1
|
Neumann D, Parrott D, Hammond FM. Training to Reconnect With Emotional Awareness Therapy: A Randomized Controlled Trial in Participants With Traumatic Brain Injury. Arch Phys Med Rehabil 2024; 105:2035-2044. [PMID: 39154927 DOI: 10.1016/j.apmr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE To examine the efficacy of an intervention, Training to Reconnect with Emotional Awareness Therapy (TREAT) at improving alexithymia, emotion dysregulation, anxiety, depression, anger, and global positive and negative affect in participants with traumatic brain injury (TBI). DESIGN Randomized, waitlist control (WLC) trial with 3-month follow-up. SETTING Outpatient brain injury rehabilitation center. PARTICIPANTS Adult participants, who were on average 11.37 years postcomplicated mild-to-severe TBI and also had elevated alexithymia (n=44), who were randomized to immediate treatment (TREAT; n=20) or WLC (WLC=24). INTERVENTIONS Eight sessions, structured training program that teaches emotional awareness and discrete labeling of emotions. MAIN OUTCOME MEASURES Toronto Alexithymia Scale-20, Levels of Emotional Awareness Scale, Difficulty with Emotion Regulation Scale, Generalized Anxiety Disorder-7, Patient Health Questionnaire-9; State-Trait Anger Expression Inventory (STAXI), Positive and Negative Affect Schedule (PANAS); and Patient Global Impression of Change. RESULTS Thirty-four participants completed the study per protocol. Compared with WLC participants (n=16) who had not yet received the intervention, TREAT participants (n=18) had significantly less alexithymia, emotion dysregulation, anxiety, and depression (all P's<.05) within approximately 1 week of completing the intervention. Before/after results from the pooled sample (n=34) showed significant improvements, immediately and 3 months after the intervention, on all outcomes except the STAXI and the Positive Affect subscale of the PANAS. On the Patient Global Impression of Change, a noticeable change in global emotional function and quality of life was reported by 80%. Intent-to-treat analyses (n=38) revealed similar results to the per protocol sample. CONCLUSIONS Findings support the efficacy of TREAT for reducing alexithymia and emotion dysregulation in individuals with chronic TBI. Although outcomes were also promising for anxiety and depression, more research using attention-control designs are warranted to control for the attention received during treatment.
Collapse
Affiliation(s)
- Dawn Neumann
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis, IN.
| | - Devan Parrott
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis, IN
| | - Flora M Hammond
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
2
|
McKenna BS, Anthenelli RM, Schuckit MA. Sex differences in alcohol's effects on fronto-amygdalar functional connectivity during processing of emotional stimuli. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:612-622. [PMID: 38379361 PMCID: PMC11015979 DOI: 10.1111/acer.15279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Amygdala function underlying emotion processing has been shown to vary with an individuals' biological sex. Expanding upon functional magnetic resonance imaging (fMRI) findings reported previously where a low level of response was the focus, we examined alcohol and sex effects on functional connectivity between the amygdala and other brain regions. The central hypothesis predicted that sex would influence alcohol's effects on frontal-limbic functional circuits underlying the processing of negative and positive facial emotions. METHODS Secondary analyses were conducted on data from a double-blind, placebo controlled, within-subjects, cross-over study in 54 sex-matched pairs (N = 108) of 18- to 25-year-old individuals without an alcohol use disorder at baseline. Participants performed an emotional faces fMRI processing task after placebo or approximately 0.7 mL/kg of ethanol. Psychophysiological interaction analyses examined functional connectivity between the amygdala with other brain regions. RESULTS There were significant alcohol-by-sex interactions when processing negatively valenced faces. Whereas intoxicated men exhibited decreased functional connectivity between the amygdala and ventral and dorsal anterior cingulate, angular gyrus, and middle frontal gyrus connectivity was increased in intoxicated women. There was also a main sex effect where women exhibited less functional connectivity in the middle insula than men regardless of whether they received alcohol or placebo. For happy faces, main effects of both sex and alcohol were observed. Women exhibited less amygdala functional connectivity in the right inferior frontal gyrus than men. Both men and women exhibited greater functional connectivity in the superior frontal gyrus in response to alcohol than placebo. CONCLUSIONS Alcohol's effects on amygdala functional circuits that underlying emotional processing vary by sex. Women had higher functional connectivity than men following exposure to a moderate dose of alcohol which could indicate that women are better than men at processing affectively laden stimuli when intoxicated.
