1
|
Huang D, Li M, Qiao Z, Zhou H, Cai Y, Li X, Zhang Z, Zhou J. Effects of adolescent alcohol exposure on oligodendrocyte lineage cells and myelination in mice: Age and subregion differences. IBRO Neurosci Rep 2024; 17:220-234. [PMID: 39282551 PMCID: PMC11401168 DOI: 10.1016/j.ibneur.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 09/19/2024] Open
Abstract
Adolescence is an important phase for the structural and functional development of the brain. The immaturity of adolescent brain development is associated with high susceptibility to exogenous disturbances, including alcohol. In this study, the acquisition of conditioned place preference (CPP) in adolescent mice by alcohol (2 g/kg) and the parvalbumin-positive interneurons (PV+ interneurons), oligodendrocyte lineage cells (OPCs), and myelination in the medial prefrontal cortex (mPFC) were assessed. We aim to determine the age- and subregional-specificity of the effects of alcohol. Alcohol (2 g/kg) was injected intraperitoneally on even days, and saline was injected intraperitoneally on odd days. The control group received a continuous intraperitoneal injection with saline. Differences in alcohol-induced CPP acquisition were assessed, followed by immunohistochemical staining. The results showed a pronounced CPP acquisition in 4- and 5-week-old mice. In the mPFC, there were reduced PV+ interneurons and OPCs in 3-week-old mice and reduced oligodendrocyte numbers in 4-week-old mice. The 5-week-old mice showed impaired myelination and a decrease in the number of PV+ interneurons, mature oligodendrocytes, and OPCs in the mPFC. Since the alterations in 5-week-old mice are more pronounced, we further explored the mPFC-associated subregional-specificity. In the alcohol-exposed mice, the oligodendrocyte numbers were decreased in the anterior cingulate cortex (ACC), PV+ interneuron numbers were declined in the prelimbic cortex (PL), and the number of oligodendrocytes, PV+ interneurons, and OPCs was also decreased with impaired myelination in the infralimbic cortex (IL). Our data suggest that adolescent alcohol exposure notably affected the acquisition of CPP, myelin formation, and the counts of PV+ interneurons, mature oligodendrocytes, and OPCs in the mPFC in 5-week-old mice. Also, the IL subregion was the worst-affected subregion of the mPFC in alcohol-exposed 5-week-old mice. It reveals that the effects of alcohol on adolescence and its mPFC myelination show obvious age- and subregional-specificity.
Collapse
Affiliation(s)
- Dong Huang
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Maolin Li
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifei Qiao
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongli Zhou
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Cai
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaolong Li
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zuo Zhang
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiyin Zhou
- Clinical Research Center, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Mignogna KM, Tatom Z, Macleod L, Sergi Z, Nguyen A, Michenkova M, Smith ML, Miles MF. Identification of novel genetic loci and candidate genes for progressive ethanol consumption in diversity outbred mice. Neuropsychopharmacology 2024; 49:1892-1904. [PMID: 38951586 PMCID: PMC11473901 DOI: 10.1038/s41386-024-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Mouse behavioral genetic mapping studies can identify genomic intervals modulating complex traits under well-controlled environmental conditions and have been used to study ethanol behaviors to aid in understanding genetic risk and the neurobiology of alcohol use disorder (AUD). However, historically such studies have produced large confidence intervals, thus complicating identification of potential causal candidate genes. Diversity Outbred (DO) mice offer the ability to perform high-resolution quantitative trait loci (QTL) mapping on a very genetically diverse background, thus facilitating identification of candidate genes. Here, we studied a population of 636 male DO mice with four weeks of intermittent ethanol access via a three-bottle choice procedure, producing a progressive ethanol consumption phenotype. QTL analysis identified 3 significant (Chrs 3, 4, and 12) and 13 suggestive loci for ethanol-drinking behaviors with narrow confidence intervals (1-4 Mbp for significant QTLs). Results suggested that genetic influences on initial versus progressive ethanol consumption were localized to different genomic intervals. A defined set of positional candidate genes were prioritized using haplotype analysis, identified coding polymorphisms, prefrontal cortex transcriptomics data, human GWAS data and prior rodent gene set data for ethanol or other misused substances. These candidates included Car8, the lone gene with a significant cis-eQTL within a Chr 4 QTL for week four ethanol consumption. These results represent the highest-resolution genetic mapping of ethanol consumption behaviors in mice to date, providing identification of novel loci and candidate genes for study in relation to the neurobiology of AUD.
Collapse
Affiliation(s)
- Kristin M Mignogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Tatom
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Lorna Macleod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Angel Nguyen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie Michenkova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Gnatowski ER, Jurmain JL, Dozmorov MG, Wolstenholme JT, Miles MF. Ninein, a candidate gene for ethanol anxiolysis, shows complex exon-specific expression and alternative splicing differences between C57BL/6J and DBA/2J mice. Front Genet 2024; 15:1455616. [PMID: 39323865 PMCID: PMC11422218 DOI: 10.3389/fgene.2024.1455616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Ethanol's anxiolytic actions contribute to increased consumption and the development of Alcohol Use Disorder (AUD). Our laboratory previously identified genetic loci contributing to the anxiolytic-like properties of ethanol in BXD recombinant inbred mice, derived from C57BL/6J (B6) and DBA/2J (D2) progenitor strains. That work identified Ninein (Nin) as a candidate gene underlying ethanol's acute anxiolytic-like properties in BXD mice. Nin has a complex exonic content with known alternative splicing events that alter cellular distribution of the NIN protein. We hypothesize that strain-specific differences in Nin alternative splicing contribute to changes in Nin gene expression and B6/D2 strain differences in ethanol anxiolysis. Using quantitative reverse-transcriptase PCR to target specific Nin splice variants, we identified isoform-specific exon expression differences between B6 and D2 mice in prefrontal cortex, nucleus accumbens and amygdala. We extended this analysis using deep RNA sequencing in B6 and D2 nucleus accumbens samples and found that total Nin expression was significantly higher in D2 mice. Furthermore, exon utilization and alternative splicing analyses identified eight differentially utilized exons and significant exon-skipping events between the strains, including three novel splicing events in the 3' end of the Nin gene that were specific to the D2 strain. Additionally, we document multiple single nucleotide polymorphisms in D2 Nin exons that are predicted to have deleterious effects on protein function. Our studies provide the first in-depth analysis of Nin alternative splicing in brain and identify a potential genetic mechanism altering Nin expression and function between B6 and D2 mice, thus possibly contributing to differences in the anxiolytic-like properties of ethanol between these strains. This work adds novel information to our understanding of genetic differences modulating ethanol actions on anxiety that may contribute to the risk for alcohol use disorder.
Collapse
Affiliation(s)
- E. R. Gnatowski
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, United States
| | - J. L. Jurmain
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, United States
| | - M. G. Dozmorov
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, United States
- Department of Biostatistics, Virginia Commonwealth University, Richmond, United States
| | - J. T. Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, United States
| | - M. F. Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, United States
| |
Collapse
|
4
|
Rogers WD, White A, Damaj MI, Miles MF. Identification of ethanol analgesia quantitative trait loci and candidate genes in BXD recombinant inbred mouse lines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599372. [PMID: 38948869 PMCID: PMC11212936 DOI: 10.1101/2024.06.17.599372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Alcohol consumption produces acute analgesic effects, and people experiencing pain conditions may drink alcohol to alleviate discomfort. However, tolerance to the analgesic properties of alcohol could prompt escalating consumption and dependence. Both nociception and alcohol-induced analgesia are under significant genetic control. Understanding the genetic architecture of these processes could inform better treatment options for people with pain conditions. This study aims to identify quantitative trait loci (QTL) driving variation in ethanol-induced analgesia across BXD recombinant inbred mouse lines. Male and female mice from 62 BXD strains received ethanol or saline oral gavage for five days and were tested for hot plate (HP) latency at baseline, Day 1, and Day 5. QTL mapping of HP phenotypes identified a significant provisional QTL on chromosome 17 for Day 1 HP latency in mice receiving ethanol. An additional highly suggestive QTL was present on chromosome 9 for the difference in pre- and post-ethanol thermal nociception. Candidate genes within QTL support intervals were provisionally identified using HP phenotypic correlations to transcriptomic database, expression QTL analysis, and other bioinformatics inquiries. The combined behavioral and bioinformatic analyses yielded strong ethanol analgesia candidate genes, specifically Myo6. Thus, the results of this genetic study of ethanol-induced analgesia in BXD mouse strains may contribute significantly to our understanding of the molecular basis for individual variation in the analgesic response to acute ethanol.
Collapse
Affiliation(s)
- Walker D. Rogers
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Alyssa White
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Michael F. Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States
- Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
5
|
Duffus BLM, Haggerty DL, Doud EH, Mosley AL, Yamamoto BK, Atwood BK. The impact of abstinence from chronic alcohol consumption on the mouse striatal proteome: sex and subregion-specific differences. Front Pharmacol 2024; 15:1405446. [PMID: 38887549 PMCID: PMC11180734 DOI: 10.3389/fphar.2024.1405446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Alcohol misuse is the third leading preventable cause of death in the world. The World Health Organization currently estimates that 1 in 20 deaths are directly alcohol related. One of the ways in which consuming excessive levels of alcohol can both directly and indirectly affect human mortality and morbidity, is through chronic inflammation. Recently, studies have suggested a link between increased alcohol use and the incidence of neuroinflammatory-related diseases. However, the mechanism in which alcohol potentially influences neuroinflammatory processes is still being uncovered. We implemented an unbiased proteomics exploration of alcohol-induced changes in the striatum, with a specific emphasis on proteins related to inflammation. The striatum is a brain region that is critically involved with the progression of alcohol use disorder. Using mass spectrometry following voluntary alcohol self-administration in mice, we show that distinct protein abundances and signaling pathways in different subregions of the striatum are disrupted by chronic exposure to alcohol compared to water drinking control mice. Further, in mice that were allowed to experience abstinence from alcohol compared to mice that were non-abstinent, the overall proteome and signaling pathways showed additional differences, suggesting that the responses evoked by chronic alcohol exposure are dependent on alcohol use history. To our surprise we did not find that chronic alcohol drinking or abstinence altered protein abundance or pathways associated with inflammation, but rather affected proteins and pathways associated with neurodegeneration and metabolic, cellular organization, protein translation, and molecular transport processes. These outcomes suggest that in this drinking model, alcohol-induced neuroinflammation in the striatum is not a primary outcome controlling altered neurobehavioral function, but these changes are rather mediated by altered striatal neuronal structure and cellular health.
Collapse
Affiliation(s)
- Brittnie-lee M. Duffus
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David L. Haggerty
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | | |
Collapse
|
6
|
Brocato ER, Easter R, Morgan A, Kakani M, Lee G, Wolstenholme JT. Adolescent binge ethanol impacts H3K9me3-occupancy at synaptic genes and the regulation of oligodendrocyte development. Front Mol Neurosci 2024; 17:1389100. [PMID: 38840776 PMCID: PMC11150558 DOI: 10.3389/fnmol.2024.1389100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Binge drinking in adolescence can disrupt myelination and cause brain structural changes that persist into adulthood. Alcohol consumption at a younger age increases the susceptibility of these changes. Animal models to understand ethanol's actions on myelin and white matter show that adolescent binge ethanol can alter the developmental trajectory of oligodendrocytes, myelin structure, and myelin fiber density. Oligodendrocyte differentiation is epigenetically regulated by H3K9 trimethylation (H3K9me3). Prior studies have shown that adolescent binge ethanol dysregulates H3K9 methylation and decreases H3K9-related gene expression in the PFC. Methods Here, we assessed ethanol-induced changes to H3K9me3 occupancy at genomic loci in the developing adolescent PFC. We further assessed ethanol-induced changes at the transcription level with qPCR time course approaches in oligodendrocyte-enriched cells to assess changes in oligodendrocyte progenitor and oligodendrocytes specifically. Results Adolescent binge ethanol altered H3K9me3 regulation of synaptic-related genes and genes specific for glutamate and potassium channels in a sex-specific manner. In PFC tissue, we found an early change in gene expression in transcription factors associated with oligodendrocyte differentiation that may lead to the later significant decrease in myelin-related gene expression. This effect appeared stronger in males. Conclusion Further exploration in oligodendrocyte cell enrichment time course and dose response studies could suggest lasting dysregulation of oligodendrocyte maturation at the transcriptional level. Overall, these studies suggest that binge ethanol may impede oligodendrocyte differentiation required for ongoing myelin development in the PFC by altering H3K9me3 occupancy at synaptic-related genes. We identify potential genes that may be contributing to adolescent binge ethanol-related myelin loss.
