and the dyslexic odds was more pronounced among children from low-income families based on stratified analyses. Urinary metabolite levels of toluene, ethylbenzene, and xylene were not found to be associated with the dyslexic odds. In summary, elevated MU concentrations may be associated with an increased dyslexic odds. We should take measures to reduce MU related exposure among children, particularly those with low family income.
Collapse
Affiliation(s)
- Rundong Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, 430024, Hubei, China
| | - Bing Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Qi Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Haoxue Wang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Qi Jiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yanan Feng
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Kaiheng Zhu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Shuai Zhao
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Zhen Xiang
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430072, China
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No 13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Lasnick OHM, Hoeft F. Sensory temporal sampling in time: an integrated model of the TSF and neural noise hypothesis as an etiological pathway for dyslexia. Front Hum Neurosci 2024; 17:1294941. [PMID: 38234592 PMCID: PMC10792016 DOI: 10.3389/fnhum.2023.1294941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Much progress has been made in research on the causal mechanisms of developmental dyslexia. In recent years, the "temporal sampling" account of dyslexia has evolved considerably, with contributions from neurogenetics and novel imaging methods resulting in a much more complex etiological view of the disorder. The original temporal sampling framework implicates disrupted neural entrainment to speech as a causal factor for atypical phonological representations. Yet, empirical findings have not provided clear evidence of a low-level etiology for this endophenotype. In contrast, the neural noise hypothesis presents a theoretical view of the manifestation of dyslexia from the level of genes to behavior. However, its relative novelty (published in 2017) means that empirical research focused on specific predictions is sparse. The current paper reviews dyslexia research using a dual framework from the temporal sampling and neural noise hypotheses and discusses the complementary nature of these two views of dyslexia. We present an argument for an integrated model of sensory temporal sampling as an etiological pathway for dyslexia. Finally, we conclude with a brief discussion of outstanding questions.
Collapse
Affiliation(s)
- Oliver H. M. Lasnick
- brainLENS Laboratory, Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
6
|
Derbyshire E, Maes M. The Role of Choline in Neurodevelopmental Disorders-A Narrative Review Focusing on ASC, ADHD and Dyslexia. Nutrients 2023; 15:2876. [PMID: 37447203 DOI: 10.3390/nu15132876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Neurodevelopmental disorders appear to be rising in prevalence, according to the recent Global Burden of Disease Study. This rise is likely to be multi-factorial, but the role of certain nutrients known to facilitate neurodevelopment should be considered. One possible contributing factor could be attributed to deficits in choline intake, particularly during key stages of neurodevelopment, which includes the first 1000 days of life and childhood. Choline, a key micronutrient, is crucial for optimal neurodevelopment and brain functioning of offspring. The present narrative review discusses the main research, describing the effect of choline in neurodevelopmental disorders, to better understand its role in the etiology and management of these disorders. In terms of findings, low choline intakes and reduced or altered choline status have been reported in relevant population subgroups: pregnancy (in utero), children with autism spectrum disorders, people with attention deficit hyperactivity disorder and those with dyslexia. In conclusion, an optimal choline provision may offer some neuronal protection in early life and help to mitigate some cognitive effects in later life attributed to neurodevelopmental conditions. Research indicates that choline may act as a modifiable risk factor for certain neurodevelopmental conditions. Ongoing research is needed to unravel the mechanisms and explanations.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 4002, Thailand
- Research Institute, Medical University of Plovdiv, 10330 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Price KM, Wigg KG, Nigam A, Feng Y, Blokland K, Wilkinson M, Kerr EN, Guger SL, Lovett MW, Strug LJ, Tripathy SJ, Barr CL. Identification of brain cell types underlying genetic association with word reading and correlated traits. Mol Psychiatry 2023; 28:1719-1730. [PMID: 36750735 DOI: 10.1038/s41380-023-01970-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/09/2023]
Abstract
Neuroimaging studies implicate multiple cortical regions in reading ability/disability. However, the neural cell types integral to the reading process are unknown. To contribute to this gap in knowledge, we integrated genetic results from genome-wide association studies for word reading (n = 5054) with gene expression datasets from adult/fetal human brain. Linkage disequilibrium score regression (LDSC) suggested that variants associated with word reading were enriched in genes expressed in adult excitatory neurons, specifically layer 5 and 6 FEZF2 expressing neurons and intratelencephalic (IT) neurons, which express the marker genes LINC00507, THEMIS, or RORB. Inhibitory neurons (VIP, SST, and PVALB) were also found. This finding was interesting as neurometabolite studies previously implicated excitatory-inhibitory imbalances in the etiology of reading disabilities (RD). We also tested traits that shared genetic etiology with word reading (previously determined by polygenic risk scores): attention-deficit/hyperactivity disorder (ADHD), educational attainment, and cognitive ability. For ADHD, we identified enrichment in L4 IT adult excitatory neurons. For educational attainment and cognitive ability, we confirmed previous studies identifying multiple subclasses of adult cortical excitatory and inhibitory neurons, as well as astrocytes and oligodendrocytes. For educational attainment and cognitive ability, we also identified enrichment in multiple fetal cortical excitatory and inhibitory neurons, intermediate progenitor cells, and radial glial cells. In summary, this study supports a role of excitatory and inhibitory neurons in reading and excitatory neurons in ADHD and contributes new information on fetal cell types enriched in educational attainment and cognitive ability, thereby improving our understanding of the neurobiological basis of reading/correlated traits.
Collapse
Affiliation(s)
- Kaitlyn M Price
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Karen G Wigg
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Anukrati Nigam
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Yu Feng
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Kirsten Blokland
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Margaret Wilkinson
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth N Kerr
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Sharon L Guger
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| | - Maureen W Lovett
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Lisa J Strug
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Departments of Statistical Sciences and Computer Science, Faculty of Arts and Science and Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Shreejoy J Tripathy
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Cathy L Barr
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada. .,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Galaburda AM. Animal models of developmental dyslexia. Front Neurosci 2022; 16:981801. [PMID: 36452335 PMCID: PMC9702821 DOI: 10.3389/fnins.2022.981801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
As some critics have stated, the term "developmental dyslexia" refers to a strictly human disorder, relating to a strictly human capacity - reading - so it cannot be modeled in experimental animals, much less so in lowly rodents. However, two endophenotypes associated with developmental dyslexia are eminently suitable for animal modeling: Cerebral Lateralization, as illustrated by the association between dyslexia and non-righthandedness, and Cerebrocortical Dysfunction, as illustrated by the described abnormal structural anatomy and/or physiology and functional imaging of the dyslexic cerebral cortex. This paper will provide a brief review of these two endophenotypes in human beings with developmental dyslexia and will describe the animal work done in my laboratory and that of others to try to shed light on the etiology of and neural mechanisms underlying developmental dyslexia. Some thought will also be given to future directions of the research.
Collapse
Affiliation(s)
- Albert M. Galaburda
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Meisler SL, Gabrieli JDE. A large-scale investigation of white matter microstructural associations with reading ability. Neuroimage 2022; 249:118909. [PMID: 35033675 PMCID: PMC8919267 DOI: 10.1016/j.neuroimage.2022.118909] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 01/18/2023] Open
Abstract
Reading involves the functioning of a widely distributed brain network, and white matter tracts are responsible for transmitting information between constituent network nodes. Several studies have analyzed fiber bundle microstructural properties to shed insights into the neural basis of reading abilities and disabilities. Findings have been inconsistent, potentially due to small sample sizes and varying methodology. To address this, we analyzed a large data set of 686 children ages 5-18 using state-of-the-art neuroimaging acquisitions and processing techniques. We searched for associations between fractional anisotropy (FA) and single-word and single-nonword reading skills in children with diverse reading abilities across multiple tracts previously thought to contribute to reading. We also looked for group differences in tract FA between typically reading children and children with reading disabilities. FA of the white matter increased with age across all participants. There were no significant correlations between overall reading abilities and tract FAs across all children, and no significant group differences in tract FA between children with and without reading disabilities. There were associations between FA and nonword reading ability in older children (ages 9 and above). Higher FA in the right superior longitudinal fasciculus (SLF) and left inferior cerebellar peduncle (ICP) correlated with better nonword reading skills. These results suggest that letter-sound correspondence skills, as measured by nonword reading, are associated with greater white matter coherence among older children in these two tracts, as indexed by higher FA.
Collapse
Affiliation(s)
- Steven L Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard University, 43 Vassar Street, Bldg. 46, Room 4033 Cambridge, MA, 02139, USA.
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Bldg. 46, Room 4033 Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Siegelman N, van den Bunt MR, Lo JCM, Rueckl JG, Pugh KR. Theory-driven classification of reading difficulties from fMRI data using Bayesian latent-mixture models. Neuroimage 2021; 242:118476. [PMID: 34416399 PMCID: PMC8494078 DOI: 10.1016/j.neuroimage.2021.118476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
Decades of research have led to several competing theories regarding the neural contributors to impaired reading. But how can we know which theory (or theories) identifies the types of markers that indeed differentiate between individuals with reading disabilities (RD) and their typically developing (TD) peers? To answer this question, we propose a new analytical tool for theory evaluation and comparison, grounded in the Bayesian latent-mixture modeling framework. We start by constructing a series of latent-mixture classification models, each reflecting one existing theoretical claim regarding the neurofunctional markers of RD (highlighting network-level differences in either mean activation, inter-subject heterogeneity, inter-region variability, or connectivity). Then, we run each model on fMRI data alone (i.e., while models are blind to participants' behavioral status), which enables us to interpret the fit between a model's classification of participants and their behavioral (known) RD/TD status as an estimate of its explanatory power. Results from n=127 adolescents and young adults (RD: n=59; TD: n=68) show that models based on network-level differences in mean activation and heterogeneity failed to differentiate between TD and RD individuals. In contrast, classifications based on variability and connectivity were significantly associated with participants' behavioral status. These findings suggest that differences in inter-region variability and connectivity may be better network-level markers of RD than mean activation or heterogeneity (at least in some populations and tasks). More broadly, the results demonstrate the promise of latent-mixture modeling as a theory-driven tool for evaluating different theoretical claims regarding neural contributors to language disorders and other cognitive traits.