Collapse
Affiliation(s)
- Benjamin S McKenna
- Department of Psychiatry, University of California, San Diego, Health Sciences, La Jolla, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| | - Robert M Anthenelli
- Department of Psychiatry, University of California, San Diego, Health Sciences, La Jolla, California, USA
| | - Marc A Schuckit
- Department of Psychiatry, University of California, San Diego, Health Sciences, La Jolla, California, USA
| |
Collapse
|
3
|
Chaudhary S, Wong HK, Chen Y, Zhang S, Li CSR. Sex differences in the effects of individual anxiety state on regional responses to negative emotional scenes. Biol Sex Differ 2024; 15:15. [PMID: 38351045 PMCID: PMC10863151 DOI: 10.1186/s13293-024-00591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Men and women are known to show differences in the incidence and clinical manifestations of mood and anxiety disorders. Many imaging studies have investigated the neural correlates of sex differences in emotion processing. However, it remains unclear how anxiety might impact emotion processing differently in men and women. METHOD We recruited 119 healthy adults and assessed their levels of anxiety using State-Trait Anxiety Inventory (STAI) State score. With functional magnetic resonance imaging (fMRI), we examined regional responses to negative vs. neutral (Neg-Neu) picture matching in the Hariri task. Behavioral data were analyzed using regression and repeated-measures analysis of covariance with age as a covariate, and fMRI data were analyzed using a full-factorial model with sex as a factor and age as a covariate. RESULTS Men and women did not differ in STAI score, or accuracy rate or reaction time (RT) (Neg-Neu). However, STAI scores correlated positively with RT (Neg-Neu) in women but not in men. Additionally, in women, STAI score correlated positively with lingual gyrus (LG) and negatively with medial prefrontal cortex (mPFC) and superior frontal gyrus (SFG) activity during Neg vs. Neu trials. The parameter estimates (βs) of mPFC also correlated with RT (Neg-Neu) in women but not in men. Generalized psychophysiological interaction (gPPI) analysis in women revealed mPFC connectivity with the right inferior frontal gyrus, right SFG, and left parahippocampal gyrus during Neg vs. Neu trials in positive correlation with both STAI score and RT (Neg-Neu). In a mediation analysis, mPFC gPPI but not mPFC activity fully mediated the association between STAI scores and RT (Neg-Neu). CONCLUSION With anxiety affecting the behavioral and neural responses to negative emotions in women but not in men and considering the known roles of the mPFC in emotion regulation, we discussed heightened sensitivity and regulatory demands during negative emotion processing as neurobehavioral markers of anxiety in women.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA.
| | | | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
4
|
Chaudhary S, Zhang S, Zhornitsky S, Chen Y, Chao HH, Li CSR. Age-related reduction in trait anxiety: Behavioral and neural evidence of automaticity in negative facial emotion processing. Neuroimage 2023; 276:120207. [PMID: 37263454 PMCID: PMC10330646 DOI: 10.1016/j.neuroimage.2023.120207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023] Open
Abstract
Trait anxiety diminishes with age, which may result from age-related decline in registering salient emotional stimuli and/or enhancement in emotion regulation. We tested the hypotheses in 88 adults 21 to 85 years of age and studied with fMRI of the Hariri task. Age-related decline in stimulus registration would manifest in delayed reaction time (RT) and diminished saliency circuit activity in response to emotional vs. neutral stimuli. Enhanced control of negative emotions would manifest in diminished limbic/emotional circuit and higher prefrontal cortical (PFC) responses to negative emotion. The results showed that anxiety was negatively correlated with age. Age was associated with faster RT and diminished activation of the medial PFC, in the area of the dorsal and rostral anterior cingulate cortex (dACC/rACC) - a hub of the saliency circuit - during matching of negative but not positive vs. neutral emotional faces. A slope test confirmed the differences in the regressions. Further, age was not associated with activation of the PFC in whole-brain regression or in region-of-interest analysis of the dorsolateral PFC, an area identified from meta-analyses of the emotion regulation literature. Together, the findings fail to support either hypothesis; rather, the findings suggest age-related automaticity in processing negative emotions as a potential mechanism of diminished anxiety. Automaticity results in faster RT and diminished anterior cingulate activity in response to negative but not positive emotional stimuli. In support, analyses of psychophysiological interaction demonstrated higher dACC/rACC connectivity with the default mode network, which has been implicated in automaticity in information processing. As age increased, individuals demonstrated faster RT with higher connectivity during matching of negative vs. neutral images. Automaticity in negative emotion processing needs to be investigated as a mechanism of age-related reduction in anxiety.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States.
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States.
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States.
