1
|
Li D, Wang Q, Bayat A, Battig MR, Zhou Y, Bosch DG, van Haaften G, Granger L, Petersen AK, Pérez-Jurado LA, Aznar-Laín G, Aneja A, Hancarova M, Bendova S, Schwarz M, Kremlikova Pourova R, Sedlacek Z, Keena BA, March ME, Hou C, O’Connor N, Bhoj EJ, Harr MH, Lemire G, Boycott KM, Towne M, Li M, Tarnopolsky M, Brady L, Parker MJ, Faghfoury H, Parsley LK, Agolini E, Dentici ML, Novelli A, Wright M, Palmquist R, Lai K, Scala M, Striano P, Iacomino M, Zara F, Cooper A, Maarup TJ, Byler M, Lebel RR, Balci TB, Louie R, Lyons M, Douglas J, Nowak C, Afenjar A, Hoyer J, Keren B, Maas SM, Motazacker MM, Martinez-Agosto JA, Rabani AM, McCormick EM, Falk MJ, Ruggiero SM, Helbig I, Møller RS, Tessarollo L, Tomassoni Ardori F, Palko ME, Hsieh TC, Krawitz PM, Ganapathi M, Gelb BD, Jobanputra V, Wilson A, Greally J, Jacquemont S, Jizi K, Bruel AL, Quelin C, Misra VK, Chick E, Romano C, Greco D, Arena A, Morleo M, Nigro V, Seyama R, Uchiyama Y, Matsumoto N, Taira R, Tashiro K, Sakai Y, Yigit G, Wollnik B, Wagner M, Kutsche B, Hurst AC, Thompson ML, Schmidt R, Randolph L, Spillmann RC, Shashi V, Higginbotham EJ, Cordeiro D, Carnevale A, Costain G, Khan T, Funalot B, Tran Mau-Them F, Fernandez Garcia Moya L, García-Miñaúr S, Osmond M, Chad L, Quercia N, Carrasco D, Li C, Sanchez-Valle A, Kelley M, Nizon M, Jensson BO, Sulem P, Stefansson K, Gorokhova S, Busa T, Rio M, Hadj Habdallah H, Lesieur-Sebellin M, Amiel J, Pingault V, Mercier S, Vincent M, Philippe C, Fatus-Fauconnier C, Friend K, Halligan RK, Biswas S, Rosser J, Shoubridge C, Corbett M, Barnett C, Gecz J, Leppig K, Slavotinek A, Marcelis C, Pfundt R, de Vries BB, van Slegtenhorst MA, Brooks AS, Cogne B, Rambaud T, Tümer Z, Zackai EH, Akizu N, Song Y, Hakonarson H. Spliceosome malfunction causes neurodevelopmental disorders with overlapping features. J Clin Invest 2024; 134:e171235. [PMID: 37962958 PMCID: PMC10760965 DOI: 10.1172/jci171235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, and
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Allan Bayat
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department for Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Yijing Zhou
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniëlle G.M. Bosch
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leslie Granger
- Department of Genetics and Metabolism, Randall Children’s Hospital at Legacy Emanuel Medical Center, Portland, Oregon, USA
| | - Andrea K. Petersen
- Department of Genetics and Metabolism, Randall Children’s Hospital at Legacy Emanuel Medical Center, Portland, Oregon, USA
| | - Luis A. Pérez-Jurado
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Genetic Service, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Gemma Aznar-Laín
- Universitat Pompeu Fabra, Barcelona, Spain
- Pediatric Neurology, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Anushree Aneja
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Miroslava Hancarova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Sarka Bendova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Martin Schwarz
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Radka Kremlikova Pourova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Beth A. Keena
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Elizabeth J. Bhoj
- Center for Applied Genomics, and
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Gabrielle Lemire
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Megan Li
- Invitae, San Francisco, California, USA
| | - Mark Tarnopolsky
- Division of Neuromuscular and Neurometabolic Disorders, Department of Paediatrics, McMaster University Children’s Hospital, Hamilton, Ontario, Canada
| | - Lauren Brady
- Division of Neuromuscular and Neurometabolic Disorders, Department of Paediatrics, McMaster University Children’s Hospital, Hamilton, Ontario, Canada
| | - Michael J. Parker
- Department of Clinical Genetics, Sheffield Children’s Hospital, Sheffield, United Kingdom
| | | | - Lea Kristin Parsley
- University of Illinois College of Medicine, Mercy Health Systems, Rockford, Illinois, USA
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Academic Department of Pediatrics, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Meredith Wright
- Rady Children’s Institute for Genomic Medicine, San Diego, California, USA
| | - Rachel Palmquist
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Khanh Lai
- Division of Pediatric Pulmonary and Sleep Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, and
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, and
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS, Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS, Istituto Giannina Gaslini, Genoa, Italy
| | - Annina Cooper
- Department of Genetics, Southern California Permanente Medical Group, Kaiser Permanente, San Diego, California, USA
| | - Timothy J. Maarup
- Department of Genetics, Kaiser Permanente, Los Angeles, California, USA
| | - Melissa Byler
- Center for Development, Behavior and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Robert Roger Lebel
- Center for Development, Behavior and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Tugce B. Balci
- Division of Genetics, Department of Paediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - Raymond Louie
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Michael Lyons
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Jessica Douglas
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Catherine Nowak
- Division of Genetics and Metabolism, Mass General Hospital for Children, Boston, Massachusetts, USA
| | - Alexandra Afenjar
- APHP. SU, Reference Center for Intellectual Disabilities Caused by Rare Causes, Department of Genetics and Medical Embryology, Hôpital Trousseau, Paris, France
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Boris Keren
- Department of Genetics, Hospital Pitié-Salpêtrière, Paris, France
| | - Saskia M. Maas
- Department of Human Genetics, Academic Medical Center, and
| | - Mahdi M. Motazacker
- Laboratory of Genome Diagnostics, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ahna M. Rabani
- Division of Medical Genetics, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics
| | - Marni J. Falk
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics
| | - Sarah M. Ruggiero
- Division of Neurology, and
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ingo Helbig
- Division of Neurology, and
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rikke S. Møller
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Francesco Tomassoni Ardori
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Mary Ellen Palko
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter M. Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Mythily Ganapathi
- New York Genome Center, New York, New York, USA
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute and the Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, New York, USA
| | - Vaidehi Jobanputra
- New York Genome Center, New York, New York, USA
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - John Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sébastien Jacquemont
- Division of Genetics and Genomics, CHU Ste-Justine Hospital and CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Khadijé Jizi
- Division of Genetics and Genomics, CHU Ste-Justine Hospital and CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Ange-Line Bruel
- INSERM UMR 1231, Genetics of Developmental Anomalies, Université de Bourgogne Franche-Comté, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Translational Medicine in Developmental Anomalies, CHU Dijon Bourgogne, Dijon, France
| | - Chloé Quelin
- Medical Genetics Department, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Vinod K. Misra
- Division of Genetic, Genomic, and Metabolic Disorders, Children’s Hospital of Michigan, Detroit, Michigan, USA
- Central Michigan University College of Medicine, Discipline of Pediatrics, Mount Pleasant, Michigan, USA
| | - Erika Chick
- Division of Genetic, Genomic, and Metabolic Disorders, Children’s Hospital of Michigan, Detroit, Michigan, USA
| | - Corrado Romano
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rie Seyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Tashiro
- Department of Pediatrics, Karatsu Red Cross Hospital, Saga, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Michael Wagner
- Kinderzentrum Oldenburg, Sozialpädiatrisches Zentrum, Diakonisches Werk Oldenburg, Oldenburg, Germany
| | - Barbara Kutsche
- Kinderzentrum Oldenburg, Sozialpädiatrisches Zentrum, Diakonisches Werk Oldenburg, Oldenburg, Germany
| | - Anna C.E. Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Ryan Schmidt
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Linda Randolph
- Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Division of Medical Genetics, Children’s Hospital Los Angeles, California, USA
| | - Rebecca C. Spillmann
- Department of Pediatrics–Medical Genetics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vandana Shashi
- Department of Pediatrics–Medical Genetics, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Dawn Cordeiro
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Carnevale
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tayyaba Khan
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benoît Funalot
- Department of Genetics, Hôpital Henri-Mondor APHP and CHI Creteil, University Paris Est Creteil, IMRB, Inserm U.955, Creteil, France
| | - Frederic Tran Mau-Them
- INSERM UMR 1231, Genetics of Developmental Anomalies, Université de Bourgogne Franche-Comté, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
| | | | - Sixto García-Miñaúr
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Matthew Osmond
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauren Chad
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nada Quercia
- Department of Genetic Counselling, Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Ottawa, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Diana Carrasco
- Department of Clinical Genetics, Cook Children’s Hospital, Fort Worth, Texas, USA
| | - Chumei Li
- Division of Genetics, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Amarilis Sanchez-Valle
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | - Meghan Kelley
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | - Mathilde Nizon
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
| | | | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Svetlana Gorokhova
- Aix Marseille University, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France
- Department of Medical Genetics, Timone Hospital, APHM, Marseille, France
| | - Tiffany Busa
- Department of Medical Genetics, Timone Hospital, APHM, Marseille, France
| | - Marlène Rio
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Hamza Hadj Habdallah
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Marion Lesieur-Sebellin
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Jeanne Amiel
- Rare Disease Genetics Department, APHP, Hôpital Necker, Paris, France
- Université Paris Cité, Inserm, Institut Imagine, Embryology and Genetics of Malformations Laboratory, Paris, France
| | - Véronique Pingault
- Rare Disease Genetics Department, APHP, Hôpital Necker, Paris, France
- Université Paris Cité, Inserm, Institut Imagine, Embryology and Genetics of Malformations Laboratory, Paris, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA (laboratoire-seqoia.fr), Paris, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
| | - Marie Vincent
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
| | - Christophe Philippe
- INSERM UMR 1231, Genetics of Developmental Anomalies, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Kathryn Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | - Jane Rosser
- Department of General Medicine, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Cheryl Shoubridge
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
| | - Mark Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
| | - Christopher Barnett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
- Pediatric and Reproductive Genetics Unit, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kathleen Leppig
- Genetic Services, Kaiser Permenante of Washington, Seattle, Washington, USA
| | - Anne Slavotinek
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Carlo Marcelis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B.A. de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Benjamin Cogne
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA (laboratoire-seqoia.fr), Paris, France
| | - Thomas Rambaud
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA (laboratoire-seqoia.fr), Paris, France
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elaine H. Zackai
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, and
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Byeon S, Yadav S. Pleiotropic functions of TAO kinases and their dysregulation in neurological disorders. Sci Signal 2024; 17:eadg0876. [PMID: 38166033 DOI: 10.1126/scisignal.adg0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024]
Abstract
Thousand and one amino acid kinases (TAOKs) are relatively understudied and functionally pleiotropic protein kinases that have emerged as important regulators of neurodevelopment. Through their conserved amino-terminal catalytic domain, TAOKs mediate phosphorylation at serine/threonine residues in their substrates, but it is their divergent regulatory carboxyl-terminal domains that confer both exquisite functional specification and cellular localization. In this Review, we discuss the physiological roles of TAOKs and the intricate signaling pathways, molecular interactions, and cellular behaviors they modulate-from cell stress responses, division, and motility to tissue homeostasis, immunity, and neurodevelopment. These insights are then integrated into an analysis of the known and potential impacts of disease-associated variants of TAOKs, with a focus on neurodevelopmental disorders, pain and addiction, and neurodegenerative diseases. Translating this foundation into clinical benefits for patients will require greater structural and functional differentiation of the TAOKs afforded by their individually specialized domains.
