1
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2024. [PMID: 38778747 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Chen Y, Zhao C, Guo H, Zou W, Zhang Z, Wei D, Lu H, Zhang L, Zhao Y. Wip1 inhibits neutrophil extracellular traps to promote abscess formation in mice by directly dephosphorylating Coronin-1a. Cell Mol Immunol 2023; 20:941-954. [PMID: 37386173 PMCID: PMC10387484 DOI: 10.1038/s41423-023-01057-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/04/2023] [Indexed: 07/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) participate in the rapid inhibition and clearance of pathogens during infection; however, the molecular regulation of NET formation remains poorly understood. In the current study, we found that inhibition of the wild-type p53-induced phosphatase 1 (Wip1) significantly suppressed the activity of Staphylococcus aureus (S. aureus) and accelerated abscess healing in S. aureus-induced abscess model mice by enhancing NET formation. A Wip1 inhibitor significantly enhanced NET formation in mouse and human neutrophils in vitro. High-resolution mass spectrometry and biochemical assays demonstrated that Coro1a is a substrate of Wip1. Further experiments also revealed that Wip1 preferentially and directly interacts with phosphorylated Coro1a than compared to unphosphorylated inactivated Coro1a. The phosphorylated Ser426 site of Coro1a and the 28-90 aa domain of Wip1 are essential for the direct interaction of Coro1a and Wip1 and for Wip1 dephosphorylation of p-Coro1a Ser426. Wip1 deletion or inhibition in neutrophils significantly upregulated the phosphorylation of Coro1a-Ser426, which activated phospholipase C and subsequently the calcium pathway, the latter of which promoted NET formation after infection or lipopolysaccharide stimulation. This study revealed Coro1a to be a novel substrate of Wip1 and showed that Wip1 is a negative regulator of NET formation during infection. These results support the potential application of Wip1 inhibitors to treat bacterial infections.
Collapse
Affiliation(s)
- Yifang Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weilong Zou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regeneration, Beijing, China.
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regeneration, Beijing, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Schneider F, Metz I, Rust MB. Regulation of actin filament assembly and disassembly in growth cone motility and axon guidance. Brain Res Bull 2023; 192:21-35. [PMID: 36336143 DOI: 10.1016/j.brainresbull.2022.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Directed outgrowth of axons is fundamental for the establishment of neuronal networks. Axon outgrowth is guided by growth cones, highly motile structures enriched in filamentous actin (F-actin) located at the axons' distal tips. Growth cones exploit F-actin-based protrusions to scan the environment for guidance cues, and they contain the sensory apparatus to translate guidance cue information into intracellular signaling cascades. These cascades act upstream of actin-binding proteins (ABP) and thereby control assembly and disassembly of F-actin. Spatiotemporally controlled F-actin dis-/assembly in growth cones steers the axon towards attractants and away from repellents, and it thereby navigates the axon through the developing nervous system. Hence, ABP that control F-actin dynamics emerged as critical regulators of neuronal network formation. In the present review article, we will summarize and discuss current knowledge of the mechanisms that control remodeling of the actin cytoskeleton in growth cones, focusing on recent progress in the field. Further, we will introduce tools and techniques that allow to study actin regulatory mechanism in growth cones.
Collapse
Affiliation(s)
- Felix Schneider
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany.
| |
Collapse
|
4
|
Ndinyanka Fabrice T, Bianda C, Zhang H, Jayachandran R, Ruer-Laventie J, Mori M, Moshous D, Fucile G, Schmidt A, Pieters J. An evolutionarily conserved coronin-dependent pathway defines cell population size. Sci Signal 2022; 15:eabo5363. [DOI: 10.1126/scisignal.abo5363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Maintenance of cell population size is fundamental to the proper functioning of multicellular organisms. Here, we describe a cell-intrinsic cell density–sensing pathway that enabled T cells to reach and maintain an appropriate population size. This pathway operated “kin-to-kin” or between identical or similar T cell populations occupying a niche within a tissue or organ, such as the lymph nodes, spleen, and blood. We showed that this pathway depended on the cell density–dependent abundance of the evolutionarily conserved protein coronin 1, which coordinated prosurvival signaling with the inhibition of cell death until the cell population reached threshold densities. At or above threshold densities, coronin 1 expression peaked and remained stable, thereby resulting in the initiation of apoptosis through kin-to-kin intercellular signaling to return the cell population to the appropriate cell density. This cell population size-controlling pathway was conserved from amoeba to humans, thus providing evidence for the existence of a coronin-regulated, evolutionarily conserved mechanism by which cells are informed of and coordinate their relative population size.
