1
|
Yamao H, Matsui K. Astrocytic determinant of the fate of long-term memory. Glia 2025; 73:309-329. [PMID: 39495149 DOI: 10.1002/glia.24636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
While some vivid memories are unyielding and unforgettable, others fade with time. Astrocytes are recognized for their role in modulating the brain's environment and have recently been considered integral to the brain's information processing and memory formation. This suggests their potential roles in emotional perception and memory formation. In this study, we delve into the impact of amygdala astrocytes on fear behaviors and memory, employing astrocyte-specific optogenetic manipulations in mice. Our findings reveal that astrocytic photoactivation with channelrhodopsin-2 (ChR2) provokes aversive behavioral responses, while archaerhodopsin-T (ArchT) photoactivation diminishes fear perception. ChR2 photoactivation amplifies fear perception and fear memory encoding but obstructs its consolidation. On the other hand, ArchT photoactivation inhibits memory formation during intense aversive stimuli, possibly due to weakened fear perception. However, it prevents the decay of remote fear memory over three weeks. Crucially, these memory effects were observed when optogenetic manipulations coincided with the aversive experience, indicating a deterministic role of astrocytic states at the exact moment of fear experiences in shaping long-term memory. This research underscores the significant and multifaceted role of astrocytes in emotional perception, fear memory formation, and modulation, suggesting a sophisticated astrocyte-neuron communication mechanism underlying basic emotional state transitions of information processing in the brain.
Collapse
Affiliation(s)
- Hiroki Yamao
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Bratsch-Prince JX, Jones GC, Warren JW, Mott DD. Synaptic acetylcholine induces sharp wave ripples in the basolateral amygdala through nicotinic receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626291. [PMID: 39677685 PMCID: PMC11642747 DOI: 10.1101/2024.12.01.626291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
While the basolateral amygdala (BLA) is critical in the consolidation of emotional memories, mechanisms underlying memory consolidation in this region are not well understood. In the hippocampus, memory consolidation depends upon network signatures termed sharp wave ripples (SWR). These SWRs largely occur during states of awake rest or slow wave sleep and are inversely correlated with cholinergic tone. While high frequency cholinergic stimulation can inhibit SWRs through muscarinic acetylcholine receptors, it is unclear how nicotinic acetylcholine receptors or different cholinergic firing patterns may influence SWR generation. SWRs are also present in BLA in vivo. Interestingly, the BLA receives extremely dense cholinergic inputs, yet the relationship between acetylcholine (ACh) and BLA SWRs is unexplored. Here, using brain slice electrophysiology in male and female mice, we show that brief stimulation of ACh inputs to BLA reliably induces SWRs that resemble those that occur in the BLA in vivo. Repeated ACh-SWRs are induced with single pulse stimulation at low, but not higher frequencies. ACh-SWRs are driven by nicotinic receptors which recruit different classes of local interneurons and trigger glutamate release from external inputs. In total, our findings establish a previously undefined mechanism for SWR induction in the brain. They also challenge the previous notion of neuromodulators as purely modulatory agents gating these events but instead reveal these systems can directly instruct SWR induction with temporal precision. Further, these results intriguingly suggest a new role for the nicotinic system in emotional memory consolidation.
Collapse
Affiliation(s)
| | - Grace C. Jones
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - James W. Warren
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| | - David D. Mott
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208, USA
| |
Collapse
|
3
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
4
|
Stevenson RJ, Boutelle K. Hunger, Satiety, and Their Vulnerabilities. Nutrients 2024; 16:3013. [PMID: 39275328 PMCID: PMC11397003 DOI: 10.3390/nu16173013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The psychological states of hunger and satiety play an important role in regulating human food intake. Several lines of evidence suggest that these states rely upon declarative learning and memory processes, which are based primarily in the medial temporal lobes (MTL). The MTL, and particularly the hippocampus, is unusual in that it is especially vulnerable to insult. Consequently, we examine here the impact on hunger and satiety of conditions that: (1) are central to ingestive behaviour and where there is evidence of MTL pathology (i.e., habitual consumption of a Western-style diet, obesity, and anorexia nervosa); and (2) where there is overwhelming evidence of MTL pathology, but where ingestive behaviour is not thought central (i.e., temporal lobe epilepsy and post-traumatic stress disorder). While for some of these conditions the evidence base is currently limited, the general conclusion is that MTL impairment is linked, sometimes strongly, to dysfunctional hunger and satiety. This focus on the MTL, and declarative learning and memory processes, has implications for the development of alternative treatment approaches for the regulation of appetite.
Collapse
Affiliation(s)
| | - Kerri Boutelle
- Department of Pediatrics, Herbert Wertheim School of Public Health and Human Longevity Science and Psychiatry, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
5
|
Yokoi Y, Kubo A, Nishimura K, Takamura Y, Morishita Y, Minami M, Nomura H. Chemogenetic activation of histamine neurons promotes retrieval of apparently lost memories. Mol Brain 2024; 17:38. [PMID: 38877480 PMCID: PMC11179205 DOI: 10.1186/s13041-024-01111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/08/2024] [Indexed: 06/16/2024] Open
Abstract
Memory retrieval can become difficult over time, but it is important to note that memories that appear to be forgotten might still be stored in the brain, as shown by their occasional spontaneous retrieval. Histamine in the central nervous system is a promising target for facilitating the recovery of memory retrieval. Our previous study demonstrated that histamine H3 receptor (H3R) inverse agonists/antagonists, activating histamine synthesis and release, enhance activity in the perirhinal cortex and help in retrieving forgotten long-term object recognition memories. However, it is unclear whether enhancing histaminergic activity alone is enough for the recovery of memory retrieval, considering that H3Rs are also located in other neuron types and affect the release of multiple neurotransmitters. In this study, we employed a chemogenetic method to determine whether specifically activating histamine neurons in the tuberomammillary nucleus facilitates memory retrieval. In the novel object recognition test, control mice did not show a preference for objects based on memory 1 week after training, but chemogenetic activation of histamine neurons before testing improved memory retrieval. This selective activation did not affect the locomotor activity or anxiety-related behavior. Administering an H2R antagonist directly into the perirhinal cortex inhibited the recovery of memory retrieval induced by the activation of histamine neurons. Furthermore, we utilized the Barnes maze test to investigate whether chemogenetic activation of histamine neurons influences the retrieval of forgotten spatial memories. Control mice explored all the holes in the maze equally 1 week after training, whereas mice with chemogenetically activated histamine neurons spent more time around the target hole. These findings indicate that chemogenetic activation of histamine neurons in the tuberomammillary nucleus can promote retrieval of seemingly forgotten object recognition and spatial memories.
Collapse
Affiliation(s)
- Yuto Yokoi
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Ayame Kubo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Kyoka Nishimura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuki Takamura
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Yoshikazu Morishita
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hiroshi Nomura
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467-8601, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
6
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
7
|
Rajebhosale P, Ananth MR, Kim R, Crouse R, Jiang L, López-Hernández G, Zhong C, Arty C, Wang S, Jone A, Desai NS, Li Y, Picciotto MR, Role LW, Talmage DA. Functionally refined encoding of threat memory by distinct populations of basal forebrain cholinergic projection neurons. eLife 2024; 13:e86581. [PMID: 38363713 DOI: 10.7554/elife.86581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Neurons of the basal forebrain nucleus basalis and posterior substantia innominata (NBM/SIp) comprise the major source of cholinergic input to the basolateral amygdala (BLA). Using a genetically encoded acetylcholine (ACh) sensor in mice, we demonstrate that BLA-projecting cholinergic neurons can 'learn' the association between a naive tone and a foot shock (training) and release ACh in the BLA in response to the conditioned tone 24 hr later (recall). In the NBM/SIp cholinergic neurons express the immediate early gene, Fos following both training and memory recall. Cholinergic neurons that express Fos following memory recall display increased intrinsic excitability. Chemogenetic silencing of these learning-activated cholinergic neurons prevents expression of the defensive behavior to the tone. In contrast, we show that NBM/SIp cholinergic neurons are not activated by an innately threatening stimulus (predator odor). Instead, VP/SIa cholinergic neurons are activated and contribute to defensive behaviors in response to predator odor, an innately threatening stimulus. Taken together, we find that distinct populations of cholinergic neurons are recruited to signal distinct aversive stimuli, demonstrating functionally refined organization of specific types of memory within the cholinergic basal forebrain of mice.