Collapse
Affiliation(s)
- Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Ahmed M, Rajagopalan AE, Pan Y, Li Y, Williams DL, Pedersen EA, Thakral M, Previero A, Close KC, Christoforou CP, Cai D, Turner GC, Clowney EJ. Input density tunes Kenyon cell sensory responses in the Drosophila mushroom body. Curr Biol 2023; 33:2742-2760.e12. [PMID: 37348501 PMCID: PMC10529417 DOI: 10.1016/j.cub.2023.05.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
The ability to discriminate sensory stimuli with overlapping features is thought to arise in brain structures called expansion layers, where neurons carrying information about sensory features make combinatorial connections onto a much larger set of cells. For 50 years, expansion coding has been a prime topic of theoretical neuroscience, which seeks to explain how quantitative parameters of the expansion circuit influence sensory sensitivity, discrimination, and generalization. Here, we investigate the developmental events that produce the quantitative parameters of the arthropod expansion layer, called the mushroom body. Using Drosophila melanogaster as a model, we employ genetic and chemical tools to engineer changes to circuit development. These allow us to produce living animals with hypothesis-driven variations on natural expansion layer wiring parameters. We then test the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input density, but not cell number, tunes neuronal odor selectivity. Simple odor discrimination behavior is maintained when the Kenyon cell number is reduced and augmented by Kenyon cell number expansion. Animals with increased input density to each Kenyon cell show increased overlap in Kenyon cell odor responses and become worse at odor discrimination tasks.
Collapse
Affiliation(s)
- Maria Ahmed
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adithya E Rajagopalan
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yijie Pan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Donnell L Williams
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erik A Pedersen
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Manav Thakral
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Angelica Previero
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kari C Close
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | | | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA; Biophysics LS&A, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA
| | - Glenn C Turner
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
Ahmed M, Rajagopalan AE, Pan Y, Li Y, Williams DL, Pedersen EA, Thakral M, Previero A, Close KC, Christoforou CP, Cai D, Turner GC, Clowney EJ. Hacking brain development to test models of sensory coding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525425. [PMID: 36747712 PMCID: PMC9900841 DOI: 10.1101/2023.01.25.525425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Animals can discriminate myriad sensory stimuli but can also generalize from learned experience. You can probably distinguish the favorite teas of your colleagues while still recognizing that all tea pales in comparison to coffee. Tradeoffs between detection, discrimination, and generalization are inherent at every layer of sensory processing. During development, specific quantitative parameters are wired into perceptual circuits and set the playing field on which plasticity mechanisms play out. A primary goal of systems neuroscience is to understand how material properties of a circuit define the logical operations-computations--that it makes, and what good these computations are for survival. A cardinal method in biology-and the mechanism of evolution--is to change a unit or variable within a system and ask how this affects organismal function. Here, we make use of our knowledge of developmental wiring mechanisms to modify hard-wired circuit parameters in the Drosophila melanogaster mushroom body and assess the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input number, but not cell number, tunes odor selectivity. Simple odor discrimination performance is maintained when Kenyon cell number is reduced and augmented by Kenyon cell expansion.
Collapse
Affiliation(s)
- Maria Ahmed
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adithya E. Rajagopalan
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yijie Pan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Donnell L. Williams
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erik A. Pedersen
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Manav Thakral
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Angelica Previero
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kari C. Close
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | | | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48104, USA
- Biophysics LS&A, University of Michigan, Ann Arbor, MI 48109, United States
- Michigan Neuroscience Institute Affiliate
| | - Glenn C. Turner
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - E. Josephine Clowney
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate
| |
Collapse
|
5
|
Lin S. The making of the Drosophila mushroom body. Front Physiol 2023; 14:1091248. [PMID: 36711013 PMCID: PMC9880076 DOI: 10.3389/fphys.2023.1091248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
The mushroom body (MB) is a computational center in the Drosophila brain. The intricate neural circuits of the mushroom body enable it to store associative memories and process sensory and internal state information. The mushroom body is composed of diverse types of neurons that are precisely assembled during development. Tremendous efforts have been made to unravel the molecular and cellular mechanisms that build the mushroom body. However, we are still at the beginning of this challenging quest, with many key aspects of mushroom body assembly remaining unexplored. In this review, I provide an in-depth overview of our current understanding of mushroom body development and pertinent knowledge gaps.
Collapse
|
6
|
Philyaw TJ, Rothenfluh A, Titos I. The Use of Drosophila to Understand Psychostimulant Responses. Biomedicines 2022; 10:119. [PMID: 35052798 PMCID: PMC8773124 DOI: 10.3390/biomedicines10010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
The addictive properties of psychostimulants such as cocaine, amphetamine, methamphetamine, and methylphenidate are based on their ability to increase dopaminergic neurotransmission in the reward system. While cocaine and methamphetamine are predominately used recreationally, amphetamine and methylphenidate also work as effective therapeutics to treat symptoms of disorders including attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Although both the addictive properties of psychostimulant drugs and their therapeutic efficacy are influenced by genetic variation, very few genes that regulate these processes in humans have been identified. This is largely due to population heterogeneity which entails a requirement for large samples. Drosophila melanogaster exhibits similar psychostimulant responses to humans, a high degree of gene conservation, and allow performance of behavioral assays in a large population. Additionally, amphetamine and methylphenidate reduce impairments in fly models of ADHD-like behavior. Therefore, Drosophila represents an ideal translational model organism to tackle the genetic components underlying the effects of psychostimulants. Here, we break down the many assays that reliably quantify the effects of cocaine, amphetamine, methamphetamine, and methylphenidate in Drosophila. We also discuss how Drosophila is an efficient and cost-effective model organism for identifying novel candidate genes and molecular mechanisms involved in the behavioral responses to psychostimulant drugs.
Collapse
Affiliation(s)
- Travis James Philyaw
- Molecular Biology Graduate Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Della Noce B, Martins da Silva R, de Carvalho Uhl MV, Konnai S, Ohashi K, Calixto C, Arcanjo A, de Abreu LA, de Carvalho SS, da Silva Vaz I, Logullo C. REDOX IMBALANCE INDUCES REMODELING OF GLUCOSE METABOLISM IN RHIPICEPHALUS MICROPLUS EMBRYONIC CELL LINE. J Biol Chem 2022; 298:101599. [PMID: 35063504 PMCID: PMC8857477 DOI: 10.1016/j.jbc.2022.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
Carbohydrate metabolism not only functions in supplying cellular energy but also has an important role in maintaining physiological homeostasis and in preventing oxidative damage caused by reactive oxygen species. Previously, we showed that arthropod embryonic cell lines have high tolerance to H2O2 exposure. Here, we describe that Rhipicephalus microplus tick embryonic cell line (BME26) employs an adaptive glucose metabolism mechanism that confers tolerance to hydrogen peroxide at concentrations too high for other organisms. This adaptive mechanism sustained by glucose metabolism remodeling promotes cell survival and redox balance in BME26 cell line after millimolar H2O2 exposure. The present work shows that this tick cell line could tolerate high H2O2 concentrations by initiating a carbohydrate-related adaptive response. We demonstrate that gluconeogenesis was induced as a compensation strategy that involved, among other molecules, the metabolic enzymes NADP-ICDH, G6PDH, and PEPCK. We also found that this phenomenon was coupled to glycogen accumulation and glucose uptake, supporting the pentose phosphate pathway to sustain NADPH production and leading to cell survival and proliferation. Our findings suggest that the described response is not atypical, being also observed in cancer cells, which highlights the importance of this model to all proliferative cells. We propose that these results will be useful in generating basic biological information to support the development of new strategies for disease treatment and parasite control.
Collapse
|
8
|
van Woerden GM, Bos M, de Konink C, Distel B, Avagliano Trezza R, Shur NE, Barañano K, Mahida S, Chassevent A, Schreiber A, Erwin AL, Gripp KW, Rehman F, Brulleman S, McCormack R, de Geus G, Kalsner L, Sorlin A, Bruel AL, Koolen DA, Gabriel MK, Rossi M, Fitzpatrick DR, Wilkie AOM, Calpena E, Johnson D, Brooks A, van Slegtenhorst M, Fleischer J, Groepper D, Lindstrom K, Innes AM, Goodwin A, Humberson J, Noyes A, Langley KG, Telegrafi A, Blevins A, Hoffman J, Guillen Sacoto MJ, Juusola J, Monaghan KG, Punj S, Simon M, Pfundt R, Elgersma Y, Kleefstra T. TAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development. Hum Mutat 2021; 42:445-459. [PMID: 33565190 PMCID: PMC8248425 DOI: 10.1002/humu.24176] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/29/2020] [Accepted: 02/05/2021] [Indexed: 01/05/2023]
Abstract
Thousand and one amino-acid kinase 1 (TAOK1) is a MAP3K protein kinase, regulating different mitogen-activated protein kinase pathways, thereby modulating a multitude of processes in the cell. Given the recent finding of TAOK1 involvement in neurodevelopmental disorders (NDDs), we investigated the role of TAOK1 in neuronal function and collected a cohort of 23 individuals with mostly de novo variants in TAOK1 to further define the associated NDD. Here, we provide evidence for an important role for TAOK1 in neuronal function, showing that altered TAOK1 expression levels in the embryonic mouse brain affect neural migration in vivo, as well as neuronal maturation in vitro. The molecular spectrum of the identified TAOK1 variants comprises largely truncating and nonsense variants, but also missense variants, for which we provide evidence that they can have a loss of function or dominant-negative effect on TAOK1, expanding the potential underlying causative mechanisms resulting in NDD. Taken together, our data indicate that TAOK1 activity needs to be properly controlled for normal neuronal function and that TAOK1 dysregulation leads to a neurodevelopmental disorder mainly comprising similar facial features, developmental delay/intellectual disability and/or variable learning or behavioral problems, muscular hypotonia, infant feeding difficulties, and growth problems.
