1
|
Zhou Y, Huang S, Zhang T, Deng D, Huang L, Chen X. Deciphering consciousness: The role of corticothalamocortical interactions in general anesthesia. Pharmacol Res 2025; 212:107593. [PMID: 39788339 DOI: 10.1016/j.phrs.2025.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
General anesthesia is administered to millions of individuals each year, however, the precise mechanism by which it induces unconsciousness remains unclear. While some theories suggest that anesthesia shares similarities with natural sleep, targeting sleep-promoting areas and inhibiting arousal nuclei, recent research indicates a more complex process. Emerging evidence highlights the critical role of corticothalamocortical circuits, which are involved in higher cognitive functions, in controlling arousal states and modulating transitions between different conscious states during anesthesia. The administration of general anesthetics disrupts connectivity within these circuits, resulting in a reversible state of unconsciousness. This review elucidates how anesthetics impair corticothalamocortical interactions, thereby affecting the flow of information across various cortical layers and disrupting higher-order cognitive functions while preserving basic sensory processing. Additionally, the role of the prefrontal cortex in regulating arousal through both top-down and bottom-up pathways was examined. These findings highlight the intricate interplay between the cortical and subcortical networks in maintaining and restoring consciousness under anesthesia, offering potential therapeutic targets for enhancing anesthesia management.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
2
|
Jia Q, Tan H, Li T, Duan X. Role of adenosine in the pathophysiology and treatment of attention deficit hyperactivity disorder. Purinergic Signal 2024:10.1007/s11302-024-10059-2. [PMID: 39480600 DOI: 10.1007/s11302-024-10059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental condition characterized by persistent inattention, hyperactivity, and impulsivity. Although its precise etiology remains unclear, current evidence suggests that dysregulation within the neurotransmitter system plays a key role in the pathogenesis of ADHD. Adenosine, an endogenous nucleoside widely distributed throughout the body, modulates various physiological processes, including neurotransmitter release, sleep regulation, and cognitive functions through its receptors. This review critically examines the role of the adenosine system in ADHD, focusing on the links between adenosine receptor function and ADHD-related symptoms. Additionally, it explores how adenosine interacts with dopamine and other neurotransmitter pathways, shedding light on its involvement in ADHD pathophysiology. This review aims to provide insights into the potential therapeutic implications of targeting the adenosine system for ADHD management.
Collapse
Affiliation(s)
- Qingxia Jia
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Hongwan Tan
- People's Hospital of Tongliang District, Chongqing, 402560, Tongliang, China
| | - Tingsong Li
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China
| | - Xiaoling Duan
- Department of Rehabilitation Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, 400014, China.
| |
Collapse
|
3
|
Pardo-Valencia J, Moreno-Gomez M, Mercado N, Pro B, Ammann C, Humanes-Valera D, Foffani G. Local wakefulness-like activity of layer 5 cortex under general anaesthesia. J Physiol 2024; 602:5289-5307. [PMID: 39316039 DOI: 10.1113/jp286417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
Consciousness, defined as being aware of and responsive to one's surroundings, is characteristic of normal waking life and typically is lost during sleep and general anaesthesia. The traditional view of consciousness as a global brain state has evolved toward a more sophisticated interplay between global and local states, with the presence of local sleep in the awake brain and local wakefulness in the sleeping brain. However, this interplay is not clear for general anaesthesia, where loss of consciousness was recently suggested to be associated with a global state of brain-wide synchrony that selectively involves layer 5 cortical pyramidal neurons across sensory, motor and associative areas. According to this global view, local wakefulness of layer 5 cortex should be incompatible with deep anaesthesia, a hypothesis that deserves to be scrutinised with causal manipulations. Here, we show that unilateral chemogenetic activation of layer 5 pyramidal neurons in the sensorimotor cortex of isoflurane-anaesthetised mice induces a local state transition from slow-wave activity to tonic firing in the transfected hemisphere. This wakefulness-like activity dramatically disrupts layer 5 interhemispheric synchrony with mirror-image locations in the contralateral hemisphere, but does not reduce the level of unconsciousness under deep anaesthesia, nor in the transitions to/from anaesthesia. Global layer 5 synchrony may thus be a sufficient condition for anaesthesia-induced unconsciousness, but is not a necessary one, at least under isoflurane anaesthesia. Local wakefulness-like activity of layer 5 cortex can be induced and maintained under deep anaesthesia, encouraging further investigation into the local vs. global aspects of anaesthesia-induced unconsciousness. KEY POINTS: The neural correlates of consciousness have evolved from global brain states to a nuanced interplay between global and local states, evident in terms of local sleep in awake brains and local wakefulness in sleeping brains. The concept of local wakefulness remains unclear for general anaesthesia, where the loss of consciousness has been recently suggested to involve brain-wide synchrony of layer 5 cortical neurons. We found that local wakefulness-like activity of layer 5 cortical can be chemogenetically induced in anaesthetised mice without affecting the depth of anaesthesia or the transitions to and from unconsciousness. Global layer 5 synchrony may thus be a sufficient but not necessary feature for the unconsciousness induced by general anaesthesia. Local wakefulness-like activity of layer 5 neurons is compatible with general anaesthesia, thus promoting further investigation into the local vs. global aspects of anaesthesia-induced unconsciousness.
Collapse
Affiliation(s)
- Jesús Pardo-Valencia
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Miryam Moreno-Gomez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Noelia Mercado
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Beatriz Pro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Claudia Ammann
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Desire Humanes-Valera
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Lee DH, Jee HJ, Jung YS. β-Lapachone Exerts Hypnotic Effects via Adenosine A 1 Receptor in Mice. Biomol Ther (Seoul) 2024; 32:531-539. [PMID: 39164983 PMCID: PMC11392670 DOI: 10.4062/biomolther.2024.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 08/22/2024] Open
Abstract
Sleep is one of the most essential physiological phenomena for maintaining health. Sleep disturbances, such as insomnia, are often accompanied by psychiatric or physical conditions such as impaired attention, anxiety, and stress. Medication used to treat insomnia have concerns about potential side effects with long-term use, so interest in the use of alternative medicine is increasing. In this study, we investigated the hypnotic effects of β-lapachone (β-Lap), a natural naphthoquinone compound, using pentobarbital-induced sleep test, immunohistochemistry, real-time PCR, and western blot in mice. Our results indicated that β-Lap exerts a significant hypnotic effect by showing a decrease in sleep onset latency and an increase in total sleep time in pentobarbital-induced sleep model. The results of c-Fos immunostaining showed that β-Lap decreased neuronal activity in the basal forebrain and lateral hypothalamus, which are wakefulness-promoting brain regions, while increasing in the ventrolateral preoptic nucleus, a sleep-promoting region; all these effects were significantly abolished by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), an adenosine A1 receptor (A1R) antagonist. Western blot analysis showed that β-Lap increased extracellular signalregulated kinase phosphorylation and nuclear factor-kappa B translocation from the cytoplasm to the nucleus; these effects were inhibited by DPCPX. Additionally, β-Lap increased the mRNA levels of A1R. Taken together, these results suggest that β-Lap exerts hypnotic effects, potentially through A1R.
Collapse
Affiliation(s)
- Do Hyun Lee
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hye Jin Jee
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Yi-Sook Jung
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
5
|
Rauch E, Ari C, D’Agostino DP, Kovács Z. Exogenous Ketone Supplement Administration Abrogated Isoflurane-Anesthesia-Induced Increase in Blood Glucose Level in Female WAG/Rij Rats. Nutrients 2024; 16:1477. [PMID: 38794716 PMCID: PMC11124432 DOI: 10.3390/nu16101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
It has been demonstrated that isoflurane-induced anesthesia can increase the blood glucose level, leading to hyperglycemia and several adverse effects. The administration of a mix of ketone diester (KE) and medium-chain triglyceride (MCT) oil, named KEMCT, abolished the isoflurane-anesthesia-induced increase in blood glucose level and prolonged the recovery time from isoflurane anesthesia in a male preclinical rodent model, Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. While most preclinical studies use exclusively male animals, our previous study on blood glucose changes in response to KEMCT administration showed that the results can be sex-dependent. Thus, in this study, we investigated female WAG/Rij rats, whether KEMCT gavage (3 g/kg/day for 7 days) can change the isoflurane (3%)-anesthesia-induced increase in blood glucose level and the recovery time from isoflurane-evoked anesthesia using the righting reflex. Moreover, KEMCT-induced ketosis may enhance both the extracellular level of adenosine and the activity of adenosine A1 receptors (A1Rs). To obtain information on the putative A1R mechanism of action, the effects of an A1R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine; intraperitoneal/i.p. 0.2 mg/kg), on KEMCT-generated influences were also investigated. Our results show that KEMCT supplementation abolished the isoflurane-anesthesia-induced increase in blood glucose level, and this was abrogated by the co-administration of DPCPX. Nevertheless, KEMCT gavage did not change the recovery time from isoflurane-induced anesthesia. We can conclude that intragastric gavage of exogenous ketone supplements (EKSs), such as KEMCT, can abolish the isoflurane-anesthesia-induced increase in blood glucose level in both sexes likely through A1Rs in WAG/Rij rats, while recovery time was not affected in females, unlike in males. These results suggest that the administration of EKSs as an adjuvant therapy may be effective in mitigating metabolic side effects of isoflurane, such as hyperglycemia, in both sexes.
Collapse
Affiliation(s)
- Enikő Rauch
- Department of Biology, Berzsenyi Dániel Teacher Training Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary; (E.R.)
- Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Ketone Technologies LLC, Tampa, FL 33612, USA;
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, Tampa, FL 33620, USA
| | - Dominic P. D’Agostino
- Ketone Technologies LLC, Tampa, FL 33612, USA;
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Zsolt Kovács
- Department of Biology, Berzsenyi Dániel Teacher Training Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary; (E.R.)
| |
Collapse
|
6
|
de Bem Alves AC, Speck AE, Farias HR, Martins LM, Dos Santos NS, Pannata G, Tavares AP, de Oliveira J, Tomé ÂR, Cunha RA, Aguiar AS. The striatum drives the ergogenic effects of caffeine. Purinergic Signal 2023; 19:673-683. [PMID: 36697868 PMCID: PMC10754785 DOI: 10.1007/s11302-023-09922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Caffeine is one of the main ergogenic resources used in exercise and sports. Previously, we reported the ergogenic mechanism of caffeine through neuronal A2AR antagonism in the central nervous system [1]. We now demonstrate that the striatum rules the ergogenic effects of caffeine through neuroplasticity changes. Thirty-four Swiss (8-10 weeks, 47 ± 1.5 g) and twenty-four C57BL/6J (8-10 weeks, 23.9 ± 0.4 g) adult male mice were studied behaviorly and electrophysiologically using caffeine and energy metabolism was studied in SH-SY5Y cells. Systemic (15 mg/kg, i.p.) or striatal (bilateral, 15 μg) caffeine was psychostimulant in the open field (p < 0.05) and increased grip efficiency (p < 0.05). Caffeine also shifted long-term depression (LTD) to potentiation (LTP) in striatal slices and increased the mitochondrial mass (p < 0.05) and membrane potential (p < 0.05) in SH-SY5Y dopaminergic cells. Our results demonstrate the role of the striatum in the ergogenic effects of caffeine, with changes in neuroplasticity and mitochondrial metabolism.