Collapse
Affiliation(s)
| | - Mala R Ananth
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| | - Ronald Kim
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| | - Richard Crouse
- Yale Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - Li Jiang
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| | | | - Chongbo Zhong
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| | | | - Shaohua Wang
- National Institute of Environmental Health Sciences, Durham, United States
| | - Alice Jone
- Program in Neuroscience, Stony Brook University, Stony Brook, United States
| | - Niraj S Desai
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Marina R Picciotto
- Yale Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Psychiatry, Yale University, New Haven, United States
| | - Lorna W Role
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| | - David A Talmage
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States
| |
Collapse
|
8
|
Rajebhosale P, Ananth MR, Kim R, Crouse R, Jiang L, López-Hernández G, Zhong C, Arty C, Wang S, Jone A, Desai NS, Li Y, Picciotto MR, Role LW, Talmage DA. Functionally refined encoding of threat memory by distinct populations of basal forebrain cholinergic projection neurons. RESEARCH SQUARE 2024:rs.3.rs-3938016. [PMID: 38405824 PMCID: PMC10889048 DOI: 10.21203/rs.3.rs-3938016/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Neurons of the basal forebrain nucleus basalis and posterior substantia innominata (NBM/SIp) comprise the major source of cholinergic input to the basolateral amygdala (BLA). Using a genetically-encoded acetylcholine (ACh) sensor in mice, we demonstrate that BLA-projecting cholinergic neurons can "learn" the association between a naïve tone and a foot shock (training) and release ACh in the BLA in response to the conditioned tone 24h later (recall). In the NBM/SIp cholinergic neurons express the immediate early gene, Fos following both training and memory recall. Cholinergic neurons that express Fos following memory recall display increased intrinsic excitability. Chemogenetic silencing of these learning-activated cholinergic neurons prevents expression of the defensive behavior to the tone. In contrast, we show that NBM/SIp cholinergic neurons are not activated by an innately threatening stimulus (predator odor). Instead, VP/SIa cholinergic neurons are activated and contribute to defensive behaviors in response to predator odor, an innately threatening stimulus. Taken together, we find that distinct populations of cholinergic neurons are recruited to signal distinct aversive stimuli, demonstrating functionally refined organization of specific types of memory within the cholinergic basal forebrain of mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shaohua Wang
- National Institute of Environmental Health Sciences
| | | | | | - Yulong Li
- Peking University School of Life Sciences
| | | | | | | |
Collapse
|
9
|
Yelhekar TD, Meng M, Doupe J, Lin Y. All IEGs Are Not Created Equal-Molecular Sorting Within the Memory Engram. ADVANCES IN NEUROBIOLOGY 2024; 38:81-109. [PMID: 39008012 DOI: 10.1007/978-3-031-62983-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
When neurons are recruited to form the memory engram, they are driven to activate the expression of a series of immediate-early genes (IEGs). While these IEGs have been used relatively indiscriminately to identify the so-called engram neurons, recent research has demonstrated that different IEG ensembles can be physically and functionally distinct within the memory engram. This inherent heterogeneity of the memory engram is driven by the diversity in the functions and distributions of different IEGs. This process, which we call molecular sorting, is analogous to sorting the entire population of engram neurons into different sub-engrams molecularly defined by different IEGs. In this chapter, we will describe the molecular sorting process by systematically reviewing published work on engram ensemble cells defined by the following four major IEGs: Fos, Npas4, Arc, and Egr1. By comparing and contrasting these likely different components of the memory engram, we hope to gain a better understanding of the logic and significance behind the molecular sorting process for memory functions.
Collapse
Affiliation(s)
- Tushar D Yelhekar
- Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meizhen Meng
- Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joslyn Doupe
- Neuroscience Graduate Program, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yingxi Lin
- Department of Psychiatry, O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Bertocchi I, Rocha-Almeida F, Romero-Barragán MT, Cambiaghi M, Carretero-Guillén A, Botta P, Dogbevia GK, Treviño M, Mele P, Oberto A, Larkum ME, Gruart A, Sprengel R, Delgado-García JM, Hasan MT. Pre- and postsynaptic N-methyl-D-aspartate receptors are required for sequential printing of fear memory engrams. iScience 2023; 26:108050. [PMID: 37876798 PMCID: PMC10590821 DOI: 10.1016/j.isci.2023.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The organization of fear memory involves the participation of multiple brain regions. However, it is largely unknown how fear memory is formed, which circuit pathways are used for "printing" memory engrams across brain regions, and the role of identified brain circuits in memory retrieval. With advanced genetic methods, we combinatorially blocked presynaptic output and manipulated N-methyl-D-aspartate receptor (NMDAR) in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) before and after cued fear conditioning. Further, we tagged fear-activated neurons during associative learning for optogenetic memory recall. We found that presynaptic mPFC and postsynaptic BLA NMDARs are required for fear memory formation, but not expression. Our results provide strong evidence that NMDAR-dependent synaptic plasticity drives multi-trace systems consolidation for the sequential printing of fear memory engrams from BLA to mPFC and, subsequently, to the other regions, for flexible memory retrieval.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, 10043 Turin, Italy
| | - Florbela Rocha-Almeida
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, km. 1 41013 Seville, Spain
| | | | - Marco Cambiaghi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| | - Alejandro Carretero-Guillén
- Laboratory of Brain Circuits Therapeutics, Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Paolo Botta
- CNS drug development, Copenhagen, Capital Region, Denmark
| | - Godwin K. Dogbevia
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Health Canada, 70 Colombine Driveway, Ottawa, ON K1A0K9, Canada
| | - Mario Treviño
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Paolo Mele
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, 10043 Turin, Italy
| | - Alessandra Oberto
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, 10043 Turin, Italy
| | - Matthew E. Larkum
- NeuroCure, Charité-Universitatsmedizin, Virchowweg 6, 10117 Berlin, Germany
| | - Agnes Gruart
- Division of Neurosciences, University Pablo de Olavide, Ctra. de Utrera, km. 1 41013 Seville, Spain
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | - Mazahir T. Hasan
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Laboratory of Brain Circuits Therapeutics, Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Sede Building, Barrio Sarriena, s/n, 48940 Leioa, Spain
- Ikerbasque – Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
11
|
Brosens N, Lesuis SL, Rao-Ruiz P, van den Oever MC, Krugers HJ. Shaping Memories Via Stress: A Synaptic Engram Perspective. Biol Psychiatry 2023:S0006-3223(23)01720-1. [PMID: 37977215 DOI: 10.1016/j.biopsych.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Stress modulates the activity of various memory systems and can thereby guide behavioral interaction with the environment in an adaptive or maladaptive manner. At the cellular level, a large body of evidence indicates that (nor)adrenaline and glucocorticoid release induced by acute stress exposure affects synapse function and synaptic plasticity, which are critical substrates for learning and memory. Recent evidence suggests that memories are supported in the brain by sparsely distributed neurons within networks, termed engram cell ensembles. While the physiological and molecular effects of stress on the synapse are increasingly well characterized, how these synaptic modifications shape the multiscale dynamics of engram cell ensembles is still poorly understood. In this review, we discuss and integrate recent information on how acute stress affects synapse function and how this may alter engram cell ensembles and their synaptic connectivity to shape memory strength and memory precision. We provide a mechanistic framework of a synaptic engram under stress and put forward outstanding questions that address knowledge gaps in our understanding of the mechanisms that underlie stress-induced memory modulation.