Collapse
Affiliation(s)
- Emily R. Brocato
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Rachel Easter
- Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Alanna Morgan
- Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Meenakshi Kakani
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Grace Lee
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T. Wolstenholme
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
- Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
7
|
Koh AP, Smith MI, Dando R. Bitter taste function-related genes are implicated in the behavioral association between taste preference and ethanol preference in male mice. Physiol Behav 2024; 276:114473. [PMID: 38262572 DOI: 10.1016/j.physbeh.2024.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Alcohol use disorder in humans is highly heritable, and as a term is synonymous with alcoholism, alcohol dependence, and alcohol addiction. Defined by the NIAAA as a medical condition characterized by an impaired ability to stop or control alcohol use despite adverse social, occupational, or health consequences, the genetic basis of alcohol dependence is much studied. However, an intriguing component to alcohol acceptance exists outside of genetics or social factors. In fact, mice of identical genetic backgrounds without any prior experience of tasting ethanol display widely varying preferences to it, far beyond those seen for typical taste solutions. Here, we hypothesized that a preference for ethanol, which tastes both bitter and sweet to humans, would be influenced by taste function. Using a mouse model of taste behavior, we tested preferences for bitter and sweet in mice that, without training or previous experience, either preferred or avoided ethanol solutions in consumption trials. Data showed clear sex differences, in which male mice that preferred ethanol also preferred a bitter quinine solution, whereas female mice that preferred ethanol also preferred a sweet sucralose solution. Male mice preferring ethanol also exhibited lower expression levels of mRNA for genes encoding the bitter taste receptors T2R26 and T2R37, and the bitter transducing G-protein subunit GNAT3, suggesting that the higher ethanol preference observed in the male mice may be due to bitter signaling, including that arising from ethanol, being weaker in this group. Results further support links between ethanol consumption and taste response, and may be relevant to substance abuse issues in human populations.
Collapse
Affiliation(s)
- Anna P Koh
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Molly I Smith
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
8
|
Williams KE, Zou Y, Qiu B, Kono T, Guo C, Garcia D, Chen H, Graves T, Lai Z, Evans-Molina C, Ma YY, Liangpunsakul S, Yong W, Liang T. Sex-Specific Impact of Fkbp5 on Hippocampal Response to Acute Alcohol Injection: Involvement in Alterations of Metabolism-Related Pathways. Cells 2023; 13:89. [PMID: 38201293 PMCID: PMC10778370 DOI: 10.3390/cells13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
High levels of alcohol intake alter brain gene expression and can produce long-lasting effects. FK506-binding protein 51 (FKBP51) encoded by Fkbp5 is a physical and cellular stress response gene and has been associated with alcohol consumption and withdrawal severity. Fkbp5 has been previously linked to neurite outgrowth and hippocampal morphology, sex differences in stress response, and epigenetic modification. Presently, primary cultured Fkbp5 KO and WT mouse neurons were examined for neurite outgrowth and mitochondrial signal with and without alcohol. We found neurite specification differences between KO and WT; particularly, mesh-like morphology was observed after alcohol treatment and confirmed higher MitoTracker signal in cultured neurons of Fkbp5 KO compared to WT at both naive and alcohol-treated conditions. Brain regions that express FKBP51 protein were identified, and hippocampus was confirmed to possess a high level of expression. RNA-seq profiling was performed using the hippocampus of naïve or alcohol-injected (2 mg EtOH/Kg) male and female Fkbp5 KO and WT mice. Differentially expressed genes (DEGs) were identified between Fkbp5 KO and WT at baseline and following alcohol treatment, with female comparisons possessing a higher number of DEGs than male comparisons. Pathway analysis suggested that genes affecting calcium signaling, lipid metabolism, and axon guidance were differentially expressed at naïve condition between KO and WT. Alcohol treatment significantly affected pathways and enzymes involved in biosynthesis (Keto, serine, and glycine) and signaling (dopamine and insulin receptor), and neuroprotective role. Functions related to cell morphology, cell-to-cell signaling, lipid metabolism, injury response, and post-translational modification were significantly altered due to alcohol. In summary, Fkbp5 plays a critical role in the response to acute alcohol treatment by altering metabolism and signaling-related genes.
Collapse
Affiliation(s)
- Kent E. Williams
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (D.G.); (Z.L.)
| | - Bin Qiu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Tatsuyoshi Kono
- Diabetes Research Center, Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.K.); (C.E.-M.)
| | - Changyong Guo
- Department Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.G.); (Y.-Y.M.)
| | - Dawn Garcia
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (D.G.); (Z.L.)
| | - Hanying Chen
- Department Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tamara Graves
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (D.G.); (Z.L.)
| | - Carmella Evans-Molina
- Diabetes Research Center, Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.K.); (C.E.-M.)
| | - Yao-Ying Ma
- Department Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.G.); (Y.-Y.M.)
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Yong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tiebing Liang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
| |
Collapse
|
9
|
Seemiller LR, Garcia-Trevizo P, Novoa C, Goldberg LR, Murray S, Gould TJ. Adolescent intermittent alcohol exposure produces strain-specific cross-sensitization to nicotine and other behavioral adaptations in adulthood in C57BL/6J and DBA/2J mice. Pharmacol Biochem Behav 2023; 232:173655. [PMID: 37802393 PMCID: PMC10995114 DOI: 10.1016/j.pbb.2023.173655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Adolescent alcohol exposure is associated with lasting behavioral changes in humans and in mice. Prior work from our laboratory and others have demonstrated that C57BL/6J and DBA/2J mice differ in sensitivity to some effects of acute alcohol exposure during adolescence and adulthood. However, it is unknown if these strains differ in cognitive, anxiety-related, and addiction-related long-term consequences of adolescent intermittent alcohol exposure. This study examined the impact of a previously validated adolescent alcohol exposure paradigm (2-3 g/kg, i.p., every other day PND 30-44) in C57BL/6J and DBA/2J male and female mice on adult fear conditioning, anxiety-related behavior (elevated plus maze), and addiction-related phenotypes including nicotine sensitivity (hypothermia and locomotor depression) and alcohol sensitivity (loss of righting reflex; LORR). Both shared and strain-specific long-term consequences of adolescent alcohol exposure were found. Most notably, we found a strain-specific alcohol-induced increase in sensitivity to nicotine's hypothermic effects during adulthood in the DBA/2J strain but not in the C57BL/6J strain. Conversely, both strains demonstrated a robust increased latency to LORR during adulthood after adolescent alcohol exposure. Thus, we observed strain-dependent cross-sensitization to nicotine and strain-independent tolerance to alcohol due to adolescent alcohol exposure. Several strain and sex differences independent of adolescent alcohol treatment were also observed. These include increased sensitivity to nicotine-induced hypothermia in the C57BL/6J strain relative to the DBA/2J strain, in addition to DBA/2J mice showing more anxiety-like behaviors in the elevated plus maze relative to the C57BL/6J strain. Overall, these results suggest that adolescent alcohol exposure results in altered adult sensitivity to nicotine and alcohol with some phenotypes mediated by genetic background.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | | | - Carlos Novoa
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Samantha Murray
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| |
Collapse
|
10
|
Smith ML, Sergi Z, Mignogna KM, Rodriguez NE, Tatom Z, MacLeod L, Choi KB, Philip V, Miles MF. Identification of Genetic and Genomic Influences on Progressive Ethanol Consumption in Diversity Outbred Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.554349. [PMID: 37745421 PMCID: PMC10515943 DOI: 10.1101/2023.09.15.554349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Genetic factors play a significant role in the risk for development of alcohol use disorder (AUD). Using 3-bottle choice intermittent access ethanol (IEA), we have employed the Diversity Outbred (DO) mouse panel as a model of alcohol use disorder in a genetically diverse population. Through use of gene expression network analysis techniques, in combination with expression quantitative trait loci (eQTL) mapping, we have completed an extensive analysis of the influence of genetic background on gene expression changes in the prefrontal cortex (PFC). This approach revealed that, in DO mice, genes whose expression was significantly disrupted by intermittent ethanol in the PFC also tended to be those whose expression correlated to intake. This finding is in contrast to previous studies of both mice and nonhuman primates. Importantly, these analyses identified genes involved in myelination in the PFC as significantly disrupted by IEA, correlated to ethanol intake, and having significant eQTLs. Genes that code for canonical components of the myelin sheath, such as Mbp, also emerged as key drivers of the gene expression response to intermittent ethanol drinking. Several regulators of myelination were also key drivers of gene expression, and had significant QTLs, indicating that genetic background may play an important role in regulation of brain myelination. These findings underscore the importance of disruption of normal myelination in the PFC in response to prolonged ethanol exposure, that genetic variation plays an important role in this response, and that this interaction between genetics and myelin disruption in the presence of ethanol may underlie previously observed behavioral changes under intermittent access ethanol drinking such as escalation of consumption.
Collapse
Affiliation(s)
- M L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K M Mignogna
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - N E Rodriguez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Tatom
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - L MacLeod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K B Choi
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - V Philip
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - M F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
11
|
Hashimoto JG, Zhang X, Guizzetti M. Ethanol-induced transcriptional and translational changes in Aldh1l1-Egfp/Rpl10a cortical astrocyte cultures. Front Neurosci 2023; 17:1193304. [PMID: 37415614 PMCID: PMC10320287 DOI: 10.3389/fnins.2023.1193304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 07/08/2023] Open
Abstract
The role astrocytes play in brain development and function has garnered greater attention as the diversity of roles they are involved in has become apparent. We have previously shown that ethanol-exposed astrocytes alter neuronal neurite outgrowth in an in vitro co-culture system and that ethanol alters the astrocyte-produced extracellular matrix (ECM) in vitro, with similar alterations in vivo. In this study, we utilized the translating ribosome affinity purification (TRAP) procedure in Aldh1l1-EGFP/Rpl10a transgenic mouse primary cortical astrocyte cultures to transcriptionally and translationally profile the astrocyte response to ethanol. We found a large number of differences between the total RNA pool and the translating RNA pool, indicating that the transcriptional state of astrocytes may not always reflect the translational state of astrocytes. In addition, there was a considerable overlap between ethanol-dysregulated genes in the total RNA pool and the translating RNA pool. Comparisons to published datasets indicate the in vitro model used here is most similar to PD1 or PD7 in vivo cortical astrocytes, and the ethanol-regulated genes showed a significant overlap with models of chronic ethanol exposure in astrocytes, a model of third-trimester ethanol exposure in the hippocampus and cerebellum, and an acute model of ethanol exposure in the hippocampus. These findings will further our understanding of the effects of ethanol on astrocyte gene expression and protein translation and how these changes may alter brain development and support the use of in vitro astrocyte cultures as models of neonatal astrocytes.
Collapse
Affiliation(s)
- Joel G. Hashimoto
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Research Service, VA Portland Health Care System, Portland, OR, United States
| | - Xiaolu Zhang
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Research Service, VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Research Service, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
12
|
Brocato ER, Wolstenholme JT. Adolescent binge ethanol impacts H3K36me3 regulation of synaptic genes. Front Mol Neurosci 2023; 16:1082104. [PMID: 36937047 PMCID: PMC10020663 DOI: 10.3389/fnmol.2023.1082104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Adolescence is marked in part by the ongoing development of the prefrontal cortex (PFC). Binge ethanol use during this critical stage in neurodevelopment induces significant structural changes to the PFC, as well as cognitive and behavioral deficits that can last into adulthood. Previous studies showed that adolescent binge ethanol causes lasting deficits in working memory, decreases in the expression of chromatin remodeling genes responsible for the methylation of histone 3 lysine 36 (H3K36), and global decreases in H3K36 in the PFC. H3K36me3 is present within the coding region of actively-transcribed genes, and safeguards against aberrant, cryptic transcription by RNA Polymerase II. We hypothesize that altered methylation of H3K36 could play a role in adolescent binge ethanol-induced memory deficits. To investigate this at the molecular level, ethanol (4 g/kg, i.g.) or water was administered intermittently to adolescent mice. RNA-and ChIP-sequencing were then performed within the same tissue to determine gene expression changes and identify genes and loci where H3K36me3 was disrupted by ethanol. We further assessed ethanol-induced changes at the transcription level with differential exon-use and cryptic transcription analysis - a hallmark of decreased H3K36me3. Here, we found ethanol-induced changes to the gene expression and H3K36me3-regulation of synaptic-related genes in all our analyses. Notably, H3K36me3 was differentially trimethylated between ethanol and control conditions at synaptic-related genes, and Snap25 and Cplx1 showed evidence of cryptic transcription in males and females treated with ethanol during adolescence. Our results provide preliminary evidence that ethanol-induced changes to H3K36me3 during adolescent neurodevelopment may be linked to synaptic dysregulation at the transcriptional level, which may explain the reported ethanol-induced changes to PFC synaptic function.