Collapse
Affiliation(s)
| | | | | | - Jay G Rueckl
- Haskins Laboratories, USA; University of Connecticut, USA
| | - Kenneth R Pugh
- Haskins Laboratories, USA; University of Connecticut, USA; Yale University, USA
| |
Collapse
|
11
|
Cecil KM, Brunst KJ, Horowitz-Kraus T. Greater reading gain following intervention is associated with low magnetic resonance spectroscopy derived concentrations in the anterior cingulate cortex in children with dyslexia. Brain Res 2021; 1759:147386. [PMID: 33631208 PMCID: PMC7980091 DOI: 10.1016/j.brainres.2021.147386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND/OBJECTIVE The "neural noise" hypothesis suggests that individuals with dyslexia have high glutamate concentrations associated with their reading challenges. Different reading intervention programs have showed low GLX (a combined measure for glutamine and glutamate obtained with in vivo magnetic resonance spectroscopy) in association with reading improvement. Several studies demonstrated improved reading and increased activation in the anterior cingulate cortex following an-executive-function (EF)-based reading intervention. The goals of the current study are two-fold: 1) to determine if the effect of the EF-based reading program extends also to the metabolite concentrations and in particular, on the GLX concentrations in the anterior cingulate cortex; 2) to expand the neural noise hypothesis in dyslexia also to neural networks supporting additional parts of the reading networks, i.e. in specific regions related to executive function skills. METHODS Children with dyslexia and typical readers were trained on the EF-based reading program. Reading ability was assessed before and after training while spectroscopy data was obtained at the end of the program. The association between change in reading scores following intervention and GLX concentrations was examined. RESULTS Greater "gains" in word reading were associated with low GLX, Glu, Cr, and NAA concentrations for children with dyslexia compared to typical readers. CONCLUSIONS These results suggest that the improvement reported following the EF-based reading intervention program also involved a low GLX concentration, as well as additional metabolites previously associated with better reading ability (Glx, Cr, NAA) which may point at the decreased neural noise, especially in the anterior cingulate cortex, as a possible mechanism for the effect of this program.
Collapse
Affiliation(s)
- Kim M Cecil
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, United States; Imaging Research Center, Cincinnati Children's Hospital Medical Center, United States; Department of Radiology, University of Cincinnati College of Medicine, United States
| | - Kelly J Brunst
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, United States
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Center, Faculty of Biomedical Engineering, Faculty of Education in Science and Technology, Technicon Israel Institution of Technology, Israel; Reading and Literacy Discovery Center, United States; Division of General and Community Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, United States.
| |
Collapse
|
12
|
Rahul DR, Ponniah RJ. The Modularity of Dyslexia. Pediatr Neonatol 2021; 62:240-248. [PMID: 33775610 DOI: 10.1016/j.pedneo.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/24/2020] [Accepted: 03/05/2021] [Indexed: 10/21/2022] Open
Abstract
There is a growing interest in understanding dyslexia and the mechanisms involved in reading difficulties. Inquiries into the morphological and physiological changes of the brain have contributed to our increased understanding of reading ability and dyslexia. Similarly, inquiries into brain chemistry and reading provide a neurometabolic framework of dyslexia in terms of poor reading and phonological measures. Also, studies of the genetic etiology of reading yield substantial evidence of genes and SNPs associated with dyslexia. However, little is known about the interface between these distinct areas of knowledge. Therefore, we offer an exhaustive perspective on dyslexia using the idea of modularity by assimilating the findings and implications from the brain morphological, neurophysiological, neurochemical, genetic, and educational insights into dyslexia. We contend that this endeavor will provide a beneficial foundation for aiming at the possibilities of a holistic intervention and informed solutions for reading difficulties.
Collapse
Affiliation(s)
- D R Rahul
- Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, India
| | - R Joseph Ponniah
- Department of Humanities and Social Sciences, National Institute of Technology, Tiruchirappalli, India.
| |
Collapse
|
13
|
Lou C, Cross AM, Peters L, Ansari D, Joanisse MF. Rich-club structure contributes to individual variance of reading skills via feeder connections in children with reading disabilities. Dev Cogn Neurosci 2021; 49:100957. [PMID: 33894677 PMCID: PMC8093404 DOI: 10.1016/j.dcn.2021.100957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 01/18/2023] Open
Abstract
The present work considers how connectome-wide differences in brain organization might distinguish good and poor readers. The connectome comprises a ‘rich-club’ organization in which a small number of hub regions play a focal role in assisting global communication across the whole brain. Prior work indicates that this rich-club structure is associated with typical and impaired cognitive function although no work so far has examined how this relates to skilled reading or its disorders. Here we investigated the rich-club structure of brain’s white matter connectome and its relationship to reading subskills in 64 children with and without reading disabilities. Among three types of white matter connections, the strength of feeder connections that connect hub and non-hub nodes was significantly correlated with word reading efficiency and phonemic decoding. Phonemic decoding was also positively correlated with connectivity between connectome-wide hubs and nodes within the left-hemisphere reading network, as well as the local efficiency of the reading network. Exploratory analyses also identified sex differences indicating these effects were stronger in girls. This work highlights the independent roles of connectome-wide structure and the more narrowly-defined reading network in understanding the neural bases of skilled and impaired reading in children.
Collapse
Affiliation(s)
- Chenglin Lou
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada.
| | - Alexandra M Cross
- Brain and Mind Institute, The University of Western Ontario, London, Canada; Health and Rehabilitation Sciences, The University of Western Ontario, London, Canada
| | - Lien Peters
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada
| | - Daniel Ansari
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada; Faculty of Education, The University of Western Ontario, London, Canada
| | - Marc F Joanisse
- Department of Psychology, The University of Western Ontario, London, Canada; Brain and Mind Institute, The University of Western Ontario, London, Canada; Haskins Laboratories, New Haven, CT, USA
| |
Collapse
|
14
|
Beyond Reading Modulation: Temporo-Parietal tDCS Alters Visuo-Spatial Attention and Motion Perception in Dyslexia. Brain Sci 2021; 11:brainsci11020263. [PMID: 33669651 PMCID: PMC7922381 DOI: 10.3390/brainsci11020263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/17/2023] Open
Abstract
Dyslexia is a neurodevelopmental disorder with an atypical activation of posterior left-hemisphere brain reading networks (i.e., temporo-occipital and temporo-parietal regions) and multiple neuropsychological deficits. Transcranial direct current stimulation (tDCS) is a tool for manipulating neural activity and, in turn, neurocognitive processes. While studies have demonstrated the significant effects of tDCS on reading, neurocognitive changes beyond reading modulation have been poorly investigated. The present study aimed at examining whether tDCS on temporo-parietal regions affected not only reading, but also phonological skills, visuo-spatial working memory, visuo-spatial attention, and motion perception in a polarity-dependent way. In a within-subjects design, ten children and adolescents with dyslexia performed reading and neuropsychological tasks after 20 min of exposure to Left Anodal/Right Cathodal (LA/RC) and Right Anodal/Left Cathodal (RA/LC) tDCS. LA/RC tDCS compared to RA/LC tDCS improved text accuracy, word recognition speed, motion perception, and modified attentional focusing in our group of children and adolescents with dyslexia. Changes in text reading accuracy and word recognition speed—after LA/RC tDCS compared to RA/LC—were related to changes in motion perception and in visuo-spatial working memory, respectively. Our findings demonstrated that reading and domain-general neurocognitive functions in a group of children and adolescents with dyslexia change following tDCS and that they are polarity-dependent.
Collapse
|
15
|
Transcranial direct current stimulation (tDCS) over the auditory cortex modulates GABA and glutamate: a 7 T MR-spectroscopy study. Sci Rep 2020; 10:20111. [PMID: 33208867 PMCID: PMC7674467 DOI: 10.1038/s41598-020-77111-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is one of the most prominent non-invasive electrical brain stimulation method to alter neuronal activity as well as behavioral processes in cognitive and perceptual domains. However, the exact mode of action of tDCS-related cortical alterations is still unclear as the results of tDCS studies often do not comply with the somatic doctrine assuming that anodal tDCS enhances while cathodal tDCS decreases neuronal excitability. Changes in the regional cortical neurotransmitter balance within the stimulated cortex, measured by excitatory and inhibitory neurotransmitter levels, have the potential to provide direct neurochemical underpinnings of tDCS effects. Here we assessed tDCS-induced modulations of the neurotransmitter concentrations in the human auditory cortex (AC) by using magnetic resonance spectroscopy (MRS) at ultra-high-field (7 T). We quantified inhibitory gamma-amino butyric (GABA) concentration and excitatory glutamate (Glu) and compared changes in the relative concentration of GABA to Glu before and after tDCS application. We found that both, anodal and cathodal tDCS significantly increased the relative concentration of GABA to Glu with individual temporal specificity. Our results offer novel insights for a potential neurochemical mechanism that underlies tDCS-induced alterations of AC processing.
Collapse
|
16
|
Lui KFH, Lo JCM, Maurer U, Ho CSH, McBride C. Electroencephalography decoding of Chinese characters in primary school children and its prediction for word reading performance and development. Dev Sci 2020; 24:e13060. [PMID: 33159696 DOI: 10.1111/desc.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
Research on what neural mechanisms facilitate word reading development in non-alphabetic scripts is relatively rare. The present study was among the first to adopt a multivariate pattern classification analysis to decode electroencephalographic signals recorded for primary school children (N = 236) while performing a Chinese character decision task. Chinese is an ideal script for studying the relationship between neural discriminability (i.e., decodability) of the orthography and behavioral word reading skills since the mapping from orthography to phonology is relatively arbitrary in Chinese. This was also among the first empirical attempts to examine the extent to which decoding performance can predict current and subsequent word reading skills using a longitudinal design. Results showed that neural activation patterns of real characters can be distinguished from activation patterns for pseudo-characters, non-characters, and random stroke combinations in both younger and older children. Topography of the transformed classifier weights revealed two distinct cognitive sub-processes underlying single character recognition, but temporal generalization analysis suggested common neural mechanisms between the distinct cognitive sub-processes. Suggestive evidence from correlational and hierarchical regression analyses showed that decoding performance, assessed on average 2 months before the year 2 behavioral testing, predicted both year 1 word reading performance and the development of word reading fluency over the year. Results demonstrate that decoding performance, one indicator of how the neural system is functionally organized in processing characters and character-like stimuli, can serve as a useful neural marker in predicting current word reading skills and the capacity to learn to read.