Collapse
Affiliation(s)
- Ana Cristina de Bem Alves
- LABIOEX-Laboratory of Exercise Biology, Federal University of Santa Catarina-UFSC, Ararangua, SC, 88905-120, Brazil
| | - Ana Elisa Speck
- LABIOEX-Laboratory of Exercise Biology, Federal University of Santa Catarina-UFSC, Ararangua, SC, 88905-120, Brazil
| | - Hémelin Resende Farias
- Post-graduation Program in Biological Sciences, Department of Biochemistry, Institute of Basic Sciences of Health, Federal University of Rio Grande do Sul-UFRGS, Porto Alegre, RS, 90040-060, Brazil
| | - Leo Meira Martins
- Post-graduation Program in Biological Sciences, Department of Physiology, Institute of Basic Sciences of Health, Federal University of Rio Grande do Sul-UFRGS, Porto Alegre, RS, 90050-170, Brazil
| | - Naiara Souza Dos Santos
- LABIOEX-Laboratory of Exercise Biology, Federal University of Santa Catarina-UFSC, Ararangua, SC, 88905-120, Brazil
| | - Gabriela Pannata
- LABIOEX-Laboratory of Exercise Biology, Federal University of Santa Catarina-UFSC, Ararangua, SC, 88905-120, Brazil
| | - Ana Paula Tavares
- LABIOEX-Laboratory of Exercise Biology, Federal University of Santa Catarina-UFSC, Ararangua, SC, 88905-120, Brazil
| | - Jade de Oliveira
- Post-graduation Program in Biological Sciences, Department of Biochemistry, Institute of Basic Sciences of Health, Federal University of Rio Grande do Sul-UFRGS, Porto Alegre, RS, 90040-060, Brazil
| | - Ângelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- FMUC - Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Aderbal S Aguiar
- LABIOEX-Laboratory of Exercise Biology, Federal University of Santa Catarina-UFSC, Ararangua, SC, 88905-120, Brazil.
| |
Collapse
|
7
|
Malviya AK, Saranlal AM, Mulchandani M, Gupta A. Caffeine - Essentials for anaesthesiologists: A narrative review. J Anaesthesiol Clin Pharmacol 2023; 39:528-538. [PMID: 38269189 PMCID: PMC10805209 DOI: 10.4103/joacp.joacp_285_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 01/26/2024] Open
Abstract
Caffeine has a multitude of uses in anaesthesia, and numerous studies have evaluated its efficacy and usefulness in various aspects of anaesthesia and medical practice. Its various applications in anaesthesia include its role in awakening from anaesthesia, managing post-dural puncture headache, managing post-sedation paradoxical hyper-activity in children, post-operative bowel paralysis, and apnoea in paediatric populations, that is, apnoea in infancy, paediatric obstructive apnoea, and post-anaesthetic apnoea in pre-mature infants. Though the effects of caffeine on bronchial smooth muscle, neurological, and cardio-vascular systems are well known, the relatively little-known effects on the endocrine and gastro-intestinal (GI) system have been recently taking primacy for eliciting its therapeutic benefits. The literature shows encouraging evidence in favour of caffeine, but unambiguous evidence of caffeine benefits for patients is lacking and needs further investigation. In this narrative review of literature, we summarise the available literature to provide insights into the pharmacokinetics, pharmacodynamics, clinical application of caffeine in modern anaesthetic practice, and evidence available in this field to date. An awareness of the various physiological effects, adverse effects, reported applications, and their evidence will widen the horizon for anaesthesiologists to increase its rational use and advance research in this field. Well-designed randomised controlled trials regarding the various outcomes related to caffeine use in anaesthesia should be planned to generate sound evidence and formulate recommendations to guide clinicians.
Collapse
Affiliation(s)
- Amit Kumar Malviya
- Department of Anaesthesia, Pain Medicine and Critical Care, New Delhi, India
| | - A M Saranlal
- Department of Anaesthesia, Pain Medicine and Critical Care, New Delhi, India
| | - Manish Mulchandani
- Academic Section, All India Institute of Medical Sciences, New Delhi, India
| | - Anju Gupta
- Department of Anaesthesia, Pain Medicine and Critical Care, New Delhi, India
| |
Collapse
|
8
|
Simões JL, Sobierai LD, Leal IF, Dos Santos MV, Coiado JV, Bagatini MD. Action of the Purinergic and Cholinergic Anti-inflammatory Pathways on Oxidative Stress in Patients with Alzheimer's Disease in the Context of the COVID-19 Pandemic. Neuroscience 2023; 512:110-132. [PMID: 36526078 PMCID: PMC9746135 DOI: 10.1016/j.neuroscience.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of the 2019 coronavirus disease (COVID-19), has affected more than 20 million people in Brazil and caused a global health emergency. This virus has the potential to affect various parts of the body and compromise metabolic functions. The virus-mediated neural inflammation of the nervous system is due to a storm of cytokines and oxidative stress, which are the clinical features of Alzheimer's disease (AD). This neurodegenerative disease is aggravated in cases involving SARS-CoV-2 and its inflammatory biomarkers, accelerating accumulation of β-amyloid peptide, hyperphosphorylation of tau protein, and production of reactive oxygen species, which lead to homeostasis imbalance. The cholinergic system, through neurons and the neurotransmitter acetylcholine (ACh), modulates various physiological pathways, such as the response to stress, sleep and wakefulness, sensory information, and the cognitive system. Patients with AD have low concentrations of ACh; hence, therapeutic methods are aimed at adjusting the ACh titers available to the body for maintaining functionality. Herein, we focused on acetylcholinesterase inhibitors, responsible for the degradation of ACh in the synaptic cleft, and muscarinic and nicotinic receptor agonists of the cholinergic system owing to the therapeutic potential of the cholinergic anti-inflammatory pathway in AD associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Júlia L.B. Simões
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Inayá F. Leal
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - João Victor Coiado
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Margarete D. Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil,Corresponding author
| |
Collapse
|
9
|
Kovács Z, D’Agostino DP, Ari C. Ketone supplementation abolished isoflurane anesthesia-induced elevation in blood glucose level and increased recovery time from anesthesia in Wistar Albino Glaxo Rijswijk rats. BMC Anesthesiol 2023; 23:43. [PMID: 36750771 PMCID: PMC9903607 DOI: 10.1186/s12871-023-02000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND It has been suggested that administration of exogenous ketone supplements (EKSs) not only increases blood ketone body levels but also decreases blood glucose level and modulates isoflurane-induced anesthesia in different rodents, such as Wistar Albino Glaxo Rijswijk (WAG/Rij) rats. Thus, we investigated whether administration of EKSs can modulate the isoflurane anesthesia-generated increase in blood glucose level and the time required to recover from isoflurane-induced anesthesia. METHODS To investigate the effect of EKSs on isoflurane anesthesia-induced changes in blood glucose and R-β-hydroxybutyrate (R-βHB) level as well as recovery time from anesthesia, we used KEMCT (mix of ketone ester/KE and medium chain triglyceride/MCT oil in a 1:1 ratio) in WAG/Rij rats. First, to accustom the animals to the method, water gavage was carried out for 5 days (adaptation period). After adaptation period, rats of first group (group 1) were gavaged by water (3 g/kg), whereas, in the case of second group (group 2), the diet of animals was supplemented by KEMCT (3 g/kg, gavage) once per day for 7 days. One hour after the last gavage, isoflurane (3%) anesthesia was induced for 20 min (group 1 and group 2) and the time required for recovery from anesthesia was measured by using righting reflex. Subsequently, blood levels of both R-βHB and glucose were also evaluated. Changes in blood glucose and R-βHB levels were compared to control, which control glucose and R-βHB levels were measured on the last day of the adaptation period (group 1 and group 2). Time required for recovery from isoflurane anesthesia, which was detected after 7th KEMCT gavage (group 2), was compared to recovery time measured after 7th water gavage (group 1). RESULTS The KEMCT maintained the normal glucose level under isoflurane anesthesia-evoked circumstances preventing the glucose level elevating effect of isoflurane. Thus, we demonstrated that administration of KEMCT not only increased blood level of R-βHB but also abolished the isoflurane anesthesia-generated increase in blood glucose level. Moreover, the time required for recovery from isoflurane-evoked anesthesia increased significantly in KEMCT treated animals. CONCLUSIONS Putative influence of elevated blood ketone body level on isoflurane-evoked effects, such as modulation of blood glucose level and recovery time from anesthesia, should be considered by anesthesiologists.
Collapse
Affiliation(s)
- Zsolt Kovács
- grid.5591.80000 0001 2294 6276Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary
| | - Dominic P. D’Agostino
- Ketone Technologies LLC, Tampa, FL USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL USA ,Institute for Human and Machine Cognition, Ocala, FL USA
| | - Csilla Ari
- Ketone Technologies LLC, Tampa, FL, USA. .,Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL, USA.
| |
Collapse
|
10
|
Low Levels of Adenosine and GDNF Are Potential Risk Factors for Parkinson's Disease with Sleep Disorders. Brain Sci 2023; 13:brainsci13020200. [PMID: 36831743 PMCID: PMC9953846 DOI: 10.3390/brainsci13020200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Sleep disturbances are the most prevalent non-motor symptoms in the preclinical stage of Parkinson's disease (PD). Adenosine, glial-derived neurotrophic factor (GDNF), and associated neurotransmitters are crucial in the control of sleep arousal. This study aimed to detect the serum levels of adenosine, GDNF, and associated neurotransmitters and explored their correlations with PD with sleep disorders. Demographic characteristics and clinical information of PD patients and healthy participants were assessed. Serum concentrations of adenosine, GDNF, and related neurotransmitters were detected by ELISA and LC-MS. The correlation between serum levels of adenosine, GDNF, and associated neurotransmitters and sleep disorders was explored using logistic regression. PD patients with sleep disorders had higher scores of HAMA, HAMD, ESS, UPDRS-III, and H-Y stage. Lower levels of adenosine, GDNF, and γ-GABA were observed in PD patients who had sleep problems. Logistic regression analysis showed adenosine and GDNF were protective factors for preventing sleep disorders. Adenosine combined with GDNF had a higher diagnostic efficiency in predicting PD with sleep disorders by ROC analysis. This study revealed low adenosine and GDNF levels may be risk factors for sleep disorders in PD. The decrease of serum adenosine and GDNF levels may contribute to the diagnosis of PD with sleep disturbances.
Collapse
|
11
|
Kwon RW, Park JS, Lee HG, Park JI, Choo EA, Lee SJ, Lee JB. Coffee intake may promote sudomotor function activation via the contribution of caffeine. Front Nutr 2022; 9:1051828. [PMID: 36570158 PMCID: PMC9774485 DOI: 10.3389/fnut.2022.1051828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives To determine whether drinking coffee with caffeine accelerates the sympathetic response to acetylcholine (ACh). Methods Tests were performed twice at 1-week intervals following the intake of coffee. Subjects were randomly divided into two groups: Group A was administered 16 fluid oz of water (CON), while Group B was given 16 fluid oz of coffee (Coffee). After 1 week, Group A was administered 16 fluid oz of coffee (Coffee), while Group B was given 16 fluid oz of water (CON). The quantitative sudomotor axon reflex test (QSART) was performed after intake of coffee and water and a 40 min break. QSART with iontophoresis and 10% ACh was performed to determine axon reflex (AXR) mediated with and without iontophoresis [AXR (1) and AXR (2), respectively], and directly activated sweating (DIR). Results The sweat onset time of the AXR was shorter in the Coffee compared with the CON (p < 0.05). The sweat rates in AXR (1) AXR (2) and DIR were significantly higher in the Coffee than in the CON (p < 0.05, p < 0.05, p < 0.01, respectively). In addition, the Coffee showed significantly higher density of activated sweat glands and activated sweat gland output than the CON (p < 0.05, p < 0.01, respectively). The overall results of this study showed that coffee intake could stimulate higher activation in both AXR and DIR sweat responses. Conclusion Coffee intake can improve sweating sensitivity in both the AXR and DIR by the contribution of caffeine contained in coffee. This suggests that other compounds in coffee may not inhibit the sympathetic response to ACh. Therefore, coffee may be clinically worth considering as a supplement for the activation of the cholinergic and sudomotor function.
Collapse
Affiliation(s)
- Ryeo-Won Kwon
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea,Department of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Jin-Sun Park
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ha-Gyoung Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jong-In Park
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Eon-Ah Choo
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Seung-Jea Lee
- Department of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
| | - Jeong-Beom Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea,Department of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea,*Correspondence: Jeong-Beom Lee,
| |
Collapse
|
12
|
McFalls AJ, Imperio CG, Woodward E, Krikorian C, Stoltsfus B, Wronowski B, Grigson PS, Freeman WM, Vrana KE. An RNA-seq study of the mPFC of rats with different addiction phenotypes. Brain Res Bull 2022; 191:107-120. [DOI: 10.1016/j.brainresbull.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022]
|
13
|
Mashour GA, Pal D, Brown EN. Prefrontal cortex as a key node in arousal circuitry. Trends Neurosci 2022; 45:722-732. [PMID: 35995629 PMCID: PMC9492635 DOI: 10.1016/j.tins.2022.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/02/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
The role of the prefrontal cortex (PFC) in the mechanism of consciousness is a matter of active debate. Most theoretical and empirical investigations have focused on whether the PFC is critical for the content of consciousness (i.e., the qualitative aspects of conscious experience). However, there is emerging evidence that, in addition to its well-established roles in cognition, the PFC is a key regulator of the level of consciousness (i.e., the global state of arousal). In this opinion article we review recent data supporting the hypothesis that the medial PFC is a critical node in arousal-promoting networks.