Collapse
Affiliation(s)
- Niek Brosens
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| | - Sylvie L Lesuis
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Cellular and Cognitive Neuroscience group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Décarie-Spain L, Gu C, Lauer LT, Subramanian KS, Chehimi SN, Kao AE, Deng I, Bashaw AG, Klug ME, Galbokke AH, Donohue KN, Yang M, de Lartigue G, Myers KP, Crist RC, Reiner BC, Hayes MR, Kanoski SE. Ventral hippocampus neurons encode meal-related memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561731. [PMID: 37873229 PMCID: PMC10592790 DOI: 10.1101/2023.10.10.561731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The ability to encode and retrieve meal-related information is critical to efficiently guide energy acquisition and consumption, yet the underlying neural processes remain elusive. Here we reveal that ventral hippocampus (HPCv) neuronal activity dynamically elevates during meal consumption and this response is highly predictive of subsequent performance in a foraging-related spatial memory task. Targeted recombination-mediated ablation of HPCv meal-responsive neurons impairs foraging-related spatial memory without influencing food motivation, anxiety-like behavior, or escape-mediated spatial memory. These HPCv meal-responsive neurons project to the lateral hypothalamic area (LHA) and single-nucleus RNA sequencing and in situ hybridization analyses indicate they are enriched in serotonin 2a receptors (5HT2aR). Either chemogenetic silencing of HPCv-to-LHA projections or intra-HPCv 5HT2aR antagonist yielded foraging-related spatial memory deficits, as well as alterations in caloric intake and the temporal sequence of spontaneous meal consumption. Collective results identify a population of HPCv neurons that dynamically respond to eating to encode meal-related memories.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Cindy Gu
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Logan Tierno Lauer
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Keshav S. Subramanian
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States
| | - Samar N. Chehimi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alicia E. Kao
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Iris Deng
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Alexander G. Bashaw
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States
| | - Molly E. Klug
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Ashyah Hewage Galbokke
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Kristen N. Donohue
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
| | - Mingxin Yang
- Monell Chemical Sense Center, Philadelphia, Pennsylvania, United States
| | | | - Kevin P. Myers
- Bucknell University, Lewisburg, Philadelphia, Pennsylvania, United States
| | - Richard C. Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Benjamin C. Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Scott E. Kanoski
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
13
|
Agetsuma M, Sato I, Tanaka YR, Carrillo-Reid L, Kasai A, Noritake A, Arai Y, Yoshitomo M, Inagaki T, Yukawa H, Hashimoto H, Nabekura J, Nagai T. Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation. Nat Commun 2023; 14:5996. [PMID: 37803014 PMCID: PMC10558457 DOI: 10.1038/s41467-023-41547-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/08/2023] [Indexed: 10/08/2023] Open
Abstract
Associative learning is crucial for adapting to environmental changes. Interactions among neuronal populations involving the dorso-medial prefrontal cortex (dmPFC) are proposed to regulate associative learning, but how these neuronal populations store and process information about the association remains unclear. Here we developed a pipeline for longitudinal two-photon imaging and computational dissection of neural population activities in male mouse dmPFC during fear-conditioning procedures, enabling us to detect learning-dependent changes in the dmPFC network topology. Using regularized regression methods and graphical modeling, we found that fear conditioning drove dmPFC reorganization to generate a neuronal ensemble encoding conditioned responses (CR) characterized by enhanced internal coactivity, functional connectivity, and association with conditioned stimuli (CS). Importantly, neurons strongly responding to unconditioned stimuli during conditioning subsequently became hubs of this novel associative network for the CS-to-CR transformation. Altogether, we demonstrate learning-dependent dynamic modulation of population coding structured on the activity-dependent formation of the hub network within the dmPFC.
Collapse
Grants
- MEXT | Japan Society for the Promotion of Science (JSPS)
- This study was supported by the Japan Science and Technology Agency, PRESTO (to M.A.), JSPS KAKENHI Grant (grant number JP18K06536, JP18H05144, JP20H05076, JP21H02801, JP22H05081, JP22H05519 to M.A.; JP20H03357, JP20H05073, JP21K18563 to Y.R.T.; JP20H05065, JP22H05080 to A.K.; JP22H05081 to A.N.), JSPS Bilateral Program (JPJSBP1-20199901 to M.A.), AMED (grant number JP19dm0207086 to M.A.; JP21dm0207117 to H.H.), the grant of Joint Research by the National Institutes of Natural Sciences (NINS program No 01112008 and 01112106 to M.A.), and grants from Brain Science Foundation and Shimadzu Foundation to M.A. and the Takeda Science Foundation to A.K. and H.H. Authors declare that they have no competing interests.
Collapse
Affiliation(s)
- Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan.
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan.
- Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan.
| | - Issei Sato
- Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuhiro R Tanaka
- Brain Science Institute, Tamagawa University, 6-1-1 Tamagawagakuen, Machida, Tokyo, 194-8610, Japan
| | - Luis Carrillo-Reid
- Instituto de Neurobiologia, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Juriquilla, Queretaro, CP, 76230, Mexico
| | - Atsushi Kasai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Atsushi Noritake
- Division of Behavioral Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Yoshiyuki Arai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Miki Yoshitomo
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Takashi Inagaki
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Yukawa
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hitoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| |
Collapse
|
14
|
Klune CB, Goodpaster CM, Gongwer MW, Gabriel CJ, Chen R, Jones NS, Schwarz LA, DeNardo LA. Developmentally distinct architectures in top-down circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.27.555010. [PMID: 37693480 PMCID: PMC10491090 DOI: 10.1101/2023.08.27.555010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The medial prefrontal cortex (mPFC) plays a key role in learning, mood and decision making, including in how individuals respond to threats 1-6 . mPFC undergoes a uniquely protracted development, with changes in synapse density, cortical thickness, long-range connectivity, and neuronal encoding properties continuing into early adulthood 7-21 . Models suggest that before adulthood, the slow-developing mPFC cannot adequately regulate activity in faster-developing subcortical centers 22,23 . They propose that during development, the enhanced influence of subcortical systems underlies distinctive behavioural strategies of juveniles and adolescents and that increasing mPFC control over subcortical structures eventually allows adult behaviours to emerge. Yet it has remained unclear how a progressive strengthening of top-down control can lead to nonlinear changes in behaviour as individuals mature 24,25 . To address this discrepancy, here we monitored and manipulated activity in the developing brain as animals responded to threats, establishing direct causal links between frontolimbic circuit activity and the behavioural strategies of juvenile, adolescent and adult mice. Rather than a linear strengthening of mPFC synaptic connectivity progressively regulating behaviour, we uncovered multiple developmental switches in the behavioural roles of mPFC circuits targeting the basolateral amygdala (BLA) and nucleus accumbens (NAc). We show these changes are accompanied by axonal pruning coinciding with functional strengthening of synaptic connectivity in the mPFC-BLA and mPFC-NAc pathways, which mature at different rates. Our results reveal how developing mPFC circuits pass through distinct architectures that may make them optimally adapted to the demands of age-specific challenges.
Collapse
|
15
|
Dorsal raphe serotonergic neurons preferentially reactivate dorsal dentate gyrus cell ensembles associated with positive experience. Cell Rep 2023; 42:112149. [PMID: 36821440 DOI: 10.1016/j.celrep.2023.112149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Major depressive disorder (MDD) is among the most common mental illnesses. Serotonergic (5-HT) neurons are central to the pathophysiology and treatment of MDD. Repeatedly recalling positive episodes is effective for MDD. Stimulating 5-HT neurons of the dorsal raphe nucleus (DRN) or neuronal ensembles in the dorsal dentate gyrus (dDG) associated with positive memories reverses the stress-induced behavioral abnormalities. Despite this phenotypic similarity, their causal relationship is unclear. This study revealed that the DRN 5-HT neurons activate dDG neurons; surprisingly, this activation was specifically observed in positive memory ensembles rather than neutral or negative ensembles. Furthermore, we revealed that dopaminergic signaling induced by activation of DRN 5-HT neurons projecting to the ventral tegmental area mediates an increase in active coping behavior and positive dDG ensemble reactivation. Our study identifies a role of DRN 5-HT neurons as specific reactivators of positive memories and provides insights into how serotonin elicits antidepressive effects.
Collapse
|
16
|
Hwang FJ, Roth RH, Wu YW, Sun Y, Kwon DK, Liu Y, Ding JB. Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons. Neuron 2022; 110:2790-2801.e5. [PMID: 35809573 PMCID: PMC9464700 DOI: 10.1016/j.neuron.2022.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/21/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
Learning and consolidation of new motor skills require plasticity in the motor cortex and striatum, two key motor regions of the brain. However, how neurons undergo synaptic changes and become recruited during motor learning to form a memory engram remains unknown. Here, we train mice on a motor learning task and use a genetic approach to identify and manipulate behavior-relevant neurons selectively in the primary motor cortex (M1). We find that the degree of M1 engram neuron reactivation correlates with motor performance. We further demonstrate that learning-induced dendritic spine reorganization specifically occurs in these M1 engram neurons. In addition, we find that motor learning leads to an increase in the strength of M1 engram neuron outputs onto striatal spiny projection neurons (SPNs) and that these synapses form clusters along SPN dendrites. These results identify a highly specific synaptic plasticity during the formation of long-lasting motor memory traces in the corticostriatal circuit.
Collapse
Affiliation(s)
- Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Yu-Wei Wu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Yue Sun
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Destany K Kwon
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Yu Liu
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Interrogating structural plasticity among synaptic engrams. Curr Opin Neurobiol 2022; 75:102552. [DOI: 10.1016/j.conb.2022.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
|
18
|
Dixsaut L, Gräff J. Brain-wide screen of prelimbic cortex inputs reveals a functional shift during early fear memory consolidation. eLife 2022; 11:78542. [PMID: 35838139 PMCID: PMC9286739 DOI: 10.7554/elife.78542] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Memory formation and storage rely on multiple interconnected brain areas, the contribution of which varies during memory consolidation. The medial prefrontal cortex, in particular the prelimbic cortex (PL), was traditionally found to be involved in remote memory storage, but recent evidence points toward its implication in early consolidation as well. Nevertheless, the inputs to the PL governing these dynamics remain unknown. Here, we first performed a brain-wide, rabies-based retrograde tracing screen of PL engram cells activated during contextual fear memory formation in male mice to identify relevant PL input regions. Next, we assessed the specific activity pattern of these inputs across different phases of memory consolidation, from fear memory encoding to recent and remote memory recall. Using projection-specific chemogenetic inhibition, we then tested their functional role in memory consolidation, which revealed a hitherto unknown contribution of claustrum to PL inputs at encoding, and of insular cortex to PL inputs at recent memory recall. Both of these inputs further impacted how PL engram cells were reactivated at memory recall, testifying to their relevance for establishing a memory trace in the PL. Collectively, these data identify a spatiotemporal shift in PL inputs important for early memory consolidation, and thereby help to refine the working model of memory formation.