Collapse
Affiliation(s)
- Kelvin F H Lui
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Jason C M Lo
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong
| | - Urs Maurer
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong
| | - Connie S-H Ho
- Department of Psychology, The University of Hong Kong, Hong Kong
| | - Catherine McBride
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
17
|
Marchesotti S, Nicolle J, Merlet I, Arnal LH, Donoghue JP, Giraud AL. Selective enhancement of low-gamma activity by tACS improves phonemic processing and reading accuracy in dyslexia. PLoS Biol 2020; 18:e3000833. [PMID: 32898188 PMCID: PMC7478834 DOI: 10.1371/journal.pbio.3000833] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
The phonological deficit in dyslexia is associated with altered low-gamma oscillatory function in left auditory cortex, but a causal relationship between oscillatory function and phonemic processing has never been established. After confirming a deficit at 30 Hz with electroencephalography (EEG), we applied 20 minutes of transcranial alternating current stimulation (tACS) to transiently restore this activity in adults with dyslexia. The intervention significantly improved phonological processing and reading accuracy as measured immediately after tACS. The effect occurred selectively for a 30-Hz stimulation in the dyslexia group. Importantly, we observed that the focal intervention over the left auditory cortex also decreased 30-Hz activity in the right superior temporal cortex, resulting in reinstating a left dominance for the oscillatory response. These findings establish a causal role of neural oscillations in phonological processing and offer solid neurophysiological grounds for a potential correction of low-gamma anomalies and for alleviating the phonological deficit in dyslexia.
Collapse
Affiliation(s)
| | - Johanna Nicolle
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | | | - Luc H. Arnal
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
- Institut de l’Audition, Institut Pasteur, INSERM, Paris, France
| | - John P. Donoghue
- Brown University, Providence, Rhode Island, United States of America
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Landi N, Perdue M. Neuroimaging genetics studies of specific reading disability and developmental language disorder: A review. LANGUAGE AND LINGUISTICS COMPASS 2019; 13:e12349. [PMID: 31844423 PMCID: PMC6913889 DOI: 10.1111/lnc3.12349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Developmental disorders of spoken and written language are heterogeneous in nature with impairments observed across various linguistic, cognitive, and sensorimotor domains. These disorders are also associated with characteristic patterns of atypical neural structure and function that are observable early in development, often before formal schooling begins. Established patterns of heritability point toward genetic contributions, and molecular genetics approaches have identified genes that play a role in these disorders. Still, identified genes account for only a limited portion of phenotypic variance in complex developmental disorders, described as the problem of "missing heritability." The characterization of intermediate phenotypes at the neural level may fill gaps in our understanding of heritability patterns in complex disorders, and the emerging field of neuroimaging genetics offers a promising approach to accomplish this goal. The neuroimaging genetics approach is gaining prevalence in language- and reading-related research as it is well-suited to incorporate behavior, genetics, and neurobiology into coherent etiological models of complex developmental disorders. Here, we review research applying the neuroimaging genetics approach to the study of specific reading disability (SRD) and developmental language disorder (DLD), much of which links genes with known neurodevelopmental function to functional and structural abnormalities in the brain.
Collapse
Affiliation(s)
- Nicole Landi
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States; Haskins Laboratories, United States
| | - Meaghan Perdue
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut, United States; Haskins Laboratories, United States
| |
Collapse
|
19
|
Krishnamurthy LC, Krishnamurthy V, Crosson B, Rothman DL, Schwam DM, Greenberg D, Pugh KR, Morris RD. Strength of resting state functional connectivity and local GABA concentrations predict oral reading of real and pseudo-words. Sci Rep 2019; 9:11385. [PMID: 31388067 PMCID: PMC6684813 DOI: 10.1038/s41598-019-47889-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Reading is a learned activity that engages multiple cognitive systems. In a cohort of typical and struggling adult readers we show evidence that successful oral reading of real words is related to gamma-amino-butyric acid (GABA) concentration in the higher-order language system, whereas reading of unfamiliar pseudo-words is not related to GABA in this system. We also demonstrate the capability of resting state functional connectivity (rsFC) combined with GABA measures to predict single real word compared to pseudo-word reading performance. Results show that the strength of rsFC between left fusiform gyrus (L-FG) and higher-order language systems predicts oral reading behavior of real words, irrespective of the local concentration of GABA. On the other hand, pseudo-words, which require grapheme-to-phoneme conversion, are not predicted by the connection between L-FG and higher-order language system. This suggests that L-FG may have a multi-functional role: lexical processing of real words and grapheme-to-phoneme processing of pseudo-words. Additionally, rsFC between L-FG, pre-motor, and putamen areas are positively related to the oral reading of both real and pseudo-words, suggesting that text may be converted into a phoneme sequence for speech initiation and production regardless of whether the stimulus is a real word or pseudo-word. In summary, from a systems neuroscience perspective, we show that: (i) strong rsFC between higher order visual, language, and pre-motor areas can predict and differentiate efficient oral reading of real and pseudo-words. (ii) GABA measures, along with rsFC, help to further differentiate the neural pathways for previously learned real words versus unfamiliar pseudo-words.
Collapse
Affiliation(s)
- Lisa C Krishnamurthy
- Department of Physics & Astronomy, Georgia State University, Atlanta, GA, 30303, United States.
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, 30033, United States.
- Center for Advanced Brain Imaging, Georgia State University and Georgia Institute of Technology, Atlanta, GA, 30318, United States.
| | - Venkatagiri Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, 30033, United States
- Center for Advanced Brain Imaging, Georgia State University and Georgia Institute of Technology, Atlanta, GA, 30318, United States
- Department of Neurology, Emory University, Atlanta, GA, 30322, United States
| | - Bruce Crosson
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, 30033, United States
- Center for Advanced Brain Imaging, Georgia State University and Georgia Institute of Technology, Atlanta, GA, 30318, United States
- Department of Neurology, Emory University, Atlanta, GA, 30322, United States
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States
| | - Douglas L Rothman
- Departments of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, United States
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Dina M Schwam
- Department of Learning Sciences, Georgia State University, Atlanta, GA, 30303, United States
- Department of Psychology and Human Services, Mercer University, Macon, GA, United States
| | - Daphne Greenberg
- Department of Learning Sciences, Georgia State University, Atlanta, GA, 30303, United States
| | - Kenneth R Pugh
- Departments of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, United States
- Haskins Laboratories, New Haven, CT, United States
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Robin D Morris
- Center for Advanced Brain Imaging, Georgia State University and Georgia Institute of Technology, Atlanta, GA, 30318, United States
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States
| |
Collapse
|
20
|
Truong DT, Adams AK, Paniagua S, Frijters JC, Boada R, Hill DE, Lovett MW, Mahone EM, Willcutt EG, Wolf M, Defries JC, Gialluisi A, Francks C, Fisher SE, Olson RK, Pennington BF, Smith SD, Bosson-Heenan J, Gruen JR. Multivariate genome-wide association study of rapid automatised naming and rapid alternating stimulus in Hispanic American and African-American youth. J Med Genet 2019; 56:557-566. [PMID: 30995994 PMCID: PMC6678051 DOI: 10.1136/jmedgenet-2018-105874] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Rapid automatised naming (RAN) and rapid alternating stimulus (RAS) are reliable predictors of reading disability. The underlying biology of reading disability is poorly understood. However, the high correlation among RAN, RAS and reading could be attributable to shared genetic factors that contribute to common biological mechanisms. OBJECTIVE To identify shared genetic factors that contribute to RAN and RAS performance using a multivariate approach. METHODS We conducted a multivariate genome-wide association analysis of RAN Objects, RAN Letters and RAS Letters/Numbers in a sample of 1331 Hispanic American and African-American youth. Follow-up neuroimaging genetic analysis of cortical regions associated with reading ability in an independent sample and epigenetic examination of extant data predicting tissue-specific functionality in the brain were also conducted. RESULTS Genome-wide significant effects were observed at rs1555839 (p=4.03×10-8) and replicated in an independent sample of 318 children of European ancestry. Epigenetic analysis and chromatin state models of the implicated 70 kb region of 10q23.31 support active transcription of the gene RNLS in the brain, which encodes a catecholamine metabolising protein. Chromatin contact maps of adult hippocampal tissue indicate a potential enhancer-promoter interaction regulating RNLS expression. Neuroimaging genetic analysis in an independent, multiethnic sample (n=690) showed that rs1555839 is associated with structural variation in the right inferior parietal lobule. CONCLUSION This study provides support for a novel trait locus at chromosome 10q23.31 and proposes a potential gene-brain-behaviour relationship for targeted future functional analysis to understand underlying biological mechanisms for reading disability.
Collapse
Affiliation(s)
| | | | - Steven Paniagua
- Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jan C Frijters
- Department of Child and Youth Studies, Brock University, St Catharines, Ontario, Canada
| | - Richard Boada
- Department of Pediatrics-Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Dina E Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Maureen W Lovett
- Neurosciences & Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - E Mark Mahone
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Erik G Willcutt
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Maryanne Wolf
- Eliot-Pearson Department of Child Study and Human Development, Tufts University, Medford, Massachusetts, USA
| | - John C Defries
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Alessandro Gialluisi
- Language and Genetics, Max-Planck-Institut fur Psycholinguistik, Nijmegen, The Netherlands
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics, Max-Planck-Institut fur Psycholinguistik, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Richard K Olson
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | | | - Shelley D Smith
- Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Joan Bosson-Heenan
- Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jeffrey R Gruen
- Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Investigative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Li MY, Braze D, Kukona A, Johns CL, Tabor W, Van Dyke JA, Mencl WE, Shankweiler DP, Pugh KR, Magnuson JS. Individual differences in subphonemic sensitivity and phonological skills. JOURNAL OF MEMORY AND LANGUAGE 2019; 107:195-215. [PMID: 31431796 PMCID: PMC6701851 DOI: 10.1016/j.jml.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many studies have established a link between phonological abilities (indexed by phonological awareness and phonological memory tasks) and typical and atypical reading development. Individuals who perform poorly on phonological assessments have been mostly assumed to have underspecified (or "fuzzy") phonological representations, with typical phonemic categories, but with greater category overlap due to imprecise encoding. An alternative posits that poor readers have overspecified phonological representations, with speech sounds perceived allophonically (phonetically distinct variants of a single phonemic category). On both accounts, mismatch between phonological categories and orthography leads to reading difficulty. Here, we consider the implications of these accounts for online speech processing. We used eye tracking and an individual differences approach to assess sensitivity to subphonemic detail in a community sample of young adults with a wide range of reading-related skills. Subphonemic sensitivity inversely correlated with meta-phonological task performance, consistent with overspecification.