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States.
| | - Herta H Chao
- VA Connecticut Healthcare System, West Haven, CT 06516, United States; Department of Medicine, Yale University School of Medicine, New Haven, CT 06519, United States.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, United States; Wu Tsai Institute, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
5
|
Sunderji A, Gallant HD, Hall A, Davis AD, Pokhvisneva I, Meaney MJ, Silveira PP, Sassi RB, Hall GB. Serotonin transporter (5-HTT) gene network moderates the impact of prenatal maternal adversity on orbitofrontal cortical thickness in middle childhood. PLoS One 2023; 18:e0287289. [PMID: 37319261 PMCID: PMC10270637 DOI: 10.1371/journal.pone.0287289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
In utero, the developing brain is highly susceptible to the environment. For example, adverse maternal experiences during the prenatal period are associated with outcomes such as altered neurodevelopment and emotion dysregulation. Yet, the underlying biological mechanisms remain unclear. Here, we investigate whether the function of a network of genes co-expressed with the serotonin transporter in the amygdala moderates the impact of prenatal maternal adversity on the structure of the orbitofrontal cortex (OFC) in middle childhood and/or the degree of temperamental inhibition exhibited in toddlerhood. T1-weighted structural MRI scans were acquired from children aged 6-12 years. A cumulative maternal adversity score was used to conceptualize prenatal adversity and a co-expression based polygenic risk score (ePRS) was generated. Behavioural inhibition at 18 months was assessed using the Early Childhood Behaviour Questionnaire (ECBQ). Our results indicate that in the presence of a low functioning serotonin transporter gene network in the amygdala, higher levels of prenatal adversity are associated with greater right OFC thickness at 6-12 years old. The interaction also predicts temperamental inhibition at 18 months. Ultimately, we identified important biological processes and structural modifications that may underlie the link between early adversity and future deviations in cognitive, behavioural, and emotional development.
Collapse
Affiliation(s)
- Aleeza Sunderji
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Heather D. Gallant
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Alexander Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Andrew D. Davis
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Irina Pokhvisneva
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Michael J. Meaney
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain–Body Initiative, Agency for Science, Technology and Research (A*STAR), Singapore Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patricia P. Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Roberto B. Sassi
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Geoffrey B. Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Brewer R, Murphy J, Bird G. Atypical interoception as a common risk factor for psychopathology: A review. Neurosci Biobehav Rev 2021; 130:470-508. [PMID: 34358578 PMCID: PMC8522807 DOI: 10.1016/j.neubiorev.2021.07.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 02/06/2023]
Abstract
The inadequacy of a categorial approach to mental health diagnosis is now well-recognised, with many authors, diagnostic manuals and funding bodies advocating a dimensional, trans-diagnostic approach to mental health research. Variance in interoception, the ability to perceive one's internal bodily state, is reported across diagnostic boundaries, and is associated with atypical functioning across symptom categories. Drawing on behavioural and neuroscientific evidence, we outline current research on the contribution of interoception to numerous cognitive and affective abilities (in both typical and clinical populations), and describe the interoceptive atypicalities seen in a range of psychiatric conditions. We discuss the role that interoception may play in the development and maintenance of psychopathology, as well as the ways in which interoception may differ across clinical presentations. A number of important areas for further research on the role of interoception in psychopathology are highlighted.
Collapse
Affiliation(s)
- Rebecca Brewer
- Department of Psychology, Royal Holloway, University of London, United Kingdom
| | - Jennifer Murphy
- Department of Psychology, Royal Holloway, University of London, United Kingdom.
| | - Geoffrey Bird
- Department of Experimental Psychology, University of Oxford, United Kingdom; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
7
|
Kroll DS, Feldman DE, Wang SYA, Zhang R, Manza P, Wiers CE, Volkow ND, Wang GJ. The associations of comorbid substance use disorders and psychiatric conditions with adolescent brain structure and function: A review. J Neurol Sci 2020; 418:117099. [PMID: 32866814 PMCID: PMC9003866 DOI: 10.1016/j.jns.2020.117099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 07/15/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022]
Abstract
Adolescence is a period of rapid neural and behavioral development that often precipitates substance use, substance use disorders (SUDs), and other psychopathology. While externalizing disorders have been closely linked to SUD epidemiologically, the comorbidity of internalizing disorders and SUD is less well understood. Neuroimaging studies can be used to measure structural and functional developments in the brain that mediate the relationship between psychopathology and SUD in adolescence. Externalizing disorders and SUD are both associated with structural and functional changes in the basal ganglia and prefrontal cortex in adolescence. The neural mechanisms underlying internalizing disorders and SUD are less clear, but evidence points to involvement of the amygdala and prefrontal cortex. We also highlight independent contributions of SUD, which may vary in certain ways by the substances assessed. A deeper understanding of the neural basis of the relationship between psychopathology and SUD will allow for more informed interventions in this critical developmental stage.