Collapse
Affiliation(s)
- Emily R. Brocato
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T. Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
13
|
Narendra S, Klengel C, Hamzeh B, Patel D, Otten J, Lardenoije R, Newman EL, Miczek KA, Klengel T, Ressler KJ, Suh J. Genome-wide transcriptomics of the amygdala reveals similar oligodendrocyte-related responses to acute and chronic alcohol drinking in female mice. Transl Psychiatry 2022; 12:476. [PMID: 36371333 PMCID: PMC9653459 DOI: 10.1038/s41398-022-02231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Repeated excessive alcohol consumption is a risk factor for alcohol use disorder (AUD). Although AUD has been more common in men than women, women develop more severe behavioral and physical impairments. However, relatively few new therapeutics targeting development of AUD, particularly in women, have been validated. To gain a better understanding of molecular mechanisms underlying alcohol intake, we conducted a genome-wide RNA-sequencing analysis in female mice exposed to different modes (acute vs chronic) of ethanol drinking. We focused on transcriptional profiles in the amygdala including the central and basolateral subnuclei, brain areas previously implicated in alcohol drinking and seeking. Surprisingly, we found that both drinking modes triggered similar changes in gene expression and canonical pathways, including upregulation of ribosome-related/translational pathways and myelination pathways, and downregulation of chromatin binding and histone modification. In addition, analyses of hub genes and upstream regulatory pathways revealed that voluntary ethanol consumption affects epigenetic changes via histone deacetylation pathways, oligodendrocyte and myelin function, and the oligodendrocyte-related transcription factor, Sox17. Furthermore, a viral vector-assisted knockdown of Sox17 gene expression in the amygdala prevented a gradual increase in alcohol consumption during repeated accesses. Overall, these results suggest that the expression of oligodendrocyte-related genes in the amygdala is sensitive to voluntary alcohol drinking in female mice. These findings suggest potential molecular targets for future therapeutic approaches to prevent the development of AUD, due to repeated excessive alcohol consumption, particularly in women.
Collapse
Affiliation(s)
- Sharvari Narendra
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Claudia Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Bilal Hamzeh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Drasti Patel
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Joy Otten
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Roy Lardenoije
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Emily L Newman
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Klaus A Miczek
- Psychology and Neuroscience Departments, Tufts University, Medford, MA, 02155, USA
| | - Torsten Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
14
|
Parker CC, Philip VM, Gatti DM, Kasparek S, Kreuzman AM, Kuffler L, Mansky B, Masneuf S, Sharif K, Sluys E, Taterra D, Taylor WM, Thomas M, Polesskaya O, Palmer AA, Holmes A, Chesler EJ. Genome-wide association mapping of ethanol sensitivity in the Diversity Outbred mouse population. Alcohol Clin Exp Res 2022; 46:941-960. [PMID: 35383961 DOI: 10.1111/acer.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND A strong predictor for the development of alcohol use disorder (AUD) is altered sensitivity to the intoxicating effects of alcohol. Individual differences in the initial sensitivity to alcohol are controlled in part by genetic factors. Mice offer a powerful tool to elucidate the genetic basis of behavioral and physiological traits relevant to AUD, but conventional experimental crosses have only been able to identify large chromosomal regions rather than specific genes. Genetically diverse, highly recombinant mouse populations make it possible to observe a wider range of phenotypic variation, offer greater mapping precision, and thus increase the potential for efficient gene identification. METHODS We have taken advantage of the Diversity Outbred (DO) mouse population to identify and precisely map quantitative trait loci (QTL) associated with ethanol sensitivity. We phenotyped 798 male J:DO mice for three measures of ethanol sensitivity: ataxia, hypothermia, and loss of the righting response. We used high-density MegaMUGA and GigaMUGA to obtain genotypes ranging from 77,808 to 143,259 SNPs. We also performed RNA sequencing in striatum to map expression QTLs and identify gene expression-trait correlations. We then applied a systems genetic strategy to identify narrow QTLs and construct the network of correlations that exists between DNA sequence, gene expression values, and ethanol-related phenotypes to prioritize our list of positional candidate genes. RESULTS We observed large amounts of phenotypic variation with the DO population and identified suggestive and significant QTLs associated with ethanol sensitivity on chromosomes 1, 2, and 16. The implicated regions were narrow (4.5-6.9 Mb in size) and each QTL explained ~4-5% of the variance. CONCLUSIONS Our results can be used to identify alleles that contribute to AUD in humans, elucidate causative biological mechanisms, or assist in the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Clarissa C Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Vivek M Philip
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Daniel M Gatti
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Steven Kasparek
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Andrew M Kreuzman
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Lauren Kuffler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Benjamin Mansky
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Sophie Masneuf
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Kayvon Sharif
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Erica Sluys
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Dominik Taterra
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Walter M Taylor
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Mary Thomas
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Elissa J Chesler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| |
Collapse
|
15
|
Sayson LV, Kim M, Jeon SJ, Custodio RJP, Lee HJ, Ortiz DM, Cheong JH, Kim HJ. Differentially Expressed Genes in Period 2-Overexpressing Mice Striatum May Underlie Their Lower Sensitivity to Methamphetamine Addiction-Like Behavior. Biomol Ther (Seoul) 2022; 30:238-245. [PMID: 35477688 PMCID: PMC9047490 DOI: 10.4062/biomolther.2021.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Previous reports have demonstrated that genetic mechanisms greatly mediate responses to drugs of abuse, including methamphetamine (METH). The circadian gene Period 2 (Per2) has been previously associated with differential responses towards METH in mice. While the behavioral consequences of eliminating Per2 have been illustrated previously, Per2 overexpression has not yet been comprehensively described; although, Per2-overexpressing (Per2 OE) mice previously showed reduced sensitivity towards METH-induced addiction-like behaviors. To further elucidate this distinct behavior of Per2 OE mice to METH, we identified possible candidate biomarkers by determining striatal differentially expressed genes (DEGs) in both drug-naïve and METH-treated Per2 OE mice relative to wild-type (WT), through RNA sequencing. Of the several DEGs in drug naïve Per2 OE mice, we identified six genes that were altered after repeated METH treatment in WT mice, but not in Per2 OE mice. These results, validated by quantitative real-time polymerase chain reaction, could suggest that the identified DEGs might underlie the previously reported weaker METH-induced responses of Per2 OE mice compared to WT. Gene network analysis also revealed that Asic3, Hba-a1, and Rnf17 are possibly associated with Per2 through physical interactions and predicted correlations, and might potentially participate in addiction. Inhibiting the functional protein of Asic3 prior to METH administration resulted in the partial reduction of METH-induced conditioned place preference in WT mice, supporting a possible involvement of Asic3 in METH-induced reward. Although encouraging further investigations, our findings suggest that these DEGs, including Asic3, may play significant roles in the lower sensitivity of Per2 OE mice to METH.
Collapse
Affiliation(s)
- Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
16
|
Bent MAM, Pais AC, Wolstenholme JT. Comparing behavior following binge ethanol in adolescent and adult DBA/2 J mice. Behav Brain Res 2022; 419:113703. [PMID: 34864163 PMCID: PMC8765084 DOI: 10.1016/j.bbr.2021.113703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/06/2021] [Accepted: 12/01/2021] [Indexed: 01/20/2023]
Abstract
The adolescent brain undergoes maturation in areas critically involved in reward, addiction, and memory. Adolescents consume alcohol more than any other drug, typically in a binge-like manner. While adults also binge on alcohol, the adolescent brain is more susceptible to ethanol-related damages due to its ongoing development, which may result in persistent behavioral and physical changes, including differences in myelination in the frontal cortex. Sex also impacts ethanol metabolism and addiction progression, suggesting females are more sensitive than males. This study addressed memory, sociability, ethanol sensitivity, and myelin gene expression changes due to binge ethanol, sex, and age. DBA/2 J males and females were exposed to intermittent binge ethanol (4 g/kg, i.g.) from postnatal day (PND) 29-42 or as adults from PND 64-77. Age groups were tested for behaviors at the early phase (24 h - 7 days) and late phase (starting 3 weeks) after the last dose. Adult prefrontal cortex was collected at both phases. Adolescent ethanol impaired late phase memory while adult ethanol showed no impairment. Meanwhile, adolescent males showed early phase tolerance to ethanol-induced locomotor activation, while adult females showed tolerance at both phases. Adult-treated mice displayed reductions in social interaction. Adult ethanol decreased Mal expression, a gene involved in myelin integrity, at the early phase. No differences in myelin gene expression were observed at the late phase. Thus, adolescent binge ethanol more severely impacts memory and myelin gene expression compared to adult exposure, while adult mice display ethanol-induced reductions in social interaction and tolerance to ethanol's locomotor activation.
Collapse
Affiliation(s)
- Maria Alexis M Bent
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - A Christian Pais
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA; VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA; VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Bogenpohl JW, Weston RM, Foreman TN, Kitchen KE, Miles MF. Chloride intracellular channel 4 (CLIC4) expression profile in the mouse medial prefrontal cortex and its regulation by ethanol. Alcohol Clin Exp Res 2022; 46:29-39. [PMID: 34839533 PMCID: PMC8799520 DOI: 10.1111/acer.14754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Chloride intracellular channel 4 (CLIC4) is a multifunctional metamorphic protein for which a growing body of evidence supports a major role in the brain's molecular and behavioral responses to ethanol (EtOH). Although key to understanding the functional biology underlying this role, little is known about the cellular and subcellular expression patterns of CLIC4 in brain and how they are affected by EtOH. METHODS We used qRT-PCR to assess Clic4 mRNA expression in the medial prefrontal cortex (mPFC) of C57BL/6J mice in the absence and presence of acute EtOH exposure. Two complementary immunohistochemical techniques were employed to assess the subcellular localization of the CLIC4 protein and its pattern of expression across brain cell types in the mPFC in the absence and presence of acute EtOH. RESULTS Through immunohistochemical and stereological techniques, we show that CLIC4 protein is robustly expressed by oligodendrocytes (most abundant), microglia, and astrocytes, with minimal expression in neurons. Following acute EtOH exposure, we observed a rapid increase in Clic4 mRNA expression in female but not male mice and an overall increase in the number of oligodendrocytes and astrocytes expressing the CLIC4 protein. CONCLUSIONS These findings suggest that Clic4 functions as an early response gene for acute EtOH in brain, which likely underlies its ability to modulate EtOH behavior. Our results also suggest that the role of CLIC4 in the brain's response to EtOH is mediated through oligodendrocytes.