Collapse
Affiliation(s)
- Lucie Dixsaut
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Hirano K, Morishita Y, Minami M, Nomura H. The impact of pitolisant, an H 3 receptor antagonist/inverse agonist, on perirhinal cortex activity in individual neuron and neuronal population levels. Sci Rep 2022; 12:7015. [PMID: 35551460 PMCID: PMC9098477 DOI: 10.1038/s41598-022-11032-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
Histamine is a neurotransmitter that modulates neuronal activity and regulates various brain functions. Histamine H3 receptor (H3R) antagonists/inverse agonists enhance its release in most brain regions, including the cerebral cortex, which improves learning and memory and exerts an antiepileptic effect. However, the mechanism underlying the effect of H3R antagonists/inverse agonists on cortical neuronal activity in vivo remains unclear. Here, we show the mechanism by which pitolisant, an H3R antagonist/inverse agonist, influenced perirhinal cortex (PRh) activity in individual neuron and neuronal population levels. We monitored neuronal activity in the PRh of freely moving mice using in vivo Ca2+ imaging through a miniaturized one-photon microscope. Pitolisant increased the activity of some PRh neurons while decreasing the activity of others without affecting the mean neuronal activity across neurons. Moreover, it increases neuron pairs with synchronous activity in excitatory-responsive neuronal populations. Furthermore, machine learning analysis revealed that pitolisant altered the neuronal population activity. The changes in the population activity were dependent on the neurons that were excited and inhibited by pitolisant treatment. These findings indicate that pitolisant influences the activity of a subset of PRh neurons by increasing the synchronous activity and modifying the population activity.
Collapse
Affiliation(s)
- Kyosuke Hirano
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yoshikazu Morishita
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Hiroshi Nomura
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan. .,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
20
|
Ortega-de San Luis C, Ryan TJ. Understanding the physical basis of memory: Molecular mechanisms of the engram. J Biol Chem 2022; 298:101866. [PMID: 35346687 PMCID: PMC9065729 DOI: 10.1016/j.jbc.2022.101866] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Memory, defined as the storage and use of learned information in the brain, is necessary to modulate behavior and critical for animals to adapt to their environments and survive. Despite being a cornerstone of brain function, questions surrounding the molecular and cellular mechanisms of how information is encoded, stored, and recalled remain largely unanswered. One widely held theory is that an engram is formed by a group of neurons that are active during learning, which undergoes biochemical and physical changes to store information in a stable state, and that are later reactivated during recall of the memory. In the past decade, the development of engram labeling methodologies has proven useful to investigate the biology of memory at the molecular and cellular levels. Engram technology allows the study of individual memories associated with particular experiences and their evolution over time, with enough experimental resolution to discriminate between different memory processes: learning (encoding), consolidation (the passage from short-term to long-term memories), and storage (the maintenance of memory in the brain). Here, we review the current understanding of memory formation at a molecular and cellular level by focusing on insights provided using engram technology.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Tomás J Ryan
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Yan Y, Aierken A, Wang C, Jin W, Quan Z, Wang Z, Qing H, Ni J, Zhao J. Neuronal Circuits Associated with Fear Memory: Potential Therapeutic Targets for Posttraumatic Stress Disorder. Neuroscientist 2022; 29:332-351. [PMID: 35057666 DOI: 10.1177/10738584211069977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder that is associated with long-lasting memories of traumatic experiences. Extinction and discrimination of fear memory have become therapeutic targets for PTSD. Newly developed optogenetics and advanced in vivo imaging techniques have provided unprecedented spatiotemporal tools to characterize the activity, connectivity, and functionality of specific cell types in complicated neuronal circuits. The use of such tools has offered mechanistic insights into the exquisite organization of the circuitry underlying the extinction and discrimination of fear memory. This review focuses on the acquisition of more detailed, comprehensive, and integrated neural circuits to understand how the brain regulates the extinction and discrimination of fear memory. A future challenge is to translate these researches into effective therapeutic treatment for PTSD from the perspective of precise regulation of the neural circuits associated with the extinction and discrimination of fear memories.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ailikemu Aierken
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Wei Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
22
|
Late-Onset Behavioral and Synaptic Consequences of L-Type Ca 2+ Channel Activation in the Basolateral Amygdala of Developing Rats. eNeuro 2022; 9:ENEURO.0282-21.2022. [PMID: 35064022 PMCID: PMC8868026 DOI: 10.1523/eneuro.0282-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Postnatal CNS development is fine-tuned to drive the functional needs of succeeding life stages; accordingly, the emergence of sensory and motor functions, behavioral patterns and cognitive abilities relies on a complex interplay of signaling pathways. Strictly regulated Ca2+ signaling mediated by L-type channels (LTCCs) is crucial in neural circuit development and aberrant increases in neuronal LTCC activity are linked to neurodevelopmental and psychiatric disorders. In the amygdala, a brain region that integrates signals associated with aversive and rewarding stimuli, LTCCs contribute to NMDA-independent long-term potentiation (LTP) and are required for the consolidation and extinction of fear memory. In vitro studies have elucidated distinct electrophysiological and synaptic properties characterizing the transition from immature to functionally mature basolateral subdivision of the amygdala (BLA) principal neurons. Further, acute increase of LTCC activity selectively regulates excitability and spontaneous synaptic activity in immature BLA neurons, suggesting an age-dependent regulation of BLA circuitry by LTCCs. This study aimed to elucidate whether early life alterations in LTCC activity subsequently affect synaptic strength and amygdala-dependent behaviors in early adulthood. In vivo intra-amygdala injection of an LTCC agonist at a critical period of postnatal neurodevelopment in male rat pups was used to examine synaptic plasticity of BLA excitatory inputs, expression of immediate early genes (IEGs) and glutamate receptors, as well as anxiety and social affiliation behaviors at a juvenile age. Results indicate that enhanced LTCC activity in immature BLA principal neurons trigger persistent changes in the developmental trajectory to modify membrane properties and synaptic LTP at later stages, concomitant with alterations in amygdala-related behavioral patterns.
Collapse
|
23
|
Yousuf M, Packard PA, Fuentemilla L, Bunzeck N. Functional coupling between CA3 and laterobasal amygdala supports schema dependent memory formation. Neuroimage 2021; 244:118563. [PMID: 34537382 DOI: 10.1016/j.neuroimage.2021.118563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/01/2023] Open
Abstract
The medial temporal lobe drives semantic congruence dependent memory formation. However, the exact roles of hippocampal subfields and surrounding brain regions remain unclear. Here, we used an established paradigm and high-resolution functional magnetic resonance imaging of the medial temporal lobe together with cytoarchitectonic probability estimates in healthy humans. Behaviorally, robust congruence effects emerged in young and older adults, indicating that schema dependent learning is unimpaired during healthy aging. Within the medial temporal lobe, semantic congruence was associated with hemodynamic activity in the subiculum, CA1, CA3 and dentate gyrus, as well as the entorhinal cortex and laterobasal amygdala. Importantly, a subsequent memory analysis showed increased activity for later remembered vs. later forgotten congruent items specifically within CA3, and this subfield showed enhanced functional connectivity to the laterobasal amygdala. As such, our findings extend current models on schema dependent learning by pinpointing the functional properties of subregions within the medial temporal lobe.
Collapse
Affiliation(s)
- Mushfa Yousuf
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany
| | - Pau A Packard
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat, Barcelona 08005, Spain
| | - Lluís Fuentemilla
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany.
| |
Collapse
|
24
|
The Medial Prefrontal Cortex and Fear Memory: Dynamics, Connectivity, and Engrams. Int J Mol Sci 2021; 22:ijms222212113. [PMID: 34830009 PMCID: PMC8619965 DOI: 10.3390/ijms222212113] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/08/2023] Open
Abstract
It is becoming increasingly apparent that long-term memory formation relies on a distributed network of brain areas. While the hippocampus has been at the center of attention for decades, it is now clear that other regions, in particular the medial prefrontal cortex (mPFC), are taking an active part as well. Recent evidence suggests that the mPFC-traditionally implicated in the long-term storage of memories-is already critical for the early phases of memory formation such as encoding. In this review, we summarize these findings, relate them to the functional importance of the mPFC connectivity, and discuss the role of the mPFC during memory consolidation with respect to the different theories of memory storage. Owing to its high functional connectivity to other brain areas subserving memory formation and storage, the mPFC emerges as a central hub across the lifetime of a memory, although much still remains to be discovered.