Collapse
Affiliation(s)
- Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA
| | - Szu-Yung Ariel Wang
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA
| | - Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA; National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Blvd., Suite 5274, Bethesda, MD 20892-9581, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013, USA.
| |
Collapse
|
8
|
Aronson Fischell S, Ross TJ, Deng ZD, Salmeron BJ, Stein EA. Transcranial Direct Current Stimulation Applied to the Dorsolateral and Ventromedial Prefrontal Cortices in Smokers Modifies Cognitive Circuits Implicated in the Nicotine Withdrawal Syndrome. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:448-460. [PMID: 32151567 DOI: 10.1016/j.bpsc.2019.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The nicotine withdrawal syndrome remains a major impediment to smoking cessation. Cognitive and affective disturbances are associated with altered connectivity within and between the executive control network, default mode network (DMN), and salience network. We hypothesized that functional activity in cognitive control networks, and downstream amygdala circuits, would be modified by application of transcranial direct current stimulation (tDCS) to the left (L) dorsolateral prefrontal cortex (dlPFC, executive control network) and right (R) ventromedial prefrontal cortex (vmPFC, DMN). METHODS A total of 15 smokers (7 women) and 28 matched nonsmokers (14 women) participated in a randomized, sham-controlled, double-blind, exploratory crossover study of 3 tDCS conditions: anodal-(L)dlPFC/cathodal-(R)vmPFC, reversed polarity, and sham. Cognitive tasks probed withdrawal-related constructs (error monitoring, working memory, amygdalar reactivity), while simultaneous functional magnetic resonance imaging measured brain activity. We assessed tDCS impact on trait (nonsmokers vs. sated smokers) and state (sated vs. abstinent) smoking aspects. RESULTS Single-session, anodal-(L)dlPFC/cathodal-(R)vmPFC tDCS enhanced deactivation of DMN nodes during the working memory task and strengthened anterior cingulate cortex activity during the error-monitoring task. Smokers were more responsive to tDCS-induced DMN deactivation when sated (vs. withdrawn) and displayed greater cingulate activity during error monitoring than nonsmokers. Nicotine withdrawal reduced task engagement and attention and reduced suppression of DMN nodes. CONCLUSIONS Cognitive circuit dysregulation associated with nicotine withdrawal may be modifiable by anodal tDCS applied to L-dlPFC and cathodal tDCS applied to R-vmPFC. tDCS may have stronger effects as a complement to existing therapies, such as nicotine replacement, owing to possible enhanced plasticity in the sated state.
Collapse
Affiliation(s)
- Sarah Aronson Fischell
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; School of Medicine, University of Maryland, Baltimore, Maryland
| | - Thomas J Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland.
| |
Collapse
|
9
|
Zhang R, Volkow ND. Brain default-mode network dysfunction in addiction. Neuroimage 2019; 200:313-331. [DOI: 10.1016/j.neuroimage.2019.06.036] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
|
10
|
Albaugh MD, Hudziak JJ, Orr C, Spechler PA, Chaarani B, Mackey S, Lepage C, Fonov V, Rioux P, Evans AC, Banaschewski T, Bokde ALW, Bromberg U, Büchel C, Quinlan EB, Desrivières S, Flor H, Grigis A, Gowland P, Heinz A, Ittermann B, Martinot JL, Martinot MLP, Nees F, Orfanos DP, Paus T, Poustka L, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Potter AS, Garavan H. Amygdalar reactivity is associated with prefrontal cortical thickness in a large population-based sample of adolescents. PLoS One 2019; 14:e0216152. [PMID: 31048888 PMCID: PMC6497259 DOI: 10.1371/journal.pone.0216152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
In structural neuroimaging studies, reduced cerebral cortical thickness in orbital and ventromedial prefrontal regions is frequently interpreted as reflecting an impaired ability to downregulate neuronal activity in the amygdalae. Unfortunately, little research has been conducted in order to test this conjecture. We examine the extent to which amygdalar reactivity is associated with cortical thickness in a population-based sample of adolescents. Data were obtained from the IMAGEN study, which includes 2,223 adolescents. While undergoing functional neuroimaging, participants passively viewed video clips of a face that started from a neutral expression and progressively turned angry, or, instead, turned to a second neutral expression. Left and right amygdala ROIs were used to extract mean BOLD signal change for the angry minus neutral face contrast for all subjects. T1-weighted images were processed through the CIVET pipeline (version 2.1.0). In variable-centered analyses, local cortical thickness was regressed against amygdalar reactivity using first and second-order linear models. In a follow-up person-centered analysis, we defined a "high reactive" group of participants based on mean amygdalar BOLD signal change for the angry minus neutral face contrast. Between-group differences in cortical thickness were examined ("high reactive" versus all other participants). A significant association was revealed between the continuous measure of amygdalar reactivity and bilateral ventromedial prefrontal cortical thickness in a second-order linear model (p < 0.05, corrected). The "high reactive" group, in comparison to all other participants, possessed reduced cortical thickness in bilateral orbital and ventromedial prefrontal cortices, bilateral anterior temporal cortices, left caudal middle temporal gyrus, and the left inferior and middle frontal gyri (p < 0.05, corrected). Results are consistent with non-human primate studies, and provide empirical support for an association between reduced prefrontal cortical thickness and amygdalar reactivity. Future research will likely benefit from investigating the degree to which psychopathology qualifies relations between prefrontal cortical structure and amygdalar reactivity.