Collapse
Affiliation(s)
- James W. Bogenpohl
- Department of Molecular Biology and Chemistry, Christopher
Newport University, Newport News, VA, USA
| | - Rory M. Weston
- Department of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, VA, USA
| | - Taylor N. Foreman
- Department of Molecular Biology and Chemistry, Christopher
Newport University, Newport News, VA, USA
| | - Kaitlyn E. Kitchen
- Department of Molecular Biology and Chemistry, Christopher
Newport University, Newport News, VA, USA
| | - Michael F. Miles
- Department of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, VA, USA
- VCU Alcohol Research Center, Virginia Commonwealth
University, Richmond, VA, USA
| |
Collapse
|
18
|
Weston RM, Schmitt RE, Grotewiel M, Miles MF. Transcriptome analysis of chloride intracellular channel knockdown in Drosophila identifies oxidation-reduction function as possible mechanism of altered sensitivity to ethanol sedation. PLoS One 2021; 16:e0246224. [PMID: 34228751 PMCID: PMC8259981 DOI: 10.1371/journal.pone.0246224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Chloride intracellular channels (CLICs) are a unique family of evolutionarily conserved metamorphic proteins, switching between stable conformations based on redox conditions. CLICs have been implicated in a wide variety biological processes including ion channel activity, apoptosis, membrane trafficking, and enzymatic oxidoreductase activity. Understanding the molecular mechanisms by which CLICs engage in these activities is an area of active research. Here, the sole Drosophila melanogaster ortholog, Clic, was targeted for RNAi knockdown to identify genes and biological processes associated with Clic expression. Clic knockdown had a substantial impact on global transcription, altering expression of over 7% of transcribed Drosophila genes. Overrepresentation analysis of differentially expressed genes identified enrichment of Gene Ontology terms including Cytoplasmic Translation, Oxidation-Reduction Process, Heme Binding, Membrane, Cell Junction, and Nucleolus. The top term, Cytoplasmic Translation, was enriched almost exclusively with downregulated genes. Drosophila Clic and vertebrate ortholog Clic4 have previously been tied to ethanol sensitivity and ethanol-regulated expression. Clic knockdown-responsive genes from the present study were found to overlap significantly with gene sets from 4 independently published studies related to ethanol exposure and sensitivity in Drosophila. Bioinformatic analysis of genes shared between these studies revealed an enrichment of genes related to amino acid metabolism, protein processing, oxidation-reduction processes, and lipid particles among others. To determine whether the modulation of ethanol sensitivity by Clic may be related to co-regulated oxidation-reduction processes, we evaluated the effect of hyperoxia on ethanol sedation in Clic knockdown flies. Consistent with previous findings, Clic knockdown reduced acute ethanol sedation sensitivity in flies housed under normoxia. However, this effect was reversed by exposure to hyperoxia, suggesting a common set of molecular-genetic mechanism may modulate each of these processes. This study suggests that Drosophila Clic has a major influence on regulation of oxidative stress signaling and that this function overlaps with the molecular mechanisms of acute ethanol sensitivity in the fly.
Collapse
Affiliation(s)
- Rory M. Weston
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rebecca E. Schmitt
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mike Grotewiel
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael F. Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
19
|
Harris GM, Abbas S, Miles MF. GCSscore: an R package for differential gene expression analysis in Affymetrix/Thermo-Fisher whole transcriptome microarrays. BMC Genomics 2021; 22:96. [PMID: 33522903 PMCID: PMC7848880 DOI: 10.1186/s12864-021-07370-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite the increasing use of RNAseq for transcriptome analysis, microarrays remain a widely-used methodology for genomic studies. The latest generation of Affymetrix/Thermo-Fisher microarrays, the ClariomD/XTA and ClariomS array, provide a sensitive and facile method for complex transcriptome expression analysis. However, existing methods of analysis for these high-density arrays do not leverage the statistical power contained in having multiple oligonucleotides representing each gene/exon, but rather summarize probes into a single expression value. We previously developed a methodology, the Sscore algorithm, for probe-level identification of differentially expressed genes (DEGs) between treatment and control samples with oligonucleotide microarrays. The Sscore algorithm was validated for sensitive detection of DEGs by comparison with existing methods. However, the prior version of the Sscore algorithm and a R-based implementation software, sscore, do not function with the latest generations of Affymetrix/Fisher microarrays due to changes in microarray design that eliminated probes previously used for estimation of non-specific binding. RESULTS Here we describe the GCSscore algorithm, which utilizes the GC-content of a given oligonucleotide probe to estimate non-specific binding using antigenomic background probes found on new generations of arrays. We implemented this algorithm in an improved GCSscore R package for analysis of modern oligonucleotide microarrays. GCSscore has multiple methods for grouping individual probes on the ClariomD/XTA chips, providing the user with differential expression analysis at the gene-level and the exon-level. By utilizing the direct probe-level intensities, the GCSscore algorithm was able to detect DEGs under stringent statistical criteria for all Clariom-based arrays. We demonstrate that for older 3'-IVT arrays, GCSscore produced very similar differential gene expression analysis results compared to the original Sscore method. However, GCSscore functioned well for both the ClariomS and ClariomD/XTA newer microarrays and outperformed existing analysis approaches insofar as the number of DEGs and cognate biological functions identified. This was particularly striking for analysis of the highly complex ClariomD/XTA based arrays. CONCLUSIONS The GCSscore package represents a powerful new application for analysis of the newest generation of oligonucleotide microarrays such as the ClariomS and ClariomD/XTA arrays produced by Affymetrix/Fisher.
Collapse
Affiliation(s)
- Guy M Harris
- VCU Pharmacology and Toxicology, Richmond, Virginia, 23298, USA
| | - Shahroze Abbas
- VCU Center for the Study of Biological Complexity, Richmond, Virginia, 23298, USA
| | - Michael F Miles
- VCU Pharmacology and Toxicology, Richmond, Virginia, 23298, USA.
- VCU Center for the Study of Biological Complexity, Richmond, Virginia, 23298, USA.
- Department of Pharmacology & Toxicology and Neurology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
20
|
Radcliffe RA, Dowell R, Odell AT, Richmond PA, Bennett B, Larson C, Kechris K, Saba LM, Rudra P, Wen S. Systems genetics analysis of the LXS recombinant inbred mouse strains:Genetic and molecular insights into acute ethanol tolerance. PLoS One 2020; 15:e0240253. [PMID: 33095786 PMCID: PMC7584226 DOI: 10.1371/journal.pone.0240253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
We have been using the Inbred Long- and Short-Sleep mouse strains (ILS, ISS) and a recombinant inbred panel derived from them, the LXS, to investigate the genetic underpinnings of acute ethanol tolerance which is considered to be a risk factor for alcohol use disorders (AUDs). Here, we have used RNA-seq to examine the transcriptome of whole brain in 40 of the LXS strains 8 hours after a saline or ethanol "pretreatment" as in previous behavioral studies. Approximately 1/3 of the 14,184 expressed genes were significantly heritable and many were unique to the pretreatment. Several thousand cis- and trans-eQTLs were mapped; a portion of these also were unique to pretreatment. Ethanol pretreatment caused differential expression (DE) of 1,230 genes. Gene Ontology (GO) enrichment analysis suggested involvement in numerous biological processes including astrocyte differentiation, histone acetylation, mRNA splicing, and neuron projection development. Genetic correlation analysis identified hundreds of genes that were correlated to the behaviors. GO analysis indicated that these genes are involved in gene expression, chromosome organization, and protein transport, among others. The expression profiles of the DE genes and genes correlated to AFT in the ethanol pretreatment group (AFT-Et) were found to be similar to profiles of HDAC inhibitors. Hdac1, a cis-regulated gene that is located at the peak of a previously mapped QTL for AFT-Et, was correlated to 437 genes, most of which were also correlated to AFT-Et. GO analysis of these genes identified several enriched biological process terms including neuron-neuron synaptic transmission and potassium transport. In summary, the results suggest widespread genetic effects on gene expression, including effects that are pretreatment-specific. A number of candidate genes and biological functions were identified that could be mediating the behavioral responses. The most prominent of these was Hdac1 which may be regulating genes associated with glutamatergic signaling and potassium conductance.
Collapse
Affiliation(s)
- Richard A. Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder CO, United States of America
| | - Robin Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States of America
| | - Aaron T. Odell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Phillip A. Richmond
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Beth Bennett
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Colin Larson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Laura M. Saba
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Pratyaydipta Rudra
- Department of Statistics, Oklahoma State University, Stillwater, OK, United States of America
| | - Shi Wen
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
21
|
Parker CC, Lusk R, Saba LM. Alcohol Sensitivity as an Endophenotype of Alcohol Use Disorder: Exploring Its Translational Utility between Rodents and Humans. Brain Sci 2020; 10:E725. [PMID: 33066036 PMCID: PMC7600833 DOI: 10.3390/brainsci10100725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022] Open
Abstract
Alcohol use disorder (AUD) is a complex, chronic, relapsing disorder with multiple interacting genetic and environmental influences. Numerous studies have verified the influence of genetics on AUD, yet the underlying biological pathways remain unknown. One strategy to interrogate complex diseases is the use of endophenotypes, which deconstruct current diagnostic categories into component traits that may be more amenable to genetic research. In this review, we explore how an endophenotype such as sensitivity to alcohol can be used in conjunction with rodent models to provide mechanistic insights into AUD. We evaluate three alcohol sensitivity endophenotypes (stimulation, intoxication, and aversion) for their translatability across human and rodent research by examining the underlying neurobiology and its relationship to consumption and AUD. We show examples in which results gleaned from rodents are successfully integrated with information from human studies to gain insight in the genetic underpinnings of AUD and AUD-related endophenotypes. Finally, we identify areas for future translational research that could greatly expand our knowledge of the biological and molecular aspects of the transition to AUD with the broad hope of finding better ways to treat this devastating disorder.
Collapse
Affiliation(s)
- Clarissa C. Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Ryan Lusk
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
22
|
Transcranial Direct Current Stimulation (tDCS) Induces Analgesia in Rats with Neuropathic Pain and Alcohol Abstinence. Neurochem Res 2020; 45:2653-2663. [DOI: 10.1007/s11064-020-03116-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/31/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
|
23
|
Smith ML, Lopez MF, Wolen AR, Becker HC, Miles MF. Brain regional gene expression network analysis identifies unique interactions between chronic ethanol exposure and consumption. PLoS One 2020; 15:e0233319. [PMID: 32469986 PMCID: PMC7259766 DOI: 10.1371/journal.pone.0233319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/01/2020] [Indexed: 11/28/2022] Open
Abstract
Progressive increases in ethanol consumption is a hallmark of alcohol use disorder (AUD). Persistent changes in brain gene expression are hypothesized to underlie the altered neural signaling producing abusive consumption in AUD. To identify brain regional gene expression networks contributing to progressive ethanol consumption, we performed microarray and scale-free network analysis of expression responses in a C57BL/6J mouse model utilizing chronic intermittent ethanol by vapor chamber (CIE) in combination with limited access oral ethanol consumption. This model has previously been shown to produce long-lasting increased ethanol consumption, particularly when combining oral ethanol access with repeated cycles of intermittent vapor exposure. The interaction of CIE and oral consumption was studied by expression profiling and network analysis in medial prefrontal cortex, nucleus accumbens, hippocampus, bed nucleus of the stria terminalis, and central nucleus of the amygdala. Brain region expression networks were analyzed for ethanol-responsive gene expression, correlation with ethanol consumption and functional content using extensive bioinformatics studies. In all brain-regions studied the largest number of changes in gene expression were seen when comparing ethanol naïve mice to those exposed to CIE and drinking. In the prefrontal cortex, however, unique patterns of gene expression were seen compared to other brain-regions. Network analysis identified modules of co-expressed genes in all brain regions. The prefrontal cortex and nucleus accumbens showed the greatest number of modules with significant correlation to drinking behavior. Across brain-regions, however, many modules with strong correlations to drinking, both baseline intake and amount consumed after CIE, showed functional enrichment for synaptic transmission and synaptic plasticity.