Collapse
Affiliation(s)
- Monica Y.C. Li
- Department of Psychological Sciences, University of
Connecticut, Storrs, CT 06269-1020, USA
- Connecticut Institute for the Brain and Cognitive Sciences,
University of Connecticut, Storrs, CT 06269-1272, USA
- Brain Imaging Research Center, University of Connecticut,
Storrs, CT 06269-1271, USA
- Haskins Laboratories, 300 George St., New Haven, CT 06510,
USA
| | - David Braze
- Connecticut Institute for the Brain and Cognitive Sciences,
University of Connecticut, Storrs, CT 06269-1272, USA
- Haskins Laboratories, 300 George St., New Haven, CT 06510,
USA
| | - Anuenue Kukona
- Haskins Laboratories, 300 George St., New Haven, CT 06510,
USA
- School of Applied Social Sciences, De Montfort University,
The Gateway, Leicester, LE1 9BH, UK
| | | | - Whitney Tabor
- Department of Psychological Sciences, University of
Connecticut, Storrs, CT 06269-1020, USA
- Connecticut Institute for the Brain and Cognitive Sciences,
University of Connecticut, Storrs, CT 06269-1272, USA
- Haskins Laboratories, 300 George St., New Haven, CT 06510,
USA
| | - Julie A. Van Dyke
- Connecticut Institute for the Brain and Cognitive Sciences,
University of Connecticut, Storrs, CT 06269-1272, USA
- Haskins Laboratories, 300 George St., New Haven, CT 06510,
USA
| | - W. Einar Mencl
- Haskins Laboratories, 300 George St., New Haven, CT 06510,
USA
- Department of Linguistics, Yale University, New Haven, CT
06520, USA
| | - Donald P. Shankweiler
- Department of Psychological Sciences, University of
Connecticut, Storrs, CT 06269-1020, USA
- Haskins Laboratories, 300 George St., New Haven, CT 06510,
USA
| | - Kenneth R. Pugh
- Department of Psychological Sciences, University of
Connecticut, Storrs, CT 06269-1020, USA
- Connecticut Institute for the Brain and Cognitive Sciences,
University of Connecticut, Storrs, CT 06269-1272, USA
- Brain Imaging Research Center, University of Connecticut,
Storrs, CT 06269-1271, USA
- Haskins Laboratories, 300 George St., New Haven, CT 06510,
USA
- Department of Linguistics, Yale University, New Haven, CT
06520, USA
| | - James S. Magnuson
- Department of Psychological Sciences, University of
Connecticut, Storrs, CT 06269-1020, USA
- Connecticut Institute for the Brain and Cognitive Sciences,
University of Connecticut, Storrs, CT 06269-1272, USA
- Brain Imaging Research Center, University of Connecticut,
Storrs, CT 06269-1271, USA
- Haskins Laboratories, 300 George St., New Haven, CT 06510,
USA
| |
Collapse
|
22
|
Costanzo F, Rossi S, Varuzza C, Varvara P, Vicari S, Menghini D. Long-lasting improvement following tDCS treatment combined with a training for reading in children and adolescents with dyslexia. Neuropsychologia 2019; 130:38-43. [DOI: 10.1016/j.neuropsychologia.2018.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/16/2018] [Accepted: 03/10/2018] [Indexed: 01/08/2023]
|
23
|
Compton DL, Steacy LM, Petscher Y, Rueckl JG, Landi N, Pugh KR. Linking Behavioral and Computational Approaches to Better Understand Variant Vowel Pronunciations in Developing Readers. New Dir Child Adolesc Dev 2019; 2019:55-71. [PMID: 31066513 PMCID: PMC6522325 DOI: 10.1002/cad.20294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The overarching goal of the new Florida State University/Haskins Laboratory/University of Connecticut Learning Disability (LD) Hub project is to align computational and behavioral theories of individual word reading development more closely with the challenges of learning to read a quasi-regular orthography (i.e., English) for both typically developing (TD) children and, more specifically, children with dyslexia. Our LD Hub adopts an integrated approach to better understand the neurocognitive bases of individual differences in word reading development by specifically examining the experiential (exogenous) and child-specific (endogenous) factors that determine acquisition of orthographic-phonological knowledge at different subword granularities using behavioral and computational modeling. Findings are intended to enrich understanding of the processes that influence individual differences in word reading development in TD and dyslexic children and significantly inform issues of practice (e.g., curriculum, instruction, diagnosis, and intervention). Here, we briefly provide the rationale for the Hub and present findings from the initial behavioral and computational modeling studies.
Collapse
Affiliation(s)
| | - Laura M Steacy
- Florida State University & Florida Center for Reading Research
| | - Yaacov Petscher
- Florida State University & Florida Center for Reading Research
| | - Jay G Rueckl
- University of Connecticut & Haskins Laboratories
| | - Nicole Landi
- University of Connecticut & Haskins Laboratories
| | - Ken R Pugh
- Yale University School of Medicine & Haskins Laboratories
| |
Collapse
|
24
|
Kossowski B, Chyl K, Kacprzak A, Bogorodzki P, Jednoróg K. Dyslexia and age related effects in the neurometabolites concentration in the visual and temporo-parietal cortex. Sci Rep 2019; 9:5096. [PMID: 30911032 PMCID: PMC6434036 DOI: 10.1038/s41598-019-41473-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/28/2019] [Indexed: 01/18/2023] Open
Abstract
Several etiological theories, in particular neuronal noise and impaired auditory sampling, predicted neurotransmission deficits in dyslexia. Neurometabolites also affect white matter microstructure, where abnormalities were previously reported in dyslexia. However findings from only few magnetic resonance spectroscopy studies using diverse age groups, different brain regions, data processing and reference scaling are inconsistent. We used MEGA-PRESS single-voxel spectroscopy in two ROIs: left temporo-parietal and occipital cortex in 36 adults and 52 children, where half in each group had dyslexia. Dyslexics, on average, had significantly lower total N-acetylaspartate (tNAA) than controls in the occipital cortex. Adults compared to children were characterized by higher choline and creatine in both areas, higher tNAA in left temporo-parietal and lower glutamate in the visual cortex, reflecting maturational changes in cortical microstructure and metabolism. Although the current findings do not support the proposed etiological theories of dyslexia, they show, for the first time, that tNAA, considered to be a neurochemical correlate of white matter integrity, is deficient in the visual cortex in both children and adults with dyslexia. They also point that several neurotransmitters, including ones previously used as reference, change with age.
Collapse
Affiliation(s)
- Bartosz Kossowski
- Faculty of Electronics and Information Technology Warsaw University of Technology, Nowowiejska 15/19, 00-665, Warsaw, Poland.
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| | - Katarzyna Chyl
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Agnieszka Kacprzak
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
- Faculty of Psychology, University of Warsaw, Stawki 5/7, 00-183, Warsaw, Poland
| | - Piotr Bogorodzki
- Faculty of Electronics and Information Technology Warsaw University of Technology, Nowowiejska 15/19, 00-665, Warsaw, Poland
| | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| |
Collapse
|
25
|
Neurobiological systems in dyslexia. Trends Neurosci Educ 2019; 14:11-24. [DOI: 10.1016/j.tine.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022]
|
26
|
Schallmo MP, Millin R, Kale AM, Kolodny T, Edden RAE, Bernier RA, Murray SO. Glutamatergic facilitation of neural responses in MT enhances motion perception in humans. Neuroimage 2019; 184:925-931. [PMID: 30312807 PMCID: PMC6230494 DOI: 10.1016/j.neuroimage.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023] Open
Abstract
There is large individual variability in human neural responses and perceptual abilities. The factors that give rise to these individual differences, however, remain largely unknown. To examine these factors, we measured fMRI responses to moving gratings in the motion-selective region MT, and perceptual duration thresholds for motion direction discrimination. Further, we acquired MR spectroscopy data, which allowed us to quantify an index of neurotransmitter levels in the region of area MT. These three measurements were conducted in separate experimental sessions within the same group of male and female subjects. We show that stronger Glx (glutamate + glutamine) signals in the MT region are associated with both higher fMRI responses and superior psychophysical task performance. Our results suggest that greater baseline levels of glutamate within MT facilitate motion perception by increasing neural responses in this region.
Collapse
Affiliation(s)
| | - Rachel Millin
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Alex M Kale
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Richard A E Edden
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Scott O Murray
- Department of Psychology, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Horowitz-Kraus T, Brunst KJ, Cecil KM. Children With Dyslexia and Typical Readers: Sex-Based Choline Differences Revealed Using Proton Magnetic Resonance Spectroscopy Acquired Within Anterior Cingulate Cortex. Front Hum Neurosci 2018; 12:466. [PMID: 30532701 PMCID: PMC6265437 DOI: 10.3389/fnhum.2018.00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Children with dyslexia exhibit slow and inaccurate reading, as well as problems in executive functions. Decreased signal activation in brain regions related to visual processing and executive functions has been observed with functional magnetic resonance imaging with reports of sex differences in brain patterns for visual processing regions. However, the underlying neurochemistry associated with deficits in executive functions for children with dyslexia has not been thoroughly evaluated. Reading ability and executive functions were assessed in fifty-three children [ages 8-12 years old, dyslexia (n = 24), and typical readers (n = 30)]. We employed short echo, single voxel, proton magnetic resonance spectroscopy to evaluate the perigenual anterior cingulate cortex (ACC). Pearson correlations were calculated between metabolite concentrations and measures of reading, processing speed, and executive function. Logistic regression models were used to determine the effects of brain metabolite concentrations, processing speed, and reading scores on dyslexia status. Differences by child's sex were also examined. Compared to typical readers, higher global executive composite t-score is associated with greater odds for dyslexia (OR 1.14; 95% CI 1.05, 1.23); increased processing speed appears to be protective for dyslexia (OR 0.95; 95% 0.89-1.00). After adjustment for multiple comparisons, females with dyslexia showed strong and significant negative correlations between processing speed and myo-inositol (r = -0.55, p = 0.005) and choline (r = -0.54, p = 0.005) concentrations; effect modification by sex was confirmed in linear regression models (psex∗Cho = 0.0006) and (psex∗mI = 0.01). These associations were not observed for males or the group as a whole. These findings suggest that children with dyslexia share difficulty in one or more areas of executive function, specifically those related to response time. Also, metabolite changes in the ACC may be present in children with dyslexia, especially for females, and may hold value as possible markers for dyslexia.