Collapse
Affiliation(s)
| | | | - Haiyan Zhang
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | - Mayumi Mori
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Despina Moshous
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris and Imagine Institute, INSERM UMR1163, Université de Paris, 75015 Paris, France
| | - Geoffrey Fucile
- SIB Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, 4056 Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Mori M, Ruer-Laventie J, Duchemin W, Demougin P, Ndinyanka Fabrice T, Wymann MP, Pieters J. Suppression of caspase 8 activity by a coronin 1-PI3Kδ pathway promotes T cell survival independently of TCR and IL-7 signaling. Sci Signal 2021; 14:eabj0057. [PMID: 34932374 DOI: 10.1126/scisignal.abj0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The control of T cell survival is crucial for defense against infectious pathogens or emerging cancers. Although the survival of peripheral naïve T cells has been proposed to be controlled by interleukin-7 (IL-7) signaling and T cell receptor (TCR) activation by peptide-loaded major histocompatibility complexes (pMHC), the essential roles for these pathways in thymic output and T cell proliferation have complicated the analysis of their contributions to T cell survival. Here, we showed that the WD repeat–containing protein coronin 1, which is dispensable for thymic selection and output, promoted naïve T cell survival in the periphery in a manner that was independent of TCR and IL-7 signaling. Coronin 1 was required for the maintenance of the basal activity of phosphoinositide 3-kinase δ (PI3Kδ), thereby suppressing caspase 8–mediated apoptosis. These results therefore reveal a coronin 1–dependent PI3Kδ pathway that is independent of pMHC:TCR and IL-7 signaling and essential for peripheral T cell survival.
Collapse
Affiliation(s)
- Mayumi Mori
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Wandrille Duchemin
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Scientific Computing (sciCORE), University of Basel, Basel, Switzerland
| | - Philippe Demougin
- Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland
| | | | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Menon S, Goldfarb D, Ho CT, Cloer EW, Boyer NP, Hardie C, Bock AJ, Johnson EC, Anil J, Major MB, Gupton SL. The TRIM9/TRIM67 neuronal interactome reveals novel activators of morphogenesis. Mol Biol Cell 2021; 32:314-330. [PMID: 33378226 PMCID: PMC8098814 DOI: 10.1091/mbc.e20-10-0622] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
TRIM9 and TRIM67 are neuronally enriched E3 ubiquitin ligases essential for appropriate morphogenesis of cortical and hippocampal neurons and fidelitous responses to the axon guidance cue netrin-1. Deletion of murine Trim9 or Trim67 results in neuroanatomical defects and striking behavioral deficits, particularly in spatial learning and memory. TRIM9 and TRIM67 interact with cytoskeletal and exocytic proteins, but the full interactome is not known. Here we performed the unbiased proximity-dependent biotin identification (BioID) approach to define TRIM9 and TRIM67 protein-protein proximity network in developing cortical neurons and identified putative neuronal TRIM interaction partners. Candidates included cytoskeletal regulators, cytosolic protein transporters, exocytosis and endocytosis regulators, and proteins necessary for synaptic regulation. A subset of high-priority candidates was validated, including Myo16, Coro1A, MAP1B, ExoC1, GRIP1, PRG-1, and KIF1A. For a subset of validated candidates, we utilized total internal reflection fluorescence microscopy to demonstrate dynamic colocalization with TRIM proteins at the axonal periphery, including at the tips of filopodia. Further analysis demonstrated that the RNA interference-based knockdown of the unconventional myosin Myo16 in cortical neurons altered growth cone filopodia density and axonal branching patterns in a TRIM9- and netrin-1-dependent manner. Future analysis of other validated candidates will likely identify novel proteins and mechanisms by which TRIM9 and TRIM67 regulate neuronal form and function. [Media: see text].
