1
|
Saenz J, Khezerlou E, Aggarwal M, Shaikh A, Ganti N, Herborg F, Pan PY. Parkinson's disease gene, Synaptojanin1, dysregulates the surface maintenance of the dopamine transporter. NPJ Parkinsons Dis 2024; 10:148. [PMID: 39117637 PMCID: PMC11310474 DOI: 10.1038/s41531-024-00769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Missense mutations of PARK20/SYNJ1 (synaptojanin1/Synj1) were found in complex forms of familial Parkinsonism. However, the Synj1-regulated molecular and cellular changes associated with dopaminergic dysfunction remain unknown. We now report a fast depletion of evoked dopamine and impaired maintenance of the axonal dopamine transporter (DAT) in the Synj1 haploinsufficient (Synj1+/-) neurons. While Synj1 has been traditionally known to facilitate the endocytosis of synaptic vesicles, we provide in vitro and in vivo evidence demonstrating that Synj1 haploinsufficiency results in an increase of total DAT but a reduction of the surface DAT. Synj1+/- neurons exhibit maladaptive DAT trafficking, which could contribute to the altered DA release. We showed that the loss of surface DAT is associated with the impaired 5'-phosphatase activity and the hyperactive PI(4,5)P2-PKCβ pathway downstream of Synj1 deficiency. Thus, our findings provided important mechanistic insight for Synj1-regulated DAT trafficking integral to dysfunctional DA signaling, which might be relevant to early Parkinsonism.
Collapse
Affiliation(s)
- Jacqueline Saenz
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
- Rutgers Graduate School of Biomedical Sciences, Molecular Biosciences Graduate Program, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Elnaz Khezerlou
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Meha Aggarwal
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Amina Shaikh
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Naga Ganti
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Freja Herborg
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Zhang AQ, Ralph MR, Stinchcombe AR. A mathematical model for the role of dopamine-D2 self-regulation in the production of ultradian rhythms. PLoS Comput Biol 2024; 20:e1012082. [PMID: 38701077 PMCID: PMC11095719 DOI: 10.1371/journal.pcbi.1012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Many self-motivated and goal-directed behaviours display highly flexible, approximately 4 hour ultradian (shorter than a day) oscillations. Despite lacking direct correspondence to physical cycles in the environment, these ultradian rhythms may be involved in optimizing functional interactions with the environment and reflect intrinsic neural dynamics. Current evidence supports a role of mesostriatal dopamine (DA) in the expression and propagation of ultradian rhythmicity, however, the biochemical processes underpinning these oscillations remain to be identified. Here, we use a mathematical model to investigate D2 autoreceptor-dependent DA self-regulation as the source of ultradian behavioural rhythms. DA concentration at the midbrain-striatal synapses is governed through a dual-negative feedback-loop structure, which naturally gives rise to rhythmicity. This model shows the propensity of striatal DA to produce an ultradian oscillation characterized by a flexible period that is highly sensitive to parameter variations. Circadian (approximately 24 hour) regulation consolidates the ultradian oscillations and alters their response to the phase-dependent, rapid-resetting effect of a transient excitatory stimulus. Within a circadian framework, the ultradian rhythm orchestrates behavioural activity and enhances responsiveness to an external stimulus. This suggests a role for the circadian-ultradian timekeeping hierarchy in governing organized behaviour and shaping daily experience through coordinating the motivation to engage in recurring, albeit not highly predictable events, such as social interactions.
Collapse
Affiliation(s)
- An Qi Zhang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Martin R. Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
3
|
Saenz J, Khezerlou E, Aggarwal M, Shaikh A, Ganti N, Herborg F, Pan PY. Parkinson's disease gene, Synaptojanin1, dysregulates the surface maintenance of the dopamine transporter. RESEARCH SQUARE 2024:rs.3.rs-4021466. [PMID: 38559229 PMCID: PMC10980101 DOI: 10.21203/rs.3.rs-4021466/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Missense mutations of PARK20/SYNJ1 (synaptojanin1/Synj1) have been linked to complex forms of familial parkinsonism, however, the molecular and cellular changes associated with dopaminergic dysfunction remains unknown. We now report fast depletion of evoked dopamine (DA) and altered maintenance of the axonal dopamine transporter (DAT) in the Synj1+/- neurons. While Synj1 has been traditionally known to facilitate the endocytosis of synaptic vesicles, we demonstrated that axons of cultured Synj1+/- neurons exhibit an increase of total DAT but a reduction of the surface DAT, which could be exacerbated by neuronal activity. We revealed that the loss of surface DAT is specifically associated with the impaired 5'-phosphatase activity of Synj1 and the hyperactive downstream PI(4,5)P2-PKCβ pathway. Thus, our findings provided important mechanistic insight for Synj1-regulated DAT trafficking integral to dysfunctional DA signaling in early parkinsonism.
Collapse
Affiliation(s)
- Jacqueline Saenz
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
- Rutgers Graduate School of Biomedical Sciences, Molecular Biosciences Graduate Program, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Elnaz Khezerlou
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Meha Aggarwal
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Amina Shaikh
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Naga Ganti
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Freja Herborg
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Camacho-Hernandez G, Gopinath A, Okorom AV, Khoshbouei H, Newman AH. Development of a Fluorescently Labeled Ligand for Rapid Detection of DAT in Human and Mouse Peripheral Blood Monocytes. JACS AU 2024; 4:657-665. [PMID: 38425927 PMCID: PMC10900201 DOI: 10.1021/jacsau.3c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
The dopamine transporter (DAT) is one of the key regulators of dopamine (DA) signaling in the central nervous system (CNS) and in the periphery. Recent reports in a model of Parkinson's disease (PD) have shown that dopamine neuronal loss in the CNS impacts the expression of DAT in peripheral immune cells. The mechanism underlying this connection is still unclear but could be illuminated with sensitive and high-throughput detection of DAT-expressing immune cells in the circulation. Herein, we have developed fluorescently labeled ligands (FLL) that bind to surface-expressing DAT with high affinity and selectivity. The diSulfoCy5-FLL (GC04-38) was utilized to label DAT in human and mouse peripheral blood mononuclear cells (PBMCs) that were analyzed via flow cytometry. Selective labeling was validated using DAT KO mouse PBMCs. Our studies provide an efficient and highly sensitive method using this novel DAT-selective FLL to advance our fundamental understanding of DAT expression and activity in PBMCs in health and disease and as a potential peripheral biomarker.
Collapse
Affiliation(s)
- Gisela
Andrea Camacho-Hernandez
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural
Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Adithya Gopinath
- Department
of Neuroscience, University of Florida College
of Medicine, Gainesville, Florida 32611, United States
| | - Amarachi V. Okorom
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural
Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Habibeh Khoshbouei
- Department
of Neuroscience, University of Florida College
of Medicine, Gainesville, Florida 32611, United States
| | - Amy Hauck Newman
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse − Intramural
Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
5
|
Kwon HY, Chang YT, Kang NY. Discovery of Live Cell Selective Fluorescent Probes and Elucidation of Their Mechanisms: Case Study of B Cell Selective Probe CDgB. Methods Mol Biol 2024; 2779:305-321. [PMID: 38526792 DOI: 10.1007/978-1-0716-3738-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The development of small-molecule fluorescent probes for specific immune cell identification offers an economical alternative to expensive antibodies. Moreover, it enables the identification of live target cells and provides insights into the distinct properties of cells, leveraging their specific staining mechanisms. This chapter presents a comprehensive elucidation of the methodology employed for screening fluorescent compounds using flow cytometry measurements. A novel analytical approach is proposed to distinguish a fluorescent compound with a specific carbon length for B lymphocytes, involving an assessment of the staining index and the predominant ratio of immune cells. Moreover, a protocol is presented for investigating the staining mechanisms of these probes by employing cell mimicking models such as small unilamellar vesicles (SUVs).
Collapse
Affiliation(s)
- Haw-Young Kwon
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
- SenPro, C5 building, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
- SenPro, C5 building, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Nam-Young Kang
- SenPro, C5 building, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea.
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea.
| |
Collapse
|
6
|
Jain S, Yee AG, Maas J, Gierok S, Xu H, Stansil J, Eriksen J, Nelson AB, Silm K, Ford CP, Edwards RH. Adaptor protein-3 produces synaptic vesicles that release phasic dopamine. Proc Natl Acad Sci U S A 2023; 120:e2309843120. [PMID: 37812725 PMCID: PMC10589613 DOI: 10.1073/pnas.2309843120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
The burst firing of midbrain dopamine neurons releases a phasic dopamine signal that mediates reinforcement learning. At many synapses, however, high firing rates deplete synaptic vesicles (SVs), resulting in synaptic depression that limits release. What accounts for the increased release of dopamine by stimulation at high frequency? We find that adaptor protein-3 (AP-3) and its coat protein VPS41 promote axonal dopamine release by targeting vesicular monoamine transporter VMAT2 to the axon rather than dendrites. AP-3 and VPS41 also produce SVs that respond preferentially to high-frequency stimulation, independent of their role in axonal polarity. In addition, conditional inactivation of VPS41 in dopamine neurons impairs reinforcement learning, and this involves a defect in the frequency dependence of release rather than the amount of dopamine released. Thus, AP-3 and VPS41 promote the axonal polarity of dopamine release but enable learning by producing a distinct population of SVs tuned specifically to high firing frequency that confers the phasic release of dopamine.
Collapse
Affiliation(s)
- Shweta Jain
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Andrew G. Yee
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO80045
| | - James Maas
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Sarah Gierok
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Hongfei Xu
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Jasmine Stansil
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Jacob Eriksen
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Alexandra B. Nelson
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Katlin Silm
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO80045
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Robert H. Edwards
- Department of Physiology, University of California School of Medicine, San Francisco, CA94143
- Department of Neurology, University of California School of Medicine, San Francisco, CA94143
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| |
Collapse
|
7
|
Shetty M, Bolland DE, Morrell J, Grove BD, Foster JD, Vaughan RA. Dopamine transporter membrane mobility is bidirectionally regulated by phosphorylation and palmitoylation. Curr Res Physiol 2023; 6:100106. [PMID: 38107792 PMCID: PMC10724222 DOI: 10.1016/j.crphys.2023.100106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
The primary regulator of dopamine availability in the brain is the dopamine transporter (DAT), a plasma membrane protein that drives reuptake of released dopamine from the extracellular space into the presynaptic neuron. DAT activity is regulated by post-translational modifications that establish clearance capacity through impacts on transport kinetics, and dysregulation of these events may underlie dopaminergic imbalances in mood and psychiatric disorders. Here, using fluorescence recovery after photobleaching, we show that phosphorylation and palmitoylation induce opposing effects on DAT lateral membrane mobility, which may influence functional outcomes by regulating subcellular localization and binding partner interactions. Membrane mobility was also impacted by amphetamine and in polymorphic variant A559V in directions consistent with enhanced phosphorylation. These findings grow the list of DAT properties controlled by these post-translational modifications and highlight their role in establishment of dopaminergic tone in physiological and pathophysiological states.