Collapse
Affiliation(s)
- Tzipi Horowitz-Kraus
- Educational Neuroimaging Center, Faculty of Biomedical Engineering – Faculty of Education in Science and Technology, Technicon – Israel Institute of Technology, Haifa, Israel
- Reading and Literacy Discovery Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of General and Community Pediatrics, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kelly J. Brunst
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kim M. Cecil
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
28
|
Noori HR, Mervin LH, Bokharaie V, Durmus Ö, Egenrieder L, Fritze S, Gruhlke B, Reinhardt G, Schabel HH, Staudenmaier S, Logothetis NK, Bender A, Spanagel R. Systemic neurotransmitter responses to clinically approved and experimental neuropsychiatric drugs. Nat Commun 2018; 9:4699. [PMID: 30410047 PMCID: PMC6224407 DOI: 10.1038/s41467-018-07239-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/19/2018] [Indexed: 01/04/2023] Open
Abstract
Neuropsychiatric disorders are the third leading cause of global disease burden. Current pharmacological treatment for these disorders is inadequate, with often insufficient efficacy and undesirable side effects. One reason for this is that the links between molecular drug action and neurobehavioral drug effects are elusive. We use a big data approach from the neurotransmitter response patterns of 258 different neuropsychiatric drugs in rats to address this question. Data from experiments comprising 110,674 rats are presented in the Syphad database [ www.syphad.org ]. Chemoinformatics analyses of the neurotransmitter responses suggest a mismatch between the current classification of neuropsychiatric drugs and spatiotemporal neurostransmitter response patterns at the systems level. In contrast, predicted drug-target interactions reflect more appropriately brain region related neurotransmitter response. In conclusion the neurobiological mechanism of neuropsychiatric drugs are not well reflected by their current classification or their chemical similarity, but can be better captured by molecular drug-target interactions.
Collapse
Affiliation(s)
- Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany.
- Max Planck Institute for Biological Cybernetics, Max Planck Ring 8, 72076, Tübingen, Germany.
- Courant Institute for Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012, USA.
- Neuronal Convergence Group, Max Planck Institute for Biological Cybernetics, Max Planck Ring 8, 72076, Tübingen, Germany.
| | - Lewis H Mervin
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Vahid Bokharaie
- Max Planck Institute for Biological Cybernetics, Max Planck Ring 8, 72076, Tübingen, Germany
| | - Özlem Durmus
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Lisamon Egenrieder
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Stefan Fritze
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Britta Gruhlke
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Giulia Reinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Hans-Hendrik Schabel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Sabine Staudenmaier
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| | - Nikos K Logothetis
- Max Planck Institute for Biological Cybernetics, Max Planck Ring 8, 72076, Tübingen, Germany
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5 68159, Mannheim, Germany
| |
Collapse
|
29
|
Del Tufo SN, Frost SJ, Hoeft F, Cutting LE, Molfese PJ, Mason GF, Rothman DL, Fulbright RK, Pugh KR. Neurochemistry Predicts Convergence of Written and Spoken Language: A Proton Magnetic Resonance Spectroscopy Study of Cross-Modal Language Integration. Front Psychol 2018; 9:1507. [PMID: 30233445 PMCID: PMC6131664 DOI: 10.3389/fpsyg.2018.01507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022] Open
Abstract
Recent studies have provided evidence of associations between neurochemistry and reading (dis)ability (Pugh et al., 2014). Based on a long history of studies indicating that fluent reading entails the automatic convergence of the written and spoken forms of language and our recently proposed Neural Noise Hypothesis (Hancock et al., 2017), we hypothesized that individual differences in cross-modal integration would mediate, at least partially, the relationship between neurochemical concentrations and reading. Cross-modal integration was measured in 231 children using a two-alternative forced choice cross-modal matching task with three language conditions (letters, words, and pseudowords) and two levels of difficulty within each language condition. Neurometabolite concentrations of Choline (Cho), Glutamate (Glu), gamma-Aminobutyric (GABA), and N- acetyl-aspartate (NAA) were then measured in a subset of this sample (n = 70) with Magnetic Resonance Spectroscopy (MRS). A structural equation mediation model revealed that the effect of cross-modal word matching mediated the relationship between increased Glu (which has been proposed to be an index of neural noise) and poorer reading ability. In addition, the effect of cross-modal word matching fully mediated a relationship between increased Cho and poorer reading ability. Multilevel mixed effects models confirmed that lower Cho predicted faster cross-modal matching reaction time, specifically in the hard word condition. These Cho findings are consistent with previous work in both adults and children showing a negative association between Cho and reading ability. We also found two novel neurochemical relationships. Specifically, lower GABA and higher NAA predicted faster cross-modal matching reaction times. We interpret these results within a biochemical framework in which the ability of neurochemistry to predict reading ability may at least partially be explained by cross-modal integration.
Collapse
Affiliation(s)
- Stephanie N Del Tufo
- Department of Special Education, Peabody College, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, United States.,Haskins Laboratories, New Haven, CT, United States
| | | | - Fumiko Hoeft
- Haskins Laboratories, New Haven, CT, United States.,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Laurie E Cutting
- Department of Special Education, Peabody College, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, United States.,Haskins Laboratories, New Haven, CT, United States.,Peabody College of Education and Human Development, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, United States
| | - Peter J Molfese
- Haskins Laboratories, New Haven, CT, United States.,Section on Functional Imaging Methods, Laboratory of Brain and Cognition, Department of Health and Human Services, National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Graeme F Mason
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.,Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, United States
| | - Robert K Fulbright
- Haskins Laboratories, New Haven, CT, United States.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, United States.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.,Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
30
|
Perdue MV, Mascheretti S, Kornilov SA, Jasińska KK, Ryherd K, Einar Mencl W, Frost SJ, Grigorenko EL, Pugh KR, Landi N. Common variation within the SETBP1 gene is associated with reading-related skills and patterns of functional neural activation. Neuropsychologia 2018; 130:44-51. [PMID: 30009840 DOI: 10.1016/j.neuropsychologia.2018.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/09/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022]
Abstract
Epidemiological population studies highlight the presence of substantial individual variability in reading skill, with approximately 5-10% of individuals characterized as having specific reading disability (SRD). Despite reported substantial heritability, typical for a complex trait, the specifics of the connections between reading and the genome are not understood. Recently, the SETBP1 gene has been implicated in several complex neurodevelopmental syndromes and disorders that impact language. Here, we examined the relationship between common polymorphisms in this gene, reading, and reading associated behaviors using data from an ongoing project on the genetic basis of SRD (n = 135). In addition, an exploratory analysis was conducted to examine the relationship between SETBP1 and brain activation using functional magnetic resonance imaging (fMRI; n = 73). Gene-based analyses revealed a significant association between SETBP1 and phonological working memory, with rs7230525 as the strongest associated single nucleotide polymorphism (SNP). fMRI analysis revealed that the rs7230525-T allele is associated with functional neural activation during reading and listening to words and pseudowords in the right inferior parietal lobule (IPL). These findings suggest that common genetic variation within SETBP1 is associated with reading behavior and reading-related brain activation patterns in the general population.
Collapse
Affiliation(s)
- Meaghan V Perdue
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Sergey A Kornilov
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kaja K Jasińska
- Haskins Laboratories, New Haven, CT, USA; Department of Linguistics and Cognitive Science, University of Delaware, Newark, DE, USA
| | - Kayleigh Ryherd
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | | | | | - Elena L Grigorenko
- Haskins Laboratories, New Haven, CT, USA; Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; St. Petersburg State University, Russia
| | - Kenneth R Pugh
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA
| | - Nicole Landi
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA; Haskins Laboratories, New Haven, CT, USA.
| |
Collapse
|
31
|
White-Schwoch T, Nicol T, Warrier CM, Abrams DA, Kraus N. Individual Differences in Human Auditory Processing: Insights From Single-Trial Auditory Midbrain Activity in an Animal Model. Cereb Cortex 2018; 27:5095-5115. [PMID: 28334187 DOI: 10.1093/cercor/bhw293] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
Auditory-evoked potentials are classically defined as the summations of synchronous firing along the auditory neuraxis. Converging evidence supports a model whereby timing jitter in neural coding compromises listening and causes variable scalp-recorded potentials. Yet the intrinsic noise of human scalp recordings precludes a full understanding of the biological origins of individual differences in listening skills. To delineate the mechanisms contributing to these phenomena, in vivo extracellular activity was recorded from inferior colliculus in guinea pigs to speech in quiet and noise. Here we show that trial-by-trial timing jitter is a mechanism contributing to auditory response variability. Identical variability patterns were observed in scalp recordings in human children, implicating jittered timing as a factor underlying reduced coding of dynamic speech features and speech in noise. Moreover, intertrial variability in human listeners is tied to language development. Together, these findings suggest that variable timing in inferior colliculus blurs the neural coding of speech in noise, and propose a consequence of this timing jitter for human behavior. These results hint both at the mechanisms underlying speech processing in general, and at what may go awry in individuals with listening difficulties.
