1
|
Tsuboi A. A specific olfactory bulb interneuron subtype Tpbg/5T4 generated at embryonic and neonatal stages. Front Neural Circuits 2024; 18:1427378. [PMID: 38933598 PMCID: PMC11203798 DOI: 10.3389/fncir.2024.1427378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Various mammals have shown that sensory stimulation plays a crucial role in regulating the development of diverse structures, such as the olfactory bulb (OB), cerebral cortex, hippocampus, and retina. In the OB, the dendritic development of excitatory projection neurons like mitral/tufted cells is influenced by olfactory experiences. Odor stimulation is also essential for the dendritic development of inhibitory OB interneurons, such as granule and periglomerular cells, which are continuously produced in the ventricular-subventricular zone throughout life. Based on the morphological and molecular features, OB interneurons are classified into several subtypes. The role for each interneuron subtype in the control of olfactory behavior remains poorly understood due to lack of each specific marker. Among the several OB interneuron subtypes, a specific granule cell subtype, which expresses the oncofetal trophoblast glycoprotein (Tpbg or 5T4) gene, has been reported to be required for odor detection and discrimination behavior. This review will primarily focus on elucidating the contribution of different granule cell subtypes, including the Tpbg/5T4 subtype, to olfactory processing and behavior during the embryonic and adult stages.
Collapse
Affiliation(s)
- Akio Tsuboi
- Graduate School of Pharmaceutical Sciences, Osaka University, Toyonaka, Japan
| |
Collapse
|
2
|
Bao S, Romero JM, Belfort BD, Arenkiel BR. Signaling mechanisms underlying activity-dependent integration of adult-born neurons in the mouse olfactory bulb. Genesis 2024; 62:e23595. [PMID: 38553878 PMCID: PMC10987073 DOI: 10.1002/dvg.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.
Collapse
Affiliation(s)
- Suyang Bao
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin D.W. Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Mazo C, Nissant A, Saha S, Peroni E, Lledo PM, Lepousez G. Long-range GABAergic projections contribute to cortical feedback control of sensory processing. Nat Commun 2022; 13:6879. [PMID: 36371430 PMCID: PMC9653434 DOI: 10.1038/s41467-022-34513-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
In the olfactory system, the olfactory cortex sends glutamatergic projections back to the first stage of olfactory processing, the olfactory bulb (OB). Such corticofugal excitatory circuits - a canonical circuit motif described in all sensory systems- dynamically adjust early sensory processing. Here, we uncover a corticofugal inhibitory feedback to OB, originating from a subpopulation of GABAergic neurons in the anterior olfactory cortex and innervating both local and output OB neurons. In vivo imaging and network modeling showed that optogenetic activation of cortical GABAergic projections drives a net subtractive inhibition of both spontaneous and odor-evoked activity in local as well as output neurons. In output neurons, stimulation of cortical GABAergic feedback enhances separation of population odor responses in tufted cells, but not mitral cells. Targeted pharmacogenetic silencing of cortical GABAergic axon terminals impaired discrimination of similar odor mixtures. Thus, corticofugal GABAergic projections represent an additional circuit motif in cortical feedback control of sensory processing.
Collapse
Affiliation(s)
- Camille Mazo
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France.
- Champalimaud Foundation, Lisbon, Portugal.
| | - Antoine Nissant
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Soham Saha
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Enzo Peroni
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France.
| | - Gabriel Lepousez
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France.
| |
Collapse
|
4
|
Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. Development of the mammalian main olfactory bulb. Development 2022; 149:274348. [PMID: 35147186 PMCID: PMC8918810 DOI: 10.1242/dev.200210] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian main olfactory bulb is a crucial processing centre for the sense of smell. The olfactory bulb forms early during development and is functional from birth. However, the olfactory system continues to mature and change throughout life as a target of constitutive adult neurogenesis. Our Review synthesises current knowledge of prenatal, postnatal and adult olfactory bulb development, focusing on the maturation, morphology, functions and interactions of its diverse constituent glutamatergic and GABAergic cell types. We highlight not only the great advances in the understanding of olfactory bulb development made in recent years, but also the gaps in our present knowledge that most urgently require addressing. Summary: This Review describes the morphological and functional maturation of cells in the mammalian main olfactory bulb, from embryonic development to adult neurogenesis.
Collapse
Affiliation(s)
- Candida Tufo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Subathra Poopalasundaram
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Marc C Ford
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Anthony Graham
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
5
|
Olfactory Optogenetics: Light Illuminates the Chemical Sensing Mechanisms of Biological Olfactory Systems. BIOSENSORS-BASEL 2021; 11:bios11090309. [PMID: 34562900 PMCID: PMC8470751 DOI: 10.3390/bios11090309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/26/2023]
Abstract
The mammalian olfactory system has an amazing ability to distinguish thousands of odorant molecules at the trace level. Scientists have made great achievements on revealing the olfactory sensing mechanisms in decades; even though many issues need addressing. Optogenetics provides a novel technical approach to solve this dilemma by utilizing light to illuminate specific part of the olfactory system; which can be used in all corners of the olfactory system for revealing the olfactory mechanism. This article reviews the most recent advances in olfactory optogenetics devoted to elucidate the mechanisms of chemical sensing. It thus attempts to introduce olfactory optogenetics according to the structure of the olfactory system. It mainly includes the following aspects: the sensory input from the olfactory epithelium to the olfactory bulb; the influences of the olfactory bulb (OB) neuron activity patterns on olfactory perception; the regulation between the olfactory cortex and the olfactory bulb; and the neuromodulation participating in odor coding by dominating the olfactory bulb. Finally; current challenges and future development trends of olfactory optogenetics are proposed and discussed.
Collapse
|
6
|
BrainPhys neuronal medium optimized for imaging and optogenetics in vitro. Nat Commun 2020; 11:5550. [PMID: 33144563 PMCID: PMC7642238 DOI: 10.1038/s41467-020-19275-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
The capabilities of imaging technologies, fluorescent sensors, and optogenetics tools for cell biology are advancing. In parallel, cellular reprogramming and organoid engineering are expanding the use of human neuronal models in vitro. This creates an increasing need for tissue culture conditions better adapted to live-cell imaging. Here, we identify multiple caveats of traditional media when used for live imaging and functional assays on neuronal cultures (i.e., suboptimal fluorescence signals, phototoxicity, and unphysiological neuronal activity). To overcome these issues, we develop a neuromedium called BrainPhys™ Imaging (BPI) in which we optimize the concentrations of fluorescent and phototoxic compounds. BPI is based on the formulation of the original BrainPhys medium. We benchmark available neuronal media and show that BPI enhances fluorescence signals, reduces phototoxicity and optimally supports the electrical and synaptic activity of neurons in culture. We also show the superior capacity of BPI for optogenetics and calcium imaging of human neurons. Altogether, our study shows that BPI improves the quality of a wide range of fluorescence imaging applications with live neurons in vitro while supporting optimal neuronal viability and function. Current media for neuronal cell and organoid cultures are suboptimal for functional imaging and optogenetics experiments, owing to phototoxicity and unphysiological performance. Here the authors formulate an optimised neuronal medium to support live cell imaging and electrophysiological activity.