Collapse
Affiliation(s)
- George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Glovak ZT, Baghdoyan HA, Lydic R. Fentanyl and neostigmine delivered to mouse prefrontal cortex differentially alter breathing. Respir Physiol Neurobiol 2022; 303:103924. [PMID: 35662641 DOI: 10.1016/j.resp.2022.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
Abstract
Opioids impair many functions modulated by the prefrontal cortex (PFC), including wakefulness, cognition, and breathing. In contrast, cholinergic activity in the PFC increases wakefulness. This study tested the hypothesis that microinjecting the opioid fentanyl and the acetylcholinesterase inhibitor neostigmine into the PFC of awake C57BL/6J male mice (n = 27) alters breathing. The lateral and medial PFC were unilaterally microinjected with saline (control) and fentanyl. The medial PFC received additional microinjections of neostigmine. The results show that fentanyl caused site-specific changes in breathing. Fentanyl delivered to the lateral PFC significantly decreased minute ventilation variability, whereas fentanyl delivered to the medial PFC significantly increased tidal volume and duty cycle. Neostigmine microinjected into the medial PFC significantly increased respiratory rate, tidal volume, and minute ventilation. A final series of experiments revealed that decreased minute ventilation caused by systemic fentanyl administration was mitigated by PFC microinjection of neostigmine.
Collapse
Affiliation(s)
- Zachary T Glovak
- Department of Psychology, University of Tennessee, Knoxville TN 37996, USA
| | - Helen A Baghdoyan
- Department of Psychology, University of Tennessee, Knoxville TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ralph Lydic
- Department of Psychology, University of Tennessee, Knoxville TN 37996, USA; Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
15
|
Lin X, Li XX, Dong R, Wang B, Bi YL. Habitual tea consumption and postoperative delirium after total hip/knee arthroplasty in elderly patients: The PNDABLE study. Brain Behav 2022; 12:e2612. [PMID: 35555872 PMCID: PMC9226797 DOI: 10.1002/brb3.2612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To clarify the effects of habitual tea consumption on postoperative delirium (POD) in elderly patients undergoing total hip/knee arthroplasty. PATIENTS AND METHODS A prospective cohort study was carried out at Qingdao Municipal Hospital Affiliated to Qingdao University between June 2020 and June 2021. A total of 332 patients aged 65-85 years undergoing total hip/knee arthroplasty under combined spinal and epidural anesthesia were enrolled from the Perioperative Neurocognitive Disorder and Biomarker Lifestyle (PNDABLE) study in the final analysis, consisting of 168 patients with habitual tea consumption and 164 patients with infrequent tea consumption. The primary endpoint was the effects of habitual tea consumption on POD and the incidence of POD, which was assessed by the Confusion Assessment Method (CAM) twice daily during the first 7 postoperative days, and POD severity was measured by the Memorial Delirium Assessment Scale (MDAS). The secondary endpoints were the concentrations of caffeine and tea polyphenols in plasma and cerebrospinal fluid (CSF), which were detected by the enzyme-linked immunosorbent assay. RESULTS POD occurred in 61 of 332 patients (18.37%), among whom 19 had habitual tea consumption (5.72%) and 42 had infrequent tea consumption (12.65%). Habitual tea consumption (odds ratio [OR] = 0.370, 95% confidence interval [CI]: 0.205-0.670, P = .001) was significantly associated with POD in the logistic analysis, and then after adjusting for age and American Society of Anesthesiologists (ASA) physical status (OR = 0.353, 95% CI: 0.190-0.655, P = .001). Furthermore, caffeine in T0 plasma (OR = 0.834, 95% CI: 0.752-0.924, P = .001), T1 plasma (OR = 0.818, 95% CI: 0.738-0.908, P < .001), and CSF (OR = 0.899, 95% CI: 0.820-0.984, P = .022) and tea polyphenols in T0 plasma (OR = 0.541, 95% CI: 0.416-0.704, P < .001), T1 plasma (OR = 0.477, 95% CI: 0.359-0.633, P < .001), and CSF (OR = 0.526, 95% CI: 0.397-0.696, P < .001) were associated with POD after adjusting for age and ASA physical status. CONCLUSION Habitual tea consumption may be associated with a lower incidence of POD in elderly patients.
Collapse
Affiliation(s)
- Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiao-Xuan Li
- Department of Anesthesiology, Qingdao Women and Children's Hospital, Qingdao, China
| | - Rui Dong
- Department of Anesthesiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Hori K, Matsuura T, Tsujikawa S, Hino H, Kuno M, Oda Y, Nishikawa K, Mori T. Lipid emulsion facilitates reversal from volatile anesthetics in a rodent model. Clin Toxicol (Phila) 2022; 60:716-724. [PMID: 34985393 DOI: 10.1080/15563650.2021.2020280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Lipid emulsion infusion is a first-line therapy against the toxicity of local anesthetics and is a potential treatment for other drug overdoses, especially for highly lipophilic drugs. Considering the lipophilic property of volatile anesthetics, we hypothesized that lipid emulsion could reverse general anesthesia. METHODS Using adult rats, we tested the effect of lipid emulsion infusion on time to emergence after discontinuation of sevoflurane and isoflurane, and further evaluated restoration of righting reflex under continuous sevoflurane anesthesia. Electroencephalogram during lipid emulsion infusion was also investigated under continuous sevoflurane inhalation. The effect of lipid emulsion on sevoflurane-induced respiratory and hemodynamic depressions was evaluated by measuring respiratory rate, PaCO2 (arterial partial pressure of CO2), blood pressure, and heart rate. The binding property of lipid emulsion on sevoflurane and isoflurane was assessed using in vitro setting with a conical flask. RESULTS Lipid emulsion infusion significantly decreased time to emergence from sevoflurane anesthesia (131 ± 53 vs. 237 ± 69 s) and restored righting reflex during continuous sevoflurane inhalation, by comparing normal saline infusion. Consistent with the behavioral findings, the electroencephalogram under continuous sevoflurane showed decreased power of the δ bands at 5 min after the initiation of lipid emulsion infusion. In addition to reversing hypnosis, lipid emulsion recovered respiratory as well as hemodynamic depressions induced by sevoflurane. Decreased time to emergence was observed also in isoflurane anesthesia (203 ± 111 vs. 314 ± 154 s). To investigate the binding mechanism of lipid emulsion infusion, in vitro experiments revealed significantly decreased anesthetic concentrations of sevoflurane and isoflurane by mixing with lipid emulsion. CONCLUSIONS Lipid emulsion facilitated reversal from volatile anesthetics, as shown by several parameters. As lipid emulsion could bind to volatile anesthetics and simply decrease their effects, our findings suggest that lipid emulsion is a potentially useful agent to reverse general anesthesia.
Collapse
Affiliation(s)
- Kotaro Hori
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Matsuura
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shogo Tsujikawa
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hideki Hino
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Miyuki Kuno
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yutaka Oda
- Department of Anesthesiology, Osaka City Juso Hospital, Osaka, Japan
| | - Kiyonobu Nishikawa
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Anesthesiology, Shiraniwa Hospital, Nara, Japan
| | - Takashi Mori
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
17
|
Progress in modelling of brain dynamics during anaesthesia and the role of sleep-wake circuitry. Biochem Pharmacol 2021; 191:114388. [DOI: 10.1016/j.bcp.2020.114388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
|
18
|
Lydic R, Baghdoyan HA. Prefrontal Cortex Metabolome Is Modified by Opioids, Anesthesia, and Sleep. Physiology (Bethesda) 2021; 36:203-219. [PMID: 34159803 DOI: 10.1152/physiol.00043.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obtundation of wakefulness caused by opioids and loss of wakefulness caused by anesthetics and sleep significantly alter concentrations of molecules comprising the prefrontal cortex (PFC) metabolome. Quantifying state-selective changes in the PFC metabolome is essential for advancing functional metabolomics. Diverse functions of the PFC suggest the PFC metabolome as a potential therapeutic entry point for countermeasures to state-selective autonomic dysfunction.
Collapse
Affiliation(s)
- Ralph Lydic
- Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Helen A Baghdoyan
- Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
19
|
Moody OA, Zhang ER, Vincent KF, Kato R, Melonakos ED, Nehs CJ, Solt K. The Neural Circuits Underlying General Anesthesia and Sleep. Anesth Analg 2021; 132:1254-1264. [PMID: 33857967 DOI: 10.1213/ane.0000000000005361] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
General anesthesia is characterized by loss of consciousness, amnesia, analgesia, and immobility. Important molecular targets of general anesthetics have been identified, but the neural circuits underlying the discrete end points of general anesthesia remain incompletely understood. General anesthesia and natural sleep share the common feature of reversible unconsciousness, and recent developments in neuroscience have enabled elegant studies that investigate the brain nuclei and neural circuits underlying this important end point. A common approach to measure cortical activity across the brain is electroencephalogram (EEG), which can reflect local neuronal activity as well as connectivity among brain regions. The EEG oscillations observed during general anesthesia depend greatly on the anesthetic agent as well as dosing, and only some resemble those observed during sleep. For example, the EEG oscillations during dexmedetomidine sedation are similar to those of stage 2 nonrapid eye movement (NREM) sleep, but high doses of propofol and ether anesthetics produce burst suppression, a pattern that is never observed during natural sleep. Sleep is primarily driven by withdrawal of subcortical excitation to the cortex, but anesthetics can directly act at both subcortical and cortical targets. While some anesthetics appear to activate specific sleep-active regions to induce unconsciousness, not all sleep-active regions play a significant role in anesthesia. Anesthetics also inhibit cortical neurons, and it is likely that each class of anesthetic drugs produces a distinct combination of subcortical and cortical effects that lead to unconsciousness. Conversely, arousal circuits that promote wakefulness are involved in anesthetic emergence and activating them can induce emergence and accelerate recovery of consciousness. Modern neuroscience techniques that enable the manipulation of specific neural circuits have led to new insights into the neural circuitry underlying general anesthesia and sleep. In the coming years, we will continue to better understand the mechanisms that generate these distinct states of reversible unconsciousness.
Collapse
Affiliation(s)
- Olivia A Moody
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Edlyn R Zhang
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen F Vincent
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Risako Kato
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Eric D Melonakos
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christa J Nehs
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ken Solt
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Scarpa JR, Jiang P, Gao VD, Vitaterna MH, Turek FW, Kasarskis A. NREM delta power and AD-relevant tauopathy are associated with shared cortical gene networks. Sci Rep 2021; 11:7797. [PMID: 33833255 PMCID: PMC8032807 DOI: 10.1038/s41598-021-86255-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Reduced NREM sleep in humans is associated with AD neuropathology. Recent work has demonstrated a reduction in NREM sleep in preclinical AD, pointing to its potential utility as an early marker of dementia. We test the hypothesis that reduced NREM delta power and increased tauopathy are associated with shared underlying cortical molecular networks in preclinical AD. We integrate multi-omics data from two extensive public resources, a human Alzheimer's disease cohort from the Mount Sinai Brain Bank (N = 125) reflecting AD progression and a (C57BL/6J × 129S1/SvImJ) F2 mouse population in which NREM delta power was measured (N = 98). Two cortical gene networks, including a CLOCK-dependent circadian network, are associated with NREM delta power and AD tauopathy progression. These networks were validated in independent mouse and human cohorts. Identifying gene networks related to preclinical AD elucidate possible mechanisms associated with the early disease phase and potential targets to alter the disease course.