Collapse
Affiliation(s)
- Madhur Shetty
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | | | - Joshua Morrell
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Bryon D. Grove
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| |
Collapse
|
8
|
Jain S, Yee AG, Maas J, Gierok S, Xu H, Stansil J, Eriksen J, Nelson A, Silm K, Ford CP, Edwards RH. Adaptor Protein-3 Produces Synaptic Vesicles that Release Phasic Dopamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552338. [PMID: 37609166 PMCID: PMC10441354 DOI: 10.1101/2023.08.07.552338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The burst firing of midbrain dopamine neurons releases a phasic dopamine signal that mediates reinforcement learning. At many synapses, however, high firing rates deplete synaptic vesicles (SVs), resulting in synaptic depression that limits release. What accounts for the increased release of dopamine by stimulation at high frequency? We find that adaptor protein-3 (AP-3) and its coat protein VPS41 promote axonal dopamine release by targeting vesicular monoamine transporter VMAT2 to the axon rather than dendrites. AP-3 and VPS41 also produce SVs that respond preferentially to high frequency stimulation, independent of their role in axonal polarity. In addition, conditional inactivation of VPS41 in dopamine neurons impairs reinforcement learning, and this involves a defect in the frequency dependence of release rather than the amount of dopamine released. Thus, AP-3 and VPS41 promote the axonal polarity of dopamine release but enable learning by producing a novel population of SVs tuned specifically to high firing frequency that confers the phasic release of dopamine.
Collapse
Affiliation(s)
- Shweta Jain
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Andrew G. Yee
- Department of Pharmacology, University of Colorado School of Medicine, Aurora USA
| | - James Maas
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Sarah Gierok
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Hongfei Xu
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Jasmine Stansil
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Jacob Eriksen
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Alexandra Nelson
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Katlin Silm
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora USA
| | - Robert H. Edwards
- Department of Physiology, UCSF School of Medicine, San Francisco USA
- Department of Neurology, UCSF School of Medicine, San Francisco USA
| |
Collapse
|
9
|
Russo EE, Zovko LE, Nazari R, Steenland H, Ramsey AJ, Salahpour A. Evaluation and Validation of Commercially Available Dopamine Transporter Antibodies. eNeuro 2023; 10:10/5/ENEURO.0341-22.2023. [PMID: 37142435 PMCID: PMC10162361 DOI: 10.1523/eneuro.0341-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
With a wide variety of dopamine transporter (DAT) antibodies available commercially, it is important to validate which antibodies provide sufficient immunodetection for reproducibility purpose and for accurate analysis of DAT levels and/or location. Commercially available DAT antibodies that are commonly used were tested in western blotting (WB) on wild-type (WT) and DAT-knock-out (DAT-KO) brain tissue and with immunohistology (IH) techniques against coronal slices of unilaterally lesioned 6-OHDA rats, in addition to wild-type and DAT-knock-out mice. DAT-KO mice and unilateral 6-OHDA lesions in rats were used as a negative control for DAT antibody specificity. Antibodies were tested at various concentrations and rated based on signal detection varying from no signal to optimal signal detection. Commonly used antibodies, including AB2231 and PT-22 524-1-AP, did not provide specific DAT signals in WB and IH. Although certain antibodies provided a good DAT signal, such as SC-32258, D6944, and MA5-24796, they also presented nonspecific bands in WB. Many DAT antibodies did not detect the DAT as advertised, and this characterization of DAT antibodies may provide a guide for immunodetection of DAT for molecular studies.
Collapse
Affiliation(s)
- Emma E Russo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lola E Zovko
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Reza Nazari
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hendrik Steenland
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
10
|
Saenz J, Yao O, Khezerlou E, Aggarwal M, Zhou X, Barker DJ, DiCicco-Bloom E, Pan PY. Cocaine-regulated trafficking of dopamine transporters in cultured neurons revealed by a pH sensitive reporter. iScience 2023; 26:105782. [PMID: 36594015 PMCID: PMC9804146 DOI: 10.1016/j.isci.2022.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Cocaine acts by inhibiting plasma membrane dopamine transporter (DAT) function and altering its surface expression. The precise manner and mechanism by which cocaine regulates DAT trafficking, especially at neuronal processes, are poorly understood. In this study, we engineered and validated the use of DAT-pHluorin for studying DAT localization and its dynamic trafficking at neuronal processes of cultured mouse midbrain neurons. We demonstrate that unlike neuronal soma and dendrites, which contain a majority of the DATs in weakly acidic intracellular compartments, axonal DATs at both shafts and boutons are primarily (75%) localized to the plasma membrane, whereas large varicosities contain abundant intracellular DAT within acidic intracellular structures. We also demonstrate that cocaine exposure leads to a Synaptojanin1-sensitive DAT internalization process followed by membrane reinsertion that lasts for days. Thus, our study reveals the previously unknown dynamics and molecular regulation for cocaine-regulated DAT trafficking in neuronal processes.
Collapse
Affiliation(s)
- Jacqueline Saenz
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
- Rutgers Graduate School of Biomedical Sciences, Molecular Biosciences Graduate Program, Piscataway, NJ 08854, USA
| | - Oscar Yao
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Elnaz Khezerlou
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Meha Aggarwal
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Xiaofeng Zhou
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - David J. Barker
- Rutgers, The State University of New Jersey, Department of Psychology, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Emanuel DiCicco-Bloom
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Ping-Yue Pan
- Rutgers University Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| |
Collapse
|
11
|
Troshev D, Blokhin V, Ukrainskaya V, Kolacheva A, Ugrumov M. Isolation of living dopaminergic neurons labeled with a fluorescent ligand of the dopamine transporter from mouse substantia nigra as a new tool for basic and applied research. Front Mol Neurosci 2022; 15:1020070. [PMID: 36568278 PMCID: PMC9780273 DOI: 10.3389/fnmol.2022.1020070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Dopaminergic neurons (DNs) of the nigrostriatal system control the motor function, and their degeneration leads to the development of Parkinson's disease (PD). A stumbling block in the study of DNs in the whole substantia nigra (SN) is the lack of tools to analyze the expression of most of the genes involved in neurotransmission, neurodegeneration, and neuroplasticity, since they are also expressed in other cells of the SN. Therefore, this study aimed to develop a fluorescence-activated cell sorting method for isolating living DNs from the SN of wild-type mice using two fluorescent dyes, DRAQ5 (nuclear stain) and a dopamine uptake inhibitor GBR 12909 coupled to a fluorophore (DN stain). We have developed a method for selecting a population of DNs from the SN of mice, as evidenced by: (i) immunopositivity of 95% of the sorted cells for tyrosine hydroxylase, the first enzyme of dopamine synthesis; (ii) the sorted cells expressing the genes for specific proteins of the dopaminergic phenotype, tyrosine hydroxylase, the dopamine transporter, and vesicular monoamine transporter 2 and non-specific proteins, such as aromatic L-amino acid decarboxylase, non-specific enzyme of dopamine synthesis. We then compared the changes in gene expression found in the sorted DNs and in the SN homogenate in a PD model we developed, reproduced in mice by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Using quantitative PCR, we obtained evidence of the same changes in the expression of specific genes in the sorted DNs of SN and in the SN homogenate of a MPTP mouse model of PD, compared with the control. The undoubted advantage of our approach is the possibility of obtaining a large amount of readily available and relatively cheap primary material (SN) from wild-type mice, which can be used to solve both research and applied problems. In addition, this method can be easily adapted to the isolation of DNs from the SN in other animal species, including non-human primates.
Collapse
Affiliation(s)
- Dmitry Troshev
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Victor Blokhin
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Valeria Ukrainskaya
- Laboratory of Biocatalysis, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kolacheva
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia,*Correspondence: Michael Ugrumov,
| |
Collapse
|
12
|
Troshev D, Bannikova A, Blokhin V, Kolacheva A, Pronina T, Ugrumov M. Striatal Neurons Partially Expressing a Dopaminergic Phenotype: Functional Significance and Regulation. Int J Mol Sci 2022; 23:ijms231911054. [PMID: 36232359 PMCID: PMC9570204 DOI: 10.3390/ijms231911054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of striatal neurons expressing dopamine-synthesizing enzymes, researchers have attempted to identify their phenotype and functional significance. In this study, it was shown that in transgenic mice expressing green fluorescent protein (GFP) under the tyrosine hydroxylase (TH) gene promoter, (i) there are striatal neurons expressing only TH, only aromatic L-amino acid decarboxylase (AADC), or both enzymes of dopamine synthesis; (ii) striatal neurons expressing dopamine-synthesizing enzymes are not dopaminergic since they lack a dopamine transporter; (iii) monoenzymatic neurons expressing individual complementary dopamine-synthesizing enzymes produce this neurotransmitter in cooperation; (iv) striatal nerve fibers containing only TH, only AADC, or both enzymes project into the lateral ventricles, providing delivery pathways for L-3,4-dihydroxyphenylalanine and dopamine to the cerebrospinal fluid; and (v) striatal GFP neurons express receptor genes for various signaling molecules, i.e., classical neurotransmitters, neuropeptides, and steroids, indicating fine regulation of these neurons. Based on our data, it is assumed that the synthesis of dopamine by striatal neurons is a compensatory response to the death of nigral dopaminergic neurons in Parkinson’s disease, which opens broad prospects for the development of a fundamentally novel antiparkinsonian therapy.
Collapse
|
13
|
Kramer PF, Brill-Weil SG, Cummins AC, Zhang R, Camacho-Hernandez GA, Newman AH, Eldridge MAG, Averbeck BB, Khaliq ZM. Synaptic-like axo-axonal transmission from striatal cholinergic interneurons onto dopaminergic fibers. Neuron 2022; 110:2949-2960.e4. [PMID: 35931070 PMCID: PMC9509469 DOI: 10.1016/j.neuron.2022.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 12/09/2022]
Abstract
Transmission from striatal cholinergic interneurons (CINs) controls dopamine release through nicotinic acetylcholine receptors (nAChRs) on dopaminergic axons. Anatomical studies suggest that cholinergic terminals signal predominantly through non-synaptic volume transmission. However, the influence of cholinergic transmission on electrical signaling in axons remains unclear. We examined axo-axonal transmission from CINs onto dopaminergic axons using perforated-patch recordings, which revealed rapid spontaneous EPSPs with properties characteristic of fast synapses. Pharmacology showed that axonal EPSPs (axEPSPs) were mediated primarily by high-affinity α6-containing receptors. Remarkably, axEPSPs triggered spontaneous action potentials, suggesting that these axons perform integration to convert synaptic input into spiking, a function associated with somatodendritic compartments. We investigated the cross-species validity of cholinergic axo-axonal transmission by recording dopaminergic axons in macaque putamen and found similar axEPSPs. Thus, we reveal that synaptic-like neurotransmission underlies cholinergic signaling onto dopaminergic axons, supporting the idea that striatal dopamine release can occur independently of somatic firing to provide distinct signaling.
Collapse
Affiliation(s)
- Paul F Kramer
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel G Brill-Weil
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex C Cummins
- Laboratory of Neuropsychology, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renshu Zhang
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gisela A Camacho-Hernandez
- Medicinal Chemistry Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Amy H Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zayd M Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Abstract
Live cell discrimination is the first and essential step to understand complex biosystems. Conventional cell discrimination involving various antibodies relies on selective surface biomarkers. Compared to antibodies, the fluorescent probe strategy allows the utilisation of intracellular biomarkers, providing broader options with unique chemical principles to achieve the live cell distinction. In general, fluorescent probes can be retained in cells by interacting with biomolecules, accumulating via transporters, and participating in metabolism. Based on the target difference, fluorescent probe strategy can be divided into several categories: protein-oriented live cell distinction (POLD), carbohydrate-oriented live cell distinction (COLD), DNA-oriented live cell distinction (DOLD), gating-oriented live cell distinction (GOLD), metabolism-oriented live cell distinction (MOLD) and lipid-oriented live cell distinction (LOLD). In this review, we will outline the concepts and mechanisms of different strategies, introduce their applications in cell-type discrimination, and discuss their advantages and challenges in this area. We expect this tutorial will provide a new perspective on the mechanisms of fluorescent probe strategy and facilitate the development of cell-type-specific probes.