Collapse
|
25
|
Nomura H. [Histamine signaling restores retrieval of forgotten memories]. Nihon Yakurigaku Zasshi 2021; 156:292-296. [PMID: 34470934 DOI: 10.1254/fpj.21049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Histamine is a biological amine that functions as a neurotransmitter in the brain to regulate arousal, appetite, and cognitive functions. Many pharmacological studies using histamine receptor agonists and antagonists have found that histamine promotes memory consolidation and retrieval. More recently, we have revealed that the activation of the brain histaminergic system by H3R antagonists/inverse agonists restores retrieval of forgotten long-term memory in mice and humans. The recovery of memory retrieval may involve histamine-induced excitatory effects. Histamine may increase neuronal excitability throughout the neural circuit, including both neurons that are and are not recruited into the memory trace, similar to noise added to the neural circuits for memory retrieval. Stochastic resonance can explain how adding noise to the circuit enhances memory retrieval. Memory is processed not only by consolidation and retrieval, but also by various processes such as maintenance, reconsolidation, extinction, and reinstatement. Further studies that separately analyze the memory processes are needed to elucidate the whole picture of the effects of histamine on learning and memory. Regarding the human histaminergic system, alterations in histamine signaling have been reported in several neuropsychiatric disorders, and these changes have been suggested to be involved in cognitive dysfunction in patients with the neuropsychiatric disorders. Therefore, the drugs that modulate histamine signaling, including H3R antagonists/inverse agonists, may be effective in the treatment of cognitive dysfunction, including Alzheimer's disease.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Department of Cognitive Function and Pathology, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
26
|
Nomura H, Shimizume R, Ikegaya Y. Histamine: A Key Neuromodulator of Memory Consolidation and Retrieval. Curr Top Behav Neurosci 2021; 59:329-353. [PMID: 34435342 DOI: 10.1007/7854_2021_253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In pharmacological studies conducted on animals over the last four decades, histamine was determined to be a strong modulator of learning and memory. Activation of histamine signaling enhances memory consolidation and retrieval. Even long after learning and forgetting, it can still restore the retrieval of forgotten memories. These findings based on animal studies led to human clinical trials with histamine H3 receptor antagonists/inverse agonists, which revealed their positive effects on learning and memory. Therefore, histamine signaling is a promising therapeutic target for improving cognitive impairments in patients with various neuropsychiatric disorders, including Alzheimer's disease. While the memory-modulatory effects of histamine receptor agonists and antagonists have been confirmed by several research groups, the underlying mechanisms remain to be elucidated. This review summarizes how the activation and inhibition of histamine signaling influence memory processes, introduces the cellular and circuit mechanisms, and discusses the relationship between the human histaminergic system and learning and memory.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Rintaro Shimizume
- Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Giorgi C, Marinelli S. Roles and Transcriptional Responses of Inhibitory Neurons in Learning and Memory. Front Mol Neurosci 2021; 14:689952. [PMID: 34211369 PMCID: PMC8239217 DOI: 10.3389/fnmol.2021.689952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence supports a model whereby memories are encoded by sparse ensembles of neurons called engrams, activated during memory encoding and reactivated upon recall. An engram consists of a network of cells that undergo long-lasting modifications of their transcriptional programs and connectivity. Ground-breaking advancements in this field have been made possible by the creative exploitation of the characteristic transcriptional responses of neurons to activity, allowing both engram labeling and manipulation. Nevertheless, numerous aspects of engram cell-type composition and function remain to be addressed. As recent transcriptomic studies have revealed, memory encoding induces persistent transcriptional and functional changes in a plethora of neuronal subtypes and non-neuronal cells, including glutamatergic excitatory neurons, GABAergic inhibitory neurons, and glia cells. Dissecting the contribution of these different cellular classes to memory engram formation and activity is quite a challenging yet essential endeavor. In this review, we focus on the role played by the GABAergic inhibitory component of the engram through two complementary lenses. On one hand, we report on available physiological evidence addressing the involvement of inhibitory neurons to different stages of memory formation, consolidation, storage and recall. On the other, we capitalize on a growing number of transcriptomic studies that profile the transcriptional response of inhibitory neurons to activity, revealing important clues on their potential involvement in learning and memory processes. The picture that emerges suggests that inhibitory neurons are an essential component of the engram, likely involved in engram allocation, in tuning engram excitation and in storing the memory trace.
Collapse
Affiliation(s)
- Corinna Giorgi
- CNR, Institute of Molecular Biology and Pathology, Rome, Italy.,European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Silvia Marinelli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy
| |
Collapse
|
28
|
Fuentes-Ramos M, Alaiz-Noya M, Barco A. Transcriptome and epigenome analysis of engram cells: Next-generation sequencing technologies in memory research. Neurosci Biobehav Rev 2021; 127:865-875. [PMID: 34097980 DOI: 10.1016/j.neubiorev.2021.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Abstract
Transcription and epigenetic changes are integral components of the neuronal response to stimulation and have been postulated to be drivers or substrates for enduring changes in animal behavior, including learning and memory. Memories are thought to be deposited in neuronal assemblies called engrams, i.e., groups of cells that undergo persistent physical or chemical changes during learning and are selectively reactivated to retrieve the memory. Despite the research progress made in recent years, the identity of specific epigenetic changes, if any, that occur in these cells and subsequently contribute to the persistence of memory traces remains unknown. The analysis of these changes is challenging due to the difficulty of exploring molecular alterations that only occur in a relatively small percentage of cells embedded in a complex tissue. In this review, we discuss the recent advances in this field and the promise of next-generation sequencing (NGS) and epigenome editing methods for overcoming these challenges and address long-standing questions concerning the role of epigenetic mechanisms in memory encoding, maintenance and expression.
Collapse
Affiliation(s)
- Miguel Fuentes-Ramos
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Marta Alaiz-Noya
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
29
|
Neuronal ensembles in memory processes. Semin Cell Dev Biol 2021; 125:136-143. [PMID: 33858772 DOI: 10.1016/j.semcdb.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
A neuronal ensemble represents the concomitant activity of a specific group of neurons that could encompass a broad repertoire of brain functions such as motor, perceptual, memory or cognitive states. On the other hand, a memory engram portrays the physical manifestation of memory or the changes that enable learning and retrieval. Engram studies focused for many years on finding where memories are stored as in, which cells or brain regions represent a memory trace, and disregarded the investigation of how neuronal activity patterns give rise to such memories. Recent experiments suggest that the association and reactivation of specific neuronal groups could be the main mechanism underlying the brain's ability to remember past experiences and envision future actions. Thus, the growing consensus is that the interaction between neuronal ensembles could allow sequential activity patterns to become memories and recurrent memories to compose complex behaviors. The goal of this review is to propose how the neuronal ensemble framework could be translated and useful to understand memory processes.
Collapse
|
30
|
Piette C, Touboul J, Venance L. Engrams of Fast Learning. Front Cell Neurosci 2020; 14:575915. [PMID: 33250712 PMCID: PMC7676431 DOI: 10.3389/fncel.2020.575915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/24/2020] [Indexed: 01/22/2023] Open
Abstract
Fast learning designates the behavioral and neuronal mechanisms underlying the acquisition of a long-term memory trace after a unique and brief experience. As such it is opposed to incremental, slower reinforcement or procedural learning requiring repetitive training. This learning process, found in most animal species, exists in a large spectrum of natural behaviors, such as one-shot associative, spatial, or perceptual learning, and is a core principle of human episodic memory. We review here the neuronal and synaptic long-term changes associated with fast learning in mammals and discuss some hypotheses related to their underlying mechanisms. We first describe the variety of behavioral paradigms used to test fast learning memories: those preferentially involve a single and brief (from few hundred milliseconds to few minutes) exposures to salient stimuli, sufficient to trigger a long-lasting memory trace and new adaptive responses. We then focus on neuronal activity patterns observed during fast learning and the emergence of long-term selective responses, before documenting the physiological correlates of fast learning. In the search for the engrams of fast learning, a growing body of evidence highlights long-term changes in gene expression, structural, intrinsic, and synaptic plasticities. Finally, we discuss the potential role of the sparse and bursting nature of neuronal activity observed during the fast learning, especially in the induction plasticity mechanisms leading to the rapid establishment of long-term synaptic modifications. We conclude with more theoretical perspectives on network dynamics that could enable fast learning, with an overview of some theoretical approaches in cognitive neuroscience and artificial intelligence.