Collapse
|
7
|
Bodaleo F, Tapia-Monsalves C, Cea-Del Rio C, Gonzalez-Billault C, Nunez-Parra A. Structural and Functional Abnormalities in the Olfactory System of Fragile X Syndrome Models. Front Mol Neurosci 2019; 12:135. [PMID: 31191246 PMCID: PMC6548058 DOI: 10.3389/fnmol.2019.00135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability. It is produced by mutation of the Fmr1 gene that encodes for the Fragile Mental Retardation Protein (FMRP), an important RNA-binding protein that regulates the expression of multiple proteins located in neuronal synapses. Individuals with FXS exhibit abnormal sensory information processing frequently leading to hypersensitivity across sensory modalities and consequently a wide array of behavioral symptoms. Insects and mammals engage primarily their sense of smell to create proper representations of the external world and guide adequate decision-making processes. This feature in combination with the exquisitely organized neuronal circuits found throughout the olfactory system (OS) and the wide expression of FMRP in brain regions that process olfactory information makes it an ideal model to study sensory alterations in FXS models. In the last decade several groups have taken advantage of these features and have used the OS of fruit fly and rodents to understand neuronal alteration giving rise to sensory perception issues. In this review article, we will discuss molecular, morphological and physiological aspects of the olfactory information processing in FXS models. We will highlight the decreased inhibitory/excitatory synaptic balance and the diminished synaptic plasticity found in this system resulting in behavioral alteration of individuals in the presence of odorant stimuli.
Collapse
Affiliation(s)
- Felipe Bodaleo
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Christian Cea-Del Rio
- Laboratory of Neurophysiopathology, Centro de Investigacion Biomedica y Aplicada (CIBAP), School of Medicine, Universidad de Santiago de Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Alexia Nunez-Parra
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Cell Physiology Center, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Li W, Li S, Shen L, Wang J, Wu X, Li J, Tu C, Ye X, Ling S. Impairment of Dendrodendritic Inhibition in the Olfactory Bulb of APP/PS1 Mice. Front Aging Neurosci 2019; 11:2. [PMID: 30740049 PMCID: PMC6357935 DOI: 10.3389/fnagi.2019.00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
Olfactory dysfunction is an early event in Alzheimer’s disease (AD). However, the mechanism underlying the AD-related changes in the olfactory bulb (OB) remains unknown. Granule cells (GCs) in the OB regulate the activity of mitral cells (MCs) through reciprocal dendrodendritic synapses, which is crucial for olfactory signal processing and odor discrimination. Nevertheless, the relationships between the morphological and functional changes of dendrodendritic synapses, particularly the local field potentials (LFPs) as a consequence of olfactory disorders in patients with AD have not been investigated. Here, we studied the morphological and functional changes induced by dendrodendritic inhibition in GCs onto MCs in the OB of amyloid precursor protein (APP)/PS1 mice and age-matched control mice during aging, particular, we focused on the effects of olfactory disorder in the dendrodendritic synaptic structures and the LFPs. We found that olfactory disorder was associated with increased amyloid-β (Aβ) deposits in the OB of APP/PS1 mice, and those mice also exhibited abnormal changes in the morphology of GCs and MCs, a decreased density of GC dendritic spines and impairments in the synaptic interface of dendrodendritic synapses between GCs and MCs. In addition, the aberrant enhancements in the γ oscillations and firing rates of MCs in the OB of APP/PS1 mice were recorded by multi-electrode arrays (MEAs). The local application of a GABAAR agonist nearly abolished the aberrant increase in γ oscillations in the external plexiform layer (EPL) at advanced stages of AD, whereas a GABAAR antagonist aggravated the γ oscillations. Based on our findings, we concluded that the altered morphologies of the synaptic structures of GCs, the dysfunction of reciprocal dendrodendritic synapses between MCs and GCs, and the abnormal γ oscillations in the EPL might contribute to olfactory dysfunction in AD.
Collapse
Affiliation(s)
- Weiyun Li
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
| | - Shanshan Li
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lianghua Shen
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junbo Wang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
| | - Xuewei Wu
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Li
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chunlong Tu
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, China
| | - Shucai Ling
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Takahashi H, Yoshihara S, Tsuboi A. The Functional Role of Olfactory Bulb Granule Cell Subtypes Derived From Embryonic and Postnatal Neurogenesis. Front Mol Neurosci 2018; 11:229. [PMID: 30034321 PMCID: PMC6043811 DOI: 10.3389/fnmol.2018.00229] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/12/2018] [Indexed: 02/01/2023] Open
Abstract
It has been shown in a variety of mammalian species that sensory experience can regulate the development of various structures, including the retina, cortex, hippocampus, and olfactory bulb (OB). In the mammalian OB, the development of dendrites in excitatory projection neurons, such as mitral and tufted cells, is well known to be dependent on odor experience. Odor experience is also involved in the development of another OB population, a subset of inhibitory interneurons that are generated in the ventricular-subventricular zone throughout life and differentiate into granule cells (GCs) and periglomerular cells. However, the roles that each type of interneuron plays in the control of olfactory behaviors are incompletely understood. We recently found that among the various types of OB interneurons, a subtype of GCs expressing the oncofetal trophoblast glycoprotein 5T4 gene is required for odor detection and discrimination behaviors. Our results suggest that embryonic-born OB interneurons, including 5T4-positive GCs, play a crucial role in fundamental olfactory responses such as simple odor detection and discrimination behaviors. By contrast, postnatal- and adult-born OB interneurons are important in the learning of more complicated olfactory behaviors. Here, we highlight the subtypes of OB GCs, and discuss their roles in olfactory processing and behavior, with a particular focus on the relative contributions of embryonically and postnatally generated subsets of GCs in rodents.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| | - Seiichi Yoshihara
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| | - Akio Tsuboi
- Laboratory for the Molecular Biology of Neural Systems, Advanced Medical Research Center, Nara Medical University, Kashihara, Japan.,Laboratory for the Molecular and Cellular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Abstract
Odor–reward association during appetitive learning is a fundamental process that requires multiple forms of plasticity. In the adult olfactory bulb, the continual production of newborn interneurons contributes to the functional plasticity of the system, placing the newcomers in a key position to participate in olfactory associative learning. Here, we demonstrate that adult-born neurons, but not preexisting ones, contain information about learned positive value. Moreover, specific heightening of this signal improves associative learning and odor value update and is enough in some cases to trigger behavior even without odor stimulus. Collectively, our findings show an important role of this adult-born interneuron population in odor–reward association and unveil the relevance of odor value encoding at early stages of sensory processing. Olfaction is an important sensory modality driving fundamental behaviors. During odor-dependent learning, a positive value is commonly assigned to an odorant, and multiple forms of plasticity are involved when such odor–reward associations are formed. In rodents, one of the mechanisms underlying plasticity in the olfactory bulb consists in recruiting new neurons daily throughout life. However, it is still unknown whether adult-born neurons might participate in encoding odor value. Here, we demonstrate that exposure to reward-associated odors specifically increases activity of adult-born neurons but not preexisting neurons. Remarkably, adult-born neuron activation during rewarded odor presentation heightens discrimination learning and enhances the ability to update the odor value during reversal association. Moreover, in some cases, activation of this interneuron population can trigger olfactory learning without sensory stimulation. Taken together, our results show a specific involvement of adult-born neurons in facilitating odor–reward association during adaptive learning.