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chris T. Ho
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Erica W. Cloer
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nicholas P. Boyer
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher Hardie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew J. Bock
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Emma C. Johnson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Joel Anil
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - M. Ben Major
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
7
|
Shwartz Y, Gonzalez-Celeiro M, Chen CL, Pasolli HA, Sheu SH, Fan SMY, Shamsi F, Assaad S, Lin ETY, Zhang B, Tsai PC, He M, Tseng YH, Lin SJ, Hsu YC. Cell Types Promoting Goosebumps Form a Niche to Regulate Hair Follicle Stem Cells. Cell 2020; 182:578-593.e19. [PMID: 32679029 DOI: 10.1016/j.cell.2020.06.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 04/06/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
Piloerection (goosebumps) requires concerted actions of the hair follicle, the arrector pili muscle (APM), and the sympathetic nerve, providing a model to study interactions across epithelium, mesenchyme, and nerves. Here, we show that APMs and sympathetic nerves form a dual-component niche to modulate hair follicle stem cell (HFSC) activity. Sympathetic nerves form synapse-like structures with HFSCs and regulate HFSCs through norepinephrine, whereas APMs maintain sympathetic innervation to HFSCs. Without norepinephrine signaling, HFSCs enter deep quiescence by down-regulating the cell cycle and metabolism while up-regulating quiescence regulators Foxp1 and Fgf18. During development, HFSC progeny secretes Sonic Hedgehog (SHH) to direct the formation of this APM-sympathetic nerve niche, which in turn controls hair follicle regeneration in adults. Our results reveal a reciprocal interdependence between a regenerative tissue and its niche at different stages and demonstrate sympathetic nerves can modulate stem cells through synapse-like connections and neurotransmitters to couple tissue production with demands.
Collapse
Affiliation(s)
- Yulia Shwartz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Meryem Gonzalez-Celeiro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Chih-Lung Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Shu-Hsien Sheu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sabrina Mai-Yi Fan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Steven Assaad
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Edrick Tai-Yu Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Bing Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Pai-Chi Tsai
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Megan He
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yu-Hua Tseng
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan; Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 100, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
8
|
Wang T, Bai S, Wang W, Chen Z, Chen J, Liang Z, Qi X, Shen H, Xie P. Diterpene Ginkgolides Exert an Antidepressant Effect Through the NT3-TrkA and Ras-MAPK Pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1279-1294. [PMID: 32308365 PMCID: PMC7132272 DOI: 10.2147/dddt.s229145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
Background Depression is a highly prevalent mental illness that severely impacts the quality of life of affected individuals. Our recent studies demonstrated that diterpene ginkgolides (DG) have antidepressant effects in mice. However, the underlying molecular mechanisms remained much unclear. Methods In this study, we assessed the antidepressant effects of chronic DG therapy in rats by evaluating depression-related behaviors, we also examined potential side effects using biochemical indicators. Furthermore, we performed an in-depth molecular network analysis of gene–protein–metabolite interactions on the basis of metabolomics. Results Chronic DG treatment significantly ameliorated the depressive-like behavioral phenotype. Furthermore, the neurotrophin signaling-related NT3-TrkA and Ras-MAPK pathways may play an important role in the antidepressant effect of DG in the hippocampus. Conclusion These findings provide novel insight into the mechanisms underlying the antidepressant action of DG, and should help advance the development of new therapeutic strategies for depression.
Collapse
Affiliation(s)
- Ting Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China
| | - Shunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China
| | - Wei Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China
| | - Jianjun Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China
| | - Zihong Liang
- Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, People's Republic of China
| | - Xunzhong Qi
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hailan Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Peng Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Neurobiology, Chongqing, People's Republic of China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, People's Republic of China.,Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, People's Republic of China
| |
Collapse
|
9
|
Kuhn KD, Edamura K, Bhatia N, Cheng I, Clark SA, Haynes CV, Heffner DL, Kabir F, Velasquez J, Spano AJ, Deppmann CD, Keeler AB. Molecular dissection of TNFR-TNFα bidirectional signaling reveals both cooperative and antagonistic interactions with p75 neurotrophic factor receptor in axon patterning. Mol Cell Neurosci 2020; 103:103467. [PMID: 32004684 PMCID: PMC7682658 DOI: 10.1016/j.mcn.2020.103467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 11/25/2022] Open
Abstract
During neural development, complex organisms rely on progressive and regressive events whereby axons, synapses, and neurons are overproduced followed by selective elimination of a portion of these components. Tumor necrosis factor α (TNFα) together with its cognate receptor (Tumor necrosis factor receptor 1; TNFR1) have been shown to play both regressive (i.e. forward signaling from the receptor) and progressive (i.e. reverse signaling from the ligand) roles in sympathetic neuron development. In contrast, a paralog of TNFR1, p75 neurotrophic factor receptor (p75NTR) promotes mainly regressive developmental events in sympathetic neurons. Here we examine the interplay between these paralogous receptors in the regulation of axon branch elimination and arborization. We confirm previous reports that these TNFR1 family members are individually capable of promoting ligand-dependent suppression of axon growth and branching. Remarkably, p75NTR and TNFR1 physically interact and p75NTR requires TNFR1 for ligand-dependent axon suppression of axon branching but not vice versa. We also find that p75NTR forward signaling and TNFα reverse signaling are functionally antagonistic. Finally, we find that TNFα reverse signaling is necessary for nerve growth factor (NGF) dependent axon growth. Taken together these findings demonstrate several levels of synergistic and antagonistic interactions using very few signaling pathways and that the balance of these synergizing and opposing signals act to ensure proper axon growth and patterning.