Collapse
Affiliation(s)
- Geeske M van Woerden
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Melanie Bos
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Ben Distel
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands.,Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Natasha E Shur
- Division of Genetics and Metabolism, Rare Disease Institute, Children's National Medical Center, Washington, District of Columbia, USA
| | - Kristin Barañano
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Sonal Mahida
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | - Angelika L Erwin
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karen W Gripp
- Division of Medical Genetics, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Fatima Rehman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Saskia Brulleman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Róisín McCormack
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Gwynna de Geus
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Louisa Kalsner
- Departments of Neurology and Pediatrics, Connecticut Children's Medical Center and University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Arthur Sorlin
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares «Anomalies du Développement et syndromes malformatifs», Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Ange-Line Bruel
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares «Anomalies du Développement et syndromes malformatifs», Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - David A Koolen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Melissa K Gabriel
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, California, USA
| | - Mari Rossi
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, California, USA
| | | | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Oxford Craniofacial Unit, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Johnson
- Oxford Craniofacial Unit, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | - Julie Fleischer
- Department of Pediatrics, SIU School of Medicine, Springfield, Illinois, USA
| | - Daniel Groepper
- Department of Pediatrics, SIU School of Medicine, Springfield, Illinois, USA
| | - Kristin Lindstrom
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Allison Goodwin
- VCU Medical Center, Clinical Genetics Services, Richmond, Virginia, USA
| | - Jennifer Humberson
- Division of Pediatric Genetics, Department of Pediatrics, University of Virginia Medical Center, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Karnib N, van Staaden MJ. The Deep Roots of Addiction: A Comparative Perspective. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:222-229. [PMID: 33567426 DOI: 10.1159/000514180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/31/2020] [Indexed: 11/19/2022]
Abstract
Addiction is a debilitating condition that extracts enormous social and economic tolls. Despite several decades of research, our knowledge of its etiology, preventive measures, and treatments is limited. A relatively recent research field with the potential to provide a more holistic understanding, and subsequently treatments, takes a phylogenetic view of addiction. This perspective is based on deep homologies at the genetic, proteomic, and behavioral levels, which are shared across all metazoan life; particularly those organisms faced with plant secondary metabolites as defensive compounds against insect herbivory. These addictive alkaloids, such as nicotine, cocaine, or cathinone, are commonly referred to as "human drugs of abuse" even though humans had little to no role in the co-evolutionary processes that determined their initial emergence or continued selection. This commentary discusses the overwhelming homologies of addictive alkaloid effects on neural systems across a wide range of taxa, as we aim to develop a broader comparative view of the "addicted brain." Taking nicotine as an example, homologous physiological responses to this compound identify common underlying cellular and molecular mechanisms that advocate for the adoption of a phylogenetic view of addiction.
Collapse
Affiliation(s)
- Nabil Karnib
- Department of Biological Sciences, JP Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio, USA
| | - Moira J van Staaden
- Department of Biological Sciences, JP Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio, USA,
| |
Collapse
|
10
|
Chvilicek MM, Titos I, Rothenfluh A. The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Front Behav Neurosci 2020; 14:607700. [PMID: 33384590 PMCID: PMC7770116 DOI: 10.3389/fnbeh.2020.607700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol is a widely used and abused substance with numerous negative consequences for human health and safety. Historically, alcohol's widespread, non-specific neurobiological effects have made it a challenge to study in humans. Therefore, model organisms are a critical tool for unraveling the mechanisms of alcohol action and subsequent effects on behavior. Drosophila melanogaster is genetically tractable and displays a vast behavioral repertoire, making it a particularly good candidate for examining the neurobiology of alcohol responses. In addition to being experimentally amenable, Drosophila have high face and mechanistic validity: their alcohol-related behaviors are remarkably consistent with humans and other mammalian species, and they share numerous conserved neurotransmitters and signaling pathways. Flies have a long history in alcohol research, which has been enhanced in recent years by the development of tools that allow for manipulating individual Drosophila neurotransmitters. Through advancements such as the GAL4/UAS system and CRISPR/Cas9 mutagenesis, investigation of specific neurotransmitters in small subsets of neurons has become ever more achievable. In this review, we describe recent progress in understanding the contribution of seven neurotransmitters to fly behavior, focusing on their roles in alcohol response: dopamine, octopamine, tyramine, serotonin, glutamate, GABA, and acetylcholine. We chose these small-molecule neurotransmitters due to their conservation in mammals and their importance for behavior. While neurotransmitters like dopamine and octopamine have received significant research emphasis regarding their contributions to behavior, others, like glutamate, GABA, and acetylcholine, remain relatively unexplored. Here, we summarize recent genetic and behavioral findings concerning these seven neurotransmitters and their roles in the behavioral response to alcohol, highlighting the fitness of the fly as a model for human alcohol use.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Haass-Koffler CL, Cannella N, Ciccocioppo R. Translational dynamics of alcohol tolerance of preclinical models and human laboratory studies. Exp Clin Psychopharmacol 2020; 28:417-425. [PMID: 32212746 PMCID: PMC7390673 DOI: 10.1037/pha0000366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increasing sensitivity due to alcohol intake has been explored using molecular and cellular mechanisms of sensitization and adaptive biobehavioral changes as well as through negative experiences of altered function during withdrawal. However, within both a preclinical and human laboratory setting, little has been elucidated toward understanding the neural substrates of decreased sensitivity to alcohol effects, that is, alcohol tolerance. More paradigms assessing alcohol tolerance are needed. Tolerance can be assessed through both self-reported response (subjective) and observed (objective) measurements. Therefore, sensitivity to alcohol is an exploitable variable that can be utilized to disentangle the diverse alcohol use disorder (AUD) phenotypical profile. This literature review focuses on preclinical models and human laboratory studies to evaluate alcohol tolerance and its modulating factors. Increased understanding of alcohol tolerance has the potential to reduce gaps between preclinical models and human laboratory studies to better evaluate the development of alcohol-related biobehavioral responses. Furthermore, alcohol tolerance can be used as an AUD phenotypic variable in randomized clinical trials designed for developing AUD therapies. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University
| | | | | |
Collapse
|
12
|
Hu C, Kanellopoulos AK, Richter M, Petersen M, Konietzny A, Tenedini FM, Hoyer N, Cheng L, Poon CLC, Harvey KF, Windhorst S, Parrish JZ, Mikhaylova M, Bagni C, Calderon de Anda F, Soba P. Conserved Tao Kinase Activity Regulates Dendritic Arborization, Cytoskeletal Dynamics, and Sensory Function in Drosophila. J Neurosci 2020; 40:1819-1833. [PMID: 31964717 PMCID: PMC7046460 DOI: 10.1523/jneurosci.1846-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Dendritic arborization is highly regulated and requires tight control of dendritic growth, branching, cytoskeletal dynamics, and ion channel expression to ensure proper function. Abnormal dendritic development can result in altered network connectivity, which has been linked to neurodevelopmental disorders, including autism spectrum disorders (ASDs). How neuronal growth control programs tune dendritic arborization to ensure function is still not fully understood. Using Drosophila dendritic arborization (da) neurons as a model, we identified the conserved Ste20-like kinase Tao as a negative regulator of dendritic arborization. We show that Tao kinase activity regulates cytoskeletal dynamics and sensory channel localization required for proper sensory function in both male and female flies. We further provide evidence for functional conservation of Tao kinase, showing that its ASD-linked human ortholog, Tao kinase 2 (Taok2), could replace Drosophila Tao and rescue dendritic branching, dynamic microtubule alterations, and behavioral defects. However, several ASD-linked Taok2 variants displayed impaired rescue activity, suggesting that Tao/Taok2 mutations can disrupt sensory neuron development and function. Consistently, we show that Tao kinase activity is required in developing and as well as adult stages for maintaining normal dendritic arborization and sensory function to regulate escape and social behavior. Our data suggest an important role for Tao kinase signaling in cytoskeletal organization to maintain proper dendritic arborization and sensory function, providing a strong link between developmental sensory aberrations and behavioral abnormalities relevant for Taok2-dependent ASDs.SIGNIFICANCE STATEMENT Autism spectrum disorders (ASDs) are linked to abnormal dendritic arbors. However, the mechanisms of how dendritic arbors develop to promote functional and proper behavior are unclear. We identified Drosophila Tao kinase, the ortholog of the ASD risk gene Taok2, as a regulator of dendritic arborization in sensory neurons. We show that Tao kinase regulates cytoskeletal dynamics, controls sensory ion channel localization, and is required to maintain somatosensory function in vivo Interestingly, ASD-linked human Taok2 mutations rendered it nonfunctional, whereas its WT form could restore neuronal morphology and function in Drosophila lacking endogenous Tao. Our findings provide evidence for a conserved role of Tao kinase in dendritic development and function of sensory neurons, suggesting that aberrant sensory function might be a common feature of ASDs.
Collapse
Affiliation(s)
- Chun Hu
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | - Melanie Richter
- Neuronal Development Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Meike Petersen
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Anja Konietzny
- Neuronal Protein Transport Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Federico M Tenedini
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Nina Hoyer
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lin Cheng
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Carole L C Poon
- Peter MacCallum Cancer Centre, Melbourne, 3000 Victoria, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, 3000 Victoria, Australia
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Sabine Windhorst
- Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, 98195 Washington, and
| | - Marina Mikhaylova
- Neuronal Protein Transport Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Froylan Calderon de Anda
- Neuronal Development Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Peter Soba
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany,
| |
Collapse
|
13
|
Scholz H. Unraveling the Mechanisms of Behaviors Associated With AUDs Using Flies and Worms. Alcohol Clin Exp Res 2019; 43:2274-2284. [PMID: 31529787 DOI: 10.1111/acer.14199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
Alcohol use disorders (AUDs) are very common worldwide and negatively affect both individuals and societies. To understand how normal behavior turns into uncontrollable use of alcohol, several approaches have been utilized in the last decades. However, we still do not completely understand how AUDs evolve or how they are maintained in the brains of affected individuals. In addition, efficient and effective treatment is still in need of development. This review focuses on alternative approaches developed over the last 20 years using Drosophila melanogaster (Drosophila) and Caenorhabditis elegans (C. elegans) as genetic model systems to determine the mechanisms underlying the action of ethanol (EtOH) and behaviors associated with AUDs. All the results and insights of studies over the last 20 years cannot be comprehensively summarized. Thus, a few prominent examples are provided highlighting the principles of the genes and mechanisms that have been uncovered and are involved in the action of EtOH at the cellular level. In addition, examples are provided of the genes and mechanisms that regulate behaviors relevant to acquiring and maintaining excessive alcohol intake, such as decision making, reward and withdrawal, and/or relapse regulation. How the insight gained from the results of Drosophila and C. elegans models can be translated to higher organisms, such as rodents and/or humans, is discussed, as well as whether these insights have any relevance or impact on our understanding of the mechanisms underlying AUDs in humans. Finally, future directions are presented that might facilitate the identification of drugs to treat AUDs.