Collapse
Affiliation(s)
- Charlotte Piette
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Université PSL, Paris, France.,Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Jonathan Touboul
- Department of Mathematics and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Université PSL, Paris, France
| |
Collapse
|
31
|
Iwasaki S, Ikegaya Y. Contextual Fear Memory Retrieval Is Vulnerable to Hippocampal Noise. Cereb Cortex 2020; 31:785-794. [DOI: 10.1093/cercor/bhaa257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023] Open
Abstract
Abstract
Memory retrieval depends on reactivation of memory engram cells. Inadvertent activation of these cells is expected to cause memory-retrieval failure, but little is known about how noisy activity of memory-irrelevant neurons impacts mnemonic processes. Here, we report that optogenetic nonselective activation of only tens of hippocampal CA1 cells (∼0.01% of the total cells in the CA1 pyramidal cell layer) impairs contextual fear memory recall. Memory recall failure was associated with altered neuronal reactivation in the basolateral amygdala. These results indicate that hippocampal memory retrieval requires strictly regulated activation of a specific neuron ensemble and is easily disrupted by the introduction of noisy CA1 activity, suggesting that reactivating memory engram cells as well as silencing memory-irrelevant neurons are both crucial for memory retrieval.
Collapse
Affiliation(s)
- Satoshi Iwasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Josselyn SA, Tonegawa S. Memory engrams: Recalling the past and imagining the future. Science 2020; 367:367/6473/eaaw4325. [PMID: 31896692 DOI: 10.1126/science.aaw4325] [Citation(s) in RCA: 487] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 1904, Richard Semon introduced the term "engram" to describe the neural substrate for storing memories. An experience, Semon proposed, activates a subset of cells that undergo off-line, persistent chemical and/or physical changes to become an engram. Subsequent reactivation of this engram induces memory retrieval. Although Semon's contributions were largely ignored in his lifetime, new technologies that allow researchers to image and manipulate the brain at the level of individual neurons has reinvigorated engram research. We review recent progress in studying engrams, including an evaluation of evidence for the existence of engrams, the importance of intrinsic excitability and synaptic plasticity in engrams, and the lifetime of an engram. Together, these findings are beginning to define an engram as the basic unit of memory.
Collapse
Affiliation(s)
- Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada. .,Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada
| | - Susumu Tonegawa
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Butler CW, Wilson YM, Mills SA, Gunnersen JM, Murphy M. Evidence that a defined population of neurons in lateral amygdala is directly involved in auditory fear learning and memory. Neurobiol Learn Mem 2019; 168:107139. [PMID: 31843653 DOI: 10.1016/j.nlm.2019.107139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Memory is thought to be encoded within networks of neurons within the brain, but the identity of the neurons involved and circuits they form have not been described for any memory. Previously, we used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in different regions of the brain which were specifically activated following fear conditioning. This suggested that these populations of neurons form nodes in a network that encodes fear memory. In particular, one population of learning activated neurons was found within a discrete region of the lateral amygdala (LA), a key nucleus required for fear conditioning. In order to provide evidence that this population is directly involved in fear conditioning, we have analysed the expression of a key molecular requirement for fear conditioning in LA, phosphorylated Extracellular Signal Regulated Kinase 1 and 2 (pERK1/2). The only neurons in LA that specifically expressed pERK1/2 following auditory fear conditioning were in the ventrolateral nucleus of the LA (LAvl), in the same discrete region where we found learning specific FTL+ neurons. Double labelling experiments in FTL mice showed that a substantial proportion of the learning activated neurons expressed both pERK1/2 and FTL. These experiments provide clear evidence that the learning specific neurons we identified within LAvl are directly involved in auditory fear conditioning. In addition, learning specific expression of pERK1/2 was found in a dense network of dendrites contained within the border region of the LAvl. This network of dendrites may represent an activated dendritic field involved in fear conditioning in LA.
Collapse
Affiliation(s)
- Christopher W Butler
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Yvette M Wilson
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Samuel A Mills
- Biological Optical Microscopy Platform, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jenny M Gunnersen
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mark Murphy
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
34
|
Nomura H, Mizuta H, Norimoto H, Masuda F, Miura Y, Kubo A, Kojima H, Ashizuka A, Matsukawa N, Baraki Z, Hitora-Imamura N, Nakayama D, Ishikawa T, Okada M, Orita K, Saito R, Yamauchi N, Sano Y, Kusuhara H, Minami M, Takahashi H, Ikegaya Y. Central Histamine Boosts Perirhinal Cortex Activity and Restores Forgotten Object Memories. Biol Psychiatry 2019; 86:230-239. [PMID: 30635130 DOI: 10.1016/j.biopsych.2018.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/12/2018] [Accepted: 11/15/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND A method that promotes the retrieval of lost long-term memories has not been well established. Histamine in the central nervous system is implicated in learning and memory, and treatment with antihistamines impairs learning and memory. Because histamine H3 receptor inverse agonists upregulate histamine release, the inverse agonists may enhance learning and memory. However, whether the inverse agonists promote the retrieval of forgotten long-term memory has not yet been determined. METHODS Here, we employed multidisciplinary methods, including mouse behavior, calcium imaging, and chemogenetic manipulation, to examine whether and how the histamine H3 receptor inverse agonists, thioperamide and betahistine, promote the retrieval of a forgotten long-term object memory in mice. In addition, we conducted a randomized double-blind, placebo-controlled crossover trial in healthy adult participants to investigate whether betahistine treatment promotes memory retrieval in humans. RESULTS The treatment of H3 receptor inverse agonists induced the recall of forgotten memories even 1 week and 1 month after training in mice. The memory recovery was mediated by the disinhibition of histamine release in the perirhinal cortex, which activated the histamine H2 receptor. Histamine depolarized perirhinal cortex neurons, enhanced their spontaneous activity, and facilitated the reactivation of behaviorally activated neuronal ensembles. A human clinical trial revealed that treatment of H3 receptor inverse agonists is specifically more effective for items that are more difficult to remember and subjects with poorer performance. CONCLUSIONS These results highlight a novel interaction between the central histamine signaling and memory engrams.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan; Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Hiroto Mizuta
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroaki Norimoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Fumitaka Masuda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yuki Miura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Ayame Kubo
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroto Kojima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Aoi Ashizuka
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriko Matsukawa
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Zohal Baraki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Natsuko Hitora-Imamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan; Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Daisuke Nakayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Tomoe Ishikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Mami Okada
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Ken Orita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Ryoki Saito
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Naoki Yamauchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yamato Sano
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| |
Collapse
|
35
|
Khalaf O, Gräff J. Reactivation of Recall-Induced Neurons in the Infralimbic Cortex and the Basolateral Amygdala After Remote Fear Memory Attenuation. Front Mol Neurosci 2019; 12:70. [PMID: 31057365 PMCID: PMC6481183 DOI: 10.3389/fnmol.2019.00070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
Whether the attenuation of traumatic memories is mediated through the suppression of the original memory trace of fear by a new memory trace of safety, or through an updating of the original fear trace towards safety has been a long-standing question at the interface of neuroscience and psychology. This matter is of particular importance for remote fear memories as they lie at the core of stress- and anxiety-related disorders. Recently, we have found that in the dentate gyrus, the effective attenuation of remote fear memories is accompanied by a reactivation of memory recall-induced neurons and that the continued activity of these neurons is critical for fear reduction. However, whether this also applies to other brain areas implicated in the storage of remote fear memories remains to be determined. Here, we show-by cellular compartment analysis of temporal activity using fluorescence in situ hybridization-that such reactivation also occurs in the basolateral amygdala and the infralimbic cortex, two brain areas known to be involved in fear memory attenuation. These results provide further experimental support for effective traumatic memory attenuation likely being mediated by an updating of the original fear trace towards safety.