Collapse
Affiliation(s)
- Matthew D. Albaugh
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - James. J. Hudziak
- Vermont Center for Children, Youth, and Families, Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - Catherine Orr
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - Philip A. Spechler
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - Bader Chaarani
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - Claude Lepage
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Vladimir Fonov
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pierre Rioux
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alan C. Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Erin Burke Quinlan
- Medical Research Council—Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Sylvane Desrivières
- Medical Research Council—Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany [or depending on journal requirements can be: Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes—Sorbonne Paris Cité; and Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”; University Paris Sud; University Paris Descartes; Sorbonne Universités; and AP-HP, Department of Child and AdolescentPsychiatryPitié-Salpêtrière Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Tomáš Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Charité –Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Medical Research Council—Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Alexandra S. Potter
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States of America
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States of America
| | | |
Collapse
|
11
|
Neural mechanisms of affective matching across faces and scenes. Sci Rep 2019; 9:1492. [PMID: 30728379 PMCID: PMC6365558 DOI: 10.1038/s41598-018-37163-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/27/2018] [Indexed: 11/24/2022] Open
Abstract
The emotional matching paradigm, introduced by Hariri and colleagues in 2000, is a widely used neuroimaging experiment that reliably activates the amygdala. In the classic version of the experiment faces with negative emotional expression and scenes depicting distressing events are compared with geometric shapes instead of neutral stimuli of the same category (i.e. faces or scenes). This makes it difficult to clearly attribute amygdala activation to the emotional valence and not to the social content. To improve this paradigm, we conducted a functional magnetic resonance imaging study in which emotionally neutral and, additionally, positive stimuli within each stimulus category (i.e. faces, social and non-social scenes) were included. These categories enabled us to differentiate the exact nature of observed effects in the amygdala. First, the main findings of the original paradigm were replicated. Second, we observed amygdala activation when comparing negative to neutral stimuli of the same category. However, for negative faces, the amygdala response habituated rapidly. Third, positive stimuli were associated with widespread activation including the insula and the caudate. This validated adaption study enables more precise statements on the neural activation underlying emotional processing. These advances may benefit future studies on identifying selective impairments in emotional and social stimulus processing.
Collapse
|
12
|
Koenig J, Westlund Schreiner M, Klimes-Dougan B, Ubani B, Mueller B, Kaess M, Cullen KR. Brain structural thickness and resting state autonomic function in adolescents with major depression. Soc Cogn Affect Neurosci 2019; 13:741-753. [PMID: 29939340 PMCID: PMC6121146 DOI: 10.1093/scan/nsy046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder (MDD) has been associated with abnormalities in cortical thickness and autonomic function. Adolescence is a time notable for brain development and MDD onset. In healthy adolescents, greater resting state vagal activity (RVA) is associated with lower cortical thickness. The relationship between brain structural thickness and RVA in adolescents with MDD has not previously been studied. This secondary analysis drew on a sample of 37 non-depressed controls and 53 adolescents with MDD. Resting state heart rate and two indices of RVA (HF-HRV and RMSSD) were recorded during a neuroimaging session. Cortical thickness within fronto-limbic regions of interest was measured using Freesurfer analysis of T1-weighted high-resolution structural images. Self-reports of depression severity showed a significant interaction with cortical thickness of the right insula in predicting RMSSD [t = 2.22, P=0.030, β = 5.44; model fit of the interaction term as indicated by the ‘Bayes Factor’ (BF): 7.58] and HF-HRV (t = 2.09, P=0.041, β = 4.72; BF: 7.94). Clinician ratings of depression severity showed further interactions. Findings underscore the important relationships between RVA and cortical development, suggesting two possible explanations: (i) in adolescent MDD, greater fronto-limbic thickness is compensatory for deficits in autonomic regulation or (ii) increased autonomic arousal results in delayed fronto-limbic maturation. Longitudinal research is necessary to further clarify the nature of the relationship between autonomic functioning and cortical development.