Collapse
Affiliation(s)
- Joseph R Scarpa
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Peng Jiang
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Vance D Gao
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Martha H Vitaterna
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Fred W Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Andrew Kasarskis
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
21
|
Ashraf O, Huynh T, Purnell BS, Murugan M, Fedele DE, Chitravanshi V, Boison D. Suppression of phrenic nerve activity as a potential predictor of imminent sudden unexpected death in epilepsy (SUDEP). Neuropharmacology 2021; 184:108405. [PMID: 33212114 PMCID: PMC8199795 DOI: 10.1016/j.neuropharm.2020.108405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in patients with refractory epilepsy. Centrally-mediated respiratory dysfunction has been identified as one of the principal mechanisms responsible for SUDEP. Seizures generate a surge in adenosine release. Elevated adenosine levels suppress breathing. Insufficient metabolic clearance of a seizure-induced adenosine surge might be a precipitating factor in SUDEP. In order to deliver targeted therapies to prevent SUDEP, reliable biomarkers must be identified to enable prompt intervention. Because of the integral role of the phrenic nerve in breathing, we hypothesized that suppression of phrenic nerve activity could be utilized as predictive biomarker for imminent SUDEP. We used a rat model of kainic acid-induced seizures in combination with pharmacological suppression of metabolic adenosine clearance to trigger seizure-induced death in tracheostomized rats. Recordings of EEG, blood pressure, and phrenic nerve activity were made concomitant to the seizure. We found suppression of phrenic nerve burst frequency to 58.9% of baseline (p < 0.001, one-way ANOVA) which preceded seizure-induced death; importantly, irregularities of phrenic nerve activity were partly reversible by the adenosine receptor antagonist caffeine. Suppression of phrenic nerve activity may be a useful biomarker for imminent SUDEP. The ability to reliably detect the onset of SUDEP may be instrumental in the timely administration of potentially lifesaving interventions.
Collapse
Affiliation(s)
- Omar Ashraf
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Trong Huynh
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA; Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Denise E Fedele
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Vineet Chitravanshi
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA; Rutgers Neurosurgery H.O.P.E. Center, Department of Neurosurgery, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
22
|
Cortical astrocytes regulate ethanol consumption and intoxication in mice. Neuropsychopharmacology 2021; 46:500-508. [PMID: 32464636 PMCID: PMC8027025 DOI: 10.1038/s41386-020-0721-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are fundamental building blocks of the central nervous system. Their dysfunction has been implicated in many psychiatric disorders, including alcohol use disorder, yet our understanding of their functional role in ethanol intoxication and consumption is very limited. Astrocytes regulate behavior through multiple intracellular signaling pathways, including G-protein coupled-receptor (GPCR)-mediated calcium signals. To test the hypothesis that GPCR-induced calcium signaling is also involved in the behavioral effects of ethanol, we expressed astrocyte-specific excitatory DREADDs in the prefrontal cortex (PFC) of mice. Activating Gq-GPCR signaling in PFC astrocytes increased drinking in ethanol-naïve mice, but not in mice with a history of ethanol drinking. In contrast, reducing calcium signaling with an astrocyte-specific calcium extruder reduced ethanol intake. Cortical astrocyte calcium signaling also altered the acute stimulatory and sedative-hypnotic effects of ethanol. Astrocyte-specific Gq-DREADD activation increased both the locomotor-activating effects of low dose ethanol and the sedative-hypnotic effects of a high dose, while reduced astrocyte calcium signaling diminished sensitivity to the hypnotic effects. In addition, we found that adenosine A1 receptors were required for astrocyte calcium activation to increase ethanol sedation. These results support integral roles for PFC astrocytes in the behavioral actions of ethanol that are due, at least in part, to adenosine receptor activation.
Collapse
|
23
|
Bian T, Meng W, Qiu M, Zhong Z, Lin Z, Zou J, Wang Y, Huang X, Xu L, Yuan T, Huang Z, Niu L, Meng L, Zheng H. Noninvasive Ultrasound Stimulation of Ventral Tegmental Area Induces Reanimation from General Anaesthesia in Mice. RESEARCH (WASHINGTON, D.C.) 2021; 2021:2674692. [PMID: 33954291 PMCID: PMC8059556 DOI: 10.34133/2021/2674692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 05/02/2023]
Abstract
Evidence in animals suggests that deep brain stimulation or optogenetics can be used for recovery from disorders of consciousness (DOC). However, these treatments require invasive procedures. This report presents a noninvasive strategy to stimulate central nervous system neurons selectively for recovery from DOC in mice. Through the delivery of ultrasound energy to the ventral tegmental area, mice were aroused from an unconscious, anaesthetized state in this study, and this process was controlled by adjusting the ultrasound parameters. The mice in the sham group under isoflurane-induced, continuous, steady-state general anaesthesia did not regain their righting reflex. On insonation, the emergence time from inhaled isoflurane anaesthesia decreased (sham: 13.63 ± 0.53 min, ultrasound: 1.5 ± 0.19 min, p < 0.001). Further, the induction time (sham: 12.0 ± 0.6 min, ultrasound: 17.88 ± 0.64 min, p < 0.001) and the concentration for 50% of the maximal effect (EC50) of isoflurane (sham: 0.6%, ultrasound: 0.7%) increased. In addition, ultrasound stimulation reduced the recovery time in mice with traumatic brain injury (sham: 30.38 ± 1.9 min, ultrasound: 7.38 ± 1.02 min, p < 0.01). This noninvasive strategy could be used on demand to promote emergence from DOC and may be a potential treatment for such disorders.
Collapse
Affiliation(s)
- Tianyuan Bian
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Wen Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Meihong Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China 200032
| | - Zhigang Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China 200032
| | - Zhengrong Lin
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Junjie Zou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Yibo Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Xiaowei Huang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, 195 Innovation Road, Shenyang 110016, China
| | - Tifei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China 200030
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China 200032
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| |
Collapse
|
24
|
Parkar A, Fedrigon DC, Alam F, Vanini G, Mashour GA, Pal D. Carbachol and Nicotine in Prefrontal Cortex Have Differential Effects on Sleep-Wake States. Front Neurosci 2020; 14:567849. [PMID: 33328847 PMCID: PMC7714754 DOI: 10.3389/fnins.2020.567849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
The role of the brainstem cholinergic system in the regulation of sleep-wake states has been studied extensively but relatively little is known about the role of cholinergic mechanisms in prefrontal cortex in the regulation of sleep-wake states. In a recent study, we showed that prefrontal cholinergic stimulation in anesthetized rat can reverse the traits associated with anesthesia and restore a wake-like state, thereby providing evidence for a causal role for prefrontal cholinergic mechanisms in modulating level of arousal. However, the effect of increase in prefrontal cholinergic tone on spontaneous sleep-wake states has yet to be demonstrated. Therefore, in this study, we tested the hypothesis that delivery of cholinergic agonists - carbachol or nicotine - into prefrontal cortex of rat during slow wave sleep (SWS) would produce behavioral arousal and increase the time spent in wake state. We show that unilateral microinjection (200 nL) of carbachol (1 mM) or nicotine (100 mM) into prefrontal cortex during SWS decreased the latency to the onset of wake state (p = 0.03 for carbachol, p = 0.03 for nicotine) and increased the latency to the onset of rapid eye movement sleep (p = 0.008 for carbachol, p = 0.006 for nicotine). Although the infusion of 1 mM carbachol increased the time spent in wake state (p = 0.01) and decreased the time spent in SWS (p = 0.01), infusion of 10 or 100 mM nicotine did not produce any statistically significant change in sleep-wake architecture. These data demonstrate a differential role of prefrontal cholinergic receptors in modulating spontaneous sleep-wake states.
Collapse
Affiliation(s)
- Anjum Parkar
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Donald C Fedrigon
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Farah Alam
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
25
|
Fox AP, Wagner KR, Towle VL, Xie KG, Xie Z. Caffeine reverses the unconsciousness produced by light anesthesia in the continued presence of isoflurane in rats. PLoS One 2020; 15:e0241818. [PMID: 33152041 PMCID: PMC7643991 DOI: 10.1371/journal.pone.0241818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Currently no drugs are employed clinically to reverse the unconsciousness induced by general anesthetics. Our previous studies showed that caffeine, when given near the end of an anesthesia session, accelerated emergence from isoflurane anesthesia, likely caused by caffeine’s ability to elevate intracellular cAMP levels and to block adenosine receptors. These earlier studies showed that caffeine did not rouse either rats or humans from deep anesthesia (≥ 1 minimum alveolar concentration, MAC). In this current crossover study, we examined whether caffeine reversed the unconsciousness produced by light anesthesia (< 1 MAC) in the continued presence of isoflurane. The primary endpoint of this study was to measure isoflurane levels at the time of recovery of righting reflex, which was a proxy for consciousness. Rats were deeply anesthetized with 2% isoflurane (~1.5 MAC) for 20 minutes. Subsequently, isoflurane was reduced to 1.2% for 10 minutes, then by 0.2% every 10 min; animals were monitored until the recovery of righting reflex occurred, in the continued presence of isoflurane. Respiration rate, heart rate and electroencephalogram (EEG) were monitored. Our results show that caffeine-treated rats recovered their righting reflex at a significantly higher inspired isoflurane concentration, corresponding to light anesthesia, than the same rats treated with saline (control). Respiration rate and heart rate increased initially after caffeine injection but were then unchanged for the rest of the anesthesia session. Deep anesthesia is correlated with burst suppression in EEG recordings. Our data showed that caffeine transiently reduced the burst suppression time produced by deep anesthesia, suggesting that caffeine altered neuronal circuit function but not to a point where it caused arousal. In contrast, under light anesthesia, caffeine shifted the EEG power to high frequency beta and gamma bands. These data suggest that caffeine may represent a clinically viable drug to reverse the unconsciousness produced by light anesthesia.
Collapse
Affiliation(s)
- Aaron P. Fox
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Kyle R. Wagner
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States of America
| | - Vernon L. Towle
- Department of Neurology, The University of Chicago, Chicago, Illinois, United States of America
| | - Kelvin G. Xie
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Zheng Xie
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
26
|
Baer AG, Bourdon AK, Price JM, Campagna SR, Jacobson DA, Baghdoyan HA, Lydic R. Isoflurane anesthesia disrupts the cortical metabolome. J Neurophysiol 2020; 124:2012-2021. [PMID: 33112692 PMCID: PMC7814899 DOI: 10.1152/jn.00375.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Identifying similarities and differences in the brain metabolome during different states of consciousness has broad relevance for neuroscience and state-dependent autonomic function. This study focused on the prefrontal cortex (PFC) as a brain region known to modulate states of consciousness. Anesthesia was used as a tool to eliminate wakefulness. Untargeted metabolomic analyses were performed on microdialysis samples obtained from mouse PFC during wakefulness and during isoflurane anesthesia. Analyses detected 2,153 molecules, 91 of which could be identified. Analytes were grouped as detected during both wakefulness and anesthesia (n = 61) and as unique to wakefulness (n = 23) or anesthesia (n = 7). Data were analyzed using univariate and multivariate approaches. Relative to wakefulness, during anesthesia there was a significant (q < 0.0001) fourfold change in 21 metabolites. During anesthesia 11 of these 21 molecules decreased and 10 increased. The Kyoto Encyclopedia of Genes and Genomes database was used to relate behavioral state-specific changes in the metabolome to metabolic pathways. Relative to wakefulness, most of the amino acids and analogs measured were significantly decreased during isoflurane anesthesia. Nucleosides and analogs were significantly increased during anesthesia. Molecules associated with carbohydrate metabolism, maintenance of lipid membranes, and normal cell functions were significantly decreased during anesthesia. Significant state-specific changes were also discovered among molecules comprising lipids and fatty acids, monosaccharides, and organic acids. Considered together, these molecules regulate point-to-point transmission, volume conduction, and cellular metabolism. The results identify a novel ensemble of candidate molecules in PFC as putative modulators of wakefulness and the loss of wakefulness. NEW & NOTEWORTHY The loss of wakefulness caused by a single concentration of isoflurane significantly altered levels of interrelated metabolites in the prefrontal cortex. The results support the interpretation that states of consciousness reflect dynamic interactions among cortical neuronal networks involving a humbling number of molecules that comprise the brain metabolome.