Collapse
|
11
|
Wallace JL, Wienisch M, Murthy VN. Development and Refinement of Functional Properties of Adult-Born Neurons. Neuron 2017; 96:883-896.e7. [PMID: 29056299 PMCID: PMC5789450 DOI: 10.1016/j.neuron.2017.09.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 07/26/2017] [Accepted: 09/22/2017] [Indexed: 01/21/2023]
Abstract
New neurons appear only in a few regions of the adult mammalian brain and become integrated into existing circuits. Little is known about the functional development of individual neurons in vivo. We examined the functional life history of adult-born granule cells (abGCs) in the olfactory bulb using multiphoton imaging in awake and anesthetized mice. We found that abGCs can become responsive to odorants soon after they arrive in the olfactory bulb. Tracking identified abGCs over weeks revealed that the robust and broadly tuned responses of most newly arrived abGCs gradually become more selective over a period of ∼3 weeks, but a small fraction achieves broader tuning with maturation. Enriching the olfactory environment of mice prolonged the period over which abGCs were strongly and broadly responsive to odorants. Our data offer direct support for rapid integration of adult-born neurons into existing circuits, followed by experience-dependent refinement of their functional connectivity.
Collapse
Affiliation(s)
- Jenelle L Wallace
- Molecules, Cells, and Organisms training program, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Martin Wienisch
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
12
|
A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors. J Neurosci 2017; 36:8210-27. [PMID: 27488640 DOI: 10.1523/jneurosci.2783-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Neural circuits that undergo reorganization by newborn interneurons in the olfactory bulb (OB) are necessary for odor detection and discrimination, olfactory memory, and innate olfactory responses, including predator avoidance and sexual behaviors. The OB possesses many interneurons, including various types of granule cells (GCs); however, the contribution that each type of interneuron makes to olfactory behavioral control remains unknown. Here, we investigated the in vivo functional role of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic arborization of 5T4-expressing GCs (5T4 GCs), the level of which is reduced in the OB of 5T4 knock-out (KO) mice. Electrophysiological recordings with acute OB slices indicated that external tufted cells (ETCs) can be divided into two types, bursting and nonbursting. Optogenetic stimulation of 5T4 GCs revealed their connection to both bursting and nonbursting ETCs, as well as to mitral cells (MCs). Interestingly, nonbursting ETCs received fewer inhibitory inputs from GCs in 5T4 KO mice than from those in wild-type (WT) mice, whereas bursting ETCs and MCs received similar inputs in both mice. Furthermore, 5T4 GCs received significantly fewer excitatory inputs in 5T4 KO mice. Remarkably, in olfactory behavior tests, 5T4 KO mice had higher odor detection thresholds than the WT, as well as defects in odor discrimination learning. Therefore, the loss of 5T4 attenuates inhibitory inputs from 5T4 GCs to nonbursting ETCs and excitatory inputs to 5T4 GCs, contributing to disturbances in olfactory behavior. Our novel findings suggest that, among the various types of OB interneurons, the 5T4 GC subtype is required for odor detection and discrimination behaviors. SIGNIFICANCE STATEMENT Neuronal circuits in the brain include glutamatergic principal neurons and GABAergic interneurons. Although the latter is a minority cell type, they are vital for normal brain function because they regulate the activity of principal neurons. If interneuron function is impaired, brain function may be damaged, leading to behavior disorder. The olfactory bulb (OB) possesses various types of interneurons, including granule cells (GCs); however, the contribution that each type of interneuron makes to the control of olfactory behavior remains unknown. Here, we analyzed electrophysiologically and behaviorally the function of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic branching in OB GCs. We found that, among the various types of OB interneuron, the 5T4 GC subtype is required for odor detection and odor discrimination behaviors.
Collapse
|
13
|
Ravi N, Sanchez-Guardado L, Lois C, Kelsch W. Determination of the connectivity of newborn neurons in mammalian olfactory circuits. Cell Mol Life Sci 2017; 74:849-867. [PMID: 27695873 PMCID: PMC11107630 DOI: 10.1007/s00018-016-2367-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/24/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022]
Abstract
The mammalian olfactory bulb is a forebrain structure just one synapse downstream from the olfactory sensory neurons and performs the complex computations of sensory inputs. The formation of this sensory circuit is shaped through activity-dependent and cell-intrinsic mechanisms. Recent studies have revealed that cell-type specific connectivity and the organization of synapses in dendritic compartments are determined through cell-intrinsic programs already preset in progenitor cells. These progenitor programs give rise to subpopulations within a neuron type that have distinct synaptic organizations. The intrinsically determined formation of distinct synaptic organizations requires factors from contacting cells that match the cell-intrinsic programs. While certain genes control wiring within the newly generated neurons, other regulatory genes provide intercellular signals and are only expressed in neurons that will form contacts with the newly generated cells. Here, the olfactory system has provided a useful model circuit to reveal the factors regulating assembly of the highly structured connectivity in mammals.
Collapse
Affiliation(s)
- Namasivayam Ravi
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Luis Sanchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125, USA.
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
14
|
Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology. Mol Psychiatry 2016; 21:1573-1588. [PMID: 27698428 PMCID: PMC5071135 DOI: 10.1038/mp.2016.158] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/23/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Human neural progenitors derived from pluripotent stem cells develop into electrophysiologically active neurons at heterogeneous rates, which can confound disease-relevant discoveries in neurology and psychiatry. By combining patch clamping, morphological and transcriptome analysis on single-human neurons in vitro, we defined a continuum of poor to highly functional electrophysiological states of differentiated neurons. The strong correlations between action potentials, synaptic activity, dendritic complexity and gene expression highlight the importance of methods for isolating functionally comparable neurons for in vitro investigations of brain disorders. Although whole-cell electrophysiology is the gold standard for functional evaluation, it often lacks the scalability required for disease modeling studies. Here, we demonstrate a multimodal machine-learning strategy to identify new molecular features that predict the physiological states of single neurons, independently of the time spent in vitro. As further proof of concept, we selected one of the potential neurophysiological biomarkers identified in this study-GDAP1L1-to isolate highly functional live human neurons in vitro.