Collapse
Affiliation(s)
- Henrike Scholz
- From the, Department of Biology, Institute for Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Dulovic-Mahlow M, Trinh J, Kandaswamy KK, Braathen GJ, Di Donato N, Rahikkala E, Beblo S, Werber M, Krajka V, Busk ØL, Baumann H, Al-Sannaa NA, Hinrichs F, Affan R, Navot N, Al Balwi MA, Oprea G, Holla ØL, Weiss ME, Jamra RA, Kahlert AK, Kishore S, Tveten K, Vos M, Rolfs A, Lohmann K. De Novo Variants in TAOK1 Cause Neurodevelopmental Disorders. Am J Hum Genet 2019; 105:213-220. [PMID: 31230721 DOI: 10.1016/j.ajhg.2019.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023] Open
Abstract
De novo variants represent a significant cause of neurodevelopmental delay and intellectual disability. A genetic basis can be identified in only half of individuals who have neurodevelopmental disorders (NDDs); this indicates that additional causes need to be elucidated. We compared the frequency of de novo variants in patient-parent trios with (n = 2,030) versus without (n = 2,755) NDDs. We identified de novo variants in TAOK1 (thousand and one [TAO] amino acid kinase 1), which encodes the serine/threonine-protein kinase TAO1, in three individuals with NDDs but not in persons who did not have NDDs. Through further screening and the use of GeneMatcher, five additional individuals with NDDs were found to have de novo variants. All eight variants were absent from gnomAD (Genome Aggregation Database). The variant carriers shared a non-specific phenotype of developmental delay, and six individuals had additional muscular hypotonia. We established a fibroblast line of one mutation carrier, and we demonstrated that reduced mRNA levels of TAOK1 could be increased upon cycloheximide treatment. These results indicate nonsense-mediated mRNA decay. Further, there was neither detectable phosphorylated TAO1 kinase nor phosphorylated tau in these cells, and mitochondrial morphology was altered. Knockdown of the ortholog gene Tao1 (Tao, CG14217) in Drosophila resulted in delayed early development. The majority of the Tao1-knockdown flies did not survive beyond the third instar larval stage. When compared to control flies, Tao1 knockdown flies revealed changed morphology of the ventral nerve cord and the neuromuscular junctions as well as a decreased number of endings (boutons). Furthermore, mitochondria in mutant flies showed altered distribution and decreased size in axons of motor neurons. Thus, we provide compelling evidence that de novo variants in TAOK1 cause NDDs.
Collapse
|
15
|
Politano SF, Salemme RR, Ashley J, López-Rivera JA, Bakula TA, Puhalla KA, Quinn JP, Juszczak MJ, Phillip LK, Carrillo RA, Vanderzalm PJ. Tao Negatively Regulates BMP Signaling During Neuromuscular Junction Development in Drosophila. Dev Neurobiol 2019; 79:335-349. [PMID: 31002474 DOI: 10.1002/dneu.22681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/15/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
The coordinated growth and development of synapses is critical for all aspects of neural circuit function and mutations that disrupt these processes can result in various neurological defects. Several anterograde and retrograde signaling pathways, including the canonical Bone Morphogenic Protein (BMP) pathway, regulate synaptic development in vertebrates and invertebrates. At the Drosophila larval neuromuscular junction (NMJ), the retrograde BMP pathway is a part of the machinery that controls NMJ expansion concurrent with larval growth. We sought to determine whether the conserved Hippo pathway, critical for proportional growth in other tissues, also functions in NMJ development. We found that neuronal loss of the serine-threonine protein kinase Tao, a regulator of the Hippo signaling pathway, results in supernumerary boutons which contain a normal density of active zones. Tao is also required for proper synaptic function, as reduction of Tao results in NMJs with decreased evoked excitatory junctional potentials. Surprisingly, Tao function in NMJ growth is independent of the Hippo pathway. Instead, our experiments suggest that Tao negatively regulates BMP signaling as reduction of Tao leads to an increase in pMad levels in motor neuron nuclei and an increase in BMP target gene expression. Taken together, these results support a role for Tao as a novel inhibitor of BMP signaling in motor neurons during synaptic development and function.
Collapse
Affiliation(s)
- Stephen F Politano
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Ryan R Salemme
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - James Ashley
- Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, 60637
| | | | - Toren A Bakula
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Kathryn A Puhalla
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - John P Quinn
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Madison J Juszczak
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Lauren K Phillip
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| | - Robert A Carrillo
- Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, 60637
| | - Pamela J Vanderzalm
- Department of Biology, John Carroll University, University Heights, Ohio, 44118
| |
Collapse
|
16
|
Engel GL, Taber K, Vinton E, Crocker AJ. Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:7. [PMID: 30992041 PMCID: PMC6469124 DOI: 10.1186/s12993-019-0159-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 02/08/2023]
Abstract
Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.
Collapse
Affiliation(s)
- Gregory L. Engel
- Department of Psychological Sciences, Castleton University, Castleton, VT 05735 USA
| | - Kreager Taber
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Elizabeth Vinton
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Amanda J. Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| |
Collapse
|
17
|
Della Noce B, Carvalho Uhl MVD, Machado J, Waltero CF, de Abreu LA, da Silva RM, da Fonseca RN, de Barros CM, Sabadin G, Konnai S, da Silva Vaz I, Ohashi K, Logullo C. Carbohydrate Metabolic Compensation Coupled to High Tolerance to Oxidative Stress in Ticks. Sci Rep 2019; 9:4753. [PMID: 30894596 PMCID: PMC6427048 DOI: 10.1038/s41598-019-41036-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) are natural byproducts of metabolism that have toxic effects well documented in mammals. In hematophagous arthropods, however, these processes are not largely understood. Here, we describe that Rhipicephalus microplus ticks and embryonic cell line (BME26) employ an adaptive metabolic compensation mechanism that confers tolerance to hydrogen peroxide (H2O2) at concentrations too high for others organisms. Tick survival and reproduction are not affected by H2O2 exposure, while BME26 cells morphology was only mildly altered by the treatment. Furthermore, H2O2-tolerant BME26 cells maintained their proliferative capacity unchanged. We evaluated several genes involved in gluconeogenesis, glycolysis, and pentose phosphate pathway, major pathways for carbohydrate catabolism and anabolism, describing a metabolic mechanism that explains such tolerance. Genetic and catalytic control of the genes and enzymes associated with these pathways are modulated by glucose uptake and energy resource availability. Transient increase in ROS levels, oxygen consumption, and ROS-scavenger enzymes, as well as decreased mitochondrial superoxide levels, were indicative of cell adaptation to high H2O2 exposure, and suggested a tolerance strategy developed by BME26 cells to cope with oxidative stress. Moreover, NADPH levels increased upon H2O2 challenge, and this phenomenon was sustained mainly by G6PDH activity. Interestingly, G6PDH knockdown in BME26 cells did not impair H2O2 tolerance, but generated an increase in NADP-ICDH transcription. In agreement with the hypothesis of a compensatory NADPH production in these cells, NADP-ICDH knockdown increased G6PDH relative transcript level. The present study unveils the first metabolic evidence of an adaptive mechanism to cope with high H2O2 exposure and maintain redox balance in ticks.
Collapse
Affiliation(s)
- Bárbara Della Noce
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Marcelle Vianna de Carvalho Uhl
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Josias Machado
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Camila Fernanda Waltero
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Leonardo Araujo de Abreu
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Renato Martins da Silva
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, 060-0818, Japan
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Cintia Monteiro de Barros
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
| | - Gabriela Sabadin
- Centro de Biotecnologia and Faculdade de Veterinária - UFRGS, Porto Alegre, RS, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, 060-0818, Japan
| | | | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, 060-0818, Japan
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil.
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
18
|
Petruccelli E, Kaun KR. Insights from intoxicated Drosophila. Alcohol 2019; 74:21-27. [PMID: 29980341 DOI: 10.1016/j.alcohol.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 01/31/2023]
Abstract
Our understanding of alcohol use disorder (AUD), particularly alcohol's effects on the nervous system, has unquestionably benefited from the use of model systems such as Drosophila melanogaster. Here, we briefly introduce the use of flies in alcohol research, and highlight the genetic accessibility and neurobiological contribution that flies have made to our understanding of AUD. Future fly research offers unique opportunities for addressing unresolved questions in the alcohol field, such as the neuromolecular and circuit basis for cravings and alcohol-induced neuroimmune dysfunction. This review strongly advocates for interdisciplinary approaches and translational collaborations with the united goal of confronting the major health problems associated with alcohol abuse and addiction.
Collapse
|
19
|
Poon CLC, Liu W, Song Y, Gomez M, Kulaberoglu Y, Zhang X, Xu W, Veraksa A, Hergovich A, Ghabrial A, Harvey KF. A Hippo-like Signaling Pathway Controls Tracheal Morphogenesis in Drosophila melanogaster. Dev Cell 2018; 47:564-575.e5. [PMID: 30458981 DOI: 10.1016/j.devcel.2018.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 08/26/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022]
Abstract
Hippo-like pathways are ancient signaling modules first identified in yeasts. The best-defined metazoan module forms the core of the Hippo pathway, which regulates organ size and cell fate. Hippo-like kinase modules consist of a Sterile 20-like kinase, an NDR kinase, and non-catalytic protein scaffolds. In the Hippo pathway, the upstream kinase Hippo can be activated by another kinase, Tao-1. Here, we delineate a related Hippo-like signaling module that Tao-1 regulates to control tracheal morphogenesis in Drosophila melanogaster. Tao-1 activates the Sterile 20-like kinase GckIII by phosphorylating its activation loop, a mode of regulation that is conserved in humans. Tao-1 and GckIII act upstream of the NDR kinase Tricornered to ensure proper tube formation in trachea. Our study reveals that Tao-1 activates two related kinase modules to control both growth and morphogenesis. The Hippo-like signaling pathway we have delineated has a potential role in the human vascular disease cerebral cavernous malformation.