Collapse
Affiliation(s)
- Aaron G Baer
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
| | - Allen K Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Joshua M Price
- Office of Information Technology, University of Tennessee, Knoxville, Tennessee
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee.,Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, Tennessee
| | - Daniel A Jacobson
- Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Helen A Baghdoyan
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee.,Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Ralph Lydic
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee.,Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
27
|
Zhang X, Baer AG, Price JM, Jones PC, Garcia BJ, Romero J, Cliff AM, Mi W, Brown JB, Jacobson DA, Lydic R, Baghdoyan HA. Neurotransmitter networks in mouse prefrontal cortex are reconfigured by isoflurane anesthesia. J Neurophysiol 2020; 123:2285-2296. [PMID: 32347157 PMCID: PMC7311717 DOI: 10.1152/jn.00092.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
This study quantified eight small-molecule neurotransmitters collected simultaneously from prefrontal cortex of C57BL/6J mice (n = 23) during wakefulness and during isoflurane anesthesia (1.3%). Using isoflurane anesthesia as an independent variable enabled evaluation of the hypothesis that isoflurane anesthesia differentially alters concentrations of multiple neurotransmitters and their interactions. Machine learning was applied to reveal higher order interactions among neurotransmitters. Using a between-subjects design, microdialysis was performed during wakefulness and during anesthesia. Concentrations (nM) of acetylcholine, adenosine, dopamine, GABA, glutamate, histamine, norepinephrine, and serotonin in the dialysis samples are reported (means ± SD). Relative to wakefulness, acetylcholine concentration was lower during isoflurane anesthesia (1.254 ± 1.118 vs. 0.401 ± 0.134, P = 0.009), and concentrations of adenosine (29.456 ± 29.756 vs. 101.321 ± 38.603, P < 0.001), dopamine (0.0578 ± 0.0384 vs. 0.113 ± 0.084, P = 0.036), and norepinephrine (0.126 ± 0.080 vs. 0.219 ± 0.066, P = 0.010) were higher during anesthesia. Isoflurane reconfigured neurotransmitter interactions in prefrontal cortex, and the state of isoflurane anesthesia was reliably predicted by prefrontal cortex concentrations of adenosine, norepinephrine, and acetylcholine. A novel finding to emerge from machine learning analyses is that neurotransmitter concentration profiles in mouse prefrontal cortex undergo functional reconfiguration during isoflurane anesthesia. Adenosine, norepinephrine, and acetylcholine showed high feature importance, supporting the interpretation that interactions among these three transmitters may play a key role in modulating levels of cortical and behavioral arousal.NEW & NOTEWORTHY This study discovered that interactions between neurotransmitters in mouse prefrontal cortex were altered during isoflurane anesthesia relative to wakefulness. Machine learning further demonstrated that, relative to wakefulness, higher order interactions among neurotransmitters were disrupted during isoflurane administration. These findings extend to the neurochemical domain the concept that anesthetic-induced loss of wakefulness results from a disruption of neural network connectivity.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
- Department of Psychology, University of Tennessee, Knoxville, Tennessee
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Aaron G Baer
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
| | - Joshua M Price
- Office of Information Technology, University of Tennessee, Knoxville, Tennessee
| | - Piet C Jones
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee
| | | | - Jonathon Romero
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee
| | - Ashley M Cliff
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee
| | - Weidong Mi
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - James B Brown
- Molecular Ecosystems Biology Department, Lawrence Berkeley National Laboratory, Berkeley, California
| | | | - Ralph Lydic
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
- Department of Psychology, University of Tennessee, Knoxville, Tennessee
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Helen A Baghdoyan
- Department of Anesthesiology, University of Tennessee Medical Center, Knoxville, Tennessee
- Department of Psychology, University of Tennessee, Knoxville, Tennessee
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
28
|
La AL, Walsh CM, Neylan TC, Vossel KA, Yaffe K, Krystal AD, Miller BL, Karageorgiou E. Long-Term Trazodone Use and Cognition: A Potential Therapeutic Role for Slow-Wave Sleep Enhancers. J Alzheimers Dis 2020; 67:911-921. [PMID: 30689583 PMCID: PMC6398835 DOI: 10.3233/jad-181145] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent studies reveal an association between slow-wave sleep (SWS), amyloid-β aggregation, and cognition. OBJECTIVE This retrospective study examines whether long-term use of trazodone, an SWS enhancer, is associated with delayed cognitive decline. METHODS We identified 25 regular trazodone users (mean age 75.4±7.5; 9 women, 16 men) who carried a diagnosis of Alzheimer's dementia, mild cognitive impairment, or normal cognition, and 25 propensity-matched trazodone non-users (mean age 74.5±8.0; 13 women, 12 men), accounting for age, sex, education, type of sleep deficit (hypersomnia, insomnia, parasomnia), diagnosis, and baseline Mini-Mental State Examination (MMSE). Longitudinal group differences in cognitive testing were evaluated through repeated measures tests over an average inter-evaluation interval of four years. RESULTS Trazodone non-users had 2.6-fold faster decline MMSE (primary outcome) compared to trazodone users, 0.27 (95% confidence interval [CI]: 0.07-0.48) versus 0.70 (95% CI: 0.50-0.90) points per year (p = 0.023). The observed effects were especially associated with subjective improvement of sleep complaints in post-hoc analyses (p = 0.0006). Secondary outcomes of other cognitive and functional scores had variable worsening in non-users and varied in significance when accounting for co-administered medications and multiple comparisons. Trazodone effects on MMSE remained significant within participants with AD-predicted pathology, with 2.4-fold faster decline in non-users (p = 0.038). CONCLUSIONS These results suggest an association between trazodone use and delayed cognitive decline, adding support for a potentially attractive and cost-effective intervention in dementia. Whether the observed relationship of trazodone to cognitive function is causal or an indirect marker of other effects, such as treated sleep disruption, and if such effects are mediated through SWS enhancement requires confirmation through prospective studies.
Collapse
Affiliation(s)
- Alice L. La
- University of California San Francisco, Memory and Aging Center, Weill Institute for the Neurosciences, San Francisco, CA, USA,University of California San Francisco, Weill Institute for the Neurosciences, San Francisco, CA, USA
| | - Christine M. Walsh
- University of California San Francisco, Memory and Aging Center, Weill Institute for the Neurosciences, San Francisco, CA, USA,University of California San Francisco, Weill Institute for the Neurosciences, San Francisco, CA, USA
| | - Thomas C. Neylan
- University of California San Francisco, Memory and Aging Center, Weill Institute for the Neurosciences, San Francisco, CA, USA,University of California San Francisco, Weill Institute for the Neurosciences, San Francisco, CA, USA,San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Keith A. Vossel
- University of California San Francisco, Memory and Aging Center, Weill Institute for the Neurosciences, San Francisco, CA, USA,University of California San Francisco, Weill Institute for the Neurosciences, San Francisco, CA, USA,
Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Kristine Yaffe
- University of California San Francisco, Memory and Aging Center, Weill Institute for the Neurosciences, San Francisco, CA, USA,University of California San Francisco, Weill Institute for the Neurosciences, San Francisco, CA, USA,San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA,
Department of Epidemiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrew D. Krystal
- University of California San Francisco, Weill Institute for the Neurosciences, San Francisco, CA, USA,
Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Bruce L. Miller
- University of California San Francisco, Memory and Aging Center, Weill Institute for the Neurosciences, San Francisco, CA, USA,University of California San Francisco, Weill Institute for the Neurosciences, San Francisco, CA, USA
| | - Elissaios Karageorgiou
- University of California San Francisco, Memory and Aging Center, Weill Institute for the Neurosciences, San Francisco, CA, USA,University of California San Francisco, Weill Institute for the Neurosciences, San Francisco, CA, USA,Neurological Institute of Athens, Athens, Greece,Stanford Sleep Medicine Center, Redwood City, CA, USA,Correspondence to: Elissaios Karageorgiou, MD, PhD, 675 Nelson Rising Lane Suite 190, San Francisco, CA 94158, USA. Tel.: +1 415 502 0588; Fax: +1 415 476 4800; E-mail:
| |
Collapse
|
29
|
Escape From Oblivion: Neural Mechanisms of Emergence From General Anesthesia. Anesth Analg 2019; 128:726-736. [PMID: 30883418 DOI: 10.1213/ane.0000000000004006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The question of how general anesthetics suppress consciousness has persisted since the mid-19th century, but it is only relatively recently that the field has turned its focus to a systematic understanding of emergence. Once assumed to be a purely passive process, spontaneously occurring as residual levels of anesthetics dwindle below a critical value, emergence from general anesthesia has been reconsidered as an active and controllable process. Emergence is driven by mechanisms that can be distinct from entry to the anesthetized state. In this narrative review, we focus on the burgeoning scientific understanding of anesthetic emergence, summarizing current knowledge of the neurotransmitter, neuromodulators, and neuronal groups that prime the brain as it prepares for its journey back from oblivion. We also review evidence for possible strategies that may actively bias the brain back toward the wakeful state.
Collapse
|
30
|
Pethő M, Détári L, Keserű D, Hajnik T, Szalontai Ö, Tóth A. Region-specific adenosinergic modulation of the slow-cortical rhythm in urethane-anesthetized rats. Brain Res 2019; 1725:146471. [PMID: 31568768 DOI: 10.1016/j.brainres.2019.146471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 11/27/2022]
Abstract
Slow cortical rhythm (SCR) is a rhythmic alternation of UP and DOWN states during sleep and anesthesia. SCR-associated slow waves reflect homeostatic sleep functions. Adenosine accumulating during prolonged wakefulness and sleep deprivation (SD) may play a role in the delta power increment during recovery sleep. NREM sleep is a local, use-dependent process of the brain. In the present study, direct effect of adenosine on UP and DOWN states was tested by topical application to frontal, somatosensory and visual cortices, respectively, in urethane-anesthetized rats. Local field potentials (LFPs) were recorded using an electrode array inserted close to the location of adenosine application. Multiple unit activity (MUA) was measured from layer V-VI in close proximity of the recording array. In the frontal and somatosensory cortex, adenosine modulated SCR with slow kinetics on the LFP level while MUA remained mostly unaffected. In the visual cortex, adenosine modulated SCR with fast kinetics. In each region, delta power increment was based on the increased frequency of state transitions as well as increased height of UP-state associated slow waves. These results show that adenosine may directly modulate SCR in a complex and region-specific manner which may be related to the finding that restorative processes may take place with varying duration and intensity during recovery sleep in different cortical regions. Adenosine may play a direct role in the increment of the slow wave power observed during local sleep, furthermore it may shape the region-specific characteristics of the phenomenon.
Collapse
Affiliation(s)
- Máté Pethő
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary.
| | - László Détári
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary.
| | - Dóra Keserű
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary.
| | - Tünde Hajnik
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary.
| | - Örs Szalontai
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary
| | - Attila Tóth
- Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C., Budapest 1117, Hungary.
| |
Collapse
|
31
|
Hines RM, Khumnark M, Macphail B, Hines DJ. Administration of Micronized Caffeine Using a Novel Oral Delivery Film Results in Rapid Absorption and Electroencephalogram Suppression. Front Pharmacol 2019; 10:983. [PMID: 31551785 PMCID: PMC6747905 DOI: 10.3389/fphar.2019.00983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Route of administration is well-known to impact factors ranging from absorption and distribution, up through the subjective effects of active ingredients. Different routes of administration confer specific advantages, such as more rapid absorption resulting from intravenous injection, or increased convenience with oral administration, but a combination of both rapid and convenient delivery is highly desirable. QuickStrip™ was designed as a rapidly dissolving thin film matrix that contains active ingredients, which may be promising for rapid and convenient delivery via the oral mucosa. To assess the delivery of QuickStrip™, we administered the well-characterized active ingredient caffeine to mice and compared QuickStrip™ to standard oral gavage delivery at an equivalent dose of 20 mg kg-1. Using HPLC assessment of serum concentrations of caffeine, we found that QuickStrip™ delivery resulted in higher serum levels of caffeine at 1, 10, and 30 min following administration compared to gavage. QuickStrip™ also produced greater bioavailability compared to gavage, as demonstrated by area under the curve analysis. Caffeine delivered by QuickStrip™ produced robust behavioral activation of locomotion, consistent with gavage caffeine. Electroencephalographic (EEG) assessment of central nervous system effects demonstrated that both gavage and QuickStrip™ caffeine produced suppression of delta and theta, consistent with prior literature on the effects of caffeine. In addition, QuickStrip™ produced a more rapid onset of EEG suppression, supporting the more rapid absorption demonstrated in the serum studies. Collectively, these studies suggest that QuickStrip™ may provide a balance between convenience and rapid onset, offering new options for delivery of therapeutics.