Collapse
Affiliation(s)
- Travis White-Schwoch
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu) & Department of Communication Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Trent Nicol
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu) & Department of Communication Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Catherine M Warrier
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu) & Department of Communication Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Daniel A Abrams
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu) & Department of Communication Sciences, Northwestern University, Evanston, IL, 60208, USA.,Stanford Cognitive & Systems Neuroscience Laboratory, Stanford University, Palo Alto, CA, 94304, USA
| | - Nina Kraus
- Auditory Neuroscience Laboratory (www.brainvolts.northwestern.edu) & Department of Communication Sciences, Northwestern University, Evanston, IL, 60208, USA.,Department of Neurobiology & Physiology, Northwestern University, Evanston, IL, 60208, USA.,Department of Otolaryngology, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
32
|
Individual Differences in Reading Skill Are Related to Trial-by-Trial Neural Activation Variability in the Reading Network. J Neurosci 2018; 38:2981-2989. [PMID: 29440534 DOI: 10.1523/jneurosci.0907-17.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 12/30/2017] [Accepted: 01/09/2018] [Indexed: 11/21/2022] Open
Abstract
Recent work has suggested that variability in levels of neural activation may be related to behavioral and cognitive performance across a number of domains and may offer information that is not captured by more traditional measures that use the average level of brain activation. We examined the relationship between reading skill in school-aged children and neural activation variability during a functional MRI reading task after taking into account average levels of activity. The reading task involved matching printed and spoken words to pictures of items. Single trial activation estimates were used to calculate the mean and standard deviation of children's responses to print and speech stimuli; multiple regression analyses evaluated the relationship between reading skill and trial-by-trial activation variability. The reliability of observed findings from the discovery sample (n = 44; ages 8-11; 18 female) was then confirmed in an independent sample of children (n = 32; ages 8-11; 14 female). Across the two samples, reading skill was positively related to trial-by-trial variability in the activation response to print in the left inferior frontal gyrus pars triangularis. This relationship held even when accounting for mean levels of activation. This finding suggests that intrasubject variability in trial-by-trial fMRI activation responses to printed words accounts for individual differences in human reading ability that are not fully captured by traditional mean levels of brain activity. Furthermore, this positive relationship between trial-by-trial activation variability and reading skill may provide evidence that neural variability plays a beneficial role during early reading development.SIGNIFICANCE STATEMENT Recent work has suggested that neural activation variability, or moment-to-moment changes in the engagement of brain regions, is related to individual differences in behavioral and cognitive performance across multiple domains. However, differences in neural activation variability have not yet been evaluated in relation to reading skill. In the current study, we analyzed data from two independent groups of children who performed an fMRI task involving reading and listening to words. Across both samples, reading skill was positively related to trial-by-trial variability in activation to print stimuli in the left inferior frontal gyrus pars triangularis, even when accounting for the more conventional measure of mean levels of brain activity. This finding suggests that neural variability could be beneficial in developing readers.
Collapse
|
33
|
Abstract
Metabolism is central to neuroimaging because it can reveal pathways by which neuronal and glial cells use nutrients to fuel their growth and function. We focus on advanced magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods used in brain metabolic studies. 17O-MRS and 31P-MRS, respectively, provide rates of oxygen use and ATP synthesis inside mitochondria, whereas 19F-MRS enables measurement of cytosolic glucose metabolism. Calibrated functional MRI (fMRI), an advanced form of fMRI that uses contrast generated by deoxyhemoglobin, provides maps of oxygen use that track neuronal firing across brain regions. 13C-MRS is the only noninvasive method of measuring both glutamatergic neurotransmission and cell-specific energetics with signaling and nonsignaling purposes. Novel MRI contrasts, arising from endogenous diamagnetic agents and exogenous paramagnetic agents, permit pH imaging of glioma. Overall, these magnetic resonance methods for imaging brain metabolism demonstrate translational potential to better understand brain disorders and guide diagnosis and treatment.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| | - Douglas L Rothman
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| |
Collapse
|
34
|
Ramus F, Altarelli I, Jednoróg K, Zhao J, Scotto di Covella L. Neuroanatomy of developmental dyslexia: Pitfalls and promise. Neurosci Biobehav Rev 2017; 84:434-452. [PMID: 28797557 DOI: 10.1016/j.neubiorev.2017.08.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/18/2023]
Abstract
Investigations into the neuroanatomical bases of developmental dyslexia have now spanned more than 40 years, starting with the post-mortem examination of a few individual brains in the 60s and 70s, and exploding in the 90s with the widespread use of MRI. The time is now ripe to reappraise the considerable amount of data gathered with MRI using different types of sequences (T1, diffusion, spectroscopy) and analysed using different methods (manual, voxel-based or surface-based morphometry, fractional anisotropy and tractography, multivariate analyses…). While selective reviews of mostly small-scale studies seem to provide a coherent view of the brain disruptions that are typical of dyslexia, involving left perisylvian and occipito-temporal regions, we argue that this view may be deceptive and that meta-analyses and large-scale studies rather highlight many inconsistencies and limitations. We discuss problems inherent to small sample size as well as methodological difficulties that still undermine the discovery of reliable neuroanatomical bases of dyslexia, and we outline some recommendations to further improve this research area.
Collapse
Affiliation(s)
- Franck Ramus
- Laboratoire de sciences cognitives et psycholinguistique (CNRS, ENS, EHESS, PSL Research University), Ecole Normale Supérieure, 29 rue d'Ulm, 75005 Paris, France.
| | - Irene Altarelli
- Brain and Learning Lab, Campus Biotech, University of Geneva, 9 Chemin des Mines, 1205 Geneva, Switzerland
| | - Katarzyna Jednoróg
- Laboratory of Psychophysiology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, Shaanxi, 710062, China
| | - Lou Scotto di Covella
- Laboratoire de sciences cognitives et psycholinguistique (CNRS, ENS, EHESS, PSL Research University), Ecole Normale Supérieure, 29 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
35
|
Perrachione TK, Del Tufo SN, Winter R, Murtagh J, Cyr A, Chang P, Halverson K, Ghosh SS, Christodoulou JA, Gabrieli JDE. Dysfunction of Rapid Neural Adaptation in Dyslexia. Neuron 2017; 92:1383-1397. [PMID: 28009278 DOI: 10.1016/j.neuron.2016.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/16/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022]
Abstract
Identification of specific neurophysiological dysfunctions resulting in selective reading difficulty (dyslexia) has remained elusive. In addition to impaired reading development, individuals with dyslexia frequently exhibit behavioral deficits in perceptual adaptation. Here, we assessed neurophysiological adaptation to stimulus repetition in adults and children with dyslexia for a wide variety of stimuli, spoken words, written words, visual objects, and faces. For every stimulus type, individuals with dyslexia exhibited significantly diminished neural adaptation compared to controls in stimulus-specific cortical areas. Better reading skills in adults and children with dyslexia were associated with greater repetition-induced neural adaptation. These results highlight a dysfunction of rapid neural adaptation as a core neurophysiological difference in dyslexia that may underlie impaired reading development. Reduced neurophysiological adaptation may relate to prior reports of reduced behavioral adaptation in dyslexia and may reveal a difference in brain functions that ultimately results in a specific reading impairment.
Collapse
Affiliation(s)
- Tyler K Perrachione
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Stephanie N Del Tufo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rebecca Winter
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jack Murtagh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Cyr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Chang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kelly Halverson
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satrajit S Ghosh
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joanna A Christodoulou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Johnston R, Pitchford NJ, Roach NW, Ledgeway T. Visual perception in dyslexia is limited by sub-optimal scale selection. Sci Rep 2017; 7:6593. [PMID: 28747794 PMCID: PMC5529585 DOI: 10.1038/s41598-017-06967-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/26/2017] [Indexed: 01/10/2023] Open
Abstract
Readers with dyslexia are purported to have a selective visual impairment but the underlying nature of the deficit remains elusive. Here, we used a combination of behavioural psychophysics and biologically-motivated computational modeling to investigate if this deficit extends to object segmentation, a process implicated in visual word form recognition. Thirty-eight adults with a wide range of reading abilities were shown random-dot displays spatially divided into horizontal segments. Adjacent segments contained either local motion signals in opposing directions or analogous static form cues depicting orthogonal orientations. Participants had to discriminate these segmented patterns from stimuli containing identical motion or form cues that were spatially intermingled. Results showed participants were unable to perform the motion or form task reliably when segment size was smaller than a spatial resolution (acuity) limit that was independent of reading skill. Coherence thresholds decreased as segment size increased, but for the motion task the rate of improvement was shallower for readers with dyslexia and the segment size where performance became asymptotic was larger. This suggests that segmentation is impaired in readers with dyslexia but only on tasks containing motion information. We interpret these findings within a novel framework in which the mechanisms underlying scale selection are impaired in developmental dyslexia.
Collapse
Affiliation(s)
- Richard Johnston
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham, UK.
| | - Nicola J Pitchford
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham, UK
| | - Neil W Roach
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham, UK
| | - Timothy Ledgeway
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham, UK
| |
Collapse
|
37
|
Hancock R, Pugh KR, Hoeft F. Neural Noise Hypothesis of Developmental Dyslexia. Trends Cogn Sci 2017; 21:434-448. [PMID: 28400089 PMCID: PMC5489551 DOI: 10.1016/j.tics.2017.03.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/27/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
Developmental dyslexia (decoding-based reading disorder; RD) is a complex trait with multifactorial origins at the genetic, neural, and cognitive levels. There is evidence that low-level sensory-processing deficits precede and underlie phonological problems, which are one of the best-documented aspects of RD. RD is also associated with impairments in integrating visual symbols with their corresponding speech sounds. Although causal relationships between sensory processing, print-speech integration, and fluent reading, and their neural bases are debated, these processes all require precise timing mechanisms across distributed brain networks. Neural excitability and neural noise are fundamental to these timing mechanisms. Here, we propose that neural noise stemming from increased neural excitability in cortical networks implicated in reading is one key distal contributor to RD.