Collapse
Affiliation(s)
- Maren L. Smith
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Marcelo F. Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Aaron R. Wolen
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Howard C. Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, United States of America
- RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Michael F. Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
24
|
Bellozi PM, Pelição R, Santos MC, Lima IV, Saliba SW, Vieira ÉL, Campos AC, Teixeira AL, de Oliveira AC, Nakamura-Palacios EM, Rodrigues LC. URB597 ameliorates the deleterious effects induced by binge alcohol consumption in adolescent rats. Neurosci Lett 2019; 711:134408. [DOI: 10.1016/j.neulet.2019.134408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022]
|
25
|
Bogenpohl JW, Smith ML, Farris SP, Dumur CI, Lopez MF, Becker HC, Grant KA, Miles MF. Cross-Species Co-analysis of Prefrontal Cortex Chronic Ethanol Transcriptome Responses in Mice and Monkeys. Front Mol Neurosci 2019; 12:197. [PMID: 31456662 PMCID: PMC6701453 DOI: 10.3389/fnmol.2019.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Despite recent extensive genomic and genetic studies on behavioral responses to ethanol, relatively few new therapeutic targets for the treatment of alcohol use disorder have been validated. Here, we describe a cross-species genomic approach focused on identifying gene networks associated with chronic ethanol consumption. To identify brain mechanisms underlying a chronic ethanol consumption phenotype highly relevant to human alcohol use disorder, and to elucidate potential future therapeutic targets, we conducted a genomic study in a non-human primate model of chronic open-access ethanol consumption. Microarray analysis of RNA expression in anterior cingulate and subgenual cortices from rhesus macaques was performed across multiple cohorts of animals. Gene networks correlating with ethanol consumption or showing enrichment for ethanol-regulated genes were identified, as were major ethanol-related hub genes within these networks. A subsequent consensus module analysis was used to co-analyze monkey data with expression data from a chronic intermittent ethanol vapor-exposure and consumption model in C57BL/6J mice. Ethanol-related gene networks conserved between primates and rodents were enriched for genes involved in discrete biological functions, including; myelination, synaptic transmission, chromatin modification, Golgi apparatus function, translation, cellular respiration, and RNA processing. The myelin-related network, in particular, showed strong correlations with ethanol consumption behavior and displayed marked network reorganization between control and ethanol-drinking animals. Further bioinformatics analysis revealed that these networks also showed highly significant overlap with other ethanol-regulated gene sets. Altogether, these studies provide robust primate and rodent cross-species validation of gene networks associated with chronic ethanol consumption. Our results also suggest potential novel focal points for future therapeutic interventions in alcohol use disorder.
Collapse
Affiliation(s)
- James W Bogenpohl
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA, United States
| | - Maren L Smith
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| | - Catherine I Dumur
- Aurora Diagnostics-Sonic Healthcare, Bernhardt Laboratories, Jacksonville, FL, United States
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Kathleen A Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
26
|
Mignogna KM, Bacanu SA, Riley BP, Wolen AR, Miles MF. Cross-species alcohol dependence-associated gene networks: Co-analysis of mouse brain gene expression and human genome-wide association data. PLoS One 2019; 14:e0202063. [PMID: 31017905 PMCID: PMC6481773 DOI: 10.1371/journal.pone.0202063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 04/07/2019] [Indexed: 01/06/2023] Open
Abstract
Genome-wide association studies on alcohol dependence, by themselves, have yet to account for the estimated heritability of the disorder and provide incomplete mechanistic understanding of this complex trait. Integrating brain ethanol-responsive gene expression networks from model organisms with human genetic data on alcohol dependence could aid in identifying dependence-associated genes and functional networks in which they are involved. This study used a modification of the Edge-Weighted Dense Module Searching for genome-wide association studies (EW-dmGWAS) approach to co-analyze whole-genome gene expression data from ethanol-exposed mouse brain tissue, human protein-protein interaction databases and alcohol dependence-related genome-wide association studies. Results revealed novel ethanol-responsive and alcohol dependence-associated gene networks in prefrontal cortex, nucleus accumbens, and ventral tegmental area. Three of these networks were overrepresented with genome-wide association signals from an independent dataset. These networks were significantly overrepresented for gene ontology categories involving several mechanisms, including actin filament-based activity, transcript regulation, Wnt and Syndecan-mediated signaling, and ubiquitination. Together, these studies provide novel insight for brain mechanisms contributing to alcohol dependence.
Collapse
Affiliation(s)
- Kristin M. Mignogna
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Center for Clinical & Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Silviu A. Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Brien P. Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Aaron R. Wolen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael F. Miles
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
27
|
Salvatore JE, Han S, Farris SP, Mignogna KM, Miles MF, Agrawal A. Beyond genome-wide significance: integrative approaches to the interpretation and extension of GWAS findings for alcohol use disorder. Addict Biol 2019; 24:275-289. [PMID: 29316088 PMCID: PMC6037617 DOI: 10.1111/adb.12591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) is a heritable complex behavior. Due to the highly polygenic nature of AUD, identifying genetic variants that comprise this heritable variation has proved to be challenging. With the exception of functional variants in alcohol metabolizing genes (e.g. ADH1B and ALDH2), few other candidate loci have been confidently linked to AUD. Genome-wide association studies (GWAS) of AUD and other alcohol-related phenotypes have either produced few hits with genome-wide significance or have failed to replicate on further study. These issues reinforce the complex nature of the genetic underpinnings for AUD and suggest that both GWAS studies with larger samples and additional analysis approaches that better harness the nominally significant loci in existing GWAS are needed. Here, we review approaches of interest in the post-GWAS era, including in silico functional analyses; functional partitioning of single nucleotide polymorphism heritability; aggregation of signal into genes and gene networks; and validation of identified loci, genes and gene networks in postmortem brain tissue and across species. These integrative approaches hold promise to illuminate our understanding of the biological basis of AUD; however, we recognize that the main challenge continues to be the extremely polygenic nature of AUD, which necessitates large samples to identify multiple loci associated with AUD liability.
Collapse
Affiliation(s)
- Jessica E. Salvatore
- Department of Psychology; Virginia Commonwealth University; Richmond VA USA
- Virginia Institute for Psychiatric and Behavioral Genetics; Virginia Commonwealth University; Richmond VA USA
| | - Shizhong Han
- Department of Psychiatry; University of Iowa; Iowa City IA USA
- Department of Psychiatry and Behavioral Sciences; Johns Hopkins School of Medicine; Baltimore MD USA
| | - Sean P. Farris
- Waggoner Center for Alcohol and Addiction Research; The University of Texas at Austin; Austin TX USA
| | - Kristin M. Mignogna
- Virginia Institute for Psychiatric and Behavioral Genetics; Virginia Commonwealth University; Richmond VA USA
| | - Michael F. Miles
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA
| | - Arpana Agrawal
- Department of Psychiatry; Washington University School of Medicine; Saint Louis MO USA
| |
Collapse
|
28
|
Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism. Transl Psychiatry 2019; 9:89. [PMID: 30765688 PMCID: PMC6376002 DOI: 10.1038/s41398-019-0384-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Alcohol exposure triggers changes in gene expression and biological pathways in human brain. We explored alterations in gene expression in the Pre-Frontal Cortex (PFC) of 65 alcoholics and 73 controls of European descent, and identified 129 genes that showed altered expression (FDR < 0.05) in subjects with alcohol dependence. Differentially expressed genes were enriched for pathways related to interferon signaling and Growth Arrest and DNA Damage-inducible 45 (GADD45) signaling. A coexpression module (thistle2) identified by weighted gene co-expression network analysis (WGCNA) was significantly correlated with alcohol dependence, alcohol consumption, and AUDIT scores. Genes in the thistle2 module were enriched with genes related to calcium signaling pathways and showed significant downregulation of these pathways, as well as enrichment for biological processes related to nicotine response and opioid signaling. A second module (brown4) showed significant upregulation of pathways related to immune signaling. Expression quantitative trait loci (eQTLs) for genes in the brown4 module were also enriched for genetic associations with alcohol dependence and alcohol consumption in large genome-wide studies included in the Psychiatric Genetic Consortium and the UK Biobank's alcohol consumption dataset. By leveraging multi-omics data, this transcriptome analysis has identified genes and biological pathways that could provide insight for identifying therapeutic targets for alcohol dependence.
Collapse
|
29
|
Zhou D, Zhao Y, Hook M, Zhao W, Starlard-Davenport A, Cook MN, Jones BC, Hamre KM, Lu L. Ethanol's Effect on Coq7 Expression in the Hippocampus of Mice. Front Genet 2018; 9:602. [PMID: 30564271 PMCID: PMC6288283 DOI: 10.3389/fgene.2018.00602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/16/2018] [Indexed: 01/16/2023] Open
Abstract
Coenzyme Q (CoQ) is a well-studied molecule, present in every cell membrane in the body, best known for its roles as a mitochondrial electron transporter and a potent membrane anti-oxidant. Much of the previous work was done in vitro in yeast and more recent work has suggested that CoQ may have additional roles prompting calls for a re-assessment of its role using in vivo systems in mammals. Here we investigated the putative role of Coenzyme Q in ethanol-induced effects in vivo using BXD RI mice. We examined hippocampal expression of Coq7 in saline controls and after an acute ethanol treatment, noting enriched biologic processes and pathways following ethanol administration. We also identified 45 ethanol-related phenotypes that were significantly correlated with Coq7 expression, including six phenotypes related to conditioned taste aversion and ethanol preference. This analysis highlights the need for further investigation of Coq7 and related genes in vivo as well as previously unrecognized roles that it may play in the hippocampus.
Collapse
Affiliation(s)
- Diana Zhou
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yinghong Zhao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Michael Hook
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenyuan Zhao
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Melloni N Cook
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Psychology, The University of Memphis, Memphis, TN, United States
| | - Byron C Jones
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kristin M Hamre
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
30
|
van der Vaart A, Meng X, Bowers MS, Batman AM, Aliev F, Farris SP, Hill JS, Green TA, Dick D, Wolstenholme JT, Miles MF. Glycogen synthase kinase 3 beta regulates ethanol consumption and is a risk factor for alcohol dependence. Neuropsychopharmacology 2018; 43:2521-2531. [PMID: 30188517 PMCID: PMC6224501 DOI: 10.1038/s41386-018-0202-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/12/2023]
Abstract
Understanding how ethanol actions on brain signal transduction and gene expression lead to excessive consumption and addiction could identify new treatments for alcohol dependence. We previously identified glycogen synthase kinase 3-beta (Gsk3b) as a member of a highly ethanol-responsive gene network in mouse medial prefrontal cortex (mPFC). Gsk3b has been implicated in dendritic function, synaptic plasticity and behavioral responses to other drugs of abuse. Here, we investigate Gsk3b in rodent models of ethanol consumption and as a risk factor for human alcohol dependence. Stereotactic viral vector gene delivery overexpression of Gsk3b in mouse mPFC increased 2-bottle choice ethanol consumption, which was blocked by lithium, a known GSK3B inhibitor. Further, Gsk3b overexpression increased anxiety-like behavior following abstinence from ethanol. Protein or mRNA expression studies following Gsk3b over-expression identified synaptojanin 2, brain-derived neurotrophic factor and the neuropeptide Y Y5 receptor as potential downstream factors altering ethanol behaviors. Rat operant studies showed that selective pharmacologic inhibition of GSK3B with TDZD-8 dose-dependently decreased motivation to self-administer ethanol and sucrose and selectively blocked ethanol relapse-like behavior. In set-based and gene-wise genetic association analysis, a GSK3b-centric gene expression network had significant genetic associations, at a gene and network level, with risk for alcohol dependence in humans. These mutually reinforcing cross-species findings implicate GSK3B in neurobiological mechanisms controlling ethanol consumption, and as both a potential risk factor and therapeutic target for alcohol dependence.
Collapse
Affiliation(s)
- Andrew van der Vaart
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Xianfang Meng
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - M Scott Bowers
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Departments of Psychiatry, Virginia Commonwealth University, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Angela M Batman
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Fazil Aliev
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Departments of Psychology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sean P Farris
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jennifer S Hill
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Thomas A Green
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | - Jennifer T Wolstenholme
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Michael F Miles
- Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
31
|
Clark SL, Costin BN, Chan RF, Johnson AW, Xie L, Jurmain JL, Kumar G, Shabalin AA, Pandey AK, Aberg KA, Miles MF, van den Oord E. A Whole Methylome Study of Ethanol Exposure in Brain and Blood: An Exploration of the Utility of Peripheral Blood as Proxy Tissue for Brain in Alcohol Methylation Studies. Alcohol Clin Exp Res 2018; 42:2360-2368. [PMID: 30320886 DOI: 10.1111/acer.13905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/06/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Recent reviews have highlighted the potential use of blood-based methylation biomarkers as diagnostic and prognostic tools of current and future alcohol use and addiction. Due to the substantial overlap that often exists between methylation patterns across different tissues, including blood and brain, blood-based methylation may track methylation changes in brain; however, little work has explored the overlap in alcohol-related methylation in these tissues. METHODS To study the effects of alcohol on the brain methylome and identify possible biomarkers of these changes in blood, we performed a methylome-wide association study in brain and blood from 40 male DBA/2J mice that received either an acute ethanol (EtOH) or saline intraperitoneal injection. To investigate all 22 million CpGs in the mouse genome, we enriched for the methylated genomic fraction using methyl-CpG binding domain (MBD) protein capture followed by next-generation sequencing (MBD-seq). We performed association tests in blood and brain separately followed by enrichment testing to determine whether there was overlapping alcohol-related methylation in the 2 tissues. RESULTS The top result for brain was a CpG located in an intron of Ttc39b (p = 5.65 × 10-08 ), and for blood, the top result was located in Espnl (p = 5.11 × 10-08 ). Analyses implicated pathways involved in inflammation and neuronal differentiation, such as CXCR4, IL-7, and Wnt signaling. Enrichment tests indicated significant overlap among the top results in brain and blood. Pathway analyses of the overlapping genes converge on MAPKinase signaling (p = 5.6 × 10-05 ) which plays a central role in acute and chronic responses to alcohol and glutamate receptor pathways, which can regulate neuroplastic changes underlying addictive behavior. CONCLUSIONS Overall, we have shown some methylation changes in brain and blood after acute EtOH administration and that the changes in blood partly mirror the changes in brain suggesting the potential for DNA methylation in blood to be biomarkers of alcohol use.