Collapse
Affiliation(s)
- Xiao Liu
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea. .,Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea. .,Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
15
|
Tomlinson ID, Kovtun O, Torres R, Bellocchio LG, Josephs T, Rosenthal SJ. A Novel Biotinylated Homotryptamine Derivative for Quantum Dot Imaging of Serotonin Transporter in Live Cells. Front Cell Neurosci 2021; 15:667044. [PMID: 34867196 PMCID: PMC8637195 DOI: 10.3389/fncel.2021.667044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
The serotonin transporter (SERT) is the primary target for selective serotonin reuptake inhibitor (SSRI) antidepressants that are thought to exert their therapeutic effects by increasing the synaptic concentration of serotonin. Consequently, probes that can be utilized to study cellular trafficking of SERT are valuable research tools. We have developed a novel ligand (IDT785) that is composed of a SERT antagonist (a tetrahydro pyridyl indole derivative) conjugated to a biotinylated poly ethylene glycol (PEG) via a phenethyl linker. This compound was determined to be biologically active and inhibited SERT-mediated reuptake of IDT307 with the half-maximal inhibitory concentration of 7.2 ± 0.3 μM. We demonstrated that IDT785 enabled quantum dot (QD) labeling of membrane SERT in transfected HEK-293 cultures that could be blocked using the high affinity serotonin reuptake inhibitor paroxetine. Molecular docking studies suggested that IDT785 might be binding to the extracellular vestibule binding site rather than the orthosteric substrate binding site, which could be attributable to the hydrophilicity of the PEG chain and the increased loss of degrees of freedom that would be required to penetrate into the orthosteric binding site. Using IDT785, we were able to study the membrane localization and membrane dynamics of YFP-SERT heterologously expressed in HEK-293 cells and demonstrated that SERT expression was enriched in the membrane edge and in thin cellular protrusions.
Collapse
Affiliation(s)
- Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Ruben Torres
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | | | - Travis Josephs
- Neuroscience Program, Vanderbilt University, Nashville, TN, United States
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
16
|
Herborg F, Jensen KL, Tolstoy S, Arends NV, Posselt LP, Shekar A, Aguilar JI, Lund VK, Erreger K, Rickhag M, Lycas MD, Lonsdale MN, Rahbek-Clemmensen T, Sørensen AT, Newman AH, Løkkegaard A, Kjaerulff O, Werge T, Møller LB, Matthies HJ, Galli A, Hjermind LE, Gether U. Dominant-negative actions of a dopamine transporter variant identified in patients with parkinsonism and neuropsychiatric disease. JCI Insight 2021; 6:e151496. [PMID: 34375312 PMCID: PMC8492322 DOI: 10.1172/jci.insight.151496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Dysfunctional dopaminergic neurotransmission is central to movement disorders and mental diseases. The dopamine transporter (DAT) regulates extracellular dopamine levels, but the genetic and mechanistic link between DAT function and dopamine-related pathologies is not clear. Particularly, the pathophysiological significance of monoallelic missense mutations in DAT is unknown. Here, we use clinical information, neuroimaging, and large-scale exome-sequencing data to uncover the occurrence and phenotypic spectrum of a DAT coding variant, DAT-K619N, which localizes to the critical C-terminal PSD-95/Discs-large/ZO-1 homology–binding motif of human DAT (hDAT). We identified the rare but recurrent hDAT-K619N variant in exome-sequenced samples of patients with neuropsychiatric diseases and a patient with early-onset neurodegenerative parkinsonism and comorbid neuropsychiatric disease. In cell cultures, hDAT-K619N displayed reduced uptake capacity, decreased surface expression, and accelerated turnover. Unilateral expression in mouse nigrostriatal neurons revealed differential effects of hDAT-K619N and hDAT-WT on dopamine-directed behaviors, and hDAT-K619N expression in Drosophila led to impairments in dopamine transmission with accompanying hyperlocomotion and age-dependent disturbances of the negative geotactic response. Moreover, cellular studies and viral expression of hDAT-K619N in mice demonstrated a dominant-negative effect of the hDAT-K619N mutant. Summarized, our results suggest that hDAT-K619N can effectuate dopamine dysfunction of pathological relevance in a dominant-negative manner.
Collapse
Affiliation(s)
- Freja Herborg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine L Jensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sasha Tolstoy
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natascha V Arends
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leonie P Posselt
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aparna Shekar
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States of America
| | - Jenny I Aguilar
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States of America
| | - Viktor K Lund
- Departmetn of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kevin Erreger
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States of America
| | - Mattias Rickhag
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew D Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Markus N Lonsdale
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Troels Rahbek-Clemmensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas T Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy H Newman
- National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, United States of America
| | | | - Ole Kjaerulff
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth B Møller
- Center for Applied Human Genetics, Kennedy Center, Glostrup, Denmark
| | - Heinrich Jg Matthies
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States of America
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States of America
| | - Lena E Hjermind
- Department of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrik Gether
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Camacho-Hernandez GA, Casiraghi A, Rudin D, Luethi D, Ku TC, Guthrie DA, Straniero V, Valoti E, Schütz GJ, Sitte HH, Newman AH. Illuminating the norepinephrine transporter: fluorescent probes based on nisoxetine and talopram. RSC Med Chem 2021; 12:1174-1186. [PMID: 34355183 DOI: 10.1039/d1md00072a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023] Open
Abstract
The utilization of fluorescent ligands to study the monoamine transporters (MATs) has increased our knowledge of their function and distribution in live cell systems. In this study, we extend SAR for nisoxetine and talopram as parent compounds, to identify high affinity rhodamine-labeled fluorescent probes for the norepinephrine transporter (NET). Nisoxetine-based fluorescent probe 6 demonstrated high binding affinity (K i = 43 nM) for NET and an overall selectivity compared to the other transporters for dopamine (DAT; K i = 1540 nM) and serotonin (SERT; K i = 785 nM) in competitive radioligand binding assays. Using confocal microscopy, compound 6 was shown to stain both NET and SERT, but not DAT, at low nanomolar concentrations, in transporter-expressing cells.
Collapse
Affiliation(s)
- Gisela Andrea Camacho-Hernandez
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program Baltimore MD 21224 USA
| | - Andrea Casiraghi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program Baltimore MD 21224 USA .,Department of Pharmaceutical Sciences, University of Milan Via Mangiagalli 25 20133 Milan Italy
| | - Deborah Rudin
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna Waehringer Strasse 13a 1090 Vienna Austria
| | - Dino Luethi
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna Waehringer Strasse 13a 1090 Vienna Austria.,Institute of Applied Physics TU Wien, Lehárgasse 6 1060 Vienna Austria
| | - Therese C Ku
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program Baltimore MD 21224 USA
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program Baltimore MD 21224 USA
| | - Valentina Straniero
- Department of Pharmaceutical Sciences, University of Milan Via Mangiagalli 25 20133 Milan Italy
| | - Ermanno Valoti
- Department of Pharmaceutical Sciences, University of Milan Via Mangiagalli 25 20133 Milan Italy
| | - Gerhard J Schütz
- Institute of Applied Physics TU Wien, Lehárgasse 6 1060 Vienna Austria
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna Waehringer Strasse 13a 1090 Vienna Austria
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program Baltimore MD 21224 USA
| |
Collapse
|
18
|
Ryan RM, Ingram SL, Scimemi A. Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression. Front Cell Neurosci 2021; 15:670346. [PMID: 33927596 PMCID: PMC8076567 DOI: 10.3389/fncel.2021.670346] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 01/31/2023] Open
Abstract
Neurotransmitter transporters limit spillover between synapses and maintain the extracellular neurotransmitter concentration at low yet physiologically meaningful levels. They also exert a key role in providing precursors for neurotransmitter biosynthesis. In many cases, neurons and astrocytes contain a large intracellular pool of transporters that can be redistributed and stabilized in the plasma membrane following activation of different signaling pathways. This means that the uptake capacity of the brain neuropil for different neurotransmitters can be dynamically regulated over the course of minutes, as an indirect consequence of changes in neuronal activity, blood flow, cell-to-cell interactions, etc. Here we discuss recent advances in the mechanisms that control the cell membrane trafficking and biophysical properties of transporters for the excitatory, inhibitory and modulatory neurotransmitters glutamate, GABA, and dopamine.
Collapse
Affiliation(s)
- Renae M. Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | | |
Collapse
|
19
|
Underhill SM, Amara SG. Acetylcholine Receptor Stimulation Activates Protein Kinase C Mediated Internalization of the Dopamine Transporter. Front Cell Neurosci 2021; 15:662216. [PMID: 33897375 PMCID: PMC8062973 DOI: 10.3389/fncel.2021.662216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
The dopamine transporter (DAT) clears neurotransmitters from the extracellular space and serves as an important regulator of signal amplitude and duration at sites of dopamine release. Several different intracellular signaling pathways have been observed to modulate DAT activity through the regulation of the trafficking of the carriers to and from the cell surface. Acute activation of protein kinase C (PKC) by phorbol esters facilitates clathrin-dependent internalization of the DAT in a variety of model systems; however, the physiological stimuli and cell-surface receptor systems that activate PKC and regulate the DAT in dopamine neurons remain elusive. We report here that stimulation of M1/M5 muscarinic receptors in midbrain cultures decreases the ability of dopamine neurons to transport dopamine through DAT. Application of the cholinomimetic drug carbachol leads to a decrease in DAT activity in primary cultures while the M1/M5-specific antagonist, pirenzepine, blocks these effects. The M3 antagonist, DAU 5884, does not affect, but a positive modulator of M5, VU 0238429, enhances the loss of DAT function in response to carbachol and acetylcholine. These data implicate M1/M5 receptors on dopamine neurons in the modulation of DAT function. Bisindolylmaleimide, a PKC inhibitor, blocks the effects of carbachol stimulation on dopamine uptake, supporting a role for PKC in muscarinic receptor-mediated DAT internalization. Furthermore, as shown previously for PKC-induced internalization, downregulation of the DAT is dependent on both clathrin and dynamin. A Gq-specific inhibitor peptide also blocks the effects of carbachol on DAT in primary cultures, confirming Gq as the G-protein that couples M1/M5 receptors to PKC activation in these cells. In acute midbrain slices, biotinylation of cell-surface proteins revealed the loss of dopamine transport mediated by muscarinic receptor stimulation was, indeed, due to loss of membrane expression of the DAT in endogenous tissue. These data indicate that stimulation of cholinergic pathways can lead to modulation of dopamine through internalization of the DAT.
Collapse
Affiliation(s)
- Suzanne M Underhill
- National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Susan G Amara
- National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
20
|
Dynamic control of the dopamine transporter in neurotransmission and homeostasis. NPJ Parkinsons Dis 2021; 7:22. [PMID: 33674612 PMCID: PMC7935902 DOI: 10.1038/s41531-021-00161-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
The dopamine transporter (DAT) transports extracellular dopamine into the intracellular space contributing to the regulation of dopamine neurotransmission. A reduction of DAT density is implicated in Parkinson's disease (PD) by neuroimaging; dopamine turnover is dopamine turnover is elevated in early symptomatic PD and in presymptomatic individuals with monogenic mutations causal for parkinsonism. As an integral plasma membrane protein, DAT surface expression is dynamically regulated through endocytic trafficking, enabling flexible control of dopamine signaling in time and space, which in turn critically modulates movement, motivation and learning behavior. Yet the cellular machinery and functional implications of DAT trafficking remain enigmatic. In this review we summarize mechanisms governing DAT trafficking under normal physiological conditions and discuss how PD-linked mutations may disturb DAT homeostasis. We highlight the complexity of DAT trafficking and reveal DAT dysregulation as a common theme in genetic models of parkinsonism.