Collapse
Affiliation(s)
- Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Matthew Khumnark
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, United States
| | | | - Dustin J Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
32
|
Wang Y, Venton BJ. Comparison of spontaneous and mechanically-stimulated adenosine release in mice. Neurochem Int 2018; 124:46-50. [PMID: 30579856 DOI: 10.1016/j.neuint.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023]
Abstract
Rapid adenosine signaling, on the time frame of seconds, has been discovered in the brain that can modulate neurotransmission or blood flow. Rapid adenosine release can occur spontaneously or be evoked after a mechanical stimulation, but these two modes of adenosine have not been compared. Here, we compared spontaneous and mechanically-stimulated adenosine release in the prefrontal cortex, striatum, and hippocampus of anesthetized mice. For spontaneous adenosine, the number of adenosine events in the prefrontal cortex (40 ± 4 per hour) was significantly lower than in the striatum (54 ± 3) or hippocampus (56 ± 3). Similarly, the concentration per transient was lower in the prefrontal cortex but highest in the striatum. For mechanically-stimulated adenosine, the peak concentration in the prefrontal cortex (8 ± 2 μM) and striatum (8 ± 1 μM) were significantly lower than in the hippocampus (16 ± 2 μM). Comparing the two modes, the hippocampus had high mechanically-stimulated concentration and high spontaneous frequency, while the prefrontal cortex had lower spontaneous frequency and mechanically-stimulated release. However, there is no pattern with the striatum and thus no direct correlations between spontaneous and mechanically-stimulated adenosine. Thus, there may be different pools of adenosine or mechanisms of formation for these two modes. Because of the high frequency of spontaneous events and high concentration of mechanically-stimulated release in the hippocampus, there may be some areas that have stronger adenosine signaling and thus stronger neuromodulatory control by adenosine.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
33
|
Ferré S, García-Borreguero D, Allen RP, Earley CJ. New Insights into the Neurobiology of Restless Legs Syndrome. Neuroscientist 2018; 25:113-125. [PMID: 30047288 DOI: 10.1177/1073858418791763] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Restless legs syndrome (RLS) is a common sensorimotor disorder, whose basic components include a sensory experience, akathisia, and a sleep-related motor sign, periodic leg movements during sleep (PLMS), both associated with an enhancement of the individual's arousal state. The present review attempts to integrate the major clinical and experimental neurobiological findings into a heuristic pathogenetic model. The model also integrates the recent findings on RLS genetics indicating that RLS has aspects of a genetically moderated neurodevelopmental disorder involving mainly the cortico-striatal-thalamic-cortical circuits. Brain iron deficiency (BID) remains the key initial pathobiological factor and relates to alterations of iron acquisition by the brain, also moderated by genetic factors. Experimental evidence indicates that BID leads to a hyperdopaminergic and hyperglutamatergic states that determine the dysfunction of cortico-striatal-thalamic-cortical circuits in genetically vulnerable individuals. However, the enhanced arousal mechanisms critical to RLS are better explained by functional changes of the ascending arousal systems. Recent experimental and clinical studies suggest that a BID-induced hypoadenosinergic state provides the link for a putative unified pathophysiological mechanism for sensorimotor signs of RLS and the enhanced arousal state.
Collapse
Affiliation(s)
- Sergi Ferré
- 1 National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Richard P Allen
- 3 Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
34
|
van Son D, Schalbroeck R, Angelidis A, van der Wee NJA, van der Does W, Putman P. Acute effects of caffeine on threat-selective attention: moderation by anxiety and EEG theta/beta ratio. Biol Psychol 2018; 136:100-110. [PMID: 29792908 DOI: 10.1016/j.biopsycho.2018.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Spontaneous EEG theta/beta ratio (TBR) probably marks prefrontal cortical (PFC) executive control, and its regulation of attentional threat-bias. Caffeine at moderate doses may strengthen executive control through increased PFC catecholamine action, dependent on basal PFC function. GOAL To test if caffeine affects threat-bias, moderated by baseline frontal TBR and trait-anxiety. METHODS A pictorial emotional Stroop task was used to assess threat-bias in forty female participants in a cross-over, double-blind study after placebo and 200 mg caffeine. RESULTS At baseline and after placebo, comparable relations were observed for negative pictures: high TBR was related to low threat-bias in low trait-anxious people. Caffeine had opposite effects on threat-bias in low trait-anxious people with low and high TBR. CONCLUSIONS This further supports TBR as a marker of executive control and highlights the importance of taking baseline executive function into consideration when studying effects of caffeine on executive functions.
Collapse
Affiliation(s)
- Dana van Son
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Rik Schalbroeck
- Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Angelos Angelidis
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | | | - Willem van der Does
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands; Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Peter Putman
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
35
|
Kerkhofs A, Canas PM, Timmerman AJ, Heistek TS, Real JI, Xavier C, Cunha RA, Mansvelder HD, Ferreira SG. Adenosine A 2A Receptors Control Glutamatergic Synaptic Plasticity in Fast Spiking Interneurons of the Prefrontal Cortex. Front Pharmacol 2018; 9:133. [PMID: 29615897 PMCID: PMC5869254 DOI: 10.3389/fphar.2018.00133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
Adenosine A2A receptors (A2AR) are activated upon increased synaptic activity to assist in the implementation of long-term plastic changes at synapses. While it is reported that A2AR are involved in the control of prefrontal cortex (PFC)-dependent behavior such as working memory, reversal learning and effort-based decision making, it is not known whether A2AR control glutamatergic synapse plasticity within the medial PFC (mPFC). To elucidate that, we tested whether A2AR blockade affects long-term plasticity (LTP) of excitatory post-synaptic potentials in pyramidal neurons and fast spiking (FS) interneurons in layer 5 of the mPFC and of population spikes. Our results show that A2AR are enriched at mPFC synapses, where their blockade reversed the direction of plasticity at excitatory synapses onto layer 5 FS interneurons from LTP to long-term depression, while their blockade had no effect on the induction of LTP at excitatory synapses onto layer 5 pyramidal neurons. At the network level, extracellularly induced LTP of population spikes was reduced by A2AR blockade. The interneuron-specificity of A2AR in controlling glutamatergic synapse LTP may ensure that during periods of high synaptic activity, a proper excitation/inhibition balance is maintained within the mPFC.
Collapse
Affiliation(s)
- Amber Kerkhofs
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paula M Canas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - A J Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Joana I Real
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carolina Xavier
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Samira G Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
36
|
Li Z, Chen X, Wang T, Gao Y, Li F, Chen L, Xue J, He Y, Li Y, Guo W, Zheng W, Zhang L, Ye F, Ren X, Feng Y, Chan P, Chen JF. The Corticostriatal Adenosine A 2A Receptor Controls Maintenance and Retrieval of Spatial Working Memory. Biol Psychiatry 2018; 83:530-541. [PMID: 28941549 DOI: 10.1016/j.biopsych.2017.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Working memory (WM) taps into multiple executive processes including encoding, maintenance, and retrieval of information, but the molecular and circuit modulation of these WM processes remains undefined due to the lack of methods to control G protein-coupled receptor signaling with temporal resolution of seconds. METHODS By coupling optogenetic control of the adenosine A2A receptor (A2AR) signaling, the Cre-loxP-mediated focal A2AR knockdown with a delayed non-match-to-place (DNMTP) task, we investigated the effect of optogenetic activation and focal knockdown of A2ARs in the dorsomedial striatum (n = 8 to 14 per group) and medial prefrontal cortex (n = 16 to 22 per group) on distinct executive processes of spatial WM. We also evaluated the therapeutic effect of the A2AR antagonist KW6002 on delayed match-to-sample/place tasks in 6 normal and 6 MPTP-treated cynomolgus monkeys. RESULTS Optogenetic activation of striatopallidal A2ARs in the dorsomedial striatum selectively at the delay and choice (not sample) phases impaired DNMTP performance. Optogenetic activation of A2ARs in the medial prefrontal cortex selectively at the delay (not sample or choice) phase improved DNMTP performance. The corticostriatal A2AR control of spatial WM was specific for a novel but not well-trained DNMTP task. Focal dorsomedial striatum A2AR knockdown or KW6002 improved DNMTP performance in mice. Last, KW6002 improved spatial WM in delayed match-to-sample and delayed match-to-place tasks of normal and dopamine-depleted cynomolgus monkeys. CONCLUSIONS The A2ARs in striatopallidal and medial prefrontal cortex neurons exert distinctive control of WM maintenance and retrieval to achieve cognitive stability and flexibility. The procognitive effect of KW6002 in nonhuman primates provides the preclinical data to translate A2AR antagonists for improving cognitive impairments in Parkinson's disease.
Collapse
Affiliation(s)
- Zhihui Li
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Xingjun Chen
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Tao Wang
- Wincon TheraCells Biotechnologies, Nanning, China
| | - Ying Gao
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Fei Li
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Long Chen
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Jin Xue
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Yan He
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Yan Li
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Wei Guo
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Wu Zheng
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Liping Zhang
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Fenfen Ye
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Xiangpeng Ren
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Yue Feng
- Wincon TheraCells Biotechnologies, Nanning, China; Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Piu Chan
- Wincon TheraCells Biotechnologies, Nanning, China; Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jiang-Fan Chen
- Molecular Pharmacology Lab, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China; Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts.
| |
Collapse
|
37
|
Rajasundaram S. Adenosine A2A Receptor Signaling in the Immunopathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:402. [PMID: 29559972 PMCID: PMC5845642 DOI: 10.3389/fimmu.2018.00402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 12/19/2022] Open
Abstract
Our increasing appreciation of adenosine as an endogenous signaling molecule that terminates inflammation has generated excitement regarding the potential to target adenosine receptors (ARs) in the treatment of multiple sclerosis (MS), a disease of chronic neuroinflammation. Of the four G protein-coupled ARs, A2ARs are the principal mediator of adenosine’s anti-inflammatory effects and accordingly, there is a growing body of evidence surrounding the role of A2ARs in experimental autoimmune encephalomyelitis (EAE), the dominant animal model of MS. Such evidence points to a complex, often paradoxical role for A2ARs in the immunopathogenesis of EAE, where they have the ability to both exacerbate and alleviate disease severity. This review seeks to interpret these paradoxical findings and evaluate the therapeutic promise of A2ARs. In essence, the complexities of A2AR signaling arise from two properties. Firstly, A2AR signaling downregulates the inflammatory potential of TH lymphocytes whilst simultaneously facilitating the recruitment of these cells into the CNS. Secondly, A2AR expression by myeloid cells – infiltrating macrophages and CNS-resident microglia – has the capacity to promote both tissue injury and repair in chronic neuroinflammation. Consequently, the therapeutic potential of targeting A2ARs is greatly undermined by the risk of collateral tissue damage in the periphery and/or CNS.