Collapse
Affiliation(s)
- K D Kuhn
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - K Edamura
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - N Bhatia
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - I Cheng
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - S A Clark
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - C V Haynes
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - D L Heffner
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - F Kabir
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - J Velasquez
- Blue Ridge Virtual Governor's School, Palmyra, VA 22963, USA
| | - A J Spano
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - C D Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA.
| | - A B Keeler
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
10
|
Bagonis MM, Fusco L, Pertz O, Danuser G. Automated profiling of growth cone heterogeneity defines relations between morphology and motility. J Cell Biol 2019; 218:350-379. [PMID: 30523041 PMCID: PMC6314545 DOI: 10.1083/jcb.201711023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 09/26/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Growth cones are complex, motile structures at the tip of an outgrowing neurite. They often exhibit a high density of filopodia (thin actin bundles), which complicates the unbiased quantification of their morphologies by software. Contemporary image processing methods require extensive tuning of segmentation parameters, require significant manual curation, and are often not sufficiently adaptable to capture morphology changes associated with switches in regulatory signals. To overcome these limitations, we developed Growth Cone Analyzer (GCA). GCA is designed to quantify growth cone morphodynamics from time-lapse sequences imaged both in vitro and in vivo, but is sufficiently generic that it may be applied to nonneuronal cellular structures. We demonstrate the adaptability of GCA through the analysis of growth cone morphological variation and its relation to motility in both an unperturbed system and in the context of modified Rho GTPase signaling. We find that perturbations inducing similar changes in neurite length exhibit underappreciated phenotypic nuance at the scale of the growth cone.
Collapse
Affiliation(s)
- Maria M Bagonis
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Ludovico Fusco
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier Pertz
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Gaudenz Danuser
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Preston CC, Wyles SP, Reyes S, Storm EC, Eckloff BW, Faustino RS. NUP155 insufficiency recalibrates a pluripotent transcriptome with network remodeling of a cardiogenic signaling module. BMC SYSTEMS BIOLOGY 2018; 12:62. [PMID: 29848314 PMCID: PMC5977756 DOI: 10.1186/s12918-018-0590-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/24/2018] [Indexed: 12/03/2022]
Abstract
BACKGROUND Atrial fibrillation is a cardiac disease driven by numerous idiopathic etiologies. NUP155 is a nuclear pore complex protein that has been identified as a clinical driver of atrial fibrillation, yet the precise mechanism is unknown. The present study employs a systems biology algorithm to identify effects of NUP155 disruption on cardiogenicity in a model of stem cell-derived differentiation. METHODS Embryonic stem (ES) cell lines (n = 5) with truncated NUP155 were cultured in parallel with wild type (WT) ES cells (n = 5), and then harvested for RNAseq. Samples were run on an Illumina HiSeq 2000. Reads were analyzed using Strand NGS, Cytoscape, DAVID and Ingenuity Pathways Analysis to deconvolute the NUP155-disrupted transcriptome. Network topological analysis identified key features that controlled framework architecture and functional enrichment. RESULTS In NUP155 truncated ES cells, significant expression changes were detected in 326 genes compared to WT. These genes segregated into clusters that enriched for specific gene ontologies. Deconvolution of the collective framework into discrete sub-networks identified a module with the highest score that enriched for Cardiovascular System Development, and revealed NTRK1/TRKA and SRSF2/SC35 as critical hubs within this cardiogenic module. CONCLUSIONS The strategy of pluripotent transcriptome deconvolution used in the current study identified a novel association of NUP155 with potential drivers of arrhythmogenic AF. Here, NUP155 regulates cardioplasticity of a sub-network embedded within a larger framework of genome integrity, and exemplifies how transcriptome cardiogenicity in an embryonic stem cell genome is recalibrated by nucleoporin dysfunction.