Collapse
Affiliation(s)
- Julian Koenig
- Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany.,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern 60, Switzerland
| | | | - Bonnie Klimes-Dougan
- Department of Psychology, University of Minnesota, College of Liberal Arts, Minneapolis, MN, USA
| | - Benjamin Ubani
- Department of Psychiatry, University of Minnesota, Medical School, Minneapolis, MN, USA
| | - Bryon Mueller
- Department of Psychiatry, University of Minnesota, Medical School, Minneapolis, MN, USA
| | - Michael Kaess
- Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany.,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern 60, Switzerland
| | - Kathryn R Cullen
- Department of Psychiatry, University of Minnesota, Medical School, Minneapolis, MN, USA
| |
Collapse
|
13
|
Brewer R, Cook R, Cardi V, Treasure J, Catmur C, Bird G. Alexithymia explains increased empathic personal distress in individuals with and without eating disorders. Q J Exp Psychol (Hove) 2018; 72:1827-1836. [DOI: 10.1177/1747021818816051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is often assumed that empathy impairments are common in individuals with eating disorders (EDs), but empirical work has been limited and produced mixed results, making the clinical features and treatment needs of this population difficult to determine. Alexithymia, characterised by difficulties identifying and describing one’s own emotions, frequently co-occurs with EDs and is associated with atypical recognition of, and empathy for, others’ emotions. This study used an existing empathy for pain paradigm to determine whether atypical empathy in EDs stems from co-occurring alexithymia, rather than EDs per se. Empathy (specifically personal distress in response to others’ pain) was assessed in individuals with EDs ( N = 21) and an alexithymia-matched control group ( N = 22). Participants were simultaneously members of a high alexithymia ( N = 16) or low alexithymia ( N = 27) group, allowing the independent contributions of alexithymia and EDs to be determined. Participants judged the laterality of hands and feet in painful and non-painful situations, and the degree of empathic interference on response times was measured. Results indicated that observation of painful stimuli affected task performance in those with high levels of alexithymia more than those with low levels, but no effect of ED diagnosis was observed. These findings suggest that co-occurring alexithymia explains increased empathic personal distress in ED populations. Atypical empathy may therefore not be a core feature of EDs, and interventions aimed at improving empathy-related social functioning may only be necessary for patients who also have alexithymia. These findings emphasise the importance of determining the influence of co-occurring alexithymia when assessing empathy in clinical populations.
Collapse
Affiliation(s)
- Rebecca Brewer
- Department of Psychology, Royal Holloway, University of London, Egham, UK
| | - Richard Cook
- Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Valentina Cardi
- Section of Eating Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Janet Treasure
- Section of Eating Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Geoffrey Bird
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| |
Collapse
|
14
|
Neumann D, Malec JF, Hammond FM. Reductions in Alexithymia and Emotion Dysregulation After Training Emotional Self-Awareness Following Traumatic Brain Injury: A Phase I Trial. J Head Trauma Rehabil 2018; 32:286-295. [PMID: 28060205 PMCID: PMC5498277 DOI: 10.1097/htr.0000000000000277] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To examine the acceptability and initial efficacy of an emotional self-awareness treatment at reducing alexithymia and emotion dysregulation in participants with traumatic brain injury (TBI). SETTING An outpatient rehabilitation hospital. PARTICIPANTS Seventeen adults with moderate to severe TBI and alexithymia. Time postinjury ranged 1 to 33 years. DESIGN Within subject design, with 3 assessment times: baseline, posttest, and 2-month follow-up. INTERVENTION Eight lessons incorporated psychoeducational information and skill-building exercises teaching emotional vocabulary, labeling, and differentiating self-emotions; interoceptive awareness; and distinguishing emotions from thoughts, actions, and sensations. MEASURES Toronto Alexithymia Scale-20 (TAS-20); Levels of Emotional Awareness Scale (LEAS); Trait Anxiety Inventory (TAI); Patient Health Questionnaire-9 (PHQ-9); State-Trait Anger Expression Inventory (STAXI); Difficulty With Emotion Regulation Scale (DERS); and Positive and Negative Affect Scale (PANAS). RESULTS Thirteen participants completed the treatment. Repeated-measures analysis of variance revealed changes on the TAS-20 (P = .003), LEAS (P < .001), TAI (P = .014), STAXI (P = .015), DERS (P = .020), and positive affect (P < .005). Paired t tests indicated significant baseline to posttest improvements on these measures. Gains were maintained at follow-up for the TAS, LEAS, and positive affect. Treatment satisfaction was high. CONCLUSION This is the first study published on treating alexithymia post-TBI. Positive changes were identified for emotional self-awareness and emotion regulation; some changes were maintained several months posttreatment. Findings justify advancing to the next investigational phase for this novel intervention.