Collapse
Affiliation(s)
- Carole L C Poon
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Weijie Liu
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Yanjun Song
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Marta Gomez
- University College London, Cancer Institute, London WC1E 6BT, UK
| | | | - Xiaomeng Zhang
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Wenjian Xu
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | | | - Amin Ghabrial
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
20
|
Signor S, Nuzhdin S. Dynamic changes in gene expression and alternative splicing mediate the response to acute alcohol exposure in Drosophila melanogaster. Heredity (Edinb) 2018; 121:342-360. [PMID: 30143789 PMCID: PMC6133934 DOI: 10.1038/s41437-018-0136-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/21/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Environmental changes typically cause rapid gene expression responses in the exposed organisms, including changes in the representation of gene isoforms with different functions or properties. Identifying the genes that respond to environmental change, including in genotype-specific ways, is an important step in treating the undesirable physiological effects of stress, such as exposure to toxins or ethanol. Ethanol is a unique environmental stress in that chronic exposure results in permanent physiological changes and the development of alcohol use disorders. Drosophila is a classic model for deciphering the mechanisms of the response to alcohol exposure, as it meets the criteria for the development of alcohol use disorders, and has similar physiological underpinnings with vertebrates. Because many studies on the response to ethanol have relied on a priori candidate genes, broad surveys of gene expression and splicing are required and have been investigated here. Further, we expose Drosophila to ethanol in an environment that is genetically, socially, and ecologically relevant. Both expression and splicing differences, inasmuch as they can be decomposed, contribute to the response to ethanol in Drosophila melanogaster. However, we find that while D. melanogaster responds to ethanol, there is very little genetic variation in how it responds to ethanol. In addition, the response to alcohol over time is dynamic, suggesting that incorporating time into studies on the response to the environment is important.
Collapse
Affiliation(s)
- Sarah Signor
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | - Sergey Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
The Drosophila Receptor Tyrosine Kinase Alk Constrains Long-Term Memory Formation. J Neurosci 2018; 38:7701-7712. [PMID: 30030398 DOI: 10.1523/jneurosci.0784-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
In addition to mechanisms promoting protein-synthesis-dependent long-term memory (PSD-LTM), the process appears to also be specifically constrained. We present evidence that the highly conserved receptor tyrosine kinase dAlk is a novel PSD-LTM attenuator in Drosophila Reduction of dAlk levels in adult α/β mushroom body (MB) neurons during conditioning elevates LTM, whereas its overexpression impairs it. Unlike other memory suppressor proteins and miRNAs, dAlk within the MBs constrains PSD-LTM specifically but constrains learning outside the MBs as previously shown. Dendritic dAlk levels rise rapidly in MB neurons upon conditioning, a process apparently controlled by the 3'UTR of its mRNA, and interruption of the 3'UTR leads to enhanced LTM. Because its activating ligand Jeb is dispensable for LTM attenuation, we propose that postconditioning elevation of dAlk within α/β dendrites results in its autoactivation and constrains formation of the energy costly PSD-LTM, acting as a novel memory filter.SIGNIFICANCE STATEMENT In addition to the widely studied molecular mechanisms promoting protein-synthesis-dependent long-term memory (PSD-LTM), recent discoveries indicate that the process is also specifically constrained. We describe a role in PSD-LTM constraint for the first receptor tyrosine kinase (RTK) involved in olfactory memory in Drosophila Unlike other memory suppressor proteins and miRNAs, dAlk limits specifically PSD-LTM formation as it does not affect 3 h, or anesthesia-resistant memory. Significantly, we show conditioning-dependent dAlk elevation within the mushroom body dendrites and propose that its local abundance may activate its kinase activity, to mediate imposition of PSD-LTM constraints through yet unknown mechanisms.
Collapse
|
22
|
Morris M, Shaw A, Lambert M, Perry HH, Lowenstein E, Valenzuela D, Velazquez-Ulloa NA. Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:13. [PMID: 29898654 PMCID: PMC6001141 DOI: 10.1186/s12861-018-0172-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/21/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. RESULTS We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. CONCLUSIONS We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila research will allow elucidation of the mechanisms underlying the effects of nicotine exposure during development.
Collapse
Affiliation(s)
- Melanie Morris
- School of Medicine, University of Washington, Seattle, USA
| | - Ariel Shaw
- Biochemistry, Cell and Molecular Biology Program, Lewis & Clark College, Portland, USA
| | | | | | - Eve Lowenstein
- Biology Department, Lewis & Clark College, Portland, USA
| | | | | |
Collapse
|
23
|
Baltussen LL, Rosianu F, Ultanir SK. Kinases in synaptic development and neurological diseases. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:343-352. [PMID: 29241837 DOI: 10.1016/j.pnpbp.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
Abstract
Neuronal morphogenesis and synapse development is essential for building a functioning nervous system, and defects in these processes are associated with neurological disorders. Our understanding of molecular components and signalling events that contribute to neuronal development and pathogenesis is limited. Genes associated with neurodevelopmental and neurodegenerative diseases provide entry points for elucidating molecular events that contribute to these conditions. Several protein kinases, enzymes that regulate protein function by phosphorylating their substrates, are genetically linked to neurological disorders. Identifying substrates of these kinases is key to discovering their function and providing insight for possible therapies. In this review, we describe how various methods for kinase-substrate identification helped elucidate kinase signalling pathways important for neuronal development and function. We describe recent advances on roles of kinases TAOK2, TNIK and CDKL5 in neuronal development and the converging pathways of LRRK2, PINK1 and GAK in Parkinson's Disease.
Collapse
Affiliation(s)
- Lucas L Baltussen
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Flavia Rosianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.
| |
Collapse
|
24
|
Ryvkin J, Bentzur A, Zer-Krispil S, Shohat-Ophir G. Mechanisms Underlying the Risk to Develop Drug Addiction, Insights From Studies in Drosophila melanogaster. Front Physiol 2018; 9:327. [PMID: 29740329 PMCID: PMC5928757 DOI: 10.3389/fphys.2018.00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
The ability to adapt to environmental changes is an essential feature of biological systems, achieved in animals by a coordinated crosstalk between neuronal and hormonal programs that allow rapid and integrated organismal responses. Reward systems play a key role in mediating this adaptation by reinforcing behaviors that enhance immediate survival, such as eating or drinking, or those that ensure long-term survival, such as sexual behavior or caring for offspring. Drugs of abuse co-opt neuronal and molecular pathways that mediate natural rewards, which under certain circumstances can lead to addiction. Many factors can contribute to the transition from drug use to drug addiction, highlighting the need to discover mechanisms underlying the progression from initial drug use to drug addiction. Since similar responses to natural and drug rewards are present in very different animals, it is likely that the central systems that process reward stimuli originated early in evolution, and that common ancient biological principles and genes are involved in these processes. Thus, the neurobiology of natural and drug rewards can be studied using simpler model organisms that have their systems stripped of some of the immense complexity that exists in mammalian brains. In this paper we review studies in Drosophila melanogaster that model different aspects of natural and drug rewards, with an emphasis on how motivational states shape the value of the rewarding experience, as an entry point to understanding the mechanisms that contribute to the vulnerability of drug addiction.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Assa Bentzur
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Shir Zer-Krispil
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
25
|
Lowenstein EG, Velazquez-Ulloa NA. A Fly's Eye View of Natural and Drug Reward. Front Physiol 2018; 9:407. [PMID: 29720947 PMCID: PMC5915475 DOI: 10.3389/fphys.2018.00407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster, dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila. This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster, including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism.
Collapse
Affiliation(s)
- Eve G Lowenstein
- Department of Biology, Lewis & Clark College, Portland, OR, United States
| | | |
Collapse
|
26
|
Sir2/Sirt1 Links Acute Inebriation to Presynaptic Changes and the Development of Alcohol Tolerance, Preference, and Reward. J Neurosci 2017; 36:5241-51. [PMID: 27170122 DOI: 10.1523/jneurosci.0499-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Acute ethanol inebriation causes neuroadaptive changes in behavior that favor increased intake. Ethanol-induced alterations in gene expression, through epigenetic and other means, are likely to change cellular and neural circuit function. Ethanol markedly changes histone acetylation, and the sirtuin Sir2/SIRT1 that deacetylates histones and transcription factors is essential for the rewarding effects of long-term drug use. The molecular transformations leading from short-term to long-term ethanol responses mostly remain to be discovered. We find that Sir2 in the mushroom bodies of the fruit fly Drosophila promotes short-term ethanol-induced behavioral plasticity by allowing changes in the expression of presynaptic molecules. Acute inebriation strongly reduces Sir2 levels and increases histone H3 acetylation in the brain. Flies lacking Sir2 globally, in the adult nervous system, or specifically in the mushroom body α/β-lobes show reduced ethanol sensitivity and tolerance. Sir2-dependent ethanol reward is also localized to the mushroom bodies, and Sir2 mutants prefer ethanol even without a priming ethanol pre-exposure. Transcriptomic analysis reveals that specific presynaptic molecules, including the synaptic vesicle pool regulator Synapsin, depend on Sir2 to be regulated by ethanol. Synapsin is required for ethanol sensitivity and tolerance. We propose that the regulation of Sir2/SIRT1 by acute inebriation forms part of a transcriptional program in mushroom body neurons to alter presynaptic properties and neural responses to favor the development of ethanol tolerance, preference, and reward. SIGNIFICANCE STATEMENT We identify a mechanism by which acute ethanol inebriation leads to changes in nervous system function that may be an important basis for increasing ethanol intake and addiction liability. The findings are significant because they identify ethanol-driven transcriptional events that target presynaptic properties and direct behavioral plasticity. They also demonstrate that multiple forms of ethanol behavioral plasticity that are relevant to alcoholism are initiated by a shared mechanism. Finally, they link these events to the Drosophila brain region that associates context with innate approach and avoidance responses to code for reward and other higher-order behavior, similar in aspects to the role of the vertebrate mesolimbic system.
Collapse
|
27
|
Velazquez-Ulloa NA. A Drosophila model for developmental nicotine exposure. PLoS One 2017; 12:e0177710. [PMID: 28498868 PMCID: PMC5428972 DOI: 10.1371/journal.pone.0177710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
Abstract
Despite the known health risks of tobacco smoking, many people including pregnant women continue smoking. The effects of developmental nicotine exposure are known, but the underlying mechanisms are not well understood. Drosophila melanogaster is a model organism that can be used for uncovering genetic and molecular mechanisms for drugs of abuse. Here I show that Drosophila can be a model to elucidate the mechanisms for nicotine’s effects on a developing organism. Drosophila reared on nicotine food display developmental and behavioral effects similar to those in mammals including decreased survival and weight, increased developmental time, and decreased sensitivity to acute nicotine and ethanol. The Drosophila nicotinic acetylcholine receptor subunit alpha 7 (Dα7) mediates some of these effects. A novel role for Dα7 on ethanol sedation in Drosophila is also shown. Future research taking advantage of the genetic and molecular tools for Drosophila will allow additional discovery of the mechanisms behind the effects of nicotine during development.