Collapse
Affiliation(s)
- Claudia C. Preston
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N, Sioux Falls, SD 57104 USA
| | - Saranya P. Wyles
- Department of Dermatology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Santiago Reyes
- Department of Surgery, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Emily C. Storm
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N, Sioux Falls, SD 57104 USA
| | - Bruce W. Eckloff
- Medical Genome Facility, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Randolph S. Faustino
- Genetics and Genomics Group, Sanford Research, 2301 E. 60th Street N, Sioux Falls, SD 57104 USA
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22nd Street, Sioux Falls, SD 57105 USA
| |
Collapse
|
12
|
Barford K, Keeler A, McMahon L, McDaniel K, Yap CC, Deppmann CD, Winckler B. Transcytosis of TrkA leads to diversification of dendritic signaling endosomes. Sci Rep 2018; 8:4715. [PMID: 29549340 PMCID: PMC5856830 DOI: 10.1038/s41598-018-23036-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/05/2018] [Indexed: 01/16/2023] Open
Abstract
The development of the peripheral nervous system relies on long-distance signaling from target organs back to the soma. In sympathetic neurons, this long-distance signaling is mediated by target derived Nerve Growth Factor (NGF) interacting with its axonal receptor, TrkA. This ligand receptor complex internalizes into what is commonly referred to as the signaling endosome which is transported retrogradely to the soma and dendrites to mediate survival signaling and synapse formation, respectively. The molecular identity of signaling endosomes in dendrites has not yet been determined. Here, we perform a detailed analysis of TrkA endosomal compartments and trafficking patterns. We find that signaling endosomes are not uniform but molecularly diversified into Rab7 (late endosome) and Rab11 (recycling endosome) populations in axons and dendrites in vitro and in the soma in vivo. Surprisingly, TrkA-NGF signaling endosomes in dendrites undergo dynamic trafficking events, including putative fusion and fission. Overall, we find that signaling endosomes do not remain as a singular endosomal subtype but instead exist in multiple populations that undergo dynamic endosomal trafficking events. These dynamic events might drive functional diversification of the signaling endosome.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Austin Keeler
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903, USA
| | - Lloyd McMahon
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Kathryn McDaniel
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Chan Choo Yap
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA
| | - Christopher D Deppmann
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903, USA. .,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903, USA.
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908, USA.
| |
Collapse
|
13
|
Mapping the Role of MAP7 in Axon Collateral Branching. J Neurosci 2017; 37:6180-6182. [PMID: 28659330 DOI: 10.1523/jneurosci.0944-17.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 11/21/2022] Open
|
14
|
Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets. Mol Cell Neurosci 2017; 82:66-75. [PMID: 28461220 DOI: 10.1016/j.mcn.2017.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/17/2017] [Accepted: 04/27/2017] [Indexed: 11/22/2022] Open
Abstract
Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a-/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior.
Collapse
|
15
|
Armijo-Weingart L, Gallo G. It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches. Mol Cell Neurosci 2017; 84:36-47. [PMID: 28359843 DOI: 10.1016/j.mcn.2017.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/03/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
The formation of axon collateral branches from the pre-existing shafts of axons is an important aspect of neurodevelopment and the response of the nervous system to injury. This article provides an overview of the role of the cytoskeleton and signaling mechanisms in the formation of axon collateral branches. Both the actin filament and microtubule components of the cytoskeleton are required for the formation of axon branches. Recent work has begun to shed light on how these two elements of the cytoskeleton are integrated by proteins that functionally or physically link the cytoskeleton. While a number of signaling pathways have been determined as having a role in the formation of axon branches, the complexity of the downstream mechanisms and links to specific signaling pathways remain to be fully determined. The regulation of intra-axonal protein synthesis and organelle function are also emerging as components of signal-induced axon branching. Although much has been learned in the last couple of decades about the mechanistic basis of axon branching we can look forward to continue elucidating this complex biological phenomenon with the aim of understanding how multiple signaling pathways, cytoskeletal regulators and organelles are coordinated locally along the axon to give rise to a branch.