Collapse
|
15
|
Pytte CL. Adult Neurogenesis in the Songbird: Region-Specific Contributions of New Neurons to Behavioral Plasticity and Stability. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:191-204. [PMID: 27560148 DOI: 10.1159/000447048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our understanding of the role of new neurons in learning and encoding new information has been largely based on studies of new neurons in the mammalian dentate gyrus and olfactory bulb - brain regions that may be specialized for learning. Thus the role of new neurons in regions that serve other functions has yet to be fully explored. The song system provides a model for studying new neuron function in brain regions that contribute differently to song learning, song auditory discrimination, and song motor production. These regions subserve learning as well as long-term storage of previously learned information. This review examines the differences between learning-based and activity-based retention of new neurons and explores the potential contributions of new neurons to behavioral stability in the song motor production pathway.
Collapse
Affiliation(s)
- Carolyn L Pytte
- Psychology Department, Queens College and The Graduate Center, City University of New York, Flushing, N.Y., USA
| |
Collapse
|
16
|
Song J, Olsen RHJ, Sun J, Ming GL, Song H. Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018937. [PMID: 27143698 DOI: 10.1101/cshperspect.a018937] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb.
Collapse
Affiliation(s)
- Juan Song
- Department of Pharmacology and Pharmacology Training Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599 Neuroscience Center and Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Reid H J Olsen
- Department of Pharmacology and Pharmacology Training Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jiaqi Sun
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130-2685
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130-2685
| |
Collapse
|
17
|
Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb. Neuron 2016; 91:384-96. [PMID: 27373833 DOI: 10.1016/j.neuron.2016.06.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/14/2016] [Accepted: 05/19/2016] [Indexed: 11/23/2022]
Abstract
In the mammalian brain, the anatomical structure of neural circuits changes little during adulthood. As a result, adult learning and memory are thought to result from specific changes in synaptic strength. A possible exception is the olfactory bulb (OB), where activity guides interneuron turnover throughout adulthood. These adult-born granule cell (GC) interneurons form new GABAergic synapses that have little synaptic strength plasticity. In the face of persistent neuronal and synaptic turnover, how does the OB balance flexibility, as is required for adapting to changing sensory environments, with perceptual stability? Here we show that high dendritic spine turnover is a universal feature of GCs, regardless of their developmental origin and age. We find matching dynamics among postsynaptic sites on the principal neurons receiving the new synaptic inputs. We further demonstrate in silico that this coordinated structural plasticity is consistent with stable, yet flexible, decorrelated sensory representations. Together, our study reveals that persistent, coordinated synaptic structural plasticity between interneurons and principal neurons is a major mode of functional plasticity in the OB.
Collapse
|
18
|
Grimaud J, Lledo PM. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities. ACTA ACUST UNITED AC 2016; 23:249-54. [PMID: 27194792 PMCID: PMC4880145 DOI: 10.1101/lm.041269.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/17/2016] [Indexed: 11/25/2022]
Abstract
For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout.
Collapse
Affiliation(s)
- Julien Grimaud
- Institut Pasteur, Laboratory for Perception and Memory, F-75015 Paris, France Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 3571, F-75015 Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Laboratory for Perception and Memory, F-75015 Paris, France Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 3571, F-75015 Paris, France
| |
Collapse
|
19
|
Ji ZG, Wang H. ChR2 transgenic animals in peripheral sensory system: Sensing light as various sensations. Life Sci 2016; 150:95-102. [PMID: 26903290 DOI: 10.1016/j.lfs.2016.02.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/31/2015] [Accepted: 02/13/2016] [Indexed: 12/28/2022]
Abstract
Since the introduction of Channelrhodopsin-2 (ChR2) to neuroscience, optogenetics technology was developed, making it possible to activate specific neurons or circuits with spatial and temporal precision. Various ChR2 transgenic animal models have been generated and are playing important roles in revealing the mechanisms of neural activities, mapping neural circuits, controlling the behaviors of animals as well as exploring new strategy for treating the neurological diseases in both central and peripheral nervous system. An animal including humans senses environments through Aristotle's five senses (sight, hearing, smell, taste and touch). Usually, each sense is associated with a kind of sensory organ (eyes, ears, nose, tongue and skin). Is it possible that one could hear light, smell light, taste light and touch light? When ChR2 is targeted to different peripheral sensory neurons by viral vectors or generating ChR2 transgenic animals, the animals can sense the light as various sensations such as hearing, touch, pain, smell and taste. In this review, we focus on ChR2 transgenic animals in the peripheral nervous system. Firstly the working principle of ChR2 as an optogenetic actuator is simply described. Then the current transgenic animal lines where ChR2 was expressed in peripheral sensory neurons are presented and the findings obtained by these animal models are reviewed.
Collapse
Affiliation(s)
- Zhi-Gang Ji
- The Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Hongxia Wang
- The Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
20
|
Involvement of Adult Hippocampal Neurogenesis in Learning and Forgetting. Neural Plast 2015; 2015:717958. [PMID: 26380120 PMCID: PMC4561984 DOI: 10.1155/2015/717958] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022] Open
Abstract
Adult hippocampal neurogenesis is a process involving the continuous generation of newborn neurons in the hippocampus of adult animals. Mounting evidence has suggested that hippocampal neurogenesis contributes to some forms of hippocampus-dependent learning and memory; however, the detailed mechanism concerning how this small number of newborn neurons could affect learning and memory remains unclear. In this review, we discuss the relationship between adult-born neurons and learning and memory, with a highlight on recently discovered potential roles of neurogenesis in pattern separation and forgetting.
Collapse
|
21
|
Wu MV, Sahay A, Duman RS, Hen R. Functional differentiation of adult-born neurons along the septotemporal axis of the dentate gyrus. Cold Spring Harb Perspect Biol 2015; 7:a018978. [PMID: 26238355 DOI: 10.1101/cshperspect.a018978] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the past several decades, the proliferation and integration of adult-born neurons into existing hippocampal circuitry has been implicated in a wide range of behaviors, including novelty recognition, pattern separation, spatial learning, anxiety behaviors, and antidepressant response. In this review, we suggest that the diversity in behavioral requirements for new neurons may be partly caused by separate functional roles of individual neurogenic niches. Growing evidence shows that the hippocampal formation can be compartmentalized not only along the classic trisynaptic circuit, but also along a longitudinal septotemporal axis. We suggest that subpopulations of hippocampal adult-born neurons may be specialized for distinct mnemonic- or mood-related behavioral tasks. We will examine the literature supporting a functional and anatomical dissociation of the hippocampus along the longitudinal axis and discuss techniques to functionally dissect the roles of adult-born hippocampal neurons in these distinct subregions.