Collapse
Affiliation(s)
- Dawn Neumann
- Indiana University School of Medicine, Department of Physical Medicine and Rehabilitation, Rehabilitation Hospital of Indiana, 4141 Shore Drive, Indianapolis, IN 46254, , Phone: 317-329-2188
| | - James F. Malec
- Indiana University School of Medicine, Department of Physical, Medicine and Rehabilitation, Rehabilitation Hospital of Indiana, Indianapolis, IN
| | - Flora M. Hammond
- Indiana University School of Medicine, Department of Physical, Medicine and Rehabilitation, Chief of Medical Affairs, Rehabilitation Hospital of Indiana, Indianapolis, IN
| |
Collapse
|
15
|
The Relations of Self-Reported Aggression to Alexithymia, Depression, and Anxiety After Traumatic Brain Injury. J Head Trauma Rehabil 2017; 32:205-213. [DOI: 10.1097/htr.0000000000000261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Sutherland MT, Riedel MC, Flannery JS, Yanes JA, Fox PT, Stein EA, Laird AR. Chronic cigarette smoking is linked with structural alterations in brain regions showing acute nicotinic drug-induced functional modulations. Behav Brain Funct 2016; 12:16. [PMID: 27251183 PMCID: PMC4890474 DOI: 10.1186/s12993-016-0100-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Whereas acute nicotine administration alters brain function which may, in turn, contribute to enhanced attention and performance, chronic cigarette smoking is linked with regional brain atrophy and poorer cognition. However, results from structural magnetic resonance imaging (MRI) studies comparing smokers versus nonsmokers have been inconsistent and measures of gray matter possess limited ability to inform functional relations or behavioral implications. The purpose of this study was to address these interpretational challenges through meta-analytic techniques in the service of clarifying the impact of chronic smoking on gray matter integrity and more fully contextualizing such structural alterations. Methods We first conducted a coordinate-based meta-analysis of structural MRI studies to identify consistent structural alterations associated with chronic smoking. Subsequently, we conducted two additional meta-analytic assessments to enhance insight into potential functional and behavioral relations. Specifically, we performed a multimodal meta-analytic assessment to test the structural–functional hypothesis that smoking-related structural alterations overlapped those same regions showing acute nicotinic drug-induced functional modulations. Finally, we employed database driven tools to identify pairs of structurally impacted regions that were also functionally related via meta-analytic connectivity modeling, and then delineated behavioral phenomena associated with such functional interactions via behavioral decoding. Results Across studies, smoking was associated with convergent structural decreases in the left insula, right cerebellum, parahippocampus, multiple prefrontal cortex (PFC) regions, and the thalamus. Indicating a structural–functional relation, we observed that smoking-related gray matter decreases overlapped with the acute functional effects of nicotinic agonist administration in the left insula, ventromedial PFC, and mediodorsal thalamus. Suggesting structural-behavioral implications, we observed that the left insula’s task-based, functional interactions with multiple other structurally impacted regions were linked with pain perception, the right cerebellum’s interactions with other regions were associated with overt body movements, interactions between the parahippocampus and thalamus were linked with memory processes, and interactions between medial PFC regions were associated with face processing. Conclusions Collectively, these findings emphasize brain regions (e.g., ventromedial PFC, insula, thalamus) critically linked with cigarette smoking, suggest neuroimaging paradigms warranting additional consideration among smokers (e.g., pain processing), and highlight regions in need of further elucidation in addiction (e.g., cerebellum). Electronic supplementary material The online version of this article (doi:10.1186/s12993-016-0100-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew T Sutherland
- Department of Psychology, Florida International University, AHC-4, RM 312, 11200 S.W. 8th St, Miami, FL, 33199, USA.
| | - Michael C Riedel
- Department of Psychology, Florida International University, AHC-4, RM 312, 11200 S.W. 8th St, Miami, FL, 33199, USA.,Department of Physics, Florida International University, Miami, FL, USA
| | - Jessica S Flannery
- Department of Psychology, Florida International University, AHC-4, RM 312, 11200 S.W. 8th St, Miami, FL, 33199, USA
| | - Julio A Yanes
- Department of Psychology, Auburn University, Auburn, AL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA.,South Texas Veterans Health Care System, San Antonio, TX, USA.,State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH/DHHS, Baltimore, MD, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| |
Collapse
|
17
|
Abstract
Inhibition of glycogen synthase kinase 3β (GSK3β) is a shared action believed to be involved in the regulation of behavior by psychoactive drugs such as antipsychotics and mood stabilizers. However, little is known about the identity of the substrates through which GSK3β affects behavior. We identified fragile X mental retardation-related protein 1 (FXR1P), a RNA binding protein associated to genetic risk for schizophrenia, as a substrate for GSK3β. Phosphorylation of FXR1P by GSK3β is facilitated by prior phosphorylation by ERK2 and leads to its down-regulation. In contrast, behaviorally effective chronic mood stabilizer treatments in mice inhibit GSK3β and increase FXR1P levels. In line with this, overexpression of FXR1P in the mouse prefrontal cortex also leads to comparable mood-related responses. Furthermore, functional genetic polymorphisms affecting either FXR1P or GSK3β gene expression interact to regulate emotional brain responsiveness and stability in humans. These observations uncovered a GSK3β/FXR1P signaling pathway that contributes to regulating mood and emotion processing. Regulation of FXR1P by GSK3β also provides a mechanistic framework that may explain how inhibition of GSK3β can contribute to the regulation of mood by psychoactive drugs in mental illnesses such as bipolar disorder. Moreover, this pathway could potentially be implicated in other biological functions, such as inflammation and cell proliferation, in which FXR1P and GSK3 are known to play a role.