Collapse
Affiliation(s)
- Ossama Khalaf
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
36
|
Nomura H, Teshirogi C, Nakayama D, Minami M, Ikegaya Y. Prior observation of fear learning enhances subsequent self-experienced fear learning with an overlapping neuronal ensemble in the dorsal hippocampus. Mol Brain 2019; 12:21. [PMID: 30871580 PMCID: PMC6419346 DOI: 10.1186/s13041-019-0443-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 01/18/2023] Open
Abstract
Information from direct experience and observation of others is integrated in the brain to enable appropriate responses to environmental stimuli. Fear memory can be acquired by observing a conspecific’s distress. However, it remains unclear how prior fear observation affects self-experienced fear learning. In this study, we tested whether prior observation of a conspecific receiving contextual fear conditioning affects subsequent self-experienced fear conditioning and how neuronal ensembles represent the integration of the observation and self-experience. Test mice observed demonstrator mice experiencing fear conditioning on day 1 and directly experienced fear conditioning on day 2. Contextual fear memory was tested on day 3. The prior observation of fear conditioning promoted subsequent self-experienced fear conditioning in a hippocampus-dependent manner. We visualized hippocampal neurons that were activated during the observation and self-experience of fear conditioning and found that self-experienced fear conditioning preferentially activated dorsal CA1 neurons that were activated during the observation. When mice observed and directly experienced fear conditioning in different contexts, preferential reactivation was not observed in the CA1, and fear memory was not enhanced. These findings indicate that dorsal CA1 neuronal ensembles that were activated during both the observation and self-experience of fear learning are implicated in the integration of observation and self-experience for strengthening fear memory.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo, 060-0812, Japan. .,Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Chie Teshirogi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daisuke Nakayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, 565-0871, Japan
| |
Collapse
|
37
|
Mechanisms of fear learning and extinction: synaptic plasticity-fear memory connection. Psychopharmacology (Berl) 2019; 236:163-182. [PMID: 30415278 PMCID: PMC6374177 DOI: 10.1007/s00213-018-5104-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022]
Abstract
RATIONALE The ability to memorize threat-associated cues and subsequently react to them, exhibiting escape or avoidance responses, is an essential, often life-saving behavioral mechanism that can be experimentally studied using the fear (threat) conditioning training paradigm. Presently, there is substantial evidence supporting the Synaptic Plasticity-Memory (SPM) hypothesis in relation to the mechanisms underlying the acquisition, retention, and extinction of conditioned fear memory. OBJECTIVES The purpose of this review article is to summarize findings supporting the SPM hypothesis in the context of conditioned fear control, applying the set of criteria and tests which were proposed as necessary to causally link lasting changes in synaptic transmission in corresponding neural circuits to fear memory acquisition and extinction with an emphasis on their pharmacological diversity. RESULTS The mechanisms of synaptic plasticity in fear circuits exhibit complex pharmacological profiles and satisfy all four SPM criteria-detectability, anterograde alteration, retrograde alteration, and mimicry. CONCLUSION The reviewed findings, accumulated over the last two decades, provide support for both necessity and sufficiency of synaptic plasticity in fear circuits for fear memory acquisition and retention, and, in part, for fear extinction, with the latter requiring additional experimental work.
Collapse
|
38
|
Inhibition of Pyramidal Neurons in the Basal Amygdala Promotes Fear Learning. eNeuro 2018; 5:eN-NWR-0272-18. [PMID: 30406197 PMCID: PMC6220591 DOI: 10.1523/eneuro.0272-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
The basolateral amygdala complex, which contains the lateral (LA) and basal (BA) subnuclei, is a critical substrate of associative learning related to reward and aversive stimuli. Auditory fear conditioning studies in rodents have shown that the excitation of LA pyramidal neurons, driven by the inhibition of local GABAergic interneurons, is critical to fear memory formation. Studies examining the role of the BA in auditory fear conditioning, however, have yielded divergent outcomes. Here, we used a neuron-specific chemogenetic approach to manipulate the excitability of mouse BA neurons during auditory fear conditioning. We found that chemogenetic inhibition of BA GABA neurons, but not BA pyramidal neurons, impaired fear learning. Further, either chemogenetic stimulation of BA GABA neurons or chemogenetic inhibition of BA pyramidal neurons was sufficient to generate the formation of an association between a behavior and a neutral auditory cue. This chemogenetic memory required presentation of a discrete cue, and was not attributable to an effect of BA pyramidal neuron inhibition on general freezing behavior, locomotor activity, or anxiety. Collectively, these data suggest that BA GABA neuron activation and the subsequent inhibition of BA pyramidal neurons play important role in fear learning. Moreover, the roles of inhibitory signaling differ between the LA and BA, with excitation of pyramidal neurons promoting memory formation in the former, and inhibition of pyramidal neurons playing this role in the latter.
Collapse
|
39
|
Záborszky L, Gombkoto P, Varsanyi P, Gielow MR, Poe G, Role LW, Ananth M, Rajebhosale P, Talmage DA, Hasselmo ME, Dannenberg H, Minces VH, Chiba AA. Specific Basal Forebrain-Cortical Cholinergic Circuits Coordinate Cognitive Operations. J Neurosci 2018; 38:9446-9458. [PMID: 30381436 PMCID: PMC6209837 DOI: 10.1523/jneurosci.1676-18.2018] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Based on recent molecular genetics, as well as functional and quantitative anatomical studies, the basal forebrain (BF) cholinergic projections, once viewed as a diffuse system, are emerging as being remarkably specific in connectivity. Acetylcholine (ACh) can rapidly and selectively modulate activity of specific circuits and ACh release can be coordinated in multiple areas that are related to particular aspects of cognitive processing. This review discusses how a combination of multiple new approaches with more established techniques are being used to finally reveal how cholinergic neurons, together with other BF neurons, provide temporal structure for behavior, contribute to local cortical state regulation, and coordinate activity between different functionally related cortical circuits. ACh selectively modulates dynamics for encoding and attention within individual cortical circuits, allows for important transitions during sleep, and shapes the fidelity of sensory processing by changing the correlation structure of neural firing. The importance of this system for integrated and fluid behavioral function is underscored by its disease-modifying role; the demise of BF cholinergic neurons has long been established in Alzheimer's disease and recent studies have revealed the involvement of the cholinergic system in modulation of anxiety-related circuits. Therefore, the BF cholinergic system plays a pivotal role in modulating the dynamics of the brain during sleep and behavior, as foretold by the intricacies of its anatomical map.
Collapse
Affiliation(s)
- Laszlo Záborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102,
| | - Peter Gombkoto
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Peter Varsanyi
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Matthew R Gielow
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Gina Poe
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095
| | - Lorna W Role
- Department of Neurobiology and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Mala Ananth
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Prithviraj Rajebhosale
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - David A Talmage
- Department of Pharmacological Sciences and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Michael E Hasselmo
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Holger Dannenberg
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Victor H Minces
- Department of Cognitive Science, University of California, San Diego 92093
| | - Andrea A Chiba
- Department of Cognitive Science, University of California, San Diego 92093
| |
Collapse
|
40
|
Almeida-Filho DG, Queiroz CM, Ribeiro S. Memory corticalization triggered by REM sleep: mechanisms of cellular and systems consolidation. Cell Mol Life Sci 2018; 75:3715-3740. [PMID: 30054638 PMCID: PMC11105475 DOI: 10.1007/s00018-018-2886-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 01/29/2023]
Abstract
Once viewed as a passive physiological state, sleep is a heterogeneous and complex sequence of brain states with essential effects on synaptic plasticity and neuronal functioning. Rapid-eye-movement (REM) sleep has been shown to promote calcium-dependent plasticity in principal neurons of the cerebral cortex, both during memory consolidation in adults and during post-natal development. This article reviews the plasticity mechanisms triggered by REM sleep, with a focus on the emerging role of kinases and immediate-early genes for the progressive corticalization of hippocampus-dependent memories. The body of evidence suggests that memory corticalization triggered by REM sleep is a systemic phenomenon with cellular and molecular causes.
Collapse
Affiliation(s)
- Daniel G Almeida-Filho
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056-450, Brazil
| | - Claudio M Queiroz
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056-450, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056-450, Brazil.
| |
Collapse
|
41
|
Mansvelder HD, Verhoog MB, Goriounova NA. Synaptic plasticity in human cortical circuits: cellular mechanisms of learning and memory in the human brain? Curr Opin Neurobiol 2018; 54:186-193. [PMID: 30017789 DOI: 10.1016/j.conb.2018.06.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/19/2018] [Accepted: 06/30/2018] [Indexed: 12/18/2022]
Abstract
Synaptic plasticity is the cellular basis of learning and memory, but to what extent this holds for the adult human brain is not known. To study synaptic plasticity in human neuronal circuits poses a huge challenge, since live human neurons and synapses are not readily accessible. Despite this, various lines of research have provided insights in properties of adult human synapses and their plasticity both in vitro and in vivo, with some unexpected surprises. We first discuss the experimental approaches to study activity-dependent plasticity of adult human synapses, and then highlight rules and mechanisms of Hebbian spike timing-dependent plasticity (STDP) found in these synapses. Finally, we conclude with thoughts on how these synaptic principles can underlie human learning and memory.