Collapse
Affiliation(s)
- Lorena Armijo-Weingart
- Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States
| | - Gianluca Gallo
- Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States.
| |
Collapse
|
16
|
Barford K, Deppmann C, Winckler B. The neurotrophin receptor signaling endosome: Where trafficking meets signaling. Dev Neurobiol 2017; 77:405-418. [PMID: 27503831 DOI: 10.1002/dneu.22427] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/05/2016] [Accepted: 08/04/2016] [Indexed: 11/08/2022]
Abstract
Neurons are the largest cells in the body and form subcellular compartments such as axons and dendrites. During both development and adulthood building blocks must be continually trafficked long distances to maintain the different regions of the neuron. Beyond building blocks, signaling complexes are also transported, allowing for example, axons to communicate with the soma. The critical roles of signaling via ligand-receptor complexes is perhaps best illustrated in the context of development, where they are known to regulate polarization, survival, axon outgrowth, dendrite development, and synapse formation. However, knowing 'when' and 'how much' signaling is occurring does not provide the complete story. The location of signaling has a significant impact on the functional outcomes. There are therefore complex and functionally important trafficking mechanisms in place to control the precise spatial and temporal aspects of many signal transduction events. In turn, many of these signaling events affect trafficking mechanisms, setting up an intricate connection between trafficking and signaling. In this review we will use neurotrophin receptors, specifically TrkA and TrkB, to illustrate the cell biology underlying the links between trafficking and signaling. Briefly, we will discuss the concepts of how trafficking and signaling are intimately linked for functional and diverse signaling outputs, and how the same protein can play different roles for the same receptor depending on its localization. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| |
Collapse
|
17
|
Martorella M, Barford K, Winkler B, Deppmann CD. Emergent Role of Coronin-1a in Neuronal Signaling. VITAMINS AND HORMONES 2016; 104:113-131. [PMID: 28215292 DOI: 10.1016/bs.vh.2016.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Coronin family of proteins were first noted for their role in pathogen-host interactions and for modulating actin dynamics. Recently, however, Coronins have been found in a greater variety of cell types, and novel roles for the Coronins within the nervous system have been discovered. In the immune system, Coronin-1a enables Mycobacterium tuberculosis to evade lysosomal destruction. This activity appears to be analogous to protection of the NGF-TrkA signaling endosome during sympathetic nervous system development that is required for survival signaling. Similarly, others have implicated Coronin-1a in GPCR signaling during the formation of excitatory connections in the central nervous system. Its role in multiple signaling pathways suggests that it may influence cross talk between key pathways (TrkA, GPCRs) during neurodevelopment. Here, we review the role of Coronin-1a in neural development and function.
Collapse
Affiliation(s)
- M Martorella
- University of Virginia, Charlottesville, VA, United States
| | - K Barford
- University of Virginia, Charlottesville, VA, United States
| | - B Winkler
- University of Virginia, Charlottesville, VA, United States
| | - C D Deppmann
- University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
18
|
Hensel N, Schön A, Konen T, Lübben V, Förthmann B, Baron O, Grothe C, Leifheit-Nestler M, Claus P, Haffner D. Fibroblast growth factor 23 signaling in hippocampal cells: impact on neuronal morphology and synaptic density. J Neurochem 2016; 137:756-69. [PMID: 26896818 DOI: 10.1111/jnc.13585] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/18/2016] [Accepted: 02/09/2016] [Indexed: 12/16/2022]
Abstract
Endocrine fibroblast growth factor 23 (FGF23) is predominantly secreted by osteocytes and facilitates renal phosphate excretion. However, FGF23 is also present in cerebrospinal fluid. In chronic kidney disease, FGF23 serum levels are excessively elevated and associated with learning and memory deficits. Structural plasticity of the hippocampus such as formation of new synapses or an altered dendritic arborization comprises a cellular and morphological correlate of memory formation. Therefore, we hypothesize that FGF23 alters hippocampal neuron morphology and synapses. To address this, we prepared primary murine hippocampal cultures and incubated them with recombinant FGF23 alone or together with a soluble isoform of its co-receptor α-Klotho. Neuronal expression of a fluorescent reporter allowed for a detailed evaluation of the neuronal morphology by Sholl analysis. Additionally, we evaluated synaptic density, identified by stainings, for synaptic markers. We show an enhanced number of primary neurites combined with a reduced arborization, resulting in a less complex morphology of neurons treated with FGF23. Moreover, FGF23 enhances the synaptic density in a FGF-receptor (FGF-R) dependent manner. Finally, we addressed the corresponding signaling events downstream of FGF-R employing a combination of western blots and quantitative immunofluorescence. Interestingly, FGF23 induces phospholipase Cγ activity in primary hippocampal neurons. Co-application of soluble α-Klotho leads to activation of the Akt-pathway and modifies FGF23-impact on neuronal morphology and synaptic density. Compared with other FGFs, this alternative signaling pattern is a possible reason for differential effects of FGF23 on hippocampal neurons and may thereby contribute to learning and memory deficits in chronic kidney disease patients. In this study, we show that fibroblast growth factor 23 inhibits neuronal ramification and enhances the synaptic density in primary hippocampal cultures accompanied by phospholipase Cγ-activation. Co-application of the co-receptor α-Klotho leads to an Akt-activation and further modifies neuronal morphology and number of synapses. Those effects provide a mechanistic basis for memory deficits in patients suffering from chronic kidney disease (CKD) characterized by excessively elevated FGF23 levels as well as memory deficits.