Collapse
|
28
|
Ghezzi A, Zomeno M, Pietrzykowski AZ, Atkinson NS. Immediate-early alcohol-responsive miRNA expression in Drosophila. J Neurogenet 2016; 30:195-204. [PMID: 27845601 DOI: 10.1080/01677063.2016.1252764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
At the core of the changes characteristic of alcoholism are alterations in gene expression in the brain of the addicted individual. These changes are believed to underlie some of the neuroadaptations that promote compulsive drinking. Unfortunately, the mechanisms by which alcohol consumption produces changes in gene expression remain poorly understood. MicroRNAs (miRNAs) have emerged as important regulators of gene expression because they can coordinately modulate the translation efficiency of large sets of specific mRNAs. Here, we investigate the early miRNA responses elicited by an acute sedating dose of alcohol in the Drosophila model organism. In our analysis, we combine the power of next-generation sequencing with Drosophila genetics to identify alcohol-sensitive miRNAs and to functionally test them for a role in modulating alcohol sensitivity. We identified 14 known Drosophila miRNAs, and 13 putative novel miRNAs that respond to an acute sedative exposure to alcohol. Using the GeneSwitch Gal4/UAS system, a subset of these ethanol-responsive miRNAs was functionally tested to determine their individual contribution in modulating ethanol sensitivity. We identified two microRNAs that when overexpressed significantly increased ethanol sensitivity: miR-6 and miR-310. MicroRNA target prediction analysis revealed that the different alcohol-responsive miRNAs target-overlapping sets of mRNAs. Alcoholism is the product of accumulated cellular changes produced by chronic ethanol consumption. Although all of the changes described herein are extremely rapid responses evoked by a single ethanol exposure, understanding the gene expression changes that occur in the first few minutes after ethanol exposure will help us to categorize ethanol responses into those that are near instantaneous and those that are emergent responses produced only by repeated ethanol exposure.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- a Department of Biology , University of Puerto Rico , Rio Piedras, San Juan , Puerto Rico
| | - Marie Zomeno
- b Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin , Austin , TX , USA
| | - Andrzej Z Pietrzykowski
- c The Biologically Inspired Neural and Dynamical Systems (BINDS) Lab, Department of Computer Science , University of Massachusetts Amherst , Amherst , MA , USA
| | - Nigel S Atkinson
- b Department of Neuroscience and Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
29
|
Landayan D, Wolf FW. Shared neurocircuitry underlying feeding and drugs of abuse in Drosophila. Biomed J 2016; 38:496-509. [PMID: 27013449 PMCID: PMC6138758 DOI: 10.1016/j.bj.2016.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/13/2015] [Indexed: 01/06/2023] Open
Abstract
The neural circuitry and molecules that control the rewarding properties of food and drugs of abuse appear to partially overlap in the mammalian brain. This has raised questions about the extent of the overlap and the precise role of specific circuit elements in reward and in other behaviors associated with feeding regulation and drug responses. The much simpler brain of invertebrates including the fruit fly Drosophila, offers an opportunity to make high-resolution maps of the circuits and molecules that govern behavior. Recent progress in Drosophila has revealed not only some common substrates for the actions of drugs of abuse and for the regulation of feeding, but also a remarkable level of conservation with vertebrates for key neuromodulatory transmitters. We speculate that Drosophila may serve as a model for distinguishing the neural mechanisms underlying normal and pathological motivational states that will be applicable to mammals.
Collapse
Affiliation(s)
- Dan Landayan
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA.
| | - Fred W Wolf
- Department of Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA, USA.
| |
Collapse
|
30
|
De Nobrega AK, Lyons LC. Circadian Modulation of Alcohol-Induced Sedation and Recovery in Male and Female Drosophila. J Biol Rhythms 2016; 31:142-60. [PMID: 26833081 DOI: 10.1177/0748730415627067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Delineating the factors that affect behavioral and neurological responses to alcohol is critical to facilitate measures for preventing or treating alcohol abuse. The high degree of conserved molecular and physiological processes makes Drosophila melanogaster a valuable model for investigating circadian interactions with alcohol-induced behaviors and examining sex-specific differences in alcohol sensitivity. We found that wild-type Drosophila exhibited rhythms in alcohol-induced sedation under light-dark and constant dark conditions with considerably greater alcohol exposure necessary to induce sedation during the late (subjective) day and peak sensitivity to alcohol occurring during the late (subjective) night. The circadian clock also modulated the recovery from alcohol-induced sedation with flies regaining motor control significantly faster during the late (subjective) day. As predicted, the circadian rhythms in sedation and recovery were absent in flies with a mutation in the circadian gene period or arrhythmic flies housed in constant light conditions. Flies lacking a functional circadian clock were more sensitive to the effects of alcohol with significantly longer recovery times. Similar to other animals and humans, Drosophila exhibit sex-specific differences in alcohol sensitivity. We investigated whether the circadian clock modulated the rhythms in the loss-of-righting reflex, alcohol-induced sedation, and recovery differently in males and females. We found that both sexes demonstrated circadian rhythms in the loss-of-righting reflex and sedation with the differences in alcohol sensitivity between males and females most pronounced during the late subjective day. Recovery of motor reflexes following alcohol sedation also exhibited circadian modulation in male and female flies, although the circadian clock did not modulate the difference in recovery times between the sexes. These studies provide a framework outlining how the circadian clock modulates alcohol-induced behaviors in Drosophila and identifies sexual dimorphisms in the circadian modulation of alcohol behaviors.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL
| |
Collapse
|
31
|
Pflanz R, Voigt A, Yakulov T, Jäckle H. Drosophila gene tao-1 encodes proteins with and without a Ste20 kinase domain that affect cytoskeletal architecture and cell migration differently. Open Biol 2015; 5:140161. [PMID: 25589578 PMCID: PMC4313371 DOI: 10.1098/rsob.140161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tao-1, the single representative of the Sterile 20 kinase subfamily in Drosophila, is best known for destabilizing microtubules at the actin-rich cortex, regulating the cytoskeletal architecture of cells. More recently, Tao-1 was shown to act in the Salvador–Warts–Hippo pathway by phosphorylating Hippo, regulating cell growth as well as cell polarity. Here, we show that tao-1 encodes two proteins, one with the Sterile 20 kinase domain (Tao-L) and one without it (Tao-S), and that they act in an antagonistic manner. Tao-L expression causes lamellipodia-like cell protrusions, whereas Tao-S expression results in filopodia-like structures that make cells stick to the surface they attach to. Ectopic Tao-1 expression in the anterior region of Drosophila embryos results in pole cell formation as normally observed at the posterior end. Tao-S expression causes primordial germ cells (PGCs) to adhere to the inner wall of the gut primordia and prevents proper transepithelial migration to the gonads. Conversely, RNAi knockdowns of Tao-1 cause disordered migration of PGCs out of the gut epithelium, their dispersal within the embryo and cell death. The results reveal a novel function of Tao-1 in cell migration, which is based on antagonistic activities of two proteins encoded by a single gene.
Collapse
Affiliation(s)
- Ralf Pflanz
- Abteilung Molekulare Entwicklungsbiologie, Max Planck Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Aaron Voigt
- Abteilung Molekulare Entwicklungsbiologie, Max Planck Institut für Biophysikalische Chemie, Göttingen, Germany Department of Neurology, University Medical Centre Aachen, Aachen, Germany
| | - Toma Yakulov
- Abteilung Molekulare Entwicklungsbiologie, Max Planck Institut für Biophysikalische Chemie, Göttingen, Germany Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Herbert Jäckle
- Abteilung Molekulare Entwicklungsbiologie, Max Planck Institut für Biophysikalische Chemie, Göttingen, Germany
| |
Collapse
|
32
|
Grotewiel M, Bettinger JC. Drosophila and Caenorhabditis elegans as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder. Alcohol Clin Exp Res 2015; 39:1292-311. [PMID: 26173477 PMCID: PMC4656040 DOI: 10.1111/acer.12785] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Despite the profound clinical significance and strong heritability of alcohol use disorder (AUD), we do not yet have a comprehensive understanding of the naturally occurring genetic variance within the human genome that drives its development. This lack of understanding is likely to be due in part to the large phenotypic and genetic heterogeneities that underlie human AUD. As a complement to genetic studies in humans, many laboratories are using the invertebrate model organisms (iMOs) Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (nematode worm) to identify genetic mechanisms that influence the effects of alcohol (ethanol) on behavior. While these extremely powerful models have identified many genes that influence the behavioral responses to alcohol, in most cases it has remained unclear whether results from behavioral-genetic studies in iMOs are directly applicable to understanding the genetic basis of human AUD. METHODS In this review, we critically evaluate the utility of the fly and worm models for identifying genes that influence AUD in humans. RESULTS Based on results published through early 2015, studies in flies and worms have identified 91 and 50 genes, respectively, that influence 1 or more aspects of behavioral responses to alcohol. Collectively, these fly and worm genes correspond to 293 orthologous genes in humans. Intriguingly, 51 of these 293 human genes have been implicated in AUD by at least 1 study in human populations. CONCLUSIONS Our analyses strongly suggest that the Drosophila and C. elegans models have considerable utility for identifying orthologs of genes that influence human AUD.
Collapse
Affiliation(s)
- Mike Grotewiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
- Virginia Commonwealth University Alcohol Research Center, Richmond, Virginia
| |
Collapse
|
33
|
Ultanir SK, Yadav S, Hertz NT, Oses-Prieto JA, Claxton S, Burlingame AL, Shokat KM, Jan LY, Jan YN. MST3 kinase phosphorylates TAO1/2 to enable Myosin Va function in promoting spine synapse development. Neuron 2014; 84:968-82. [PMID: 25456499 PMCID: PMC4407996 DOI: 10.1016/j.neuron.2014.10.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2014] [Indexed: 11/16/2022]
Abstract
Mammalian Sterile 20 (Ste20)-like kinase 3 (MST3) is a ubiquitously expressed kinase capable of enhancing axon outgrowth. Whether and how MST3 kinase signaling might regulate development of dendritic filopodia and spine synapses is unknown. Through shRNA-mediated depletion of MST3 and kinase-dead MST3 expression in developing hippocampal cultures, we found that MST3 is necessary for proper filopodia, dendritic spine, and excitatory synapse development. Knockdown of MST3 in layer 2/3 pyramidal neurons via in utero electroporation also reduced spine density in vivo. Using chemical genetics, we discovered thirteen candidate MST3 substrates and identified the phosphorylation sites. Among the identified MST3 substrates, TAO kinases regulate dendritic filopodia and spine development, similar to MST3. Furthermore, using stable isotope labeling by amino acids in culture (SILAC), we show that phosphorylated TAO1/2 associates with Myosin Va and is necessary for its dendritic localization, thus revealing a mechanism for excitatory synapse development in the mammalian CNS.