Collapse
|
38
|
Ferré S, Quiroz C, Guitart X, Rea W, Seyedian A, Moreno E, Casadó-Anguera V, Díaz-Ríos M, Casadó V, Clemens S, Allen RP, Earley CJ, García-Borreguero D. Pivotal Role of Adenosine Neurotransmission in Restless Legs Syndrome. Front Neurosci 2018; 11:722. [PMID: 29358902 PMCID: PMC5766678 DOI: 10.3389/fnins.2017.00722] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
The symptomatology of Restless Legs Syndrome (RLS) includes periodic leg movements during sleep (PLMS), dysesthesias, and hyperarousal. Alterations in the dopaminergic system, a presynaptic hyperdopaminergic state, seem to be involved in PLMS, while alterations in glutamatergic neurotransmission, a presynaptic hyperglutamatergic state, seem to be involved in hyperarousal and also PLMS. Brain iron deficiency (BID) is well-recognized as a main initial pathophysiological mechanism of RLS. BID in rodents have provided a pathogenetic model of RLS that recapitulates the biochemical alterations of the dopaminergic system of RLS, although without PLMS-like motor abnormalities. On the other hand, BID in rodents reproduces the circadian sleep architecture of RLS, indicating the model could provide clues for the hyperglutamatergic state in RLS. We recently showed that BID in rodents is associated with changes in adenosinergic transmission, with downregulation of adenosine A1 receptors (A1R) as the most sensitive biochemical finding. It was hypothesized that A1R downregulation leads to hypersensitive striatal glutamatergic terminals and facilitation of striatal dopamine release. Hypersensitivity of striatal glutamatergic terminals was demonstrated by an optogenetic-microdialysis approach in the rodent with BID, indicating that it could represent a main pathogenetic factor that leads to PLMS in RLS. In fact, the dopaminergic agonists pramipexole and ropinirole and the α2δ ligand gabapentin, used in the initial symptomatic treatment of RLS, completely counteracted optogenetically-induced glutamate release from both normal and BID-induced hypersensitive corticostriatal glutamatergic terminals. It is a main tenet of this essay that, in RLS, a single alteration in the adenosinergic system, downregulation of A1R, disrupts the adenosine-dopamine-glutamate balance uniquely controlled by adenosine and dopamine receptor heteromers in the striatum and also the A1R-mediated inhibitory control of glutamatergic neurotransmission in the cortex and other non-striatal brain areas, which altogether determine both PLMS and hyperarousal. Since A1R agonists would be associated with severe cardiovascular effects, it was hypothesized that inhibitors of nucleoside equilibrative transporters, such as dipyridamole, by increasing the tonic A1R activation mediated by endogenous adenosine, could represent a new alternative therapeutic strategy for RLS. In fact, preliminary clinical data indicate that dipyridamole can significantly improve the symptomatology of RLS.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Xavier Guitart
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Arta Seyedian
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Estefanía Moreno
- Center for Biomedical Research in Neurodegenerative Diseases Network and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Verònica Casadó-Anguera
- Center for Biomedical Research in Neurodegenerative Diseases Network and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, San Juan, PR, United States
| | - Vicent Casadó
- Center for Biomedical Research in Neurodegenerative Diseases Network and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Richard P Allen
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Christopher J Earley
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | | |
Collapse
|
39
|
Wang YQ, Zhang MQ, Li R, Qu WM, Huang ZL. The Mutual Interaction Between Sleep and Epilepsy on the Neurobiological Basis and Therapy. Curr Neuropharmacol 2018; 16:5-16. [PMID: 28486925 PMCID: PMC5771383 DOI: 10.2174/1570159x15666170509101237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/11/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sleep and epilepsy are mutually related in a complex, bidirectional manner. However, our understanding of this relationship remains unclear. RESULTS The literatures of the neurobiological basis of the interactions between sleep and epilepsy indicate that non rapid eye movement sleep and idiopathic generalized epilepsy share the same thalamocortical networks. Most of neurotransmitters and neuromodulators such as adenosine, melatonin, prostaglandin D2, serotonin, and histamine are found to regulate the sleep-wake behavior and also considered to have antiepilepsy effects; antiepileptic drugs, in turn, also have effects on sleep. Furthermore, many drugs that regulate the sleep-wake cycle can also serve as potential antiseizure agents. The nonpharmacological management of epilepsy including ketogenic diet, epilepsy surgery, neurostimulation can also influence sleep. CONCLUSION In this paper, we address the issues involved in these phenomena and also discuss the various therapies used to modify them.
Collapse
Affiliation(s)
| | | | - Rui Li
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation
Center for Brain Science, Fudan University, Shanghai200032, P.R. China
| | - Wei-Min Qu
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation
Center for Brain Science, Fudan University, Shanghai200032, P.R. China
| | - Zhi-Li Huang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation
Center for Brain Science, Fudan University, Shanghai200032, P.R. China
| |
Collapse
|
40
|
Frozi J, de Carvalho HW, Ottoni GL, Cunha RA, Lara DR. Distinct sensitivity to caffeine-induced insomnia related to age. J Psychopharmacol 2018; 32:89-95. [PMID: 28879806 DOI: 10.1177/0269881117722997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caffeine acts by antagonizing the effect of the endogenous homeostatic sleep factor adenosine. In the current study we aimed to evaluate the pattern of caffeine-induced insomnia and its relation to age and sex in a general population sample derived from a web survey. The sample included 75,534 participants (28.1% men) from 18 to 75 years who answered self-report questionnaires by accessing a website in Brazilian Portuguese (BRAINSTEP project). In our sample, 3620 (17.0%) men and 9920 (18.3%) women reported insomnia due to caffeine intake. Caffeine-induced insomnia increased with aging in both men and women. This difference remained after adjusting for sociodemographic, psychiatric and sleep related variables as well as caffeine intake. Women showed higher proportion of caffeine-induced insomnia than men, but this difference did not remain after controlling for covariates. Also, individuals with caffeine-induced insomnia reported poorer sleep quality, higher latency to fall asleep and a higher proportion of psychiatric diagnoses and daily use of hypnotic drugs. In conclusion, our results show an age-associated increase in caffeine-induced insomnia and poorer mental health indicators among people with caffeine-induced insomnia complaints.
Collapse
Affiliation(s)
- Júlia Frozi
- 1 Postgraduate Program in Psychiatry/Residency Program in Psychiatry-Hospital São Lucas-Pontifícia Universidade Católica-PUCRS, Porto Alegre, Brazil.,2 Department of Psychiatry and Legal Medicine, Medical School-PUCRS-Brazil, Porto Alegre, Brazil
| | | | - Gustavo L Ottoni
- 4 Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Rodrigo A Cunha
- 5 CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,6 FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Diogo R Lara
- 7 Faculty of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
41
|
Karageorgiou E, Vossel KA. Brain rhythm attractor breakdown in Alzheimer's disease: Functional and pathologic implications. Alzheimers Dement 2017; 13:1054-1067. [PMID: 28302453 DOI: 10.1016/j.jalz.2017.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
Abstract
This perspective binds emerging evidence on the bidirectional relationship between Alzheimer's disease (AD) and sleep disorders through a model of brain rhythm attractor breakdown. This approach explains behavioral-cognitive changes in AD across the sleep-wake cycle and supports a causal association between early brainstem tau pathology and subsequent cortical amyloid β accumulation. Specifically, early tau dysregulation within brainstem-hypothalamic nuclei leads to breakdown of sleep-wake attractor networks, with patients displaying an attenuated range of behavioral and electrophysiological activity patterns, a "twilight zone" of constant activity between deep rest and full alertness. This constant cortical activity promotes activity-dependent amyloid β accumulation in brain areas that modulate their activity across sleep-wake states, especially the medial prefrontal cortex. In addition, the accompanying breakdown of hippocampal-medial prefrontal cortex interplay across sleep stages could explain deficient memory consolidation through dysregulation of synaptic plasticity. Clinical implications include the potential therapeutic benefit of attractor consolidation (e.g., slow-wave sleep enhancers) in delaying AD progression.
Collapse
Affiliation(s)
- Elissaios Karageorgiou
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA; Neurological Institute of Athens, Athens, Greece.
| | - Keith A Vossel
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA; Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| |
Collapse
|
42
|
Taylor NE, Van Dort CJ, Kenny JD, Pei J, Guidera JA, Vlasov KY, Lee JT, Boyden ES, Brown EN, Solt K. Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci U S A 2016; 113:12826-12831. [PMID: 27791160 PMCID: PMC5111696 DOI: 10.1073/pnas.1614340113] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dopamine (DA) promotes wakefulness, and DA transporter inhibitors such as dextroamphetamine and methylphenidate are effective for increasing arousal and inducing reanimation, or active emergence from general anesthesia. DA neurons in the ventral tegmental area (VTA) are involved in reward processing, motivation, emotion, reinforcement, and cognition, but their role in regulating wakefulness is less clear. The current study was performed to test the hypothesis that selective optogenetic activation of VTA DA neurons is sufficient to induce arousal from an unconscious, anesthetized state. Floxed-inverse (FLEX)-Channelrhodopsin2 (ChR2) expression was targeted to VTA DA neurons in DA transporter (DAT)-cre mice (ChR2+ group; n = 6). Optical VTA stimulation in ChR2+ mice during continuous, steady-state general anesthesia (CSSGA) with isoflurane produced behavioral and EEG evidence of arousal and restored the righting reflex in 6/6 mice. Pretreatment with the D1 receptor antagonist SCH-23390 before optical VTA stimulation inhibited the arousal responses and restoration of righting in 6/6 ChR2+ mice. In control DAT-cre mice, the VTA was targeted with a viral vector lacking the ChR2 gene (ChR2- group; n = 5). VTA optical stimulation in ChR2- mice did not restore righting or produce EEG changes during isoflurane CSSGA in 5/5 mice. These results provide compelling evidence that selective stimulation of VTA DA neurons is sufficient to induce the transition from an anesthetized, unconscious state to an awake state, suggesting critical involvement in behavioral arousal.
Collapse
Affiliation(s)
- Norman E Taylor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02114
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Christa J Van Dort
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02114
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jonathan D Kenny
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - JunZhu Pei
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jennifer A Guidera
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ksenia Y Vlasov
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Justin T Lee
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114;
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02114
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02114
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
43
|
Carter JM, Landin JD, Gigante ED, Rieger SP, Diaz MR, Werner DF. Inhibitors of Calcium-Activated Anion Channels Modulate Hypnotic Ethanol Responses in Adult Sprague Dawley Rats. Alcohol Clin Exp Res 2016; 40:301-8. [PMID: 26842249 DOI: 10.1111/acer.12957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/02/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ethanol is widely known for its depressant effects; however, the underlying neurobiological mechanisms are not clear. Calcium-activated anion channels (CAACs) contribute to extracellular chloride levels and thus may be involved in regulating inhibitory mechanisms within the central nervous system. Therefore, we hypothesized that CAACs influence ethanol behavioral sensitivity by altering CAAC expression. METHODS We assessed the role of CAACs in ethanol-induced loss of righting reflex (LORR) and locomotor activity using intracerebroventricular infusions of several nonselective CAAC blockers. CAAC expression was determined after ethanol exposure. RESULTS Ethanol-induced LORR (4.0 g/kg, intraperitoneally [i.p.]) was significantly attenuated by all 4 CAAC blockers. Blocking CAACs did not impact ethanol's low-dose (1.5 g/kg, i.p.) locomotor-impairing effects. Biochemical analysis of CAAC protein expression revealed that cortical Bestrophin1 (Best1) and Tweety1 levels were reduced as early as 30 minutes following a single ethanol injection (3.5 g/kg, intraperitoneally [i.p.]) and remained decreased 24 hours later in P2 fractions. Cortical Best1 levels were also reduced following 1.5 g/kg. However, CAAC expression was unaltered in the striatum following a single ethanol exposure. Ethanol did not affect Tweety2 levels in either brain region. CONCLUSIONS These results suggest that CAACs are a major target of ethanol in vivo, and the regulation of these channels contributes to select behavioral actions of ethanol.
Collapse
Affiliation(s)
- Jenna M Carter
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, New York
| | - Justine D Landin
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, New York
| | - Eduardo D Gigante
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, New York.,Department of Health and Human Services, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Samuel P Rieger
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, New York
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, New York
| | - David F Werner
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University - State University of New York, Binghamton, New York
| |
Collapse
|
44
|
Laureano-Melo R, da Silveira ALB, de Azevedo Cruz Seara F, da Conceição RR, da Silva-Almeida C, Marinho BG, da Rocha FF, Reis LC, Côrtes WDS. Behavioral profile assessment in offspring of Swiss mice treated during pregnancy and lactation with caffeine. Metab Brain Dis 2016; 31:1071-80. [PMID: 27262967 DOI: 10.1007/s11011-016-9847-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/25/2016] [Indexed: 11/26/2022]
Abstract
The association between caffeine consumption and various psychiatric manifestations has long been observed. The objective was to assess the behavioral profile in offspring of Swiss mice treated during pregnancy and lactation with caffeine. For this purpose, two groups (n = 6 each and BW ~ 35 g) of female mice were treated during pregnancy and lactation by: tap water and caffeine solution at a concentration of 0.3 mg/mL through oral route. The offspring obtained, by completing 70 days of life, was underwent a behavioral battery test. Statistical analysis was performed by student t test and the different significance adopted was p < 0.05. According to our results, it was not found any significant differences in tail suspension and forced swimming tests. In anxiety related responses however, the mice of caffeine group had greater number of fecal pellets (178 %, p = 0.001) in the open field test, higher number of attempts (51 %, p = 0.03) in light-dark box and decreased percentage of entries in open arms (41 %, p = 0.01) in elevated plus maze test. Moreover, in the marble burying test, there was a significant decrease in the number of buried marbles compared with controls (110 %, p = 0,002). In the meantime, in the von Frey test, it was observed an exacerbation of mechanical allodynia both in basal conditions and after the carrageenan administration (p < 0.001). Furthermore, caffeine treatment during pregnancy and lactation causes long-term behavioral changes in the mice offspring that manifest later in life.