Collapse
|
18
|
Regional inactivations of primate ventral prefrontal cortex reveal two distinct mechanisms underlying negative bias in decision making. Proc Natl Acad Sci U S A 2015; 112:4176-81. [PMID: 25775597 DOI: 10.1073/pnas.1422440112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of the orbitofrontal and ventrolateral prefrontal cortices is implicated in anxiety and mood disorders, but the specific contributions of each region are unknown, including how they gate the impact of threat on decision making. To address this, the effects of GABAergic inactivation of these regions were studied in marmoset monkeys performing an instrumental approach-avoidance decision-making task that is sensitive to changes in anxiety. Inactivation of either region induced a negative bias away from punishment that could be ameliorated with anxiolytic treatment. However, whereas the effects of ventrolateral prefrontal cortex inactivation on punishment avoidance were seen immediately, those of orbitofrontal cortex inactivation were delayed and their expression was dependent upon an amygdala-anterior hippocampal circuit. We propose that these negative biases result from deficits in attentional control and punishment prediction, respectively, and that they provide the basis for understanding how distinct regional prefrontal dysregulation contributes to the heterogeneity of anxiety disorders with implications for cognitive-behavioral treatment strategies.
Collapse
|
19
|
Jones JE, Jackson DC, Chambers KL, Dabbs K, Hsu DA, Stafstrom CE, Seidenberg M, Hermann BP. Children with epilepsy and anxiety: Subcortical and cortical differences. Epilepsia 2015; 56:283-90. [PMID: 25580566 PMCID: PMC4340751 DOI: 10.1111/epi.12832] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Using a hypothesis-driven approach, subcortical and cortical regions implicated in anxiety disorders in the general population were examined in children with recent-onset epilepsy with versus without anxiety compared to controls. This study reports frequency of anxiety disorders while examining familial, clinical, and demographic variables associated with anxiety in children with epilepsy. METHOD Participants included 88 children with epilepsy aged 8-18 years: 25 with a current anxiety disorder and 63 children with epilepsy and no current anxiety disorder. Forty-nine controls without anxiety disorders were included. T1 volumetric magnetic resonance imaging (MRI) scans were collected; subcortical volumes and cortical thickness were computed using the FreeSurfer image analysis suite. Analyses focused on adjusted measures of subcortical volumes and cortical thickness. RESULTS Relative to controls, larger left amygdala volumes were found in the Epilepsy with Anxiety group compared to the Epilepsy without Anxiety group (p = 0.027). In the hippocampus, there were no significant differences between groups. Examination of cortical thickness demonstrated that the Epilepsy with Anxiety group showed thinning in left medial orbitofrontal (p = 0.001), right lateral orbitofrontal (p = 0.017), and right frontal pole (p = 0.009). There were no differences between groups in age, sex, IQ, age of onset, medications, or duration of epilepsy. There were more family members with a history of anxiety disorders in the Epilepsy with Anxiety group compared to the Epilepsy without Anxiety group (p = 0.005). SIGNIFICANCE Anxiety is a common psychiatric comorbidity in children with recent-onset epilepsy with volumetric enlargement of the amygdala and thinner cortex in orbital and other regions of prefrontal cortex, suggesting structural abnormalities in brain regions that are part of the dysfunctional networks reported in individuals with anxiety disorders in the general population. These findings are evident early in the course of epilepsy, are not related to chronicity of seizures, and may be linked to a family history of anxiety and depressive disorders.
Collapse
Affiliation(s)
- Jana E. Jones
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison WI
| | - Daren C. Jackson
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison WI
| | - Karlee L. Chambers
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison WI
| | - Kevin Dabbs
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison WI
| | - David A. Hsu
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison WI
| | - Carl E. Stafstrom
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Michael Seidenberg
- Department of Psychology, Rosalind Franklin School of Medicine and Science, North Chicago IL
| | - Bruce P. Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison WI
| |
Collapse
|
20
|
Fernández-Jaén A, López-Martín S, Albert J, Fernández-Mayoralas DM, Fernández-Perrone AL, Tapia DQ, Calleja-Pérez B. Cortical thinning of temporal pole and orbitofrontal cortex in medication-naïve children and adolescents with ADHD. Psychiatry Res 2014; 224:8-13. [PMID: 25085707 DOI: 10.1016/j.pscychresns.2014.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
Structural and functional brain studies on attention deficit/hyperactivity disorder (ADHD) have primarily examined anatomical abnormalities in the prefronto-striatal circuitry (especially, dorsal and lateral areas of the prefrontal cortex and dorsal striatum). There is, however, increased evidence that several temporal lobe regions could play an important role in ADHD. The present study used MRI-based measurements of cortical thickness to examine possible differences in both prefrontal and temporal lobe regions between medication-näive patients with ADHD (N = 50) and age- and sex-matched typically developing controls (N = 50). Subjects with ADHD exhibited significantly decreased cortical thickness in the right temporal pole and orbitofrontal cortex (OFC) relative to healthy comparison subjects. These differences remained significant after controlling for confounding effects of age, overall mean cortical thickness and comorbid externalizing conditions, such as oppositional defiant and conduct disorders. These results point to the involvement of the temporal pole and OFC in the neuropathology of ADHD. Moreover