Collapse
Affiliation(s)
- Melody V Wu
- Department of Psychiatry, Columbia University, New York, New York 10027 Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032
| | - Amar Sahay
- Center for Regenerative Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114 Harvard Stem Cell Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Ronald S Duman
- Department of Psychiatry, Yale University, New Haven, Connecticut 06520 Department of Neurobiology, Yale University, New Haven, Connecticut 06520
| | - René Hen
- Department of Psychiatry, Columbia University, New York, New York 10027 Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York 10032 Department of Neuroscience, Columbia University, New York, New York 10027 Department of Pharmacology, Columbia University, New York, New York 10027
| |
Collapse
|
22
|
Lepousez G, Nissant A, Lledo PM. Adult Neurogenesis and the Future of the Rejuvenating Brain Circuits. Neuron 2015; 86:387-401. [DOI: 10.1016/j.neuron.2015.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Hillje AL, Beckmann E, Pavlou MAS, Jaeger C, Pacheco MP, Sauter T, Schwamborn JC, Lewejohann L. The neural stem cell fate determinant TRIM32 regulates complex behavioral traits. Front Cell Neurosci 2015; 9:75. [PMID: 25852471 PMCID: PMC4364253 DOI: 10.3389/fncel.2015.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/20/2015] [Indexed: 12/22/2022] Open
Abstract
In mammals, new neurons are generated throughout the entire lifespan in two restricted areas of the brain, the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ)—olfactory bulb (OB) system. In both regions newborn neurons display unique properties that clearly distinguish them from mature neurons. Enhanced excitability and increased synaptic plasticity enables them to add specific properties to information processing by modulating the existing local circuitry of already established mature neurons. Hippocampal neurogenesis has been suggested to play a role in spatial-navigation learning, spatial memory, and spatial pattern separation. Cumulative evidences implicate that adult-born OB neurons contribute to learning processes and odor memory. We recently demonstrated that the cell fate determinant TRIM32 is upregulated in differentiating neuroblasts of the SVZ-OB system in the adult mouse brain. The absence of TRIM32 leads to increased progenitor cell proliferation and less cell death. Both effects accumulate in an overproduction of adult-generated OB neurons. Here, we present novel data from behavioral studies showing that such an enhancement of OB neurogenesis not necessarily leads to increased olfactory performance but in contrast even results in impaired olfactory capabilities. In addition, we show at the cellular level that TRIM32 protein levels increase during differentiation of neural stem cells (NSCs). At the molecular level, several metabolic intermediates that are connected to glycolysis, glycine, or cysteine metabolism are deregulated in TRIM32 knockout mice brain tissue. These metabolomics pathways are directly or indirectly linked to anxiety or depression like behavior. In summary, our study provides comprehensive data on how the impairment of neurogenesis caused by the loss of the cell fate determinant TRIM32 causes a decrease of olfactory performance as well as a deregulation of metabolomic pathways that are linked to mood disorders.
Collapse
Affiliation(s)
- Anna-Lena Hillje
- ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Westfälische Wilhelms-Universität Münster Münster, Germany ; Luxembourg Centre for Systems Biomedicine, University of Luxembourg Luxembourg, Luxembourg
| | - Elisabeth Beckmann
- Department of Behavioural Biology, Westfälische Wilhelms-Universität Münster Münster, Germany
| | - Maria A S Pavlou
- ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Westfälische Wilhelms-Universität Münster Münster, Germany ; Luxembourg Centre for Systems Biomedicine, University of Luxembourg Luxembourg, Luxembourg
| | - Christian Jaeger
- Life Sciences Research Unit, University of Luxembourg Luxembourg, Luxembourg
| | - Maria P Pacheco
- Life Sciences Research Unit, University of Luxembourg Luxembourg, Luxembourg
| | - Thomas Sauter
- Life Sciences Research Unit, University of Luxembourg Luxembourg, Luxembourg
| | - Jens C Schwamborn
- ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, Westfälische Wilhelms-Universität Münster Münster, Germany ; Luxembourg Centre for Systems Biomedicine, University of Luxembourg Luxembourg, Luxembourg
| | - Lars Lewejohann
- Department of Behavioural Biology, Westfälische Wilhelms-Universität Münster Münster, Germany
| |
Collapse
|
24
|
In vivo odourant response properties of migrating adult-born neurons in the mouse olfactory bulb. Nat Commun 2015; 6:6349. [PMID: 25695931 DOI: 10.1038/ncomms7349] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022] Open
Abstract
Juxtaglomerular neurons (JGNs) of the mammalian olfactory bulb are generated throughout life. Their integration into the preexisting neural network, their differentiation and survival therein depend on sensory activity, but when and how these adult-born cells acquire responsiveness to sensory stimuli remains unknown. In vivo two-photon imaging of retrovirally labelled adult-born JGNs reveals that ~90% of the cells arrive at the glomerular layer after day post injection (DPI) 7. After arrival, adult-born JGNs are still migrating, but at DPI 9, 52% of them have odour-evoked Ca(2+) signals. Their odourant sensitivity closely resembles that of the parent glomerulus and surrounding JGNs, and their spontaneous and odour-evoked spiking is similar to that of their resident neighbours. Our data reveal a remarkably rapid functional integration of adult-born cells into the preexisting neural network. The mature pattern of odour-evoked responses of these cells strongly contrasts with their molecular phenotype, which is typical of immature, migrating neuroblasts.
Collapse
|
25
|
Ravi N, Li Z, Oettl LL, Bartsch D, Schönig K, Kelsch W. Postnatal subventricular zone progenitors switch their fate to generate neurons with distinct synaptic input patterns. Development 2014; 142:303-13. [PMID: 25519243 DOI: 10.1242/dev.110767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New granule cell neurons (GCs) generated in the neonatal and adult subventricular zone (SVZ) have distinct patterns of input synapses in their dendritic domains. These synaptic input patterns determine the computations that the neurons eventually perform in the olfactory bulb. We observed that GCs generated earlier in postnatal life had acquired an 'adult' synaptic development only in one dendritic domain, and only later-born GCs showed an 'adult' synaptic development in both dendritic domains. It is unknown to what extent the distinct synaptic input patterns are already determined in SVZ progenitors and/or by the brain circuit into which neurons integrate. To distinguish these possibilities, we heterochronically transplanted retrovirally labeled SVZ progenitor cells. Once these transplanted progenitors, which mainly expressed Mash1, had differentiated into GCs, their glutamatergic input synapses were visualized by genetic tags. We observed that GCs derived from neonatal progenitors differentiating in the adult maintained their characteristic neonatal synapse densities. Grafting of adult SVZ progenitors to the neonate had a different outcome. These GCs formed synaptic densities that corresponded to neither adult nor neonatal patterns in two dendritic domains. In summary, progenitors in the neonatal and adult brain generate distinct GC populations and switch their fate to generate neurons with specific synaptic input patterns. Once they switch, adult progenitors require specific properties of the circuit to maintain their characteristic synaptic input patterns. Such determination of synaptic input patterns already at the progenitor-cell level may be exploited for brain repair to engineer neurons with defined wiring patterns.