Collapse
Affiliation(s)
- Roeland Hancock
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Science-based Innovation in Learning Center (SILC), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA.
| | - Kenneth R Pugh
- Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA; Department of Linguistics, Yale University, 370 Temple Street, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale University, 330 Cedar Street, New Haven, CT 06520, USA; Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269, USA
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160, Japan; Science-based Innovation in Learning Center (SILC), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Dyslexia Center, UCSF, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| |
Collapse
|
38
|
Johnston R, Pitchford NJ, Roach NW, Ledgeway T. Encoding of rapid time-varying information is impaired in poor readers. J Vis 2017; 17:1. [PMID: 28460376 PMCID: PMC5412969 DOI: 10.1167/17.5.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/24/2017] [Indexed: 11/24/2022] Open
Abstract
A characteristic set of eye movements and fixations are made during reading, so the position of words on the retinae is constantly being updated. Effective decoding of print requires this temporal stream of visual information to be segmented or parsed into its constituent units (e.g., letters or words). Poor readers' difficulties with word recognition could arise at the point of segmenting time-varying visual information, but the mechanisms underlying this process are little understood. Here, we used random-dot displays to explore the effects of reading ability on temporal segmentation. Thirty-eight adult readers viewed test stimuli that were temporally segmented by constraining either local motions or analogous form cues to oscillate back and fourth at each of a range of rates. Participants had to discriminate these segmented patterns from comparison stimuli containing the same motion and form cues but these were temporally intermingled. Results showed that the motion and form tasks could not be performed reliably when segment duration was shorter than a temporal resolution (acuity) limit. The acuity limits for both tasks were significantly and negatively correlated with reading scores. Importantly, the minimum segment duration needed to detect the temporally segmented stimuli was longer in relatively poor readers than relatively good readers. This demonstrates that adult poor readers have difficulty segmenting temporally changing visual input particularly at short segment durations. These results are consistent with evidence suggesting that precise encoding of rapid time-varying information is impaired in developmental dyslexia.
Collapse
Affiliation(s)
- Richard Johnston
- School of Psychology, The University of Nottingham, University Park, Nottingham, UK
| | - Nicola J Pitchford
- School of Psychology, The University of Nottingham, University Park, Nottingham, UK
| | - Neil W Roach
- School of Psychology, The University of Nottingham, University Park, Nottingham, UK
| | - Timothy Ledgeway
- School of Psychology, The University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
39
|
Xia Z, Hancock R, Hoeft F. Neurobiological bases of reading disorder Part I: Etiological investigations. LANGUAGE AND LINGUISTICS COMPASS 2017; 11:e12239. [PMID: 28785303 PMCID: PMC5543813 DOI: 10.1111/lnc3.12239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 03/22/2017] [Indexed: 05/29/2023]
Abstract
While many studies have focused on identifying the neural and behavioral characteristics of decoding-based reading disorder (RD, aka developmental dyslexia), the etiology of RD remains largely unknown and understudied. Because the brain plays an intermediate role between genetic factors and behavioral outcomes, it is promising to address causality from a neural perspective. In the current, Part I of the two-part review, we discuss neuroimaging approaches to addressing the causality issue and review the results of studies that have employed these approaches. We assume that if a neural signature were associated with RD etiology, it would (a) manifest across comparisons in different languages, (b) be experience independent and appear in comparisons between RD and reading-matched controls, (c) be present both pre- and post-intervention, (d) be found in at-risk, pre-reading children and (e) be associated with genetic risk. We discuss each of these five characteristics in turn and summarize the studies that have examined each of them. The available literature provides evidence that anomalies in left temporo-parietal cortex, and possibly occipito-temporal cortex, may be closely related to the etiology of RD. Improved understanding of the etiology of RD can help improve the accuracy of early detection and enable targeted intervention of cognitive processes that are amenable to change, leading to improved outcomes in at-risk or affected populations.
Collapse
Affiliation(s)
- Zhichao Xia
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, USA
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, China
| | - Roeland Hancock
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, USA
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, USA
- Haskins Laboratories, USA
- Department of Neuropsychiatry, Keio University School of Medicine, Japan
- Dyslexia Center, University of California San Francisco, USA
| |
Collapse
|
40
|
Perrachione TK, Del Tufo SN, Winter R, Murtagh J, Cyr A, Chang P, Halverson K, Ghosh SS, Christodoulou JA, Gabrieli JDE. Dysfunction of Rapid Neural Adaptation in Dyslexia. Neuron 2016. [PMID: 28009278 DOI: 10.1016/j.neuron.2016.11.020"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Identification of specific neurophysiological dysfunctions resulting in selective reading difficulty (dyslexia) has remained elusive. In addition to impaired reading development, individuals with dyslexia frequently exhibit behavioral deficits in perceptual adaptation. Here, we assessed neurophysiological adaptation to stimulus repetition in adults and children with dyslexia for a wide variety of stimuli, spoken words, written words, visual objects, and faces. For every stimulus type, individuals with dyslexia exhibited significantly diminished neural adaptation compared to controls in stimulus-specific cortical areas. Better reading skills in adults and children with dyslexia were associated with greater repetition-induced neural adaptation. These results highlight a dysfunction of rapid neural adaptation as a core neurophysiological difference in dyslexia that may underlie impaired reading development. Reduced neurophysiological adaptation may relate to prior reports of reduced behavioral adaptation in dyslexia and may reveal a difference in brain functions that ultimately results in a specific reading impairment.
Collapse
Affiliation(s)
- Tyler K Perrachione
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Stephanie N Del Tufo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rebecca Winter
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jack Murtagh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Cyr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Chang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kelly Halverson
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satrajit S Ghosh
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joanna A Christodoulou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
41
|
Lebel C, MacMaster FP, Dewey D. Brain metabolite levels and language abilities in preschool children. Brain Behav 2016; 6:e00547. [PMID: 27781150 PMCID: PMC5064348 DOI: 10.1002/brb3.547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/20/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Language acquisition occurs rapidly during early childhood and lays the foundation for future reading success. However, little is known about the brain-language relationships in young children. The goal of this study was to investigate relationships between brain metabolites and prereading language abilities in healthy preschool-aged children. METHODS Participants were 67 healthy children aged 3.0-5.4 years scanned on a 3T GE MR750w MRI scanner using short echo proton spectroscopy with a voxel placed in the anterior cingulate gyrus (n = 56) and/or near the left angular gyrus (n = 45). Children completed the NEPSY-II Phonological Processing and Speeded Naming subtests at the same time as their MRI scan. We calculated glutamate, glutamine, creatine/phosphocreatine, choline, inositol, and NAA concentrations, and correlated these with language skills. RESULTS In the anterior cingulate, Phonological Processing Scaled Scores were significantly correlated with glutamate, creatine, and inositol concentrations. In the left angular gyrus, Speeded Naming Combined Scaled Scores showed trend correlations with choline and glutamine concentrations. CONCLUSIONS For the first time, we demonstrate relationships between brain metabolites and prereading language abilities in young children. Our results show relationships between language and inositol and glutamate that may reflect glial differences underlying language function, and a relationship of language with creatine. The trend between Speeded Naming and choline is consistent with previous research in older children and adults; however, larger sample sizes are needed to confirm whether this relationship is indeed significant in young children. These findings help understand the brain basis of language, and may ultimately lead to earlier and more effective interventions for reading disabilities.
Collapse
Affiliation(s)
- Catherine Lebel
- Department of Radiology University of Calgary Calgary AB Canada; Child & Adolescent Imaging Research (CAIR) Program Alberta Children's Hospital Research Institute University of Calgary Calgary AB Canada
| | - Frank P MacMaster
- Child & Adolescent Imaging Research (CAIR) Program Alberta Children's Hospital Research Institute University of Calgary Calgary AB Canada; Department of Pediatrics University of Calgary Calgary AB Canada; Department of Psychiatry University of Calgary Calgary AB Canada; Mathison Centre for Mental Health Research & Education Hotchkiss Brain Institute University of Calgary Calgary AB Canada; Strategic Clinical Network for Addictions and Mental Health Alberta Health Services University of Calgary Calgary AB Canada
| | - Deborah Dewey
- Department of Pediatrics University of Calgary Calgary AB Canada; Department of Community Health Sciences University of Calgary Calgary AB Canada; Owerko Centre at the Alberta Children's Hospital Research Institute University of Calgary Calgary AB Canada
| |
Collapse
|
42
|
Jasińska KK, Molfese PJ, Kornilov SA, Mencl WE, Frost SJ, Lee M, Pugh KR, Grigorenko EL, Landi N. The BDNF Val66Met Polymorphism Influences Reading Ability and Patterns of Neural Activation in Children. PLoS One 2016; 11:e0157449. [PMID: 27551971 PMCID: PMC4995017 DOI: 10.1371/journal.pone.0157449] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
Understanding how genes impact the brain’s functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children’s (age 6–10) neural activation patterns during a reading task (n = 81) using functional magnetic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading–related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes.