Collapse
|
21
|
Etchepare L, Gréa H, Durand P, Bouchet D, Groc L. NMDA receptor membrane dynamics tunes the firing pattern of midbrain dopaminergic neurons. J Physiol 2021; 599:2933-2951. [PMID: 33651437 DOI: 10.1113/jp281104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/22/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS NMDA receptors (NMDARs) expressed by dopamine neurons of the ventral tegmental area (VTA) play a central role in glutamate synapse plasticity, neuronal firing and adaptative behaviours. The NMDAR surface dynamics shapes synaptic adaptation in hippocampal networks, as well as associative memory. We investigated the basic properties and role of the NMDAR surface dynamics on cultured mesencephalic and VTA dopamine neurons in rodents. Using a combination of single molecule imaging and electrophysiological recordings, we demonstrate that NMDARs are highly diffusive at the surface of mesencephalic dopamine neurons. Unexpectedly, the NMDAR membrane dynamics per se regulates the firing pattern of VTA dopaminergic neurons, probably through a functional interplay between NMDARs receptors and small-conductance calcium-dependent potassium (SK) channels. ABSTRACT Midbrain dopaminergic (DA) neurons play a central role in major physiological brain functions, and their dysfunctions have been associated with neuropsychiatric diseases. The activity of midbrain DA neurons is controlled by ion channels and neurotransmitter receptors, such as the glutamate NMDA receptor (NMDAR) and small-conductance calcium-dependent potassium (SK) channels. However, the cellular mechanisms through which these channels tune the firing pattern of midbrain DA neurons remain unclear. Here, we investigated whether the surface dynamics and distribution of NMDARs tunes the firing pattern of midbrain DA neurons. Using a combination of single molecule imaging and electrophysiological recordings, we report that NMDARs are highly diffusive at the surface of cultured midbrain DA neurons from rodents and humans. Reducing acutely the NMDAR membrane dynamics, which leaves the ionotropic function of the receptor intact, robustly altered the firing pattern of midbrain DA neurons without altering synaptic glutamatergic transmission. The reduction of NMDAR surface dynamics reduced apamin (SK channel blocker)-induced firing change and the distribution of SK3 channels in DA neurons. Together, these data show that the surface dynamics of NMDAR, and not solely its ionotropic function, tune the firing pattern of midbrain DA neurons partly through a functional interplay with SK channel function.
Collapse
Affiliation(s)
- Laetitia Etchepare
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Hélène Gréa
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Pauline Durand
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Delphine Bouchet
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Laurent Groc
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| |
Collapse
|
22
|
Luis-Ravelo D, Fumagallo-Reading F, Castro-Hernandez J, Barroso-Chinea P, Afonso-Oramas D, Febles-Casquero A, Cruz-Muros I, Salas-Hernandez J, Mesa-Infante V, Rodriguez-Nuñez J, Gonzalez-Hernandez T. Prolonged dopamine D 3 receptor stimulation promotes dopamine transporter ubiquitination and degradation through a PKC-dependent mechanism. Pharmacol Res 2021; 165:105434. [PMID: 33484816 DOI: 10.1016/j.phrs.2021.105434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
The dopamine transporter (DAT) is a membrane glycoprotein in dopaminergic neurons, which modulates extracellular and intracellular dopamine levels. DAT is regulated by different presynaptic proteins, including dopamine D2 (D2R) and D3 (D3R) receptors. While D2R signalling enhances DAT activity, some data suggest that D3R has a biphasic effect. However, despite the extensive therapeutic use of D2R/D3R agonists in neuropsychiatric disorders, this phenomenon has been little studied. In order to shed light on this issue, DAT activity, expression and posttranslational modifications were studied in mice and DAT-D3R-transfected HEK cells. Consistent with previous reports, acute treatment with D2R/D3R agonists promoted DAT recruitment to the plasma membrane and an increase in DA uptake. However, when the treatment was prolonged, DA uptake and total striatal DAT protein declined below basal levels. These effects were inhibited in mice by genetic and pharmacological inactivation of D3R, but not D2R, indicating that they are D3R-dependent. No changes were detected in mesostriatal tyrosine hydroxylase (TH) protein expression and midbrain TH and DAT mRNAs, suggesting that the dopaminergic system is intact and DAT is posttranslationally regulated. The use of immunoprecipitation and cell surface biotinylation revealed that DAT is phosphorylated at serine residues, ubiquitinated and released into late endosomes through a PKCβ-dependent mechanism. In sum, the results indicate that long-term D3R activation promotes DAT down-regulation, an effect that may underlie neuroprotective and antidepressant actions described for some D2R/D3R agonists.
Collapse
Affiliation(s)
- Diego Luis-Ravelo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Felipe Fumagallo-Reading
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Javier Castro-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Alejandro Febles-Casquero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Ignacio Cruz-Muros
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Josmar Salas-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | - Virginia Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Julia Rodriguez-Nuñez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Tomas Gonzalez-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
23
|
Bagalkot TR, Block ER, Bucchin K, Balcita-Pedicino JJ, Calderon M, Sesack SR, Sorkin A. Dopamine Transporter Localization in Medial Forebrain Bundle Axons Indicates Its Long-Range Transport Primarily by Membrane Diffusion with a Limited Contribution of Vesicular Traffic on Retromer-Positive Compartments. J Neurosci 2021; 41:234-250. [PMID: 33234607 PMCID: PMC7810657 DOI: 10.1523/jneurosci.0744-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
Dopamine transporter (DAT) controls dopamine neurotransmission by clearing synaptically released dopamine. However, trafficking itineraries of DAT, which determine its cell-surface concentration near synapses, are poorly characterized. It is especially unknown how DAT is transported between spatially distant midbrain somatodendritic and striatal axonal compartments. To examine this "long-range" trafficking, the localization and membrane diffusion of HA-epitope tagged DAT in the medial forebrain bundle (MFB) of a knock-in mouse (both sexes) were analyzed using confocal, super-resolution and EM in intact brain and acute brain slices. HA-DAT was abundant in the plasma membrane of MFB axons, similar to the striatum, although the intracellular fraction of HA-DAT in MFB was more substantial. Intracellular HA-DAT colocalized with VPS35, a subunit of the retromer complex mediating recycling from endosomes, in a subset of axons. Late endosomes, lysosomes, and endoplasmic reticulum were abundant in the soma but minimally present in MFB axons, suggesting that biosynthesis and lysosomal degradation of DAT are confined to soma. Together, the data suggest that membrane diffusion is the main mode of long-range DAT transport through MFB, although the contribution of vesicular traffic can be significant in a population of MFB axons. Based on HA-DAT diffusion rates, plasma membrane DAT in MFB axons turns over with a halftime of ∼20 d, which explains the extremely slow turnover of DAT protein in the brain. Unexpectedly, the mean diameter of DAT-labeled MFB axons was observed to be twice larger than reported for striatum. The implications of this finding for dopamine neuron physiology are discussed.SIGNIFICANCE STATEMENT The dopamine transporter (DAT) is a key regulator of dopamine neurotransmission and a target of abused psychostimulants. In the present study, we examined, for the first time, mechanisms of the long-range traffic of DAT in intact brain and acute brain slices from the knock-in mouse expressing epitope-tagged DAT. Using a combination of confocal, super-resolution and EM, we defined DAT localization and its membrane diffusion parameters in medial forebrain bundle axonal tracts connecting midbrain somatodendritic and striatal axonal compartments of dopaminergic neurons. In contrast to the widely accepted model of long-range axonal transport, our studies suggest that DAT traffics between midbrain and striatum, mainly by lateral diffusion in the plasma membrane with only a limited contribution of vesicular transport in recycling endosomes.
Collapse
Affiliation(s)
- Tarique R Bagalkot
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Ethan R Block
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
- Chatham University, Pittsburgh, Pennsylvania 15232
| | - Kristen Bucchin
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Judith Joyce Balcita-Pedicino
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Michael Calderon
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Susan R Sesack
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
24
|
Ingram SM, Rana T, Manson AM, Yayah FM, Jackson EGB, Anderson C, Davids BO, Goodwin JS. Optogenetically-induced multimerization of the dopamine transporter increases uptake and trafficking to the plasma membrane. J Biol Chem 2021; 296:100787. [PMID: 34015332 PMCID: PMC8203837 DOI: 10.1016/j.jbc.2021.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022] Open
Abstract
The dopamine transporter (DAT) is essential for the reuptake of the released neurotransmitter dopamine (DA) in the brain. Psychostimulants, methamphetamine and cocaine, have been reported to induce the formation of DAT multimeric complexes in vivo and in vitro. The interpretation of DAT multimer function has been primarily in the context of compounds that induce structural and functional modifications of the DAT, complicating the understanding of the significance of DAT multimers. To examine multimerization in the absence of DAT ligands as well as in their presence, we developed a novel, optogenetic fusion chimera of cryptochrome 2 and DAT with an mCherry fluorescent reporter (Cry2-DAT). Using blue light to induce Cry2-DAT multimeric protein complex formation, we were able to simultaneously test the functional contributions of DAT multimerization in the absence or presence of substrates or inhibitors with high spatiotemporal precision. We found that blue light-stimulated Cry2-DAT multimers significantly increased IDT307 uptake and MFZ 9-18 binding in the absence of ligands as well as after methamphetamine and nomifensine treatment. Blue light-induced Cry2-DAT multimerization increased colocalization with recycling endosomal marker Rab11 and had decreased presence in Rab5-positive early endosomes and Rab7-positive late endosomes. Our data suggest that the increased uptake and binding results from induced and rapid trafficking of DAT multimers to the plasma membrane. Our data suggest that DAT multimers may function to help maintain DA homeostasis.
Collapse
Affiliation(s)
- Shalonda M Ingram
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Tanu Rana
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Ashley M Manson
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Faisal M Yayah
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Evan G B Jackson
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Christopher Anderson
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Benem-Orom Davids
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - J Shawn Goodwin
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee, USA.
| |
Collapse
|
25
|
Guthrie DA, Klein Herenbrink C, Lycas MD, Ku T, Bonifazi A, DeVree BT, Mathiasen S, Javitch JA, Grimm JB, Lavis L, Gether U, Newman AH. Novel Fluorescent Ligands Enable Single-Molecule Localization Microscopy of the Dopamine Transporter. ACS Chem Neurosci 2020; 11:3288-3300. [PMID: 32926777 DOI: 10.1021/acschemneuro.0c00397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The dopamine transporter (DAT) is critical for spatiotemporal control of dopaminergic neurotransmission and is the target for therapeutic agents, including ADHD medications, and abused substances, such as cocaine. Here, we develop new fluorescently labeled ligands that bind DAT with high affinity and enable single-molecule detection of the transporter. The cocaine analogue MFZ2-12 (1) was conjugated to novel rhodamine-based Janelia Fluorophores (JF549 and JF646). High affinity binding of the resulting ligands to DAT was demonstrated by potent inhibition of [3H]dopamine uptake in DAT transfected CAD cells and by competition radioligand binding experiments on rat striatal membranes. Visualization of binding was substantiated by confocal or TIRF microscopy revealing selective binding of the analogues to DAT transfected CAD cells. Single particle tracking experiments were performed with JF549-conjugated DG3-80 (3) and JF646-conjugated DG4-91 (4) on DAT transfected CAD cells enabling quantification and categorization of the dynamic behavior of DAT into four distinct motion classes (immobile, confined, Brownian, and directed). Finally, we show that the ligands can be used in direct stochastic optical reconstruction microscopy (dSTORM) experiments permitting further analyses of DAT distribution on the nanoscale. In summary, these novel fluorescent ligands are promising new tools for studying DAT localization and regulation with single-molecule resolution.