Collapse
Affiliation(s)
- Niko Hensel
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Anne Schön
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Timo Konen
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Verena Lübben
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | | | - Olga Baron
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Peter Claus
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany.,Center of Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Liu X, BoseDasgupta S, Jayachandran R, Studer V, Rühl S, Stiess M, Pieters J. Activation of the cAMP/protein kinase A signalling pathway by coronin 1 is regulated by cyclin-dependent kinase 5 activity. FEBS Lett 2016; 590:279-87. [PMID: 26823173 DOI: 10.1002/1873-3468.12046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/31/2023]
Abstract
Coronins constitute a family of conserved proteins expressed in all eukaryotes that have been implicated in the regulation of a wide variety of cellular activities. Recent work showed an essential role for coronin 1 in the modulation of the cAMP/PKA pathway in neurons through the interaction of coronin 1 with the G protein subtype Gαs in a stimulus-dependent manner, but the molecular mechanism regulating coronin 1-Gαs interaction remains unclear. We here show that phosphorylation of coronin 1 on Thr(418/424) by cyclin-dependent kinase (CDK) 5 activity was responsible for coronin 1-Gαs association and the modulation of cAMP production. Together these results show an essential role for CDK5 activity in promoting the coronin 1-dependent cAMP/PKA pathway.
Collapse
Affiliation(s)
| | | | | | - Vera Studer
- Biozentrum, University of Basel, Switzerland
| | | | | | | |
Collapse
|
20
|
Hagel KR, Beriont J, Tessier CR. Drosophila Cbp53E Regulates Axon Growth at the Neuromuscular Junction. PLoS One 2015; 10:e0132636. [PMID: 26167908 PMCID: PMC4500412 DOI: 10.1371/journal.pone.0132636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/16/2015] [Indexed: 11/19/2022] Open
Abstract
Calcium is a primary second messenger in all cells that functions in processes ranging from cellular proliferation to synaptic transmission. Proper regulation of calcium is achieved through numerous mechanisms involving channels, sensors, and buffers notably containing one or more EF-hand calcium binding domains. The Drosophila genome encodes only a single 6 EF-hand domain containing protein, Cbp53E, which is likely the prototypic member of a small family of related mammalian proteins that act as calcium buffers and calcium sensors. Like the mammalian homologs, Cbp53E is broadly though discretely expressed throughout the nervous system. Despite the importance of calcium in neuronal function and growth, nothing is known about Cbp53E's function in neuronal development. To address this deficiency, we generated novel null alleles of Drosophila Cbp53E and examined neuronal development at the well-characterized larval neuromuscular junction. Loss of Cbp53E resulted in increases in axonal branching at both peptidergic and glutamatergic neuronal terminals. This overgrowth could be completely rescued by expression of exogenous Cbp53E. Overexpression of Cbp53E, however, only affected the growth of peptidergic neuronal processes. These findings indicate that Cbp53E plays a significant role in neuronal growth and suggest that it may function in both local synaptic and global cellular mechanisms.
Collapse
Affiliation(s)
- Kimberly R. Hagel
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jane Beriont
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Charles R. Tessier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, South Bend, Indiana, United States of America
- * E-mail:
| |
Collapse
|