Collapse
Affiliation(s)
- Shaunna L Clark
- Department of Psychology , Michigan State University, East Lansing, Michigan.,Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| | - Blair N Costin
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
| | - Robin F Chan
- Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| | - Alexander W Johnson
- Department of Psychology , Michigan State University, East Lansing, Michigan
| | - Linying Xie
- Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| | - Jessica L Jurmain
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
| | - Gaurav Kumar
- Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| | - Andrey A Shabalin
- Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| | - Ashutosh K Pandey
- Department of Anatomy and Neurobiology , Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| | - Michael F Miles
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
| | - Edwin van den Oord
- Center for Biomarker Research and Precision Medicine , Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
32
|
O'Brien MA, Weston RM, Sheth NU, Bradley S, Bigbee J, Pandey A, Williams RW, Wolstenholme JT, Miles MF. Ethanol-Induced Behavioral Sensitization Alters the Synaptic Transcriptome and Exon Utilization in DBA/2J Mice. Front Genet 2018; 9:402. [PMID: 30319688 PMCID: PMC6166094 DOI: 10.3389/fgene.2018.00402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 11/15/2022] Open
Abstract
Alcoholism is a complex behavioral disorder characterized by loss of control in limiting intake, and progressive compulsion to seek and consume ethanol. Prior studies have suggested that the characteristic behaviors associated with escalation of drug use are caused, at least in part, by ethanol-evoked changes in gene expression affecting synaptic plasticity. Implicit in this hypothesis is a dependence on new protein synthesis and remodeling at the synapse. It is well established that mRNA can be transported to distal dendritic processes, where it can undergo localized translation. It is unknown whether such modulation of the synaptic transcriptome might contribute to ethanol-induced synaptic plasticity. Using ethanol-induced behavioral sensitization as a model of neuroplasticity, we investigated whether repeated exposure to ethanol altered the synaptic transcriptome, contributing to mechanisms underlying subsequent increases in ethanol-evoked locomotor activity. RNAseq profiling of DBA/2J mice subjected to acute ethanol or ethanol-induced behavioral sensitization was performed on frontal pole synaptoneurosomes to enrich for synaptic mRNA. Genomic profiling showed distinct functional classes of mRNA enriched in the synaptic vs. cytosolic fractions, consistent with their role in synaptic function. Ethanol sensitization regulated more than twice the number of synaptic localized genes compared to acute ethanol exposure. Synaptic biological processes selectively perturbed by ethanol sensitization included protein folding and modification as well as and mitochondrial respiratory function, suggesting repeated ethanol exposure alters synaptic energy production and the processing of newly translated proteins. Additionally, marked differential exon usage followed ethanol sensitization in both synaptic and non-synaptic cellular fractions, with little to no perturbation following acute ethanol exposure. Altered synaptic exon usage following ethanol sensitization strongly affected genes related to RNA processing and stability, translational regulation, and synaptic function. These genes were also enriched for targets of the FMRP RNA-binding protein and contained consensus sequence motifs related to other known RNA binding proteins, suggesting that ethanol sensitization altered selective mRNA trafficking mechanisms. This study provides a foundation for investigating the role of ethanol in modifying the synaptic transcriptome and inducing changes in synaptic plasticity.
Collapse
Affiliation(s)
- Megan A O'Brien
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Rory M Weston
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Nihar U Sheth
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven Bradley
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - John Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Ashutosh Pandey
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States.,Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
33
|
Kozell LB, Denmark DL, Walter NAR, Buck KJ. Distinct Roles for Two Chromosome 1 Loci in Ethanol Withdrawal, Consumption, and Conditioned Place Preference. Front Genet 2018; 9:323. [PMID: 30210527 PMCID: PMC6120100 DOI: 10.3389/fgene.2018.00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022] Open
Abstract
We previously identified a region on chromosome 1 that harbor quantitative trait loci (QTLs) with large effects on alcohol withdrawal risk using both chronic and acute models in mice. Here, using newly created and existing QTL interval-specific congenic (ISC) models, we report the first evidence that this region harbors two distinct alcohol withdrawal QTLs (Alcw11and Alcw12), which underlie 13% and 3–6%, respectively, of the genetic variance in alcohol withdrawal severity measured using the handling-induced convulsion. Our results also precisely localize Alcw11 and Alcw12 to discreet chromosome regions (syntenic with human 1q23.1–23.3) that encompass a limited number of genes with validated genotype-dependent transcript expression and/or non-synonymous sequence variation that may underlie QTL phenotypic effects. ISC analyses also implicate Alcw11and Alcw12 in withdrawal-induced anxiety-like behavior, representing the first evidence for their broader roles in alcohol withdrawal beyond convulsions; but detect no evidence for Alcw12 involvement in ethanol conditioned place preference (CPP) or consumption. Our data point to high-quality candidates for Alcw12, including genes involved in mitochondrial respiration, spatial buffering, and neural plasticity, and to Kcnj9 as a high-quality candidate for Alcw11. Our studies are the first to show, using two null mutant models on different genetic backgrounds, that Kcnj9−/− mice demonstrate significantly less severe alcohol withdrawal than wildtype littermates using acute and repeated exposure paradigms. We also demonstrate that Kcnj9−/− voluntarily consume significantly more alcohol (20%, two-bottle choice) than wildtype littermates. Taken together with evidence implicating Kcnj9 in ethanol CPP, our results support a broad role for this locus in ethanol reward and withdrawal phenotypes. In summary, our results demonstrate two distinct chromosome 1 QTLs that significantly affect risk for ethanol withdrawal, and point to their distinct unique roles in alcohol reward phenotypes.
Collapse
Affiliation(s)
- Laura B Kozell
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center and School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Deaunne L Denmark
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center and School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Nicole A R Walter
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center and School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Kari J Buck
- Department of Behavioral Neuroscience, Portland Veterans Affairs Medical Center and School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
34
|
Adedayo AD, Aderinola AA, Adekilekun TA, Olaolu OO, Olanike AM, Olayemi IK. Morphine-alcohol treatment impairs cognitive functions and increases neuro-inflammatory responses in the medial prefrontal cortex of juvenile male rats. Anat Cell Biol 2018; 51:41-51. [PMID: 29644109 PMCID: PMC5890016 DOI: 10.5115/acb.2018.51.1.41] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 02/01/2023] Open
Abstract
In the developed and developing world, opioid consumption in combination with alcohol has become one of the substances abused. In this experiment, we examined the effects of alcohol, morphine, and morphine+alcohol combination on cognitive functions and neuroinflammatory responses in the medial prefrontal cortex (mPFC) of juvenile male rats. Alcohol (1.0 ml of 15% v/v ethanol twice daily, subcutaneously, 7 hours apart), morphine (0.5 ml/kg of 0.4 mg/kg morphine chlorate twice daily, subcutaneously, 7 hours apart), morphine+alcohol co-treatment (0.5 ml/kg of 0.4 mg/kg morphine chlorate+1.0 ml of 15% v/v ethanol twice daily, subcutaneously, 7 hours apart) were administered for 21 days. Treatment with morphine+alcohol significantly impairs cognition functions in the Morris water maze, passive avoidance, and novel object recognition tests, furthermore, the treatment significantly increased the quantitative count of astrocytic cells and also conferred marked neuronal cell death in the mPFC, which were studied by glial fibrillary acidic protein immunochemistry for astrocytes and Cresyl violet for Nissl's substance distribution in neurons respectively. These results suggest that alcohol, morphine, and morphine+alcohol co-treatment may trigger cognitive deficits and neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
| | | | | | - Olaniyan Olayinka Olaolu
- Department of Medical Biochemistry (Chemical Pathology Unit), Osun State University (Osogbo Campus), Osogbo, Nigeria
| | | | - Ijomone Kafilat Olayemi
- Department of Anatomy, Faculty of Basic Medical Science, University of Medical Sciences, Ondo, Nigeria
| |
Collapse
|
35
|
Dragan WŁ, Domozych W, Czerski PM, Dragan M. Positive metacognitions about alcohol mediate the relationship between FKBP5 variability and problematic drinking in a sample of young women. Neuropsychiatr Dis Treat 2018; 14:2681-2688. [PMID: 30349266 PMCID: PMC6187977 DOI: 10.2147/ndt.s169514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Previous research has shown that polymorphisms in the FKBP5 gene are related to some psychiatric conditions, including alcohol dependence. These relationships are moderated by the level of adverse childhood experiences that one has undergone. Maladaptive metacognition, associated with symptoms of psychiatric disorders and disturbed emotional self-regulation, is also a strong predictor of problematic alcohol use. Recent studies suggest that maladaptive metacognitions may be part of the developmental pathway from childhood abuse to drinking problems. This study attempted to identify relationships between FKBP5 polymorphisms and metacognitions about the positive effects of alcohol use and problematic drinking in a group differing in levels of childhood trauma. METHODS The sample studied was composed of 502 female participants aged 18-25 years (M=21.78; SD=1.84). Positive metacognitions about alcohol use were measured with the Positive Alcohol Metacognitions Scale (PAMS) and problematic drinking was gauged using the WHO Alcohol Use Disorders Identification Test. Levels of childhood adverse experiences were determined with the use of the Childhood Questionnaire. A total of 18 single-nucleotide polymorphisms (SNPs) in the FKBP5 gene were genotyped. RESULTS We did not find any interaction between the gene and childhood trauma on problematic drinking or metacognitions. However we identified a strong main effect of two SNPs of the FKBP5 gene - rs755658 and rs1334894 - on the PAMS subscale measuring positive metacognitive beliefs about emotional self-regulation. We also found nominally significant relations of several other SNPs with metacognitions and problematic drinking. Additionally, we showed that positive alcohol metacognitions mediate the relationship between problematic drinking and both rs755658 and rs1334894. CONCLUSION Our results may shed some light on the biological underpinnings of the developmental pathway leading to problematic drinking through maladaptive metacognitions.
Collapse
Affiliation(s)
- Wojciech Łukasz Dragan
- The Interdisciplinary Centre for Behavioural Genetics Research, Faculty of Psychology, University of Warsaw, Warsaw, Poland,
| | - Wojciech Domozych
- The Interdisciplinary Centre for Behavioural Genetics Research, Faculty of Psychology, University of Warsaw, Warsaw, Poland,
| | - Piotr M Czerski
- Laboratory of Psychiatric Genetics, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
36
|
Wolstenholme JT, Mahmood T, Harris GM, Abbas S, Miles MF. Intermittent Ethanol during Adolescence Leads to Lasting Behavioral Changes in Adulthood and Alters Gene Expression and Histone Methylation in the PFC. Front Mol Neurosci 2017; 10:307. [PMID: 29018328 PMCID: PMC5622951 DOI: 10.3389/fnmol.2017.00307] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/12/2017] [Indexed: 01/23/2023] Open
Abstract
Adolescents primarily consume alcohol in binges, which can be particularly harmful to the developing frontal cortex and increase risk for an adult alcohol use disorder. We conducted a study investigating immediate and long lasting changes to the prefrontal cortex (PFC) transcriptome to determine the molecular mechanisms underlying adult ethanol behavioral sensitivity following binge ethanol in adolescence. DBA/2J mice were orally dosed with 4 g/kg ethanol intermittently from day 29 to 42. Adolescent mice were tested for anxiety-like behavior and ethanol sensitivity using the loss of righting reflex task. As adults, mice were tested for cognitive changes using the novel object recognition task, ethanol-induced anxiolysis and ethanol sensitivity. Adolescent binge ethanol altered ethanol sensitivity in young mice and led to lasting memory deficits in the object recognition test and greater ethanol sensitivity in adulthood. Using genomic profiling of transcripts in the PFC, we found that binge ethanol reduced myelin-related gene expression and altered chromatin modifying genes involved in histone demethylation at H3K9 and H3K36. We hypothesize that ethanol's actions on histone methylation may be a switch for future transcriptional changes that underlie the behavioral changes lasting into adulthood.