Collapse
Affiliation(s)
- Sila K Ultanir
- Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | - Smita Yadav
- Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicholas T Hertz
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Suzanne Claxton
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Y Jan
- Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh-Nung Jan
- Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
34
|
King I, Heberlein U. Tao kinases as coordinators of actin and microtubule dynamics in developing neurons. Commun Integr Biol 2014. [DOI: 10.4161/cib.16051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Huang X, Shi L, Cao J, He F, Li R, Zhang Y, Miao S, Jin L, Qu J, Li Z, Lin X. The sterile 20-like kinase tao controls tissue homeostasis by regulating the hippo pathway in Drosophila adult midgut. J Genet Genomics 2014; 41:429-38. [PMID: 25160975 DOI: 10.1016/j.jgg.2014.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 04/30/2014] [Accepted: 05/17/2014] [Indexed: 12/27/2022]
Abstract
The proliferation and differentiation of adult stem cells must be tightly controlled in order to maintain resident tissue homeostasis. Dysfunction of stem cells is implicated in many human diseases, including cancer. However, the regulation of stem cell proliferation and differentiation is not fully understood. Here we show that the sterile-like 20 kinase, Tao, controls tissue homeostasis by regulating the Hippo pathway in the Drosophila adult midgut. Depletion of Tao in the progenitors leads to rapid intestinal stem cell (ISC) proliferation and midgut homeostasis loss. Meanwhile, we find that the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling activity and cytokine production are significantly increased, resulting in stimulated ISC proliferation. Furthermore, expression of the Hippo pathway downstream targets, Diap1 and bantam, is dramatically increased in Tao knockdown intestines. Consistently, we show that the Yorkie (Yki) acts downstream of Tao to regulate ISC proliferation. Together, our results provide insights into our understanding of the mechanisms of stem cell proliferation and tissue homeostasis control.
Collapse
Affiliation(s)
- Xudong Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Lai Shi
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Cao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Fangfei He
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Renling Li
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Miao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Longjin Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhouhua Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Xinhua Lin
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati 45229, USA.
| |
Collapse
|
36
|
EGFR and FGFR pathways have distinct roles in Drosophila mushroom body development and ethanol-induced behavior. PLoS One 2014; 9:e87714. [PMID: 24498174 PMCID: PMC3909204 DOI: 10.1371/journal.pone.0087714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) signaling has a conserved role in ethanol-induced behavior in flies and mice, affecting ethanol-induced sedation in both species. However it is not known what other effects EGFR signaling may have on ethanol-induced behavior, or what roles other Receptor Tyrosine Kinase (RTK) pathways may play in ethanol induced behaviors. We examined the effects of both the EGFR and Fibroblast Growth Factor Receptor (FGFR) RTK signaling pathways on ethanol-induced enhancement of locomotion, a behavior distinct from sedation that may be associated with the rewarding effects of ethanol. We find that both EGFR and FGFR genes influence ethanol-induced locomotion, though their effects are opposite - EGFR signaling suppresses this behavior, while FGFR signaling promotes it. EGFR signaling affects development of the Drosophila mushroom bodies in conjunction with the JNK MAP kinase basket (bsk), and with the Ste20 kinase tao, and we hypothesize that the EGFR pathway affects ethanol-induced locomotion through its effects on neuronal development. We find, however, that FGFR signaling most likely affects ethanol-induced behavior through a different mechanism, possibly through acute action in adult neurons.
Collapse
|
37
|
Voolstra O, Bartels JP, Oberegelsbacher C, Pfannstiel J, Huber A. Phosphorylation of the Drosophila transient receptor potential ion channel is regulated by the phototransduction cascade and involves several protein kinases and phosphatases. PLoS One 2013; 8:e73787. [PMID: 24040070 PMCID: PMC3767779 DOI: 10.1371/journal.pone.0073787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/29/2013] [Indexed: 12/02/2022] Open
Abstract
Protein phosphorylation plays a cardinal role in regulating cellular processes in eukaryotes. Phosphorylation of proteins is controlled by protein kinases and phosphatases. We previously reported the light-dependent phosphorylation of the Drosophila transient receptor potential (TRP) ion channel at multiple sites. TRP generates the receptor potential upon stimulation of the photoreceptor cell by light. An eye-enriched protein kinase C (eye-PKC) has been implicated in the phosphorylation of TRP by in vitro studies. Other kinases and phosphatases of TRP are elusive. Using phosphospecific antibodies and mass spectrometry, we here show that phosphorylation of most TRP sites depends on the phototransduction cascade and the activity of the TRP ion channel. A candidate screen to identify kinases and phosphatases provided in vivo evidence for an involvement of eye-PKC as well as other kinases and phosphatases in TRP phosphorylation.
Collapse
Affiliation(s)
- Olaf Voolstra
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Jonas-Peter Bartels
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Claudia Oberegelsbacher
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- The Life Science Center, Universität Hohenheim, Stuttgart, Germany
| | - Armin Huber
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
- The Life Science Center, Universität Hohenheim, Stuttgart, Germany
| |
Collapse
|
38
|
Par-1 regulates tissue growth by influencing hippo phosphorylation status and hippo-salvador association. PLoS Biol 2013; 11:e1001620. [PMID: 23940457 PMCID: PMC3735459 DOI: 10.1371/journal.pbio.1001620] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/19/2013] [Indexed: 01/07/2023] Open
Abstract
The evolutionarily conserved Hippo (Hpo) signaling pathway plays a pivotal role in organ size control by balancing cell proliferation and cell death. Here, we reported the identification of Par-1 as a regulator of the Hpo signaling pathway using a gain-of-function EP screen in Drosophila melanogaster. Overexpression of Par-1 elevated Yorkie activity, resulting in increased Hpo target gene expression and tissue overgrowth, while loss of Par-1 diminished Hpo target gene expression and reduced organ size. We demonstrated that par-1 functioned downstream of fat and expanded and upstream of hpo and salvador (sav). In addition, we also found that Par-1 physically interacted with Hpo and Sav and regulated the phosphorylation of Hpo at Ser30 to restrict its activity. Par-1 also inhibited the association of Hpo and Sav, resulting in Sav dephosphorylation and destabilization. Furthermore, we provided evidence that Par-1-induced Hpo regulation is conserved in mammalian cells. Taken together, our findings identified Par-1 as a novel component of the Hpo signaling network.
Collapse
|
39
|
Cavaliere S, Malik BR, Hodge JJL. KCNQ channels regulate age-related memory impairment. PLoS One 2013; 8:e62445. [PMID: 23638087 PMCID: PMC3640075 DOI: 10.1371/journal.pone.0062445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/21/2013] [Indexed: 12/22/2022] Open
Abstract
In humans KCNQ2/3 heteromeric channels form an M-current that acts as a brake on neuronal excitability, with mutations causing a form of epilepsy. The M-current has been shown to be a key regulator of neuronal plasticity underlying associative memory and ethanol response in mammals. Previous work has shown that many of the molecules and plasticity mechanisms underlying changes in alcohol behaviour and addiction are shared with those of memory. We show that the single KCNQ channel in Drosophila (dKCNQ) when mutated show decrements in associative short- and long-term memory, with KCNQ function in the mushroom body α/βneurons being required for short-term memory. Ethanol disrupts memory in wildtype flies, but not in a KCNQ null mutant background suggesting KCNQ maybe a direct target of ethanol, the blockade of which interferes with the plasticity machinery required for memory formation. We show that as in humans, Drosophila display age-related memory impairment with the KCNQ mutant memory defect mimicking the effect of age on memory. Expression of KCNQ normally decreases in aging brains and KCNQ overexpression in the mushroom body neurons of KCNQ mutants restores age-related memory impairment. Therefore KCNQ is a central plasticity molecule that regulates age dependent memory impairment.
Collapse
Affiliation(s)
- Sonia Cavaliere
- School of Physiology and Pharmacology, University of Bristol, Bristol, Avon, United Kingdom
| | - Bilal R. Malik
- School of Physiology and Pharmacology, University of Bristol, Bristol, Avon, United Kingdom
| | - James J. L. Hodge
- School of Physiology and Pharmacology, University of Bristol, Bristol, Avon, United Kingdom
| |
Collapse
|
40
|
A small group of neurosecretory cells expressing the transcriptional regulator apontic and the neuropeptide corazonin mediate ethanol sedation in Drosophila. J Neurosci 2013; 33:4044-54. [PMID: 23447613 DOI: 10.1523/jneurosci.3413-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the fruit fly Drosophila melanogaster, as in mammals, acute exposure to a high dose of ethanol leads to stereotypical behavioral changes beginning with increased activity, followed by incoordination, loss of postural control, and eventually, sedation. The mechanism(s) by which ethanol impacts the CNS leading to ethanol-induced sedation and the genes required for normal sedation sensitivity remain largely unknown. Here we identify the gene apontic (apt), an Myb/SANT-containing transcription factor that is required in the nervous system for normal sensitivity to ethanol sedation. Using genetic and behavioral analyses, we show that apt mediates sensitivity to ethanol sedation by acting in a small set of neurons that express Corazonin (Crz), a neuropeptide likely involved in the physiological response to stress. The activity of Crz neurons regulates the behavioral response to ethanol, as silencing and activating these neurons affects sedation sensitivity in opposite ways. Furthermore, this effect is mediated by Crz, as flies with reduced crz expression show reduced sensitivity to ethanol sedation. Finally, we find that both apt and crz are rapidly upregulated by acute ethanol exposure. Thus, we have identified two genes and a small set of peptidergic neurons that regulate sensitivity to ethanol-induced sedation. We propose that Apt regulates the activity of Crz neurons and/or release of the neuropeptide during ethanol exposure.
Collapse
|
41
|
Adult neuronal Arf6 controls ethanol-induced behavior with Arfaptin downstream of Rac1 and RhoGAP18B. J Neurosci 2013; 32:17706-13. [PMID: 23223291 DOI: 10.1523/jneurosci.1944-12.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alcohol use disorders affect millions of individuals. However, the genes and signaling pathways involved in behavioral ethanol responses and addiction are poorly understood. Here we identify a conserved biochemical pathway that underlies the sedating effects of ethanol in Drosophila. Mutations in the Arf6 small GTPase signaling pathway cause hypersensitivity to ethanol-induced sedation. We show that Arf6 functions in the adult nervous system to control ethanol-induced behavior. We also find that the Drosophila Arfaptin protein directly binds to the activated forms of Arf6 and Rac1 GTPases, and mutants in Arfaptin also display ethanol sensitivity. Arf6 acts downstream of Rac1 and Arfaptin to regulate ethanol-induced behaviors, and we thus demonstrate that this conserved Rac1/Arfaptin/Arf6 pathway is a major mediator of ethanol-induced behavioral responses.