Collapse
Affiliation(s)
- Daryl A. Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States,
| | - Carmen Klein Herenbrink
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Matthew Domenic Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Therese Ku
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States,
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States,
| | - Brian T. DeVree
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Signe Mathiasen
- Department of Psychiatry, Columbia University Vagelos College of Physicians & Surgeon and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians & Surgeon and Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, United States
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Luke Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Ulrik Gether
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States,
| |
Collapse
|
26
|
Gaggi G, Di Credico A, Izzicupo P, Alviano F, Di Mauro M, Di Baldassarre A, Ghinassi B. Human Mesenchymal Stromal Cells Unveil an Unexpected Differentiation Potential toward the Dopaminergic Neuronal Lineage. Int J Mol Sci 2020; 21:ijms21186589. [PMID: 32916865 PMCID: PMC7555006 DOI: 10.3390/ijms21186589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Degeneration of dopaminergic neurons represents the cause of many neurodegenerative diseases, with increasing incidence worldwide. The replacement of dead cells with new healthy ones may represent an appealing therapeutic approach to these pathologies, but currently, only pluripotent stem cells can generate dopaminergic neurons with high efficiency. However, with the use of these cells arises safety and/or ethical issues. Human mesenchymal stromal cells (hFM-MSCs) are perinatal stem cells that can be easily isolated from the amniochorionic membrane after delivery. Generally considered multipotent, their real differentiative potential is not completely elucidated. The aim of this study was to analyze their stemness characteristics and to evaluate whether they may overcome their mesenchymal fate, generating dopaminergic neurons. We demonstrated that hFM-MSCs expressed embryonal genes OCT4, NANOG, SOX2, KLF4, OVOL1, and ESG1, suggesting they have some features of pluripotency. Moreover, hFM-MSCs that underwent a dopaminergic differentiation protocol gradually increased the transcription of dopaminergic markers LMX1b, NURR1, PITX3, and DAT. We finally obtained a homogeneous population of cells resembling the morphology of primary midbrain dopaminergic neurons that expressed the functional dopaminergic markers TH, DAT, and Nurr1. In conclusion, our results suggested that hFM-MSCs retain the expression of pluripotency genes and are able to differentiate not only into mesodermal cells, but also into neuroectodermal dopaminergic neuron-like cells.
Collapse
Affiliation(s)
- Giulia Gaggi
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.G.); (A.D.C.); (P.I.); (B.G.)
| | - Andrea Di Credico
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.G.); (A.D.C.); (P.I.); (B.G.)
| | - Pascal Izzicupo
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.G.); (A.D.C.); (P.I.); (B.G.)
| | - Francesco Alviano
- Department of Experimental Diagnostic and Speciality Medicine, Unit of Histology, Embriology and Applied Biology, University of Bologna, 40126 Bologna, Italy;
| | - Michele Di Mauro
- Cardio-Thoracic Surgery Unit, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Cardiovascular Research Institute Maastricht (CARIM), 6202 Maastricht, The Netherlands;
| | - Angela Di Baldassarre
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.G.); (A.D.C.); (P.I.); (B.G.)
- Correspondence:
| | - Barbara Ghinassi
- Human Anatomy and Cell Differentiation Lab, Department of Medicine and Aging Sciences, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.G.); (A.D.C.); (P.I.); (B.G.)
| |
Collapse
|
27
|
Jeon M, Lin G, Stephen ZR, Vechey JE, Singh M, Revia R, Newman AH, Martinez D, Zhang M. Cocaine analogue conjugated magnetic nanoparticles for labeling and imaging dopaminergic neurons. Biomater Sci 2020; 8:4166-4175. [PMID: 32515443 DOI: 10.1039/d0bm00546k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular imaging of the dopamine transporter (DAT) with Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) has been widely used in studies of neurological and psychiatric disorders. Nevertheless, there is a great interest in expanding molecular imaging to include magnetic resonance technology, because of the superior spatial resolution this technology may provide. Here we present a magnetic nanoparticle (NP) that specifically targets dopaminergic neurons and allows DAT imaging with magnetic resonance imaging (MRI). The nanoparticle (namely, NP-DN) is composed of an iron oxide core and a polyethylene glycol (PEG) coating to which a DAT specific dopaminergic neurolabeler (DN) is conjugated. NP-DN displayed long-term stability with favorable hydrodynamic size and surface charge suitable for in vivo application. In vitro studies showed NP-DN was non-toxic, displayed specificity towards DAT-expressing neurons, and demonstrated a 3-fold increase in DAT labeling over non-targeted NP. Our study shows NP-DN provides excellent contrast enhancement for MRI and demonstrates great potential for neuroimaging.
Collapse
Affiliation(s)
- Mike Jeon
- Department of Material Sciences and Engineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fiala T, Wang J, Dunn M, Šebej P, Choi SJ, Nwadibia EC, Fialova E, Martinez DM, Cheetham CE, Fogle KJ, Palladino MJ, Freyberg Z, Sulzer D, Sames D. Chemical Targeting of Voltage Sensitive Dyes to Specific Cells and Molecules in the Brain. J Am Chem Soc 2020; 142:9285-9301. [PMID: 32395989 DOI: 10.1021/jacs.0c00861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage sensitive fluorescent dyes (VSDs) are important tools for probing signal transduction in neurons and other excitable cells. The impact of these highly lipophilic sensors has, however, been limited due to the lack of cell-specific targeting methods in brain tissue or living animals. We address this key challenge by introducing a nongenetic molecular platform for cell- and molecule-specific targeting of synthetic VSDs in the brain. We employ a dextran polymer particle to overcome the inherent lipophilicity of VSDs by dynamic encapsulation and high-affinity ligands to target the construct to specific neuronal cells utilizing only native components of the neurotransmission machinery at physiological expression levels. Dichloropane, a monoamine transporter ligand, enables targeting of dense dopaminergic axons in the mouse striatum and sparse noradrenergic axons in the mouse cortex in acute brain slices. PFQX in conjunction with ligand-directed acyl imidazole chemistry enables covalent labeling of AMPA-type glutamate receptors in the same brain regions. Probe variants bearing either a classical electrochromic ANEP dye or state-of-the-art VoltageFluor-type dye respond to membrane potential changes in a similar manner to the parent dyes, as shown by whole-cell patch recording. We demonstrate the feasibility of optical voltage recording with our probes in brain tissue with one-photon and two-photon fluorescence microscopy and define the signal limits of optical voltage imaging with synthetic sensors under a low photon budget determined by the native expression levels of the target proteins. This work demonstrates the feasibility of a chemical targeting approach and expands the possibilities of cell-specific imaging and pharmacology.
Collapse
Affiliation(s)
- Tomas Fiala
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jihang Wang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Matthew Dunn
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Peter Šebej
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Se Joon Choi
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States
| | - Ekeoma C Nwadibia
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eva Fialova
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Diana M Martinez
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States
| | - Claire E Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Keri J Fogle
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Institute of Neurodegenerative Diseases (PIND), University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Institute of Neurodegenerative Diseases (PIND), University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States.,Department of Psychiatry, Columbia University Irving Medical Center, New York, New York 10027, United States.,Department of Pharmacology, Columbia University Irving Medical Center, New York, New York 10027, United States.,Department of Molecular Therapeutics, New York Psychiatric Institute, New York, New York 10032, United States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,NeuroTechnology Center at Columbia University, New York, New York 10027, United States
| |
Collapse
|
29
|
Fagan RR, Kearney PJ, Melikian HE. In Situ Regulated Dopamine Transporter Trafficking: There's No Place Like Home. Neurochem Res 2020; 45:1335-1343. [PMID: 32146647 DOI: 10.1007/s11064-020-03001-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Dopamine (DA) is critical for motivation, reward, movement initiation, and learning. Mechanisms that control DA signaling have a profound impact on these important behaviors, and additionally play a role in DA-related neuropathologies. The presynaptic SLC6 DA transporter (DAT) limits extracellular DA levels by clearing released DA, and is potently inhibited by addictive and therapeutic psychostimulants. Decades of evidence support that the DAT is subject to acute regulation by a number of signaling pathways, and that endocytic trafficking strongly regulates DAT availability and function. DAT trafficking studies have been performed in a variety of model systems, including both in vitro and ex vivo preparations. In this review, we focus on the breadth of DAT trafficking studies, with specific attention to, and comparison of, how context may influence DAT's response to different stimuli. In particular, this overview highlights that stimulated DAT trafficking not only differs between in vitro and ex vivo environments, but also is influenced by both sex and anatomical subregions.
Collapse
Affiliation(s)
- Rita R Fagan
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Patrick J Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Haley E Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
30
|
Kovtun O, Tomlinson ID, Ferguson RS, Rosenthal SJ. Quantum dots reveal heterogeneous membrane diffusivity and dynamic surface density polarization of dopamine transporter. PLoS One 2019; 14:e0225339. [PMID: 31751387 PMCID: PMC6872175 DOI: 10.1371/journal.pone.0225339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
The presynaptic dopamine transporter mediates rapid reuptake of synaptic dopamine. Although cell surface DAT trafficking recently emerged as an important component of DAT regulation, it has not been systematically investigated. Here, we apply our single quantum dot (Qdot) tracking approach to monitor DAT plasma membrane dynamics in several heterologous expression cell hosts with nanometer localization accuracy. We demonstrate that Qdot-tagged DAT proteins exhibited highly heterogeneous membrane diffusivity dependent on the local membrane topography. We also show that Qdot-tagged DATs were localized away from the flat membrane regions and were dynamically retained in the membrane protrusions and cell edges for the duration of imaging. Single quantum dot tracking of wildtype DAT and its conformation-defective coding variants (R60A and W63A) revealed a significantly accelerated rate of dysfunctional DAT membrane diffusion. We believe our results warrant an in-depth investigation as to whether compromised membrane dynamics is a common feature of brain disorder-derived DAT mutants.
Collapse
Affiliation(s)
- Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Riley S. Ferguson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
31
|
Lebowitz JJ, Khoshbouei H. Heterogeneity of dopamine release sites in health and degeneration. Neurobiol Dis 2019; 134:104633. [PMID: 31698055 DOI: 10.1016/j.nbd.2019.104633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
Despite comprising only ~ 0.001% of all neurons in the human brain, ventral midbrain dopamine neurons exert a profound influence on human behavior and cognition. As a neuromodulator, dopamine selectively inhibits or enhances synaptic signaling to coordinate neural output for action, attention, and affect. Humans invariably lose brain dopamine during aging, and this can be exacerbated in disease states such as Parkinson's Disease. Further, it is well established in multiple disease states that cell loss is selective for a subset of highly sensitive neurons within the nigrostriatal dopamine tract. Regional differences in dopamine tone are regulated pre-synaptically, with subcircuits of projecting dopamine neurons exhibiting distinct molecular and physiological signatures. Specifically, proteins at dopamine release sites that synthesize and package cytosolic dopamine, modulate its release and reuptake, and alter neuronal excitability show regional differences that provide linkages to the observed sensitivity to neurodegeneration. The aim of this review is to outline the major components of dopamine homeostasis at neurotransmitter release sites and describe the regional differences most relevant to understanding why some, but not all, dopamine neurons exhibit heightened vulnerability to neurodegeneration.