Collapse
Affiliation(s)
- Namasivayam Ravi
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany German Cancer Research Center, Heidelberg 69120, Germany
| | - Zhijun Li
- German Cancer Research Center, Heidelberg 69120, Germany
| | - Lars-Lennart Oettl
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany German Cancer Research Center, Heidelberg 69120, Germany
| | - Dusan Bartsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Kai Schönig
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany German Cancer Research Center, Heidelberg 69120, Germany
| |
Collapse
|
26
|
Yoshihara SI, Takahashi H, Nishimura N, Kinoshita M, Asahina R, Kitsuki M, Tatsumi K, Furukawa-Hibi Y, Hirai H, Nagai T, Yamada K, Tsuboi A. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons. Cell Rep 2014; 8:843-57. [DOI: 10.1016/j.celrep.2014.06.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 02/03/2023] Open
|
27
|
Abstract
The adult mammalian brain is continuously supplied with adult-born neurons in the olfactory bulb (OB) and hippocampus, where they are thought to be important for circuit coding and plasticity. However, direct evidence for the actual involvement of these neurons in neural processing is still lacking. We recorded the spiking activity of adult-born periglomerular neurons in the mouse OB in vivo using two-photon-targeted patch recordings. We show that odor responsiveness reaches a peak during neuronal development and then recedes at maturity. Sensory enrichment during development enhances the selectivity of adult-born neurons after maturation, without affecting neighboring resident neurons. Thus, in the OB circuit, adult-born neurons functionally integrate into the circuit, where they acquire distinct response profiles in an experience-dependent manner. The constant flow of these sensitive neurons into the circuit provides it with a mechanism of long-term plasticity, wherein new neurons mature to process odor information based on past demands.
Collapse
Affiliation(s)
- Yoav Livneh
- Department of Neurobiology, Institute for Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - Yoav Adam
- Department of Neurobiology, Institute for Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, Institute for Life Sciences and The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904 Jerusalem, Israel.
| |
Collapse
|
28
|
Adult neurogenesis in the olfactory system shapes odor memory and perception. PROGRESS IN BRAIN RESEARCH 2014; 208:157-75. [PMID: 24767482 DOI: 10.1016/b978-0-444-63350-7.00006-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The olfactory system is a dynamic place. In mammals, not only are sensory neurons located in the sensory organ renewed through adult life, but also its first central relay is reconstructed by continuous neuronal recruitment. Despite these numerous morphological and physiological changes, olfaction is a unique sensory modality endowed with a privileged link to memory. This raises a clear conundrum; how does the olfactory system balance its neuronal turnover with its participation in long-term memory? This review concentrates on the functional aspects of adult neurogenesis, addressing how the integration of late-born neurons participates in olfactory perception and memory. After outlining the properties of adult neurogenesis in the olfactory system, and after describing their regulation by internal and environmental factors, we ask how the process of odorant perception can be influenced by constant neuronal turnover. We then explore the possible functional roles that newborn neurons might have for olfactory memory. Throughout this review, and as we concentrate almost exclusively on mammalian models, we stress the idea that adult neurogenesis is yet another form of plasticity used by the brain to copes with a constantly changing olfactory world.
Collapse
|
29
|
Valley MT, Henderson LG, Inverso SA, Lledo PM. Adult neurogenesis produces neurons with unique GABAergic synapses in the olfactory bulb. J Neurosci 2013; 33:14660-5. [PMID: 24027267 PMCID: PMC6705166 DOI: 10.1523/jneurosci.2845-13.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 01/22/2023] Open
Abstract
Neuronal regeneration occurs naturally in a few restricted mammalian brain regions, but its functional significance remains debated. Here we search for unique features in the synaptic outputs made by adult-born granule cell interneurons in the mouse olfactory bulb using optogenetic targeting of specific neuronal ages. We find that adult-born interneurons are resistant to presynaptic GABA(B)-mediated depression of GABA release compared with interneurons born just after birth that exhibit strong GABA(B) neuromodulation. Correlated with this functional change, we found altered localization of the GGABA(B)R1 protein within adult-born granule cells. These results suggest that adult neurogenesis produces a population of functionally unique GABAergic synapses in the olfactory bulb.
Collapse
Affiliation(s)
- Matthew T. Valley
- Laboratory for Perception and Memory and
- National Center of Scientific Research, Coeducational Research Unit, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, F-75015 Paris, France
| | - Lansdale G. Henderson
- Laboratory for Perception and Memory and
- National Center of Scientific Research, Coeducational Research Unit, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, F-75015 Paris, France
| | - Samuel A. Inverso
- Integrative Neurobiology of Cholinergic Systems, Pasteur Institute, F-75015 Paris, France, and
- National Center of Scientific Research, Coeducational Research Unit, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, F-75015 Paris, France
| | - Pierre-Marie Lledo
- Laboratory for Perception and Memory and
- National Center of Scientific Research, Coeducational Research Unit, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, F-75015 Paris, France
| |
Collapse
|
30
|
Bartolini G, Ciceri G, Marín O. Integration of GABAergic Interneurons into Cortical Cell Assemblies: Lessons from Embryos and Adults. Neuron 2013; 79:849-64. [DOI: 10.1016/j.neuron.2013.08.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2013] [Indexed: 01/31/2023]
|
31
|
Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination. Proc Natl Acad Sci U S A 2013; 110:14777-82. [PMID: 23959889 DOI: 10.1073/pnas.1310686110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Granule cells (GCs) are the most abundant inhibitory neuronal type in the olfactory bulb and play a critical role in olfactory processing. GCs regulate the activity of principal neurons, the mitral cells, through dendrodendritic synapses, shaping the olfactory bulb output to other brain regions. GC excitability is regulated precisely by intrinsic and extrinsic inputs, and this regulation is fundamental for odor discrimination. Here, we used channelrhodopsin to stimulate GABAergic axons from the basal forebrain selectively and show that this stimulation generates reliable inhibitory responses in GCs. Furthermore, selective in vivo inhibition of GABAergic neurons in the basal forebrain by targeted expression of designer receptors exclusively activated by designer drugs produced a reversible impairment in the discrimination of structurally similar odors, indicating an important role of these inhibitory afferents in olfactory processing.