Collapse
Affiliation(s)
- Kaja K. Jasińska
- Haskins Laboratories, New Haven, CT, United States of America
- * E-mail:
| | - Peter J. Molfese
- Haskins Laboratories, New Haven, CT, United States of America
- University of Connecticut, Storrs, CT, United States of America
| | - Sergey A. Kornilov
- Haskins Laboratories, New Haven, CT, United States of America
- University of Houston, Houston, TX, United States of America
- Baylor College of Medicine, Houston, TX, United States of America
- Moscow State University, Moscow, Russian Federation
- Saint-Petersburg State University, Saint-Petersburg, Russian Federation
| | - W. Einar Mencl
- Haskins Laboratories, New Haven, CT, United States of America
- Yale University, New Haven, CT, United States of America
| | | | - Maria Lee
- Yale University, New Haven, CT, United States of America
| | - Kenneth R. Pugh
- Haskins Laboratories, New Haven, CT, United States of America
- University of Connecticut, Storrs, CT, United States of America
- Yale University, New Haven, CT, United States of America
| | - Elena L. Grigorenko
- Haskins Laboratories, New Haven, CT, United States of America
- Yale University, New Haven, CT, United States of America
- University of Houston, Houston, TX, United States of America
- Baylor College of Medicine, Houston, TX, United States of America
- Saint-Petersburg State University, Saint-Petersburg, Russian Federation
- Moscow City University for Psychology and Education, Moscow, Russian Federation
| | - Nicole Landi
- Haskins Laboratories, New Haven, CT, United States of America
- University of Connecticut, Storrs, CT, United States of America
- Yale University, New Haven, CT, United States of America
| |
Collapse
|
43
|
Why is the processing of global motion impaired in adults with developmental dyslexia? Brain Cogn 2016; 108:20-31. [PMID: 27429095 PMCID: PMC5029198 DOI: 10.1016/j.bandc.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 01/28/2023]
Abstract
Individuals with dyslexia are purported to have a selective dorsal stream impairment that manifests as a deficit in perceiving visual global motion relative to global form. However, the underlying nature of the visual deficit in readers with dyslexia remains unclear. It may be indicative of a difficulty with motion detection, temporal processing, or any task that necessitates integration of local visual information across multiple dimensions (i.e. both across space and over time). To disentangle these possibilities we administered four diagnostic global motion and global form tasks to a large sample of adult readers (N=106) to characterise their perceptual abilities. Two sets of analyses were conducted. First, to investigate if general reading ability is associated with performance on the visual tasks across the entire sample, a composite reading score was calculated and entered into a series of continuous regression analyses. Next, to investigate if the performance of readers with dyslexia differs from that of good readers on the visual tasks we identified a group of forty-three individuals for whom phonological decoding was specifically impaired, consistent with the dyslexic profile, and compared their performance with that of good readers who did not exhibit a phonemic deficit. Both analyses yielded a similar pattern of results. Consistent with previous research, coherence thresholds of poor readers were elevated on a random-dot global motion task and a spatially one-dimensional (1-D) global motion task, but no difference was found on a static global form task. However, our results extend those of previous studies by demonstrating that poor readers exhibited impaired performance on a temporally-defined global form task, a finding that is difficult to reconcile with the dorsal stream vulnerability hypothesis. This suggests that the visual deficit in developmental dyslexia does not reflect an impairment detecting motion per se. It is better characterised as a difficulty processing temporal information, which is exacerbated when local visual cues have to be integrated across multiple (>2) dimensions.
Collapse
|
44
|
Ozernov-Palchik O, Yu X, Wang Y, Gaab N. Lessons to be learned: how a comprehensive neurobiological framework of atypical reading development can inform educational practice. Curr Opin Behav Sci 2016; 10:45-58. [PMID: 27766284 DOI: 10.1016/j.cobeha.2016.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dyslexia is a heritable reading disorder with an estimated prevalence of 5-17%. A multiple deficit model has been proposed that illustrates dyslexia as an outcome of multiple risks and protective factors interacting at the genetic, neural, cognitive, and environmental levels. Here we review the evidence on each of these levels and discuss possible underlying mechanisms and their reciprocal interactions along a developmental timeline. Current and potential implications of neuroscientific findings for contemporary challenges in the field of dyslexia, as well as for reading development and education in general, are then discussed.
Collapse
Affiliation(s)
- Ola Ozernov-Palchik
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Center for Reading and Language Research, Tufts University, Medford, MA 02155, United States
| | - Xi Yu
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Yingying Wang
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States
| | - Nadine Gaab
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Children's Hospital Boston, MA 02115, United States; Harvard Medical School, Boston, MA 02115, United States; Harvard Graduate School of Education, Cambridge, MA 02138, United States
| |
Collapse
|
45
|
Buchweitz A. Language and reading development in the brain today: neuromarkers and the case for prediction. J Pediatr (Rio J) 2016; 92:S8-S13. [PMID: 26993852 DOI: 10.1016/j.jped.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/21/2016] [Accepted: 02/15/2016] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES The goal of this article is to provide an account of language development in the brain using the new information about brain function gleaned from cognitive neuroscience. This account goes beyond describing the association between language and specific brain areas to advocate the possibility of predicting language outcomes using brain-imaging data. The goal is to address the current evidence about language development in the brain and prediction of language outcomes. SOURCES Recent studies will be discussed in the light of the evidence generated for predicting language outcomes and using new methods of analysis of brain data. SUMMARY OF THE DATA The present account of brain behavior will address: (1) the development of a hardwired brain circuit for spoken language; (2) the neural adaptation that follows reading instruction and fosters the "grafting" of visual processing areas of the brain onto the hardwired circuit of spoken language; and (3) the prediction of language development and the possibility of translational neuroscience. CONCLUSIONS Brain imaging has allowed for the identification of neural indices (neuromarkers) that reflect typical and atypical language development; the possibility of predicting risk for language disorders has emerged. A mandate to develop a bridge between neuroscience and health and cognition-related outcomes may pave the way for translational neuroscience.
Collapse
Affiliation(s)
- Augusto Buchweitz
- School of Letters, Instituto do Cérebro do Rio Grande do Sul (Inscer), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
46
|
Neuroplasticity and MRI: A perfect match. Neuroimage 2016; 131:13-28. [DOI: 10.1016/j.neuroimage.2015.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022] Open
|
47
|
Buchweitz A. Language and reading development in the brain today: neuromarkers and the case for prediction. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2016. [DOI: 10.1016/j.jpedp.2016.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
48
|
Rueckl JG. Towards a Theory of Variation in the Organization of the Word Reading System. SCIENTIFIC STUDIES OF READING : THE OFFICIAL JOURNAL OF THE SOCIETY FOR THE SCIENTIFIC STUDY OF READING 2016; 20:86-97. [PMID: 26997862 PMCID: PMC4796942 DOI: 10.1080/10888438.2015.1103741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The strategy underlying most computational models of word reading is to specify the organization of the reading system-its architecture and the processes and representations it employs-and to demonstrate that this organization would give rise to the behavior observed in word reading tasks. This approach fails to adequately address the variation in reading behavior observed across and within linguistic communities. Only computational models that incorporate learning can fully account for variation in organization. However, even extant learning models (e.g., the triangle model) must be extended if they are to fully account for variation in organization. The challenges associated with extending theories in this way are discussed.
Collapse
Affiliation(s)
- Jay G Rueckl
- University of Connecticut and Haskins Laboratories
| |
Collapse
|
49
|
Sajja VSSS, Hubbard WB, Hall CS, Ghoddoussi F, Galloway MP, VandeVord PJ. Enduring deficits in memory and neuronal pathology after blast-induced traumatic brain injury. Sci Rep 2015; 5:15075. [PMID: 26537106 PMCID: PMC4633584 DOI: 10.1038/srep15075] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/15/2015] [Indexed: 01/06/2023] Open
Abstract
Few preclinical studies have assessed the long-term neuropathology and behavioral deficits after sustaining blast-induced neurotrauma (BINT). Previous studies have shown extensive astrogliosis and cell death at acute stages (<7 days) but the temporal response at a chronic stage has yet to be ascertained. Here, we used behavioral assays, immmunohistochemistry and neurochemistry in limbic areas such as the amygdala (Amy), Hippocampus (Hipp), nucleus accumbens (Nac), and prefrontal cortex (PFC), to determine the long-term effects of a single blast exposure. Behavioral results identified elevated avoidance behavior and decreased short-term memory at either one or three months after a single blast event. At three months after BINT, markers for neurodegeneration (FJB) and microglia activation (Iba-1) increased while index of mature neurons (NeuN) significantly decreased in all brain regions examined. Gliosis (GFAP) increased in all regions except the Nac but only PFC was positive for apoptosis (caspase-3). At three months, tau was selectively elevated in the PFC and Hipp whereas α-synuclein transiently increased in the Hipp at one month after blast exposure. The composite neurochemical measure, myo-inositol+glycine/creatine, was consistently increased in each brain region three months following blast. Overall, a single blast event resulted in enduring long-term effects on behavior and neuropathological sequelae.
Collapse
Affiliation(s)
| | - W Brad Hubbard
- School of Biomedical Engineering and Sciences, Virginia Polytechnic and State University, Blacksburg, VA
| | - Christina S Hall
- School of Biomedical Engineering and Sciences, Virginia Polytechnic and State University, Blacksburg, VA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI
| | - Matthew P Galloway
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI.,Department of Psychiatry, Wayne State University School of Medicine, Detroit, MI
| | - Pamela J VandeVord
- School of Biomedical Engineering and Sciences, Virginia Polytechnic and State University, Blacksburg, VA.,Salem VA Medical Center, Research &Development Service, Salem, VA, USA
| |
Collapse
|
50
|
Zou S, Zhang Y, Cao Y, Zhang Y. Correlation of maternal abuse during pregnancy with infant temperament and development. Arch Dis Child 2015; 100:938-43. [PMID: 26101432 DOI: 10.1136/archdischild-2013-305450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 06/07/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the effects of domestic violence (DV) against pregnant women on their infant's development in China. DESIGN 247 mothers were interviewed using the Chinese version of the Abuse Assessment Screen, and all participants underwent postnatal assessment with the Edinburgh Postpartum Depression Scale (EDPS). Plasma glutamate (Glu), γ-aminobutyric acid (GABA) and cortisol levels of the neonates were measured. After a 10-month follow-up, the infants were assessed using the Revised Infant Temperament Questionnaire (RITQ) and Bayley Scales of Infant Development (BSID). RESULTS 86 infants of abused mothers (DV group) and 137 infants of non-abused mothers (non-DV group) completed the 10-month follow-up. Neonate levels of plasma Glu, GABA and cortisol were significantly higher in the DV group than in the non-DV group. Scores for the temperament factors, rhythmicity, approach/withdrawal, mood, distractibility and persistence, of the RITQ were rated significantly higher, and results for the Psychomotor Development Index (PDI) of the BSID were significantly lower in the DV group than in the non-DV group at 10 months. After adjustment for the EPDS as a covariate, only distractibility of the RITQ showed a statistically significant difference between the two groups. In correlation analysis, infant mood correlated significantly with levels of plasma Glu (β=0.2345) and GABA (β=0.2554), whether or not the EPDS scores were adjusted. Infant persistence and threshold of stimuli scores did not correlate significantly with DV during pregnancy after adjustment for the EPDS. CONCLUSIONS DV against pregnant women may be associated with impaired temperament and development in their infants.
Collapse
Affiliation(s)
- Shaohong Zou
- People's Hospital of XinJiang Uygur Autonomous Region, Urumqi, People's Republic of China
| | - Yong Zhang
- Tianjin Anding Hospital, Tianjin, People's Republic of China
| | - Yuping Cao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yalin Zhang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|