Collapse
Affiliation(s)
- Joseph J Lebowitz
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
32
|
Zhang V, Kucharski R, Landers C, Richards SN, Bröer S, Martin RE, Maleszka R. Characterization of a Dopamine Transporter and Its Splice Variant Reveals Novel Features of Dopaminergic Regulation in the Honey Bee. Front Physiol 2019; 10:1375. [PMID: 31736791 PMCID: PMC6838227 DOI: 10.3389/fphys.2019.01375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/17/2019] [Indexed: 11/25/2022] Open
Abstract
Dopamine is an important neuromodulator involved in reward-processing, movement control, motivational responses, and other aspects of behavior in most animals. In honey bees (Apis mellifera), the dopaminergic system has been implicated in an elaborate pheromonal communication network between individuals and in the differentiation of females into reproductive (queen) and sterile (worker) castes. Here we have identified and characterized a honey bee dopamine transporter (AmDAT) and a splice variant lacking exon 3 (AmDATΔex3). Both transcripts are present in the adult brain and antennae as well as at lower levels within larvae and ovaries. When expressed separately in the Xenopus oocyte system, AmDAT localizes to the oocyte surface whereas the splice variant is retained at an internal membrane. Oocytes expressing AmDAT exhibit a 12-fold increase in the uptake of [3H]dopamine relative to non-injected oocytes, whereas the AmDATΔex3-expressing oocytes show no change in [3H]dopamine transport. Electrophysiological measurements of AmDAT activity revealed it to be a high-affinity, low-capacity transporter of dopamine. The transporter also recognizes noradrenaline as a major substrate and tyramine as a minor substrate, but does not transport octopamine, L-Dopa, or serotonin. Dopamine transport via AmDAT is inhibited by cocaine in a reversible manner, but is unaffected by octopamine. Co-expression of AmDAT and AmDATΔex3 in oocytes results in a substantial reduction in AmDAT-mediated transport, which was also detected as a significant decrease in the level of AmDAT protein. This down-regulatory effect is not attributable to competition with AmDATΔex3 for ER ribosomes, nor to a general inhibition of the oocyte's translational machinery. In vivo, the expression of both transcripts shows a high level of inter-individual variability. Gene-focused, ultra-deep amplicon sequencing detected methylation of the amdat locus at ten 5'-C-phosphate-G-3' dinucleotides (CpGs), but only in 5-10% of all reads in whole brains or antennae. These observations, together with the localization of the amdat transcript to a few clusters of dopaminergic neurons, imply that amdat methylation is positively linked to its transcription. Our findings suggest that multiple cellular mechanisms, including gene splicing and epigenomic communication systems, may be adopted to increase the potential of a conserved gene to contribute to lineage-specific behavioral outcomes.
Collapse
Affiliation(s)
- Vicky Zhang
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Robert Kucharski
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| | - Courtney Landers
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Sashika N. Richards
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rowena E. Martin
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ryszard Maleszka
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
33
|
Gopinath A, Doty A, Mackie PM, Hashimi B, Francis M, Saadatpour L, Saha K, Shaw G, Ramirez-Zamora A, Okun MS, Streit WJ, Khoshbouei H. A novel approach to study markers of dopamine signaling in peripheral immune cells. J Immunol Methods 2019; 476:112686. [PMID: 31634479 DOI: 10.1016/j.jim.2019.112686] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023]
Abstract
Human monocytes express known markers of dopamine synthesis, storage and clearance, including dopamine transporter (DAT), tyrosine hydroxylase (TH), all subtypes of dopamine receptors and vesicular monoamine transporter 2 (VMAT2). Immunohistochemical and immunofluorescent methodologies have traditionally been employed to determine DAT and TH expression in the CNS, their detection in the blood and specifically in the peripheral monocytes has not been studied by flow cytometry. Flow cytometry assays are widely used in medicine and in basic, preclinical or clinical research to quantify physical and chemical characteristics of target cell populations. Here, we have established a highly sensitive and reproducible flow cytometry panel to detect and quantify DAT and TH expression in freshly isolated or cryopreserved human peripheral monocytes. In healthy humans (n = 41 biological replicates), we show baseline DAT and TH expressing monocytes constitute ~12% of the peripheral blood mononuclear cell (PBMC) fraction when examined in fresh isolation from whole blood. Using an identical flow cytometry panel, we found that cryopreservation of PBMCs using multiple techniques resulted in altered PBMC populations as compared to fresh isolation and relative to one another. Among these, we identified an optimum cryopreservation method for detecting TH and DAT in cryopreserved PBMCs. Our data provide a sensitive and reproducible approach to examine dopamine signaling in peripheral human immune cells. This approach can be applied to study peripheral dopamine signaling under healthy and potentially under disease conditions. The use of dopamine signaling could also be explored as a technique to monitor therapeutic interventions particularly those targeting DAT and TH in the periphery.
Collapse
Affiliation(s)
- Adithya Gopinath
- Department of Neuroscience, University of Florida College of Medicine, United States of America
| | - Andria Doty
- ICBR Flow Cytometry, University of Florida, United States of America
| | - Phillip M Mackie
- Department of Neuroscience, University of Florida College of Medicine, United States of America
| | - Basil Hashimi
- Department of Neuroscience, University of Florida College of Medicine, United States of America
| | - Madison Francis
- Department of Neuroscience, University of Florida College of Medicine, United States of America
| | - Leila Saadatpour
- Department of Neuroscience, University of Florida College of Medicine, United States of America
| | - Kaustuv Saha
- Department of Neuroscience, University of Florida College of Medicine, United States of America
| | - Gerry Shaw
- Department of Neuroscience, University of Florida College of Medicine, United States of America
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Fixel Institute for Neurological Diseases, Center for Movement Disorders and Neurorestoration, University of Florida College of Medicine, United States of America
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, Center for Movement Disorders and Neurorestoration, University of Florida College of Medicine, United States of America
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, United States of America
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, United States of America.
| |
Collapse
|
34
|
Lavrova AV, Gretskaya NM, Akimov MG, Bezuglov VV. A Novel Fluorescent Analog of the Dopamine Reuptake Inhibitor GBR12909. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019040058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Silm K, Yang J, Marcott PF, Asensio CS, Eriksen J, Guthrie DA, Newman AH, Ford CP, Edwards RH. Synaptic Vesicle Recycling Pathway Determines Neurotransmitter Content and Release Properties. Neuron 2019; 102:786-800.e5. [PMID: 31003725 PMCID: PMC6541489 DOI: 10.1016/j.neuron.2019.03.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/28/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023]
Abstract
In contrast to temporal coding by synaptically acting neurotransmitters such as glutamate, neuromodulators such as monoamines signal changes in firing rate. The two modes of signaling have been thought to reflect differences in release by different cells. We now find that midbrain dopamine neurons release glutamate and dopamine with different properties that reflect storage in different synaptic vesicles. The vesicles differ in release probability, coupling to presynaptic Ca2+ channels and frequency dependence. Although previous work has attributed variation in these properties to differences in location or cytoskeletal association of synaptic vesicles, the release of different transmitters shows that intrinsic differences in vesicle identity drive different modes of release. Indeed, dopamine but not glutamate vesicles depend on the adaptor protein AP-3, revealing an unrecognized linkage between the pathway of synaptic vesicle recycling and the properties of exocytosis. Storage of the two transmitters in different vesicles enables the transmission of distinct signals.
Collapse
Affiliation(s)
- Kätlin Silm
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jing Yang
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Pamela F Marcott
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cedric S Asensio
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jacob Eriksen
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Amy H Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Christopher P Ford
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert H Edwards
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA.
| |
Collapse
|
36
|
Lebowitz JJ, Pino JA, Mackie PM, Lin M, Hurst C, Divita K, Collins AT, Koutzoumis DN, Torres GE, Khoshbouei H. Clustered Kv2.1 decreases dopamine transporter activity and internalization. J Biol Chem 2019; 294:6957-6971. [PMID: 30824538 DOI: 10.1074/jbc.ra119.007441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/26/2019] [Indexed: 01/16/2023] Open
Abstract
The dopamine transporter (DAT) regulates dopamine neurotransmission via reuptake of dopamine released into the extracellular space. Interactions with partner proteins alter DAT function and thereby dynamically shape dopaminergic tone important for normal brain function. However, the extent and nature of these interactions are incompletely understood. Here, we describe a novel physical and functional interaction between DAT and the voltage-gated K+ channel Kv2.1 (potassium voltage-gated channel subfamily B member 1 or KCNB1). To examine the functional consequences of this interaction, we employed a combination of immunohistochemistry, immunofluorescence live-cell microscopy, co-immunoprecipitation, and electrophysiological approaches. Consistent with previous reports, we found Kv2.1 is trafficked to membrane-bound clusters observed both in vivo and in vitro in rodent dopamine neurons. Our data provide evidence that clustered Kv2.1 channels decrease DAT's lateral mobility and inhibit its internalization, while also decreasing canonical transporter activity by altering DAT's conformational equilibrium. These results suggest that Kv2.1 clusters exert a spatially discrete homeostatic braking mechanism on DAT by inducing a relative increase in inward-facing transporters. Given recent reports of Kv2.1 dysregulation in neurological disorders, it is possible that alterations in the functional interaction between DAT and Kv2.1 affect dopamine neuron activity.
Collapse
Affiliation(s)
- Joseph J Lebowitz
- From the Departments of Neuroscience and.,T32 in Movement Disorders and Neurorestoration, Fixel Center for Neurological Diseases, UF Health, Gainesville, Florida 32610
| | - Jose A Pino
- Pharmacology and Experimental Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610 and
| | | | - Min Lin
- From the Departments of Neuroscience and
| | | | | | | | - Dimitri N Koutzoumis
- Pharmacology and Experimental Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610 and
| | - Gonzalo E Torres
- Pharmacology and Experimental Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610 and
| | - Habibeh Khoshbouei
- From the Departments of Neuroscience and .,T32 in Movement Disorders and Neurorestoration, Fixel Center for Neurological Diseases, UF Health, Gainesville, Florida 32610
| |
Collapse
|
37
|
Cartier E, Garcia-Olivares J, Janezic E, Viana J, Moore M, Lin ML, Caplan JL, Torres G, Kim YH. The SUMO-Conjugase Ubc9 Prevents the Degradation of the Dopamine Transporter, Enhancing Its Cell Surface Level and Dopamine Uptake. Front Cell Neurosci 2019; 13:35. [PMID: 30828290 PMCID: PMC6386010 DOI: 10.3389/fncel.2019.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
The dopamine transporter (DAT) is a plasma membrane protein responsible for the uptake of released dopamine back to the presynaptic terminal and ending dopamine neurotransmission. The DAT is the molecular target for cocaine and amphetamine as well as a number of pathological conditions including autism spectrum disorders, attention-deficit hyperactivity disorder (ADHD), dopamine transporter deficiency syndrome (DTDS), and Parkinson’s disease. The DAT uptake capacity is dependent on its level in the plasma membrane. In vitro studies show that DAT functional expression is regulated by a balance of endocytosis, recycling, and lysosomal degradation. However, recent reports suggest that DAT regulation by endocytosis in neurons is less significant than previously reported. Therefore, additional mechanisms appear to determine DAT steady-state level and functional expression in the neuronal plasma membrane. Here, we hypothesize that the ubiquitin-like protein small ubiquitin-like modifier 1 (SUMO1) increases the DAT steady-state level in the plasma membrane. In confocal microscopy, fluorescent resonance energy transfer (FRET), and Western blot analyses, we demonstrate that DAT is associated with SUMO1 in the rat dopaminergic N27 and DAT overexpressing Human Embryonic Kidney cells (HEK)-293 cells. The overexpression of SUMO1 and the Ubc9 SUMO-conjugase induces DAT SUMOylation, reduces DAT ubiquitination and degradation, enhancing DAT steady-state level. In addition, the Ubc9 knock-down by interference RNA (RNAi) increases DAT degradation and reduces DAT steady-state level. Remarkably, the Ubc9-mediated SUMOylation increases the expression of DAT in the plasma membrane and dopamine uptake capacity. Our results strongly suggest that SUMOylation is a novel mechanism that plays a central role in regulating DAT proteostasis, dopamine uptake, and dopamine signaling in neurons. For that reason, the SUMO pathway including SUMO1, SUMO2, Ubc9, and DAT SUMOylation, can be critical therapeutic targets in regulating DAT stability and dopamine clearance in health and pathological states.