Collapse
|
32
|
Gire DH, Restrepo D, Sejnowski TJ, Greer C, De Carlos JA, Lopez-Mascaraque L. Temporal processing in the olfactory system: can we see a smell? Neuron 2013; 78:416-32. [PMID: 23664611 PMCID: PMC3694266 DOI: 10.1016/j.neuron.2013.04.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Sensory processing circuits in the visual and olfactory systems receive input from complex, rapidly changing environments. Although patterns of light and plumes of odor create different distributions of activity in the retina and olfactory bulb, both structures use what appears on the surface similar temporal coding strategies to convey information to higher areas in the brain. We compare temporal coding in the early stages of the olfactory and visual systems, highlighting recent progress in understanding the role of time in olfactory coding during active sensing by behaving animals. We also examine studies that address the divergent circuit mechanisms that generate temporal codes in the two systems, and find that they provide physiological information directly related to functional questions raised by neuroanatomical studies of Ramon y Cajal over a century ago. Consideration of differences in neural activity in sensory systems contributes to generating new approaches to understand signal processing.
Collapse
Affiliation(s)
- David H Gire
- Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
33
|
Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci U S A 2013; 110:E1152-61. [PMID: 23487772 DOI: 10.1073/pnas.1218991110] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple types of GABAergic interneurons before long-range projections become established, such as those originating from cortical areas. Interestingly, despite fundamental similarities in the overall pattern of evolution of presynaptic connectivity, there were notable differences with regard to the development of cortical projections: although DG granule neuron input originating from the entorhinal cortex could be traced starting only from 3 to 5 wk on, newly generated neurons in the OB received input from the anterior olfactory nucleus and piriform cortex already by the second week. This early glutamatergic input onto newly generated interneurons in the OB was matched in time by the equally early innervations of DG granule neurons by glutamatergic mossy cells. The development of connectivity revealed by our study may suggest common principles for incorporating newly generated neurons into a preexisting circuit.
Collapse
|
34
|
Functional properties of cortical feedback projections to the olfactory bulb. Neuron 2013; 76:1175-88. [PMID: 23259952 DOI: 10.1016/j.neuron.2012.10.028] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 11/22/2022]
Abstract
Sensory perception is not a simple feed-forward process, and higher brain areas can actively modulate information processing in "lower" areas. We used optogenetic methods to examine how cortical feedback projections affect circuits in the first olfactory processing stage, the olfactory bulb. Selective activation of back projections from the anterior olfactory nucleus/cortex (AON) revealed functional glutamatergic synaptic connections on several types of bulbar interneurons. Unexpectedly, AON axons also directly depolarized mitral cells (MCs), enough to elicit spikes reliably in a time window of a few milliseconds. MCs received strong disynaptic inhibition, a third of which arises in the glomerular layer. Activating feedback axons in vivo suppressed spontaneous as well as odor-evoked activity of MCs, sometimes preceded by a temporally precise increase in firing probability. Our study indicates that cortical feedback can shape the activity of bulbar output neurons by enabling precisely timed spikes and enforcing broad inhibition to suppress background activity.
Collapse
|
35
|
Abstract
Plasticity in the adult brain enables lifelong learning. The fundamental mechanism of adult neural plasticity is activity-dependent reorganization of pre-existing structure, in contrast to the widespread cellular proliferation and migration that occurs during development. Whereas adult hippocampal dentate gyrus continuously generates cohorts of neurons, and newborn neurons integrate into the existing neural circuit under the regulation of existing global and local neural activity, demonstrating a unique cellular and synaptic flexibility in adult brain. Exhibiting an enhanced structural and synaptic plasticity during the maturation, adult-born hippocampal neurons may represent a unique population for hippocampal function. Current evidence indicates that lifelong addition of new hippocampal neurons may extend early developmental plasticity to adulthood, which continuously rejuvenates adult brain. We reviewed most recent advancements in exploring the circuit and behavioral role of adult-born hippocampal neurons.
Collapse
Affiliation(s)
- Yan Gu
- Department of Neurobiology and Behavior, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA,
| | | | | |
Collapse
|
36
|
Lepousez G, Valley MT, Lledo PM. The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol 2012. [PMID: 23190074 DOI: 10.1146/annurev-physiol-030212-183731] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modern neuroscience has demonstrated how the adult brain has the ability to profoundly remodel its neurons in response to changes in external stimuli or internal states. However, adult brain plasticity, although possible throughout life, remains restricted mostly to subcellular levels rather than affecting the entire cell. New neurons are continuously generated in only a few areas of the adult brain-the olfactory bulb and the dentate gyrus-where they integrate into already functioning circuitry. In these regions, adult neurogenesis adds another dimension of plasticity that either complements or is redundant to the classical molecular and cellular mechanisms of plasticity. This review extracts clues regarding the contribution of adult-born neurons to the different circuits of the olfactory bulb and specifically how new neurons participate in existing computations and enable new computational functions.
Collapse
Affiliation(s)
- Gabriel Lepousez
- Laboratory of Perception and Memory, Institut Pasteur, F-75015 Paris, France.
| | | | | |
Collapse
|
37
|
Alonso M, Lepousez G, Wagner S, Bardy C, Gabellec MM, Torquet N, Lledo PM. Activation of adult-born neurons facilitates learning and memory. Nat Neurosci 2012; 15:897-904. [DOI: 10.1038/nn.3108] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/16/2012] [Indexed: 12/13/2022]
|
38
|
Gheusi G, Lepousez G, Lledo PM. Adult-born neurons in the olfactory bulb: integration and functional consequences. Curr Top Behav Neurosci 2012; 15:49-72. [PMID: 22976274 DOI: 10.1007/7854_2012_228] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The generation of new neurons is sustained throughout life in the olfactory system. In recent years, tremendous progress has been made toward understanding the proliferation, differentiation, migration, and integration of newborn neurons in the olfactory bulb. Here, we discuss recent findings that shed light on different aspects of the integration of adult-born neurons into olfactory circuitry and its significance for behavior.
Collapse
Affiliation(s)
- Gilles Gheusi
- Laboratoire Perception et Mémoire, Institut Pasteur, CNRS URA 2182, 25 rue du Dr Roux, 75724, Paris Cedex 15, France,
| | | | | |
Collapse
|
39
|
Lepousez G, Alonso M, Wagner S, Gallarda BW, Lledo PM. Selective viral transduction of adult-born olfactory neurons for chronic in vivo optogenetic stimulation. J Vis Exp 2011:e3380. [PMID: 22231709 PMCID: PMC3369639 DOI: 10.3791/3380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Local interneurons are continuously regenerated in the olfactory bulb of adult rodents. In this process, called adult neurogenesis, neural stem cells in the walls of the lateral ventricle give rise to neuroblasts that migrate for several millimeters along the rostral migratory stream (RMS) to reach and incorporate into the olfactory bulb. To study the different steps and the impact of adult-born neuron integration into preexisting olfactory circuits, it is necessary to selectively label and manipulate the activity of this specific population of neurons. The recent development of optogenetic technologies offers the opportunity to use light to precisely activate this specific cohort of neurons without affecting surrounding neurons. Here, we present a series of procedures to virally express Channelrhodopsin2(ChR2)-YFP in a temporally restricted cohort of neuroblasts in the RMS before they reach the olfactory bulb and become adult-born neurons. In addition, we show how to implant and calibrate a miniature LED for chronic in vivo stimulation of ChR2-expressing neurons.