Collapse
Affiliation(s)
- Roberto Laureano-Melo
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Anderson Luiz Bezerra da Silveira
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
- Department of Physical Education, Institute of Education, Federal Rural University of Rio de Janeiro, BR 465, Km 7, 23897-000, Seropédica, Rio de Janeiro, Brazil
| | - Fernando de Azevedo Cruz Seara
- Graduate Program in Physiological Sciences, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 01, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Rodrigo Rodrigues da Conceição
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Cláudio da Silva-Almeida
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Bruno Guimarães Marinho
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
- Graduate Program in Physiological Sciences, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 01, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Fábio Fagundes da Rocha
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
- Graduate Program in Physiological Sciences, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 01, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Luís Carlos Reis
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil
- Graduate Program in Physiological Sciences, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 01, Seropedica, 23897-000, Rio de Janeiro, Brazil
| | - Wellington da Silva Côrtes
- Multicenter Graduate Program in Physiological Sciences, Brazilian Physiological Society, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 30, Seropedica, 23897-000, Rio de Janeiro, Brazil.
- Graduate Program in Physiological Sciences, Institute of Biological and Health Sciences, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, BR 465, Km 7, PQ Room 01, Seropedica, 23897-000, Rio de Janeiro, Brazil.
| |
Collapse
|
45
|
Quiroz C, Gulyani S, Ruiqian W, Bonaventura J, Cutler R, Pearson V, Allen RP, Earley CJ, Mattson MP, Ferré S. Adenosine receptors as markers of brain iron deficiency: Implications for Restless Legs Syndrome. Neuropharmacology 2016; 111:160-168. [PMID: 27600688 DOI: 10.1016/j.neuropharm.2016.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/20/2016] [Accepted: 09/02/2016] [Indexed: 01/01/2023]
Abstract
Deficits of sensorimotor integration with periodic limb movements during sleep (PLMS) and hyperarousal and sleep disturbances in Restless Legs Syndrome (RLS) constitute two pathophysiologically distinct but interrelated clinical phenomena, which seem to depend mostly on alterations in dopaminergic and glutamatergic neurotransmission, respectively. Brain iron deficiency is considered as a main pathogenetic mechanism in RLS. Rodents with brain iron deficiency represent a valuable pathophysiological model of RLS, although they do not display motor disturbances. Nevertheless, they develop the main neurochemical dopaminergic changes found in RLS, such as decrease in striatal dopamine D2 receptor density. On the other hand, brain iron deficient mice exhibit the characteristic pattern of hyperarousal in RLS, providing a tool to find the link between brain iron deficiency and sleep disturbances in RLS. The present study provides evidence for a role of the endogenous sleep-promoting factor adenosine. Three different experimental preparations, long-term (22 weeks) severe or moderate iron-deficient (ID) diets (3- or 7-ppm iron diet) in mice and short-term (3 weeks) severe ID diet (3-ppm iron diet) in rats, demonstrated a significant downregulation (Western blotting in mouse and radioligand binding saturation experiments in rat brain tissue) of adenosine A1 receptors (A1R) in the cortex and striatum, concomitant to striatal D2R downregulation. On the other hand, the previously reported upregulation of adenosine A2A receptors (A2AR) was only observed with severe ID in both mice and rats. The results suggest a key role for A1R downregulation in the PLMS and hyperarousal in RLS.
Collapse
Affiliation(s)
- César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Seema Gulyani
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Wan Ruiqian
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jordi Bonaventura
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Roy Cutler
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Virginia Pearson
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Richard P Allen
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Christopher J Earley
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
46
|
Ferré S. Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders. Psychopharmacology (Berl) 2016; 233:1963-79. [PMID: 26786412 PMCID: PMC4846529 DOI: 10.1007/s00213-016-4212-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND The psychostimulant properties of caffeine are reviewed and compared with those of prototypical psychostimulants able to cause substance use disorders (SUD). Caffeine produces psychomotor-activating, reinforcing, and arousing effects, which depend on its ability to disinhibit the brake that endogenous adenosine imposes on the ascending dopamine and arousal systems. OBJECTIVES A model that considers the striatal adenosine A2A-dopamine D2 receptor heteromer as a key modulator of dopamine-dependent striatal functions (reward-oriented behavior and learning of stimulus-reward and reward-response associations) is introduced, which should explain most of the psychomotor and reinforcing effects of caffeine. HIGHLIGHTS The model can explain the caffeine-induced rotational behavior in rats with unilateral striatal dopamine denervation and the ability of caffeine to reverse the adipsic-aphagic syndrome in dopamine-deficient rodents. The model can also explain the weaker reinforcing effects and low abuse liability of caffeine, compared with prototypical psychostimulants. Finally, the model can explain the actual major societal dangers of caffeine: the ability of caffeine to potentiate the addictive and toxic effects of drugs of abuse, with the particularly alarming associations of caffeine (as adulterant) with cocaine, amphetamine derivatives, synthetic cathinones, and energy drinks with alcohol, and the higher sensitivity of children and adolescents to the psychostimulant effects of caffeine and its potential to increase vulnerability to SUD. CONCLUSIONS The striatal A2A-D2 receptor heteromer constitutes an unequivocal main pharmacological target of caffeine and provides the main mechanisms by which caffeine potentiates the acute and long-term effects of prototypical psychostimulants.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| |
Collapse
|
47
|
Oikonomou KD, Singh MB, Rich MT, Short SM, Antic SD. Contribution of extrasynaptic N-methyl-D-aspartate and adenosine A1 receptors in the generation of dendritic glutamate-mediated plateau potentials. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0193. [PMID: 26009772 DOI: 10.1098/rstb.2014.0193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thin basal dendrites can strongly influence neuronal output via generation of dendritic spikes. It was recently postulated that glial processes actively support dendritic spikes by either ceasing glutamate uptake or by actively releasing glutamate and adenosine triphosphate (ATP). We used calcium imaging to study the role of NR2C/D-containing N-methyl-d-aspartate (NMDA) receptors and adenosine A1 receptors in the generation of dendritic NMDA spikes and plateau potentials in basal dendrites of layer 5 pyramidal neurons in the mouse prefrontal cortex. We found that NR2C/D glutamate receptor subunits contribute to the amplitude of synaptically evoked NMDA spikes. Dendritic calcium signals associated with glutamate-evoked dendritic plateau potentials were significantly shortened upon application of the NR2C/D receptor antagonist PPDA, suggesting that NR2C/D receptors prolong the duration of calcium influx during dendritic spiking. In contrast to NR2C/D receptors, adenosine A1 receptors act to abbreviate dendritic and somatic signals via the activation of dendritic K(+) current. This current is characterized as a slow-activating outward-rectifying voltage- and adenosine-gated current, insensitive to 4-aminopyridine but sensitive to TEA. Our data support the hypothesis that the release of glutamate and ATP from neurons or glia contribute to initiation, maintenance and termination of local dendritic glutamate-mediated regenerative potentials.
Collapse
Affiliation(s)
- Katerina D Oikonomou
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Mandakini B Singh
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew T Rich
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Shaina M Short
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Srdjan D Antic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
48
|
Zhang H, Wheat H, Wang P, Jiang S, Baghdoyan HA, Neubig RR, Shi XY, Lydic R. RGS Proteins and Gαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia. Sleep 2016; 39:393-404. [PMID: 26564126 DOI: 10.5665/sleep.5450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/17/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES This study tested the hypothesis that Regulators of G protein Signaling (RGS) proteins contribute to the regulation of wakefulness, non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep, and to sleep disruption caused by volatile anesthetics. METHODS The three groups used in this study included wild-type (WT; n = 7) mice and knock-in mice that were heterozygous (+/GS; n = 7) or homozygous (GS/GS; n = 7) for an RGS-insensitive allele that causes prolonged Gαi2 signaling. Mice were implanted with electrodes for recording sleep and conditioned for 1 week or more to sleep in the laboratory. Using within and between groups designs, 24-h recordings of wakefulness, NREM sleep, and REM sleep were compared across three interventions: (1) baseline (control) and after 3 h of being anesthetized with (2) isoflurane or (3) sevoflurane. RESULTS Baseline recordings during the light phase revealed that relative to WT mice, homozygous RGS-insensitive (GS/GS) mice exhibit significantly increased wakefulness and decreased NREM and REM sleep. During the dark phase, these state-specific differences remained significant but reversed direction of change. After cessation of isoflurane and sevoflurane anesthesia there was a long-lasting and significant disruption of sleep and wakefulness. The durations of average episodes of wakefulness, NREM sleep, and REM sleep were significantly altered as a function of genotype and isoflurane and sevoflurane anesthesia. CONCLUSIONS RGS proteins and Gαi2 play a significant role in regulating states of wakefulness, NREM sleep, and REM sleep. Genotype-specific differences demonstrate that RGS proteins modulate sleep disruption caused by isoflurane and sevoflurane anesthesia. The results also support the conclusion that isoflurane and sevoflurane anesthesia do not satisfy the homeostatic drive for sleep.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI.,Department of Anesthesiology, The Second Artillery General Hospital, Beijing, China
| | - Heather Wheat
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Peter Wang
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Sha Jiang
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Helen A Baghdoyan
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI.,Departments of Anesthesiology and Psychology, University of Tennessee, Knoxville, TN
| | - Richard R Neubig
- Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI
| | - X Y Shi
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ralph Lydic
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI.,Departments of Anesthesiology and Psychology, University of Tennessee, Knoxville, TN
| |
Collapse
|
49
|
Kim Y, Elmenhorst D, Weisshaupt A, Wedekind F, Kroll T, McCarley RW, Strecker RE, Bauer A. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain. J Sleep Res 2015; 24:549-558. [PMID: 25900125 PMCID: PMC4583343 DOI: 10.1111/jsr.12300] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/15/2015] [Indexed: 01/10/2023]
Abstract
Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction.
Collapse
Affiliation(s)
- Youngsoo Kim
- Department of Psychiatry, VA Boston Healthcare System, Research Service and Harvard Medical School, Brockton, MA, USA
| | - David Elmenhorst
- Department of Psychiatry, VA Boston Healthcare System, Research Service and Harvard Medical School, Brockton, MA, USA
- Institute for Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich, Germany
| | - Angela Weisshaupt
- Institute for Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich, Germany
| | - Franziska Wedekind
- Institute for Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich, Germany
| | - Tina Kroll
- Institute for Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich, Germany
| | - Robert W McCarley
- Department of Psychiatry, VA Boston Healthcare System, Research Service and Harvard Medical School, Brockton, MA, USA
| | - Robert E Strecker
- Department of Psychiatry, VA Boston Healthcare System, Research Service and Harvard Medical School, Brockton, MA, USA
| | - Andreas Bauer
- Institute for Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Jülich, Germany
- Neurological Department, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
50
|
Robillard R, Bouchard M, Cartier A, Nicolau L, Carrier J. Sleep is more sensitive to high doses of caffeine in the middle years of life. J Psychopharmacol 2015; 29:688-97. [PMID: 25759402 DOI: 10.1177/0269881115575535] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the middle years of life, sleep becomes more fragile and its sensitivity to psychostimulants may increase. This study evaluated the effects of 200 mg and 400 mg of caffeine on sleep in young and middle-aged adults. The sleep of 22 young (23.5 ± 1.9 years) and 24 middle-aged (51.7 ± 11.5 years) adults was recorded using polysomnography in two conditions (placebo and caffeine) in a double-blind cross-over design. Compared to placebo, caffeine increased sleep latency, shortened total sleep duration and reduced sleep efficiency. At the higher dose, these effects were more pronounced in middle-aged than in young adults. Furthermore, the higher dose of caffeine increased absolute stage 1 sleep in young adults, whereas it decreased absolute stage 2 sleep in middle-aged adults. Caffeine also induced dose-dependent increases in relative stage 1 sleep and reductions in absolute and relative slow wave sleep and absolute rapid eye movement sleep in both age groups. There was no dose- or age-related modulation of the effects of caffeine on quantified electroencephalographic measures. These results indicate that, compared to young adults, middle-aged adults are generally more sensitive to the effects of a high dose of caffeine on sleep quantity and quality.
Collapse
Affiliation(s)
- Rébecca Robillard
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
| | - Maude Bouchard
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
| | - Annick Cartier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
| | - Laurence Nicolau
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada Département de Psychologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|