Collapse
Affiliation(s)
- Etienne Cartier
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | | | - Eric Janezic
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Juan Viana
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Michael Moore
- Imaging Core, Delaware State University, Dover, DE, United States
| | - Min Landon Lin
- Department of Neuroscience and Department of Pharmacology, University of Florida, Gainesville, FL, United States
| | - Jeffrey L Caplan
- BioImaging Center, University of Delaware, Newark, DE, United States
| | - Gonzalo Torres
- Department of Neuroscience and Department of Pharmacology, University of Florida, Gainesville, FL, United States
| | - Yong-Hwan Kim
- Department of Biological Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
38
|
Thal LB, Tomlinson ID, Quinlan MA, Kovtun O, Blakely RD, Rosenthal SJ. Single Quantum Dot Imaging Reveals PKCβ-Dependent Alterations in Membrane Diffusion and Clustering of an Attention-Deficit Hyperactivity Disorder/Autism/Bipolar Disorder-Associated Dopamine Transporter Variant. ACS Chem Neurosci 2019; 10:460-471. [PMID: 30153408 PMCID: PMC6411462 DOI: 10.1021/acschemneuro.8b00350] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dopamine transporter (DAT) is a transmembrane protein that terminates dopamine signaling in the brain by driving rapid dopamine reuptake into presynaptic nerve terminals. Several lines of evidence indicate that DAT dysfunction is linked to neuropsychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD), bipolar disorder (BPD), and autism spectrum disorder (ASD). Indeed, individuals with these disorders have been found to express the rare, functional DAT coding variant Val559, which confers anomalous dopamine efflux (ADE) in vitro and in vivo. To elucidate the impact of the DAT Val559 variant on membrane diffusion dynamics, we implemented our antagonist-conjugated quantum dot (QD) labeling approach to monitor the lateral mobility of single particle-labeled transporters in transfected HEK-293 and SK-N-MC cells. Our results demonstrate significantly higher diffusion coefficients of DAT Val559 compared to those of DAT Ala559, effects likely determined by elevated N-terminal transporter phosphorylation. We also provide pharmacological evidence that PKCβ-mediated signaling supports enhanced DAT Val559 membrane diffusion rates. Additionally, our results are complimented with diffusion rates of phosphomimicked and phosphorylation-occluded DAT variants. Furthermore, we show DAT Val559 has a lower propensity for membrane clustering, which may be caused by a mutation-derived shift out of membrane microdomains leading to faster lateral membrane diffusion rates. These findings further demonstrate a functional impact of DAT Val559 and suggest that changes in transporter localization and lateral mobility may sustain ADE and contribute to alterations in dopamine signaling underlying multiple neuropsychiatric disorders.
Collapse
|
39
|
Erlendsson S, Thorsen TS, Vauquelin G, Ammendrup-Johnsen I, Wirth V, Martinez KL, Teilum K, Gether U, Madsen KL. Mechanisms of PDZ domain scaffold assembly illuminated by use of supported cell membrane sheets. eLife 2019; 8:39180. [PMID: 30605082 PMCID: PMC6345565 DOI: 10.7554/elife.39180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
PDZ domain scaffold proteins are molecular modules orchestrating cellular signalling in space and time. Here, we investigate assembly of PDZ scaffolds using supported cell membrane sheets, a unique experimental setup enabling direct access to the intracellular face of the cell membrane. Our data demonstrate how multivalent protein-protein and protein-lipid interactions provide critical avidity for the strong binding between the PDZ domain scaffold proteins, PICK1 and PSD-95, and their cognate transmembrane binding partners. The kinetics of the binding were remarkably slow and binding strength two-three orders of magnitude higher than the intrinsic affinity for the isolated PDZ interaction. Interestingly, discrete changes in the intrinsic PICK1 PDZ affinity did not affect overall binding strength but instead revealed dual scaffold modes for PICK1. Our data supported by simulations suggest that intrinsic PDZ domain affinities are finely tuned and encode specific cellular responses, enabling multiplexed cellular functions of PDZ scaffolds. Inside a cell, many different signals carry information that is essential for the cell to remain healthy and perform its role in the body. It is, therefore, very important that the signals are sent to the right places at the right times. Scaffold proteins play an essential role in organizing these signals by bringing specific proteins and other molecules into close contact at particular times and locations within the cell. Defects in scaffolding proteins can lead to cancer, psychiatric disorders and other diseases, so these proteins represent potential new targets for medicinal drugs. Many scaffolding proteins assemble groups of proteins on the surface of the membrane that surrounds the cell. Previous studies have shown that scaffolding proteins are able to bind to several other proteins as well as the membrane itself at the same time. However, the precise way in which scaffolding proteins assemble such groups is not clear because it is technically challenging to study this process in living cells. To overcome this challenge, Erlendsson, Thorsen et al. used a new experimental setup known as supported cell membrane sheets – which provides direct access to the side of the cell membrane that usually faces into the cell – to study two scaffolding proteins known as PICK1 and PSD-95. The experiments show that PICK1 and PSD-95 bind to their partner proteins up to 100 times more strongly than previously observed using other approaches. This is due to the scaffolding proteins binding more strongly to both their partners and the membrane. Unexpectedly, the experiments show that the shape and physical characteristics of the partner protein have no effect on the increase in the strength of the binding. Further experiments suggest that altering the ability of the PDZ domain of PICK1 to bind to partner proteins changes the mode of action of the PICK1 protein so that it can activate different responses in the cell. Together these findings imply that the ability of scaffolding proteins to bind to their partner proteins is finely tuned to encode specific responses in cells in different situations – a hypothesis that Erlendsson, Thorsen et al. are planning to test in intact cells.
Collapse
Affiliation(s)
- Simon Erlendsson
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Structural Biology and NMR Laboratory, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Thor Seneca Thorsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Georges Vauquelin
- Molecular and Biochemical Pharmacology, Department of Biotechnology, Free University Brussels (VUB), Brussels, Belgium
| | - Ina Ammendrup-Johnsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Volker Wirth
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-science Center, University of Copenhagen, Copenhagen, Denmark
| | - Karen L Martinez
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-science Center, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Jensen KL, Sørensen G, Dencker D, Owens WA, Rahbek-Clemmensen T, Brett Lever M, Runegaard AH, Riis Christensen N, Weikop P, Wörtwein G, Fink-Jensen A, Madsen KL, Daws L, Gether U, Rickhag M. PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis. eNeuro 2018; 5:ENEURO.0422-17.2018. [PMID: 29911172 PMCID: PMC6001137 DOI: 10.1523/eneuro.0422-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 01/11/2023] Open
Abstract
Protein interacting with C-kinase 1 (PICK1) is a widely expressed scaffold protein known to interact via its PSD-95/discs-large/ZO-1 (PDZ)-domain with several membrane proteins including the dopamine (DA) transporter (DAT), the primary target for cocaine's reinforcing actions. Here, we establish the importance of PICK1 for behavioral effects observed after both acute and repeated administration of cocaine. In PICK1 knock-out (KO) mice, the acute locomotor response to a single injection of cocaine was markedly attenuated. Moreover, in support of a role for PICK1 in neuroadaptive changes induced by cocaine, we observed diminished cocaine intake in a self-administration paradigm. Reduced behavioral effects of cocaine were not associated with decreased striatal DAT distribution and most likely not caused by the ∼30% reduction in synaptosomal DA uptake observed in PICK1 KO mice. The PICK1 KO mice demonstrated preserved behavioral responses to DA receptor agonists supporting intact downstream DA receptor signaling. Unexpectedly, we found a prominent increase in striatal DA content and levels of striatal tyrosine hydroxylase (TH) in PICK1 KO mice. Chronoamperometric recordings showed enhanced DA release in PICK1 KO mice, consistent with increased striatal DA pools. Viral-mediated knock-down (KD) of PICK1 in cultured dopaminergic neurons increased TH expression, supporting a direct cellular effect of PICK1. In summary, in addition to demonstrating a key role of PICK1 in mediating behavioral effects of cocaine, our data reveal a so far unappreciated role of PICK1 in DA homeostasis that possibly involves negative regulation of striatal TH levels.
Collapse
Affiliation(s)
- Kathrine Louise Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Gunnar Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Ditte Dencker
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - William Anthony Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX 78229
| | - Troels Rahbek-Clemmensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Michael Brett Lever
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Annika H. Runegaard
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Nikolaj Riis Christensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Pia Weikop
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Kenneth L. Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Lynette Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX 78229
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Mattias Rickhag
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
41
|
Sorkina T, Ma S, Larsen MB, Watkins SC, Sorkin A. Small molecule induced oligomerization, clustering and clathrin-independent endocytosis of the dopamine transporter. eLife 2018; 7:32293. [PMID: 29630493 PMCID: PMC5896956 DOI: 10.7554/elife.32293] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
Clathrin-independent endocytosis (CIE) mediates internalization of many transmembrane proteins but the mechanisms of cargo recruitment during CIE are poorly understood. We found that the cell-permeable furopyrimidine AIM-100 promotes dramatic oligomerization, clustering and CIE of human and mouse dopamine transporters (DAT), but not of their close homologues, norepinephrine and serotonin transporters. All effects of AIM-100 on DAT and the occupancy of substrate binding sites in the transporter were mutually exclusive, suggesting that AIM-100 may act by binding to DAT. Surprisingly, AIM-100-induced DAT endocytosis was independent of dynamin, cholesterol-rich microdomains and actin cytoskeleton, implying that a novel endocytic mechanism is involved. AIM-100 stimulated trafficking of internalized DAT was also unusual: DAT accumulated in early endosomes without significant recycling or degradation. We propose that AIM-100 augments DAT oligomerization through an allosteric mechanism associated with the DAT conformational state, and that oligomerization-triggered clustering leads to a coat-independent endocytosis and subsequent endosomal retention of DAT.