Collapse
Affiliation(s)
- Gabriel Lepousez
- Laboratory for Perception and Memory, Institut Pasteur and Centre National de la Recherche Scientifique
| | | | | | | | | |
Collapse
|
40
|
Valley M, Wagner S, Gallarda BW, Lledo PM. Using affordable LED arrays for photo-stimulation of neurons. J Vis Exp 2011:3379. [PMID: 22127025 DOI: 10.3791/3379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Standard slice electrophysiology has allowed researchers to probe individual components of neural circuitry by recording electrical responses of single cells in response to electrical or pharmacological manipulations(1,2). With the invention of methods to optically control genetically targeted neurons (optogenetics), researchers now have an unprecedented level of control over specific groups of neurons in the standard slice preparation. In particular, photosensitive channel rhodopsin-2 (ChR2) allows researchers to activate neurons with light(3,4). By combining careful calibration of LED-based photostimulation of ChR2 with standard slice electrophysiology, we are able to probe with greater detail the role of adult-born interneurons in the olfactory bulb, the first central relay of the olfactory system. Using viral expression of ChR2-YFP specifically in adult-born neurons, we can selectively control young adult-born neurons in a milieu of older and mature neurons. Our optical control uses a simple and inexpensive LED system, and we show how this system can be calibrated to understand how much light is needed to evoke spiking activity in single neurons. Hence, brief flashes of blue light can remotely control the firing pattern of ChR2-transduced newborn cells.
Collapse
Affiliation(s)
- Matthew Valley
- Laboratory for Perception and Memory, Institut Pasteur and Centre National de la Recherche Scientifique (CNRS)
| | | | | | | |
Collapse
|
41
|
Sahay A, Wilson DA, Hen R. Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 2011; 70:582-8. [PMID: 21609817 DOI: 10.1016/j.neuron.2011.05.012] [Citation(s) in RCA: 369] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 01/04/2023]
Abstract
While adult-born neurons in the olfactory bulb (OB) and the dentate gyrus (DG) subregion of the hippocampus have fundamentally different properties, they may have more in common than meets the eye. Here, we propose that new granule cells in the OB and DG may function as modulators of principal neurons to influence pattern separation and that adult neurogenesis constitutes an adaptive mechanism to optimally encode contextual or olfactory information. See the related Perspective from Aimone, Deng, and Gage, "Resolving New Memories: A Critical Look at the Dentate Gyrus, Adult Neurogenesis, and Pattern Separation," in this issue of Neuron.
Collapse
Affiliation(s)
- Amar Sahay
- Departments of Neuroscience and Psychiatry, Columbia University, New York, USA
| | | | | |
Collapse
|
42
|
Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011; 70:687-702. [PMID: 21609825 PMCID: PMC3106107 DOI: 10.1016/j.neuron.2011.05.001] [Citation(s) in RCA: 1898] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2011] [Indexed: 12/11/2022]
Abstract
Adult neurogenesis, a process of generating functional neurons from adult neural precursors, occurs throughout life in restricted brain regions in mammals. The past decade has witnessed tremendous progress in addressing questions related to almost every aspect of adult neurogenesis in the mammalian brain. Here we review major advances in our understanding of adult mammalian neurogenesis in the dentate gyrus of the hippocampus and from the subventricular zone of the lateral ventricle, the rostral migratory stream to the olfactory bulb. We highlight emerging principles that have significant implications for stem cell biology, developmental neurobiology, neural plasticity, and disease mechanisms. We also discuss remaining questions related to adult neural stem cells and their niches, underlying regulatory mechanisms, and potential functions of newborn neurons in the adult brain. Building upon the recent progress and aided by new technologies, the adult neurogenesis field is poised to leap forward in the next decade.
Collapse
Affiliation(s)
- Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
43
|
Imayoshi I, Sakamoto M, Kageyama R. Genetic methods to identify and manipulate newly born neurons in the adult brain. Front Neurosci 2011; 5:64. [PMID: 21562606 PMCID: PMC3087966 DOI: 10.3389/fnins.2011.00064] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/19/2011] [Indexed: 12/12/2022] Open
Abstract
Although mammalian neurogenesis is mostly completed by the perinatal period, new neurons are continuously generated in the subventricular zone of the lateral ventricle and the subgranular zone of the hippocampal dentate gyrus. Since the discovery of adult neurogenesis, many extensive studies have been performed on various aspects of adult neurogenesis, including proliferation and fate-specification of adult neural stem cells, and the migration, maturation and synaptic integration of newly born neurons. Furthermore, recent research has shed light on the intensive contribution of adult neurogenesis to olfactory-related and hippocampus-mediated brain functions. The field of adult neurogenesis progressed tremendously thanks to technical advances that facilitate the identification and selective manipulation of newly born neurons among billions of pre-existing neurons in the adult central nervous system. In this review, we introduce recent advances in the methodologies for visualizing newly generated neurons and manipulating neurogenesis in the adult brain. Particularly, the application of site-specific recombinases and Tet inducible system in combination with transgenic or gene targeting strategy is discussed in further detail.
Collapse
Affiliation(s)
- Itaru Imayoshi
- Institute for Virus Research, Kyoto University Kyoto, Japan
| | | | | |
Collapse
|
44
|
Arenkiel BR. Genetic approaches to reveal the connectivity of adult-born neurons. Front Neurosci 2011; 5:48. [PMID: 21519388 PMCID: PMC3078560 DOI: 10.3389/fnins.2011.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/24/2011] [Indexed: 11/24/2022] Open
Abstract
Much has been learned about the environmental and molecular factors that influence the division, migration, and programmed cell death of adult-born neurons in the mammalian brain. However, detailed knowledge of the mechanisms that govern the formation and maintenance of functional circuit connectivity via adult neurogenesis remains elusive. Recent advances in genetic technologies now afford the ability to precisely target discrete brain tissues, neuronal subtypes, and even single neurons for vital reporter expression and controlled activity manipulations. Here, I review current viral tracing methods, heterologous receptor expression systems, and optogenetic technologies that hold promise toward elucidating the wiring diagrams and circuit properties of adult-born neurons.
Collapse
Affiliation(s)
- Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
45
|
Nissant A, Pallotto M. Integration and maturation of newborn neurons in the adult olfactory bulb - from synapses to function. Eur J Neurosci 2011; 33:1069-77. [DOI: 10.1111/j.1460-9568.2011.07605.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|