Collapse
Affiliation(s)
- Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, The Netherlands.
| | - Matthijs B Verhoog
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, The Netherlands; Division of Cell Biology, Department of Human Biology, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Natalia A Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Amsterdam, VU University Amsterdam, The Netherlands
| |
Collapse
|
42
|
Neurons Specifically Activated by Fear Learning in Lateral Amygdala Display Increased Synaptic Strength. eNeuro 2018; 5:eN-NWR-0114-18. [PMID: 30027112 PMCID: PMC6051595 DOI: 10.1523/eneuro.0114-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/03/2018] [Accepted: 06/03/2018] [Indexed: 12/19/2022] Open
Abstract
The lateral amygdala (LA) plays a critical role in the formation of fear-conditioned associative memories. Previous studies have used c-fos regulated expression to identify a spatially restricted population of neurons within the LA that is specifically activated by fear learning. These neurons are likely to be a part of a memory engram, but, to date, functional evidence for this has been lacking. We show that neurons within a spatially restricted region of the LA had an increase in both the frequency and amplitude of spontaneous postsynaptic currents (sPSC) when compared to neurons recorded from home cage control mice. We then more specifically addressed if this increased synaptic activity was limited to learning-activated neurons. Using a fos-tau-LacZ (FTL) transgenic mouse line, we developed a fluorescence-based method of identifying and recording from neurons activated by fear learning (FTL+) in acute brain slices. An increase in frequency and amplitude of sPSCs was observed in FTL+ neurons when compared to nonactivated FTL− neurons in fear-conditioned mice. No learning-induced changes were observed in the action potential (AP) input-output relationships. These findings support the idea that a discrete LA neuron population forms part of a memory engram through changes in synaptic connectivity.
Collapse
|
43
|
Davis P, Reijmers LG. The dynamic nature of fear engrams in the basolateral amygdala. Brain Res Bull 2018; 141:44-49. [PMID: 29269319 PMCID: PMC6005719 DOI: 10.1016/j.brainresbull.2017.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/15/2017] [Accepted: 12/07/2017] [Indexed: 12/27/2022]
Abstract
Great progress has been made in our understanding of how so-called memory engrams in the brain enable the storage and retrieval of memories. This has led to the realization that across the lifetime of an animal, the spatial and temporal properties of a memory engram are not fixed, but instead are subjected to dynamic modifications that can be both dependent and independent on additional experiences. The dynamic nature of engrams is especially relevant in the case of fear memories, whose contributions to an animal's evolutionary fitness depend on a delicate balance of stability and flexibility. Though fear memories have the potential to last a lifetime, their expression also needs to be properly tuned to prevent maladaptive behavior, such as seen in patients with post-traumatic stress disorder. To achieve this balance, fear engrams are subjected to complex spatiotemporal dynamics, making them informative examples of the "dynamic engram". In this review, we discuss the current understanding of the dynamic nature of fear engrams in the basolateral amygdala, a brain region that plays a central role in fear memory encoding and expression. We propose that this understanding can be further advanced by studying how fast dynamics, such as oscillatory circuit activity, support the storage and retrieval of fear engrams that can be stable over long time intervals.
Collapse
Affiliation(s)
- Patrick Davis
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States; Medical Scientist Training Program and Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Leon G Reijmers
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.
| |
Collapse
|
44
|
Khalaf O, Resch S, Dixsaut L, Gorden V, Glauser L, Gräff J. Reactivation of recall-induced neurons contributes to remote fear memory attenuation. Science 2018; 360:1239-1242. [DOI: 10.1126/science.aas9875] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022]
Abstract
Whether fear attenuation is mediated by inhibition of the original memory trace of fear with a new memory trace of safety or by updating of the original fear trace toward safety has been a long-standing question in neuroscience and psychology alike. In particular, which of the two scenarios underlies the attenuation of remote (month-old) fear memories is completely unknown, despite the impetus to better understand this process against the backdrop of enduring traumata. We found—chemogenetically and in an engram-specific manner—that effective remote fear attenuation is accompanied by the reactivation of memory recall–induced neurons in the dentate gyrus and that the continued activity of these neurons is critical for fear reduction. This suggests that the original memory trace of fear actively contributes to remote fear attenuation.
Collapse
|
45
|
Baluška F, Mancuso S. Plant Cognition and Behavior: From Environmental Awareness to Synaptic Circuits Navigating Root Apices. MEMORY AND LEARNING IN PLANTS 2018. [DOI: 10.1007/978-3-319-75596-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Heroes of the Engram. J Neurosci 2017; 37:4647-4657. [PMID: 28469009 DOI: 10.1523/jneurosci.0056-17.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/02/2017] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
In 1904, Richard Semon introduced the term "engram" to describe the neural substrate responsible for (or at least important in) storing and recalling memories (i.e., a memory trace). The recent introduction of a vast array of powerful new tools to probe and manipulate memory function at the cell and neuronal circuit level has spurred an explosion of interest in studying the engram. However, the present "engram renaissance" was not borne in isolation but rather builds on a long tradition of memory research. We believe it is important to acknowledge the debts our current generation of scientists owes to those scientists who have offered key ideas, persevered through failed experiments and made important discoveries before us. Examining the past can also offer a fresh perspective on the present state and future promise of the field. Given the large amount of empirical advances made in recent years, it seems particularly timely to look back and review the scientists who introduced the seminal terminology, concepts, methodological approaches, and initial data pertaining to engrams. Rather than simply list their many accomplishments, here we color in some details of the lives and milestone contributions of our seven personal heroes of the engram (Richard Semon, Karl Lashley, Donald Hebb, Wilder Penfield, Brenda Milner, James McConnell, and Richard Thompson). In reviewing their historic role, we also illustrate how their work remains relevant to today's studies.
Collapse
|
47
|
Kim WB, Cho JH. Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala. Neuron 2017; 95:1129-1146.e5. [PMID: 28823727 DOI: 10.1016/j.neuron.2017.08.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/09/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Woong Bin Kim
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jun-Hyeong Cho
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
48
|
Synaptic Plasticity, Engrams, and Network Oscillations in Amygdala Circuits for Storage and Retrieval of Emotional Memories. Neuron 2017; 94:731-743. [DOI: 10.1016/j.neuron.2017.03.022] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/12/2022]
|
49
|
Functional and structural underpinnings of neuronal assembly formation in learning. Nat Neurosci 2016; 19:1553-1562. [PMID: 27749830 DOI: 10.1038/nn.4418] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023]
Abstract
Learning and memory are associated with the formation and modification of neuronal assemblies: populations of neurons that encode what has been learned and mediate memory retrieval upon recall. Functional studies of neuronal assemblies have progressed dramatically thanks to recent technological advances. Here we discuss how a focus on assembly formation and consolidation has provided a powerful conceptual framework to relate mechanistic studies of synaptic and circuit plasticity to behaviorally relevant aspects of learning and memory. Neurons are likely recruited to particular learning-related assemblies as a function of their relative excitabilities and synaptic activation, followed by selective strengthening of pre-existing synapses, formation of new connections and elimination of outcompeted synapses to ensure memory formation. Mechanistically, these processes involve linking transcription to circuit modification. They include the expression of immediate early genes and specific molecular and cellular events, supported by network-wide activities that are shaped and modulated by local inhibitory microcircuits.
Collapse
|
50
|
Namburi P, Al-Hasani R, Calhoon GG, Bruchas MR, Tye KM. Architectural Representation of Valence in the Limbic System. Neuropsychopharmacology 2016; 41:1697-715. [PMID: 26647973 PMCID: PMC4869057 DOI: 10.1038/npp.2015.358] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 12/05/2015] [Indexed: 11/08/2022]
Abstract
In order to thrive, animals must be able to recognize aversive and appetitive stimuli within the environment and subsequently initiate appropriate behavioral responses. This assignment of positive or negative valence to a stimulus is a key feature of emotional processing, the neural substrates of which have been a topic of study for several decades. Until recently, the result of this work has been the identification of specific brain regions, such as the basolateral amygdala (BLA) and nucleus accumbens (NAc), as important to valence encoding. The advent of modern tools in neuroscience has allowed further dissection of these regions to identify specific populations of neurons signaling the valence of environmental stimuli. In this review, we focus upon recent work examining the mechanisms of valence encoding, and provide a model for the systematic investigation of valence within anatomically-, genetically-, and functionally defined populations of neurons.
Collapse
Affiliation(s)
- Praneeth Namburi
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Neuroscience Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ream Al-Hasani
- Division of Basic Research, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Gwendolyn G Calhoon
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael R Bruchas
- Division of Basic Research, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Kay M Tye
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|