Collapse
|
42
|
Gomez JM, Wang Y, Riechmann V. Tao controls epithelial morphogenesis by promoting Fasciclin 2 endocytosis. ACTA ACUST UNITED AC 2013; 199:1131-43. [PMID: 23266957 PMCID: PMC3529531 DOI: 10.1083/jcb.201207150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tao initiates morphogenesis of a squamous epithelium by promoting the endocytosis of the adhesion molecule Fasciclin 2 from the lateral membrane. Regulation of epithelial cell shape, for example, changes in relative sizes of apical, basal, and lateral membranes, is a key mechanism driving morphogenesis. However, it is unclear how epithelial cells control the size of their membranes. In the epithelium of the Drosophila melanogaster ovary, cuboidal precursor cells transform into a squamous epithelium through a process that involves lateral membrane shortening coupled to apical membrane extension. In this paper, we report a mutation in the gene Tao, which resulted in the loss of this cuboidal to squamous transition. We show that the inability of Tao mutant cells to shorten their membranes was caused by the accumulation of the cell adhesion molecule Fasciclin 2, the Drosophila N-CAM (neural cell adhesion molecule) homologue. Fasciclin 2 accumulation at the lateral membrane of Tao mutant cells prevented membrane shrinking and thereby inhibited morphogenesis. In wild-type cells, Tao initiated morphogenesis by promoting Fasciclin 2 endocytosis at the lateral membrane. Thus, we identify here a mechanism controlling the morphogenesis of a squamous epithelium.
Collapse
Affiliation(s)
- Juan Manuel Gomez
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | | | | |
Collapse
|
43
|
Ren J, Sun J, Zhang Y, Liu T, Ren Q, Li Y, Guo A. Down-regulation of Decapping Protein 2 mediates chronic nicotine exposure-induced locomotor hyperactivity in Drosophila. PLoS One 2012; 7:e52521. [PMID: 23300696 PMCID: PMC3530533 DOI: 10.1371/journal.pone.0052521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/14/2012] [Indexed: 12/05/2022] Open
Abstract
Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence.
Collapse
Affiliation(s)
- Jing Ren
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinghan Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yunpeng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tong Liu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingzhong Ren
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (AG); (YL)
| | - Aike Guo
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (AG); (YL)
| |
Collapse
|
44
|
Kapfhamer D, King I, Zou ME, Lim JP, Heberlein U, Wolf FW. JNK pathway activation is controlled by Tao/TAOK3 to modulate ethanol sensitivity. PLoS One 2012; 7:e50594. [PMID: 23227189 PMCID: PMC3515618 DOI: 10.1371/journal.pone.0050594] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/25/2012] [Indexed: 02/08/2023] Open
Abstract
Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.
Collapse
Affiliation(s)
- David Kapfhamer
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- * E-mail: (DK); (FWW)
| | - Ian King
- Department of Anatomy, Program in Neuroscience, University of California San Francisco, San Francisco, California, United States of America
| | - Mimi E. Zou
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Jana P. Lim
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Ulrike Heberlein
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- Department of Anatomy, Program in Neuroscience, University of California San Francisco, San Francisco, California, United States of America
| | - Fred W. Wolf
- The Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- * E-mail: (DK); (FWW)
| |
Collapse
|
45
|
Kapfhamer D, Taylor S, Zou ME, Lim JP, Kharazia V, Heberlein U. Taok2 controls behavioral response to ethanol in mice. GENES BRAIN AND BEHAVIOR 2012; 12:87-97. [PMID: 22883308 DOI: 10.1111/j.1601-183x.2012.00834.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/30/2012] [Accepted: 08/02/2012] [Indexed: 01/27/2023]
Abstract
Despite recent advances in the understanding of ethanol's biological action, many of the molecular targets of ethanol and mechanisms behind ethanol's effect on behavior remain poorly understood. In an effort to identify novel genes, the products of which regulate behavioral responses to ethanol, we recently identified a mutation in the dtao gene that confers resistance to the locomotor stimulating effect of ethanol in Drosophila. dtao encodes a member of the Ste20 family of serine/threonine kinases implicated in MAP kinase signaling pathways. In this study, we report that conditional ablation of the mouse dtao homolog, Taok2, constitutively and specifically in the nervous system, results in strain-specific and overlapping alterations in ethanol-dependent behaviors. These data suggest a functional conservation of dtao and Taok2 in mediating ethanol's biological action and identify Taok2 as a putative candidate gene for ethanol use disorders in humans.
Collapse
Affiliation(s)
- D Kapfhamer
- The Ernest Gallo Clinic and Research Center, University of California at San Francisco, Emeryville, CA 94608, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Xu S, Chan T, Shah V, Zhang S, Pletcher SD, Roman G. The propensity for consuming ethanol in Drosophila requires rutabaga adenylyl cyclase expression within mushroom body neurons. GENES BRAIN AND BEHAVIOR 2012; 11:727-39. [PMID: 22624869 DOI: 10.1111/j.1601-183x.2012.00810.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alcohol activates reward systems through an unknown mechanism, in some cases leading to alcohol abuse and dependence. Herein, we utilized a two-choice Capillary Feeder assay to address the neural and molecular basis for ethanol self-administration in Drosophila melanogaster. Wild-type Drosophila shows a significant preference for food containing between 5% and 15% ethanol. Preferred ethanol self-administration does not appear to be due to caloric advantage, nor due to perceptual biases, suggesting a hedonic bias for ethanol exists in Drosophila. Interestingly, rutabaga adenylyl cyclase expression within intrinsic mushroom body neurons is necessary for robust ethanol self-administration. The expression of rutabaga in mushroom bodies is also required for both appetitive and aversive olfactory associative memories, suggesting that reinforced behavior has an important role in the ethanol self-administration in Drosophila. However, rutabaga expression is required more broadly within the mushroom bodies for the preference for ethanol-containing food than for olfactory memories reinforced by sugar reward. Together these data implicate cAMP signaling and behavioral reinforcement for preferred ethanol self-administration in D. melanogaster.
Collapse
Affiliation(s)
- S Xu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | | | | |
Collapse
|
47
|
Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex. Nat Neurosci 2012; 15:1022-31. [PMID: 22683681 DOI: 10.1038/nn.3141] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/14/2012] [Indexed: 02/08/2023]
Abstract
How neurons develop their morphology is an important question in neurobiology. Here we describe a new pathway that specifically affects the formation of basal dendrites and axonal projections in cortical pyramidal neurons. We report that thousand-and-one-amino acid 2 kinase (TAOK2), also known as TAO2, is essential for dendrite morphogenesis. TAOK2 downregulation impairs basal dendrite formation in vivo without affecting apical dendrites. Moreover, TAOK2 interacts with Neuropilin 1 (Nrp1), a receptor protein that binds the secreted guidance cue Semaphorin 3A (Sema3A). TAOK2 overexpression restores dendrite formation in cultured cortical neurons from Nrp1(Sema-) mice, which express Nrp1 receptors incapable of binding Sema3A. TAOK2 overexpression also ameliorates the basal dendrite impairment resulting from Nrp1 downregulation in vivo. Finally, Sema3A and TAOK2 modulate the formation of basal dendrites through the activation of the c-Jun N-terminal kinase (JNK). These results delineate a pathway whereby Sema3A and Nrp1 transduce signals through TAOK2 and JNK to regulate basal dendrite development in cortical neurons.
Collapse
|
48
|
Boggiano JC, Fehon RG. Growth control by committee: intercellular junctions, cell polarity, and the cytoskeleton regulate Hippo signaling. Dev Cell 2012; 22:695-702. [PMID: 22516196 PMCID: PMC3376383 DOI: 10.1016/j.devcel.2012.03.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past decade, the Hippo tumor suppressor pathway has emerged as a central regulator of growth in epithelial tissues. Research in Drosophila and in mammals has shown that this kinase signaling cascade regulates the activity of the transcriptional coactivator and oncoprotein Yorkie/Yap. In this review, we discuss recent findings that emphasize the cell cortex-specifically the actin cytoskeleton, intercellular junctions, and protein complexes that determine cell polarity-as a key site for Hippo pathway regulation. We also highlight where additional research is needed to integrate known functional interactions between Hippo pathway components.
Collapse
Affiliation(s)
- Julian C. Boggiano
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
49
|
Kaun KR, Devineni AV, Heberlein U. Drosophila melanogaster as a model to study drug addiction. Hum Genet 2012; 131:959-75. [PMID: 22350798 PMCID: PMC3351628 DOI: 10.1007/s00439-012-1146-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/04/2012] [Indexed: 12/24/2022]
Abstract
Animal studies have been instrumental in providing knowledge about the molecular and neural mechanisms underlying drug addiction. Recently, the fruit fly Drosophilamelanogaster has become a valuable system to model not only the acute stimulating and sedating effects of drugs but also their more complex rewarding properties. In this review, we describe the advantages of using the fly to study drug-related behavior, provide a brief overview of the behavioral assays used, and review the molecular mechanisms and neural circuits underlying drug-induced behavior in flies. Many of these mechanisms have been validated in mammals, suggesting that the fly is a useful model to understand the mechanisms underlying addiction.
Collapse
Affiliation(s)
- Karla R Kaun
- Department of Anatomy, University of California-San Francisco, 1550 4th Street, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
50
|
Poon CLC, Lin JI, Zhang X, Harvey KF. The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev Cell 2012; 21:896-906. [PMID: 22075148 DOI: 10.1016/j.devcel.2011.09.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/09/2011] [Accepted: 09/20/2011] [Indexed: 01/15/2023]
Abstract
The Salvador-Warts-Hippo (SWH) pathway is a complex signaling network that controls both developmental and regenerative tissue growth. Using a genetic screen in Drosophila melanogaster, we identified the sterile 20-like kinase, Tao-1, as an SWH pathway member. Tao-1 controls various biological phenomena, including microtubule dynamics, animal behavior, and brain development. Here we describe a role for Tao-1 as a regulator of epithelial tissue growth that modulates activity of the core SWH pathway kinase cassette. Tao-1 functions together with Hippo to activate Warts-mediated repression of Yorkie. Tao-1's ability to control SWH pathway activity is evolutionarily conserved because human TAO1 can suppress activity of the Yorkie ortholog, YAP. Human TAO1 controls SWH pathway activity by phosphorylating, and activating, the Hippo ortholog, MST2. Given that SWH pathway activity is subverted in many human cancers, our findings identify human TAO kinases as potential tumor suppressor genes.
Collapse
Affiliation(s)
- Carole L C Poon
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, 7 St. Andrews Place, East Melbourne, Victoria 3002, Australia
| | | | | | | |
Collapse
|