Collapse
Affiliation(s)
- Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Tariq Mahmood
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Guy M Harris
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Shahroze Abbas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States.,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
37
|
Sir2/Sirt1 Links Acute Inebriation to Presynaptic Changes and the Development of Alcohol Tolerance, Preference, and Reward. J Neurosci 2017; 36:5241-51. [PMID: 27170122 DOI: 10.1523/jneurosci.0499-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Acute ethanol inebriation causes neuroadaptive changes in behavior that favor increased intake. Ethanol-induced alterations in gene expression, through epigenetic and other means, are likely to change cellular and neural circuit function. Ethanol markedly changes histone acetylation, and the sirtuin Sir2/SIRT1 that deacetylates histones and transcription factors is essential for the rewarding effects of long-term drug use. The molecular transformations leading from short-term to long-term ethanol responses mostly remain to be discovered. We find that Sir2 in the mushroom bodies of the fruit fly Drosophila promotes short-term ethanol-induced behavioral plasticity by allowing changes in the expression of presynaptic molecules. Acute inebriation strongly reduces Sir2 levels and increases histone H3 acetylation in the brain. Flies lacking Sir2 globally, in the adult nervous system, or specifically in the mushroom body α/β-lobes show reduced ethanol sensitivity and tolerance. Sir2-dependent ethanol reward is also localized to the mushroom bodies, and Sir2 mutants prefer ethanol even without a priming ethanol pre-exposure. Transcriptomic analysis reveals that specific presynaptic molecules, including the synaptic vesicle pool regulator Synapsin, depend on Sir2 to be regulated by ethanol. Synapsin is required for ethanol sensitivity and tolerance. We propose that the regulation of Sir2/SIRT1 by acute inebriation forms part of a transcriptional program in mushroom body neurons to alter presynaptic properties and neural responses to favor the development of ethanol tolerance, preference, and reward. SIGNIFICANCE STATEMENT We identify a mechanism by which acute ethanol inebriation leads to changes in nervous system function that may be an important basis for increasing ethanol intake and addiction liability. The findings are significant because they identify ethanol-driven transcriptional events that target presynaptic properties and direct behavioral plasticity. They also demonstrate that multiple forms of ethanol behavioral plasticity that are relevant to alcoholism are initiated by a shared mechanism. Finally, they link these events to the Drosophila brain region that associates context with innate approach and avoidance responses to code for reward and other higher-order behavior, similar in aspects to the role of the vertebrate mesolimbic system.
Collapse
|
38
|
Zhou DX, Zhao Y, Baker JA, Gu Q, Hamre KM, Yue J, Jones BC, Cook MN, Lu L. The effect of alcohol on the differential expression of cluster of differentiation 14 gene, associated pathways, and genetic network. PLoS One 2017; 12:e0178689. [PMID: 28575045 PMCID: PMC5456352 DOI: 10.1371/journal.pone.0178689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/17/2017] [Indexed: 12/13/2022] Open
Abstract
Alcohol consumption affects human health in part by compromising the immune system. In this study, we examined the expression of the Cd14 (cluster of differentiation 14) gene, which is involved in the immune system through a proinflammatory cascade. Expression was evaluated in BXD mice treated with saline or acute 1.8 g/kg i.p. ethanol (12.5% v/v). Hippocampal gene expression data were generated to examine differential expression and to perform systems genetics analyses. The Cd14 gene expression showed significant changes among the BXD strains after ethanol treatment, and eQTL mapping revealed that Cd14 is a cis-regulated gene. We also identified eighteen ethanol-related phenotypes correlated with Cd14 expression related to either ethanol responses or ethanol consumption. Pathway analysis was performed to identify possible biological pathways involved in the response to ethanol and Cd14. We also constructed a genetic network for Cd14 using the top 20 correlated genes and present several genes possibly involved in Cd14 and ethanol responses based on differential gene expression. In conclusion, we found Cd14, along with several other genes and pathways, to be involved in ethanol responses in the hippocampus, such as increased susceptibility to lipopolysaccharides and neuroinflammation.
Collapse
Affiliation(s)
- Diana X. Zhou
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Yinghong Zhao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jessica A. Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Kristin M. Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Byron C. Jones
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Melloni N. Cook
- Department of Psychology, University of Memphis, Memphis, Tennessee, United States of America
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
39
|
Vekshina NL, Anokhin PK, Veretinskaya AG, Shamakina IY. Dopamine D1–D2 receptor heterodimers: A literature review. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s199075081702010x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Hwa L, Besheer J, Kash T. Glutamate plasticity woven through the progression to alcohol use disorder: a multi-circuit perspective. F1000Res 2017; 6:298. [PMID: 28413623 PMCID: PMC5365217 DOI: 10.12688/f1000research.9609.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
Glutamate signaling in the brain is one of the most studied targets in the alcohol research field. Here, we report the current understanding of how the excitatory neurotransmitter glutamate, its receptors, and its transporters are involved in low, episodic, and heavy alcohol use. Specific animal behavior protocols can be used to assess these different drinking levels, including two-bottle choice, operant self-administration, drinking in the dark, the alcohol deprivation effect, intermittent access to alcohol, and chronic intermittent ethanol vapor inhalation. Importantly, these methods are not limited to a specific category, since they can be interchanged to assess different states in the development from low to heavy drinking. We encourage a circuit-based perspective beyond the classic mesolimbic-centric view, as multiple structures are dynamically engaged during the transition from positive- to negative-related reinforcement to drive alcohol drinking. During this shift from lower-level alcohol drinking to heavy alcohol use, there appears to be a shift from metabotropic glutamate receptor-dependent behaviors to N-methyl-D-aspartate receptor-related processes. Despite high efficacy of the glutamate-related pharmaceutical acamprosate in animal models of drinking, it is ineffective as treatment in the clinic. Therefore, research needs to focus on other promising glutamatergic compounds to reduce heavy drinking or mediate withdrawal symptoms or both.
Collapse
Affiliation(s)
- Lara Hwa
- Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| | - Joyce Besheer
- Department of Psychiatry, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| | - Thomas Kash
- Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| |
Collapse
|
41
|
van der Vaart AD, Wolstenholme JT, Smith ML, Harris GM, Lopez MF, Wolen AR, Becker HC, Williams RW, Miles MF. The allostatic impact of chronic ethanol on gene expression: A genetic analysis of chronic intermittent ethanol treatment in the BXD cohort. Alcohol 2017; 58:93-106. [PMID: 27838001 DOI: 10.1016/j.alcohol.2016.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/25/2022]
Abstract
The transition from acute to chronic ethanol exposure leads to lasting behavioral and physiological changes such as increased consumption, dependence, and withdrawal. Changes in brain gene expression are hypothesized to underlie these adaptive responses to ethanol. Previous studies on acute ethanol identified genetic variation in brain gene expression networks and behavioral responses to ethanol across the BXD panel of recombinant inbred mice. In this work, we have performed the first joint genetic and genomic analysis of transcriptome shifts in response to chronic intermittent ethanol (CIE) by vapor chamber exposure in a BXD cohort. CIE treatment is known to produce significant and sustained changes in ethanol consumption with repeated cycles of ethanol vapor. Using Affymetrix microarray analysis of prefrontal cortex (PFC) and nucleus accumbens (NAC) RNA, we compared CIE expression responses to those seen following acute ethanol treatment, and to voluntary ethanol consumption. Gene expression changes in PFC and NAC after CIE overlapped significantly across brain regions and with previously published expression following acute ethanol. Genes highly modulated by CIE were enriched for specific biological processes including synaptic transmission, neuron ensheathment, intracellular signaling, and neuronal projection development. Expression quantitative trait locus (eQTL) analyses identified genomic loci associated with ethanol-induced transcriptional changes with largely distinct loci identified between brain regions. Correlating CIE-regulated genes to ethanol consumption data identified specific genes highly associated with variation in the increase in drinking seen with repeated cycles of CIE. In particular, multiple myelin-related genes were identified. Furthermore, genetic variance in or near dynamin3 (Dnm3) on Chr1 at ∼164 Mb may have a major regulatory role in CIE-responsive gene expression. Dnm3 expression correlates significantly with ethanol consumption, is contained in a highly ranked functional group of CIE-regulated genes in the NAC, and has a cis-eQTL within a genomic region linked with multiple CIE-responsive genes.
Collapse
|
42
|
Putman AH, Wolen AR, Harenza JL, Yordanova RK, Webb BT, Chesler EJ, Miles MF. Identification of quantitative trait loci and candidate genes for an anxiolytic-like response to ethanol in BXD recombinant inbred strains. GENES BRAIN AND BEHAVIOR 2017; 15:367-81. [PMID: 26948279 DOI: 10.1111/gbb.12289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/29/2022]
Abstract
Genetic differences in acute behavioral responses to ethanol contribute to the susceptibility to alcohol use disorder and the reduction of anxiety is a commonly reported motive underlying ethanol consumption among alcoholics. Therefore, we studied the genetic variance in anxiolytic-like responses to ethanol across the BXD recombinant inbred (RI) mouse panel using the light-dark transition model of anxiety. Strain-mean genetic mapping and a mixed-model quantitative trait loci (QTL) analysis replicated several previously published QTL for locomotor activity and identified several novel anxiety-related loci. Significant loci included a chromosome 11 saline anxiety-like QTL (Salanq1) and a chromosome 12 locus (Etanq1) influencing the anxiolytic-like response to ethanol. Etanq1 was successfully validated by studies with BXD advanced intercross strains and fine-mapped to a region comprising less than 3.5 Mb. Through integration of genome-wide mRNA expression profiles of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens and ventral midbrain) across the BXD RI panel, we identified high priority candidate genes within Etanq1, the strongest of which was Ninein (Nin), a Gsk3β-interacting protein that is highly expressed in the brain.
Collapse
Affiliation(s)
- A H Putman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - A R Wolen
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - J L Harenza
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - R K Yordanova
- Institute of Mathematics and Informatics, Bulgarian Academy of Science, Sofia, Bulgaria
| | - B T Webb
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | | | - M F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.,Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA.,Center for Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
43
|
Lieberman R, Kranzler HR, Levine ES, Covault J. Examining FKBP5 mRNA expression in human iPSC-derived neural cells. Psychiatry Res 2017; 247:172-181. [PMID: 27915167 PMCID: PMC5191911 DOI: 10.1016/j.psychres.2016.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/03/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
In peripheral blood leukocytes, FKBP5 mRNA expression is upregulated following glucocorticoid receptor activation. The single nucleotide polymorphism rs1360780 in FKBP5 is associated with psychiatric illness and has functional molecular effects. However, examination of FKBP5 regulation has largely been limited to peripheral cells, which may not reflect regulation in neural cells. We used 27 human induced pluripotent stem cell lines (iPSCs) derived from 20 subjects to examine FKBP5 mRNA expression following GR activation. Following differentiation into forebrain-lineage neural cultures, cells were exposed to 1μM dexamethasone and mRNA expression of FKBP5 and NR3C1 analyzed. Results from the iPSC-derived neural cells were compared with those from 15 donor matched fibroblast lines. Following dexamethasone treatment, there was a 670% increase in FKBP5 expression in fibroblasts, mimicking findings in peripheral blood-derived cells, but only a 23% increase in iPSC-derived neural cultures. FKBP5 rs1360780 genotype did not affect the induction of FKBP5 mRNA in either fibroblasts or neural cells. These results suggest that iPSC-derived forebrain-lineage neurons may not be an optimal neural cell type in which to examine relationships between GR activation, FKBP5 expression, and genetic variation in human subjects. Further, FKBP5 induction following GR activation may differ between cell types derived from the same individual.