Collapse
Affiliation(s)
- Tatiana Sorkina
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Shiqi Ma
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Mads Breum Larsen
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
42
|
Won JH, Kim SK, Shin IC, Ha HC, Jang JM, Back MJ, Kim DK. Dopamine transporter trafficking is regulated by neutral sphingomyelinase 2/ceramide kinase. Cell Signal 2018; 44:171-187. [DOI: 10.1016/j.cellsig.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 12/13/2022]
|
43
|
Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains. Nat Commun 2017; 8:740. [PMID: 28963530 PMCID: PMC5622129 DOI: 10.1038/s41467-017-00790-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
Dopamine regulates reward, cognition, and locomotor functions. By mediating rapid reuptake of extracellular dopamine, the dopamine transporter is critical for spatiotemporal control of dopaminergic neurotransmission. Here, we use super-resolution imaging to show that the dopamine transporter is dynamically sequestrated into cholesterol-dependent nanodomains in the plasma membrane of presynaptic varicosities and neuronal projections of dopaminergic neurons. Stochastic optical reconstruction microscopy reveals irregular dopamine transporter nanodomains (∼70 nm mean diameter) that were highly sensitive to cholesterol depletion. Live photoactivated localization microscopy shows a similar dopamine transporter membrane organization in live heterologous cells. In neurons, dual-color dSTORM shows that tyrosine hydroxylase and vesicular monoamine transporter-2 are distinctively localized adjacent to, but not overlapping with, the dopamine transporter nanodomains. The molecular organization of the dopamine transporter in nanodomains is reversibly reduced by short-term activation of NMDA-type ionotropic glutamate receptors, implicating dopamine transporter nanodomain distribution as a potential mechanism to modulate dopaminergic neurotransmission in response to excitatory input.The dopamine transporter (DAT) has a crucial role in the regulation of neurotransmission. Here, the authors use super-resolution imaging to show that DAT clusters into cholesterol-dependent membrane regions that are reversibly regulated by ionotropic glutamate receptors activation.
Collapse
|
44
|
The Dopamine Transporter Recycles via a Retromer-Dependent Postendocytic Mechanism: Tracking Studies Using a Novel Fluorophore-Coupling Approach. J Neurosci 2017; 37:9438-9452. [PMID: 28847807 DOI: 10.1523/jneurosci.3885-16.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/17/2017] [Accepted: 08/19/2017] [Indexed: 01/28/2023] Open
Abstract
Presynaptic reuptake, mediated by the dopamine (DA) transporter (DAT), terminates DAergic neurotransmission and constrains extracellular DA levels. Addictive and therapeutic psychostimulants inhibit DA reuptake and multiple DAT coding variants have been reported in patients with neuropsychiatric disorders. These findings underscore that DAT is critical for DA neurotransmission and homeostasis. DAT surface availability is regulated acutely by endocytic trafficking, and considerable effort has been directed toward understanding mechanisms that govern DAT's plasma membrane expression and postendocytic fate. Multiple studies have demonstrated DAT endocytic recycling and enhanced surface delivery in response to various stimuli. Paradoxically, imaging studies have not detected DAT targeting to classic recycling endosomes, suggesting that internalized DAT targets to either degradation or an undefined recycling compartment. Here, we leveraged PRIME (PRobe Incorporation Mediated by Enzyme) labeling to couple surface DAT directly to fluorophore, and tracked DAT's postendocytic itinerary in immortalized mesencephalic cells. Following internalization, DAT robustly targeted to retromer-positive endosomes, and DAT/retromer colocalization was observed in male mouse dopaminergic somatodendritic and terminal regions. Short hairpin RNA-mediated Vps35 knockdown revealed that DAT endocytic recycling requires intact retromer. DAT also targeted rab7-positive endosomes with slow, linear kinetics that were unaffected by either accelerating DAT internalization or binding a high-affinity cocaine analog. However, cocaine increased DAT exit from retromer-positive endosomes significantly. Finally, we found that the DAT carboxy-terminal PDZ-binding motif was required for DAT recycling and exit from retromer. These results define the DAT recycling mechanism and provide a unifying explanation for previous, seemingly disparate, DAT endocytic trafficking findings.SIGNIFICANCE STATEMENT The neuronal dopamine (DA) transporter (DAT) recaptures released DA and modulates DAergic neurotransmission, and a number of DAT coding variants have been reported in several DA-related disorders, including infantile parkinsonism, attention-deficit/hyperactivity disorder and autism spectrum disorder. DAT is also competitively inhibited by psychostimulants with high abuse potential. Therefore, mechanisms that acutely affect DAT availability will likely exert significant impact on both normal and pathological DAergic homeostasis. Here, we explore the cellular mechanisms that acutely control DAT surface expression. Our results reveal the intracellular mechanisms that mediate DAT endocytic recycling following constitutive and regulated internalization. In addition to shedding light on this critical process, these findings resolve conflict among multiple, seemingly disparate, previous reports on DAT's postendocytic fate.
Collapse
|
45
|
Dynamics of surface neurotransmitter receptors and transporters in glial cells: Single molecule insights. Cell Calcium 2017; 67:46-52. [PMID: 29029790 DOI: 10.1016/j.ceca.2017.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 11/22/2022]
Abstract
The surface dynamics of neurotransmitter receptors and transporters, as well as ion channels, has been well-documented in neurons, revealing complex molecular behaviour and key physiological functions. However, our understanding of the membrane trafficking and dynamics of the signalling molecules located at the plasma membrane of glial cells is still in its infancy. Yet, recent breakthroughs in the field of glial cells have been obtained using combination of superresolution microscopy, single molecule imaging, and electrophysiological recordings. Here, we review our current knowledge on the surface dynamics of neurotransmitter receptors, transporters and ion channels, in glial cells. It has emerged that the brain cell network activity, synaptic activity, and calcium signalling, regulate the surface distribution and dynamics of these molecules. Remarkably, the dynamics of a given neurotransmitter receptor/transporter at the plasma membrane of a glial cell or neuron is unique, revealing the existence of cell-type specific regulatory pathways. Thus, investigating the dynamics of signalling proteins at the surface of glial cells will likely shed new light on our understanding of glial cell physiology and pathology.
Collapse
|
46
|
Targeting of dopamine transporter to filopodia requires an outward-facing conformation of the transporter. Sci Rep 2017; 7:5399. [PMID: 28710426 PMCID: PMC5511133 DOI: 10.1038/s41598-017-05637-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 12/01/2022] Open
Abstract
Dopamine transporter (DAT) has been shown to accumulate in filopodia in neurons and non-neuronal cells. To examine the mechanisms of DAT filopodial targeting, we used quantitative live-cell fluorescence microscopy, and compared the effects of the DAT inhibitor cocaine and its fluorescent analog JHC1-64 on the plasma membrane distribution of wild-type DAT and two non-functional DAT mutants, R60A and W63A, that do not accumulate in filopodia. W63A did not bind JHC1-64, whereas R60A did, although less efficiently compared to the wild-type DAT. Molecular dynamics simulations predicted that R60A preferentially assumes an outward-facing (OF) conformation through compensatory intracellular salt bridge formation, which in turn favors binding of cocaine. Imaging analysis showed that JHC1-64-bound R60A mutant predominantly localized in filopodia, whereas free R60A molecules were evenly distributed within the plasma membrane. Cocaine binding significantly increased the density of R60A, but not that of W63A, in filopodia. Further, zinc binding, known to stabilize the OF state, also increased R60A concentration in filopodia. Finally, amphetamine, that is thought to disrupt DAT OF conformation, reduced the concentration of wild-type DAT in filopodia. Altogether, these data indicate that OF conformation is required for the efficient targeting of DAT to, and accumulation in, filopodia.
Collapse
|
47
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
48
|
Varela JA, Ferreira JS, Dupuis JP, Durand P, Bouchet D, Groc L. Single nanoparticle tracking of [Formula: see text]-methyl-d-aspartate receptors in cultured and intact brain tissue. NEUROPHOTONICS 2016; 3:041808. [PMID: 27429996 PMCID: PMC4940612 DOI: 10.1117/1.nph.3.4.041808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/22/2016] [Indexed: 06/01/2023]
Abstract
Recent developments in single-molecule imaging have revealed many biological mechanisms, providing high spatial and temporal resolution maps of molecular events. In neurobiology, these techniques unveiled that plasma membrane neurotransmitter receptors and transporters laterally diffuse at the surface of cultured brain cells. The photostability of bright nanoprobes, such as quantum dots (QDs), has given access to neurotransmitter receptor tracking over long periods of time with a high spatial resolution. However, our knowledge has been restricted to cultured systems, i.e., neurons and organotypic slices, therefore lacking several aspects of the intact brain rheology and connectivity. Here, we used QDs to track single glutamatergic [Formula: see text]-methyl-d-aspartate receptors (NMDAR) in acute brain slices. By delivering functionalized nanoparticles in vivo through intraventricular injections to rats expressing genetically engineered-tagged NMDAR, we successfully tracked the receptors in native brain tissue. Comparing NMDAR tracking to different classical brain preparations (acute brain slices, cultured organotypic brain slices, and cultured neurons) revealed that the surface diffusion properties shared several features and are also influenced by the nature of the extracellular environment. Together, we describe the experimental procedures to track plasma membrane NMDAR in dissociated and native brain tissue, paving the way for investigations aiming at characterizing receptor diffusion biophysics in intact tissue and exploring the physiopathological roles of receptor surface dynamics.
Collapse
Affiliation(s)
- Juan A. Varela
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 146 rue Leo Saignat, 33077 Bordeaux, France
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Joana S. Ferreira
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 146 rue Leo Saignat, 33077 Bordeaux, France
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Julien P. Dupuis
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 146 rue Leo Saignat, 33077 Bordeaux, France
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Pauline Durand
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 146 rue Leo Saignat, 33077 Bordeaux, France
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Delphine Bouchet
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 146 rue Leo Saignat, 33077 Bordeaux, France
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| | - Laurent Groc
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 146 rue Leo Saignat, 33077 Bordeaux, France
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000 Bordeaux, France
| |
Collapse
|
49
|
German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease. Pharmacol Rev 2016; 67:1005-24. [PMID: 26408528 DOI: 10.1124/pr.114.010397] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson's disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein-protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders.
Collapse
Affiliation(s)
- Christopher L German
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Michelle G Baladi
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Lisa M McFadden
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Glen R Hanson
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Annette E Fleckenstein
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| |
Collapse
|
50
|
Grandy DK, Miller GM, Li JX. "TAARgeting Addiction"--The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference. Drug Alcohol Depend 2016; 159:9-16. [PMID: 26644139 PMCID: PMC4724540 DOI: 10.1016/j.drugalcdep.2015.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/13/2015] [Accepted: 11/14/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND In keeping with the free-thinking tradition San Antonians are known for, the Scientific Program Committee of the Behavior, Biology and Chemistry: Translational Research in Addiction Conference chose trace amine-associated receptor 1 (TAAR1) as the focus of the plenary symposium for its 7th annual meeting held at the University of Texas Health Science Center at San Antonio on March 14 and 15, 2015. The timing of the meeting's plenary session on TAAR1 coincided with the Ides of March, an apt concurrence given the long association of this date with the overthrow of the status quo. And whether aware of the coincidence or not, those in attendance witnessed the plunging of the metaphorical dagger into the heart of the dopamine (DA) transporter (DAT)-centric view of psychostimulant action. METHODS The symposium's four plenary presentations focused on the molecular and cellular biology, genetics, medicinal chemistry and behavioral pharmacology of the TAAR1 system and the experimental use of newly developed selective TAAR1 ligands. RESULTS The consensus was that TAAR1 is a DA and methamphetamine receptor, interacts with DAT and DA D2 receptors, and is essential in modulating addiction-related effects of psychostimulants. CONCLUSIONS Collectively the findings presented during the symposium constitute a significant challenge to the current view that psychostimulants such as methamphetamine and amphetamine solely target DAT to interfere with normal DA signaling and provide a novel conceptual framework from which a more complete understanding of the molecular mechanisms underlying the actions of DA and METH is likely to emerge.
Collapse
Affiliation(s)
- David K. Grandy
- Department of Physiology and Pharmacology, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Gregory M. Miller
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|