Collapse
Affiliation(s)
- Richard Lieberman
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington 06030-1410, CT, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia 19104, PA, USA; VISN4 MIRECC, Crescenz Philadelphia VAMC, Philadelphia 19104, PA, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington 06030, CT, USA
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington 06030-1410, CT, USA.
| |
Collapse
|
44
|
Vekshina N, Anokhin P, Veretinskaya A, Shamakina I. Heterodimeric D1-D2 dopamine receptors: a review. ACTA ACUST UNITED AC 2017. [DOI: 10.18097/pbmc20176301005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes modern data on the structure and functions ofheteromersformed by D1 and D2 dopamine receptors focusing on their role in the mechanisms of drug dependence. This article discusses potential functional significance of heterodimeric D1-D2 dopamine receptorsdue to their localization in the brain as well as unique pharmacological propertiesversus constituent monomers. It is shown that heteromerization results in dramatic changes in activated signaling pathways compare to the corresponding monomers. These studies update our current knowledge of ligand-receptor interactions and provide better understanding of dopamine receptors pharmacology. Furthermore elucidation of significance of heterodimeric D1-D2 dopamine receptors as drug targets is important for the development of new effective drug addiction treatment.
Collapse
Affiliation(s)
- N.L. Vekshina
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - P.K. Anokhin
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - A.G. Veretinskaya
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| | - I.Yu. Shamakina
- V.P. Serbsky Federal Medical Research Center on Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
45
|
Baud A, Mulligan MK, Casale FP, Ingels JF, Bohl CJ, Callebert J, Launay JM, Krohn J, Legarra A, Williams RW, Stegle O. Genetic Variation in the Social Environment Contributes to Health and Disease. PLoS Genet 2017; 13:e1006498. [PMID: 28121987 PMCID: PMC5266220 DOI: 10.1371/journal.pgen.1006498] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022] Open
Abstract
Assessing the impact of the social environment on health and disease is challenging. As social effects are in part determined by the genetic makeup of social partners, they can be studied from associations between genotypes of one individual and phenotype of another (social genetic effects, SGE, also called indirect genetic effects). For the first time we quantified the contribution of SGE to more than 100 organismal phenotypes and genome-wide gene expression measured in laboratory mice. We find that genetic variation in cage mates (i.e. SGE) contributes to variation in organismal and molecular measures related to anxiety, wound healing, immune function, and body weight. Social genetic effects explained up to 29% of phenotypic variance, and for several traits their contribution exceeded that of direct genetic effects (effects of an individual's genotypes on its own phenotype). Importantly, we show that ignoring SGE can severely bias estimates of direct genetic effects (heritability). Thus SGE may be an important source of "missing heritability" in studies of complex traits in human populations. In summary, our study uncovers an important contribution of the social environment to phenotypic variation, sets the basis for using SGE to dissect social effects, and identifies an opportunity to improve studies of direct genetic effects.
Collapse
Affiliation(s)
- Amelie Baud
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Francesco Paolo Casale
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jesse F. Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Casey J. Bohl
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jacques Callebert
- AP-HP, Hôpital Lariboisière, Department of Biochemistry, INSERM U942, Paris, France
| | - Jean-Marie Launay
- AP-HP, Hôpital Lariboisière, Department of Biochemistry, INSERM U942, Paris, France
| | - Jon Krohn
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | | | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
46
|
Voltage-Sensitive Potassium Channels of the BK Type and Their Coding Genes Are Alcohol Targets in Neurons. Handb Exp Pharmacol 2017; 248:281-309. [PMID: 29204711 DOI: 10.1007/164_2017_78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among all members of the voltage-gated, TM6 ion channel superfamily, the proteins that constitute calcium- and voltage-gated potassium channels of large conductance (BK) and their coding genes are unique for their involvement in ethanol-induced disruption of normal physiology and behavior. Moreover, in vitro studies document that BK activity is modified by ethanol with an EC50~23 mM, which is near blood alcohol levels considered legal intoxication in most states of the USA (0.08 g/dL = 17.4 mM). Following a succinct introduction to our current understanding of BK structure and function in central neurons, with a focus on neural circuits that contribute to the neurobiology of alcohol use disorders (AUD), we review the modifications in organ physiology by alcohol exposure via BK and the different molecular elements that determine the ethanol response of BK in alcohol-naïve systems, including the role of an ethanol-recognizing site in the BK-forming slo1 protein, modulation of accessory BK subunits, and their coding genes. The participation of these and additional elements in determining the response of a system or an organism to protracted ethanol exposure is consequently analyzed, with insights obtained from invertebrate and vertebrate models. Particular emphasis is put on the role of BK and coding genes in different forms of tolerance to alcohol exposure. We finally discuss genetic results on BK obtained in invertebrate organisms and rodents in light of possible extrapolation to human AUD.
Collapse
|
47
|
PACAP Protects the Adolescent and Adult Mice Brain from Ethanol Toxicity and Modulates Distinct Sets of Genes Regulating Similar Networks. Mol Neurobiol 2016; 54:7534-7548. [PMID: 27826748 DOI: 10.1007/s12035-016-0204-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid neuropeptide which has been shown to exert various neuroprotective actions in vitro and in vivo; however, the ability of endogenous PACAP to prevent cell death in vivo remains to be elucidated. To explore the capacity of endogenous PACAP to prevent ethanol toxicity, adolescent and adult PACAP knockout (KO) mice were injected with ethanol in a binge drinking-like manner. Biochemical analyses revealed that ethanol administration induced an increase in the production of reactive oxygen species and the activity of caspase-3 in PACAP KO mice in an age-independent manner. In order to characterize the mechanisms underlying the sensitivity of PACAP KO mice, a whole-genome microarray analysis was performed to compare gene regulations induced by ethanol in adolescent and adult wild-type and PACAP KO mice. Gene expression substantially differed between adolescent and adult wild-type mice, suggesting distinct effects of ethanol according to the state of brain maturation. Interestingly, in adolescent and adult PACAP KO mice, the set of genes regulated were also markedly different but seemed to inhibit some similar regulatory network processes associated in particular with DNA repair and cell cycle. These data imply that ethanol induces serious DNA damages and cell cycle alteration in PACAP KO mice. This hypothesis, based on the transcriptomic data, could be confirmed by functional studies which showed that cell proliferation decreased in adolescent and adult PACAP KO mice treated with ethanol but recovered after a 30-day withdrawal period. These data, obtained with PACAP KO animals, demonstrate that endogenous PACAP protects the brain of adolescent and adult mice from alcohol toxicity and modulates distinct sets of genes according to the maturation status of the brain.
Collapse
|
48
|
Gavin DP, Kusumo H, Zhang H, Guidotti A, Pandey SC. Role of Growth Arrest and DNA Damage-Inducible, Beta in Alcohol-Drinking Behaviors. Alcohol Clin Exp Res 2016; 40:263-72. [PMID: 26842245 DOI: 10.1111/acer.12965] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND The contribution of epigenetic factors, such as histone acetylation and DNA methylation, to the regulation of alcohol-drinking behavior has been increasingly recognized over the last several years. GADD45b is a protein demonstrated to be involved in DNA demethylation at neurotrophic factor gene promoters, including at brain-derived neurotrophic factor (Bdnf) which has been highly implicated in alcohol-drinking behavior. METHODS DNA methyltransferase-1 (Dnmt1), 3a, and 3b, and Gadd45a, b, and g mRNA were measured in the nucleus accumbens (NAc) and ventral tegmental areas of high ethanol (EtOH) consuming C57BL/6J (C57) and low alcohol consuming DBA/2J (DBA) mice using quantitative reverse transcriptase polymerase chain reaction (PCR). In the NAc, GADD45b protein was measured via immunohistochemistry and Bdnf9a mRNA using in situ PCR. Bdnf9a promoter histone H3 acetylated at lysines 9 and 14 (H3K9,K14ac) was measured using chromatin immunoprecipitation, and 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) using methylated DNA immunoprecipitation. Alcohol-drinking behavior was evaluated in Gadd45b haplodeficient (+/-) and null mice (-/-) utilizing drinking-in-the-dark (DID) and 2-bottle free-choice paradigms. RESULTS C57 mice had lower levels of Gadd45b and g mRNA and GADD45b protein in the NAc relative to the DBA strain. C57 mice had lower NAc shell Bdnf9a mRNA levels, Bdnf9a promoter H3K9,K14ac, and higher Bdnf9a promoter 5HMC and 5MC. Acute EtOH increased GADD45b protein, Bdnf9a mRNA, and histone acetylation and decreased 5HMC in C57 mice. Gadd45b +/- mice displayed higher drinking behavior relative to wild-type littermates in both DID and 2-bottle free-choice paradigms. CONCLUSIONS These data indicate the importance of the DNA demethylation pathway and its interactions with histone posttranslational modifications in alcohol-drinking behavior. Further, we suggest that lower DNA demethylation protein GADD45b levels may affect Bdnf expression possibly leading to altered alcohol-drinking behavior.
Collapse
Affiliation(s)
- David P Gavin
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Handojo Kusumo
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Huaibo Zhang
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
49
|
Yeo S, Hodgkinson CA, Zhou Z, Jung J, Leung M, Yuan Q, Goldman D. The abundance of cis-acting loci leading to differential allele expression in F1 mice and their relationship to loci harboring genes affecting complex traits. BMC Genomics 2016; 17:620. [PMID: 27515598 PMCID: PMC4982227 DOI: 10.1186/s12864-016-2922-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/07/2016] [Indexed: 12/16/2022] Open
Abstract
Background Genome-wide surveys have detected cis-acting quantitative trait loci altering levels of RNA transcripts (RNA-eQTLs) by associating SNV alleles to transcript levels. However, the sensitivity and specificity of detection of cis- expression quantitative trait loci (eQTLs) by genetic approaches, reliant as it is on measurements of transcript levels in recombinant inbred strains or offspring from arranged crosses, is unknown, as is their relationship to QTL’s for complex phenotypes. Results We used transcriptome-wide differential allele expression (DAE) to detect cis-eQTLs in forebrain and kidney from reciprocal crosses between three mouse inbred strains, 129S1/SvlmJ, DBA/2J, and CAST/EiJ and C57BL/6 J. Two of these crosses were previously characterized for cis-eQTLs and QTLs for various complex phenotypes by genetic analysis of recombinant inbred (RI) strains. 5.4 %, 1.9 % and 1.5 % of genes assayed in forebrain of B6/129SF1, B6/DBAF1, and B6/CASTF1 mice, respectively, showed differential allelic expression, indicative of cis-acting alleles at these genes. Moreover, the majority of DAE QTLs were observed to be tissue-specific with only a small fraction showing cis-effects in both tissues. Comparing DAE QTLs in F1 mice to cis-eQTLs previously mapped in RI strains we observed that many of the cis-eQTLs were not confirmed by DAE. Additionally several novel DAE-QTLs not identified as cis-eQTLs were identified suggesting that there are differences in sensitivity and specificity for QTL detection between the two methodologies. Strain specific DAE QTLs in B6/DBAF1 mice were located in excess at candidate genes for alcohol use disorders, seizures, and angiogenesis previously implicated by genetic linkage in C57BL/6J × DBA/2JF2 mice or BXD RI strains. Conclusions Via a survey for differential allele expression in F1 mice, a substantial proportion of genes were found to have alleles altering expression in cis-acting fashion. Comparing forebrain and kidney, many or most of these alleles were tissue-specific in action. The identification of strain specific DAE QTLs, can assist in assessment of candidate genes located within the large intervals associated with trait QTLs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2922-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seungeun Yeo
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Zhifeng Zhou
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Jeesun Jung
- Laboratory of Epidemiology and Biometry, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Ming Leung
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - Qiaoping Yuan
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA
| | - David Goldman
- Laboratory of Neurogenetics, National institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20852, USA.
| |
Collapse
|
50
|
The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans. Int J Mol Sci 2016; 17:ijms17081271. [PMID: 27527158 PMCID: PMC5000669 DOI: 10.3390/ijms17081271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21–26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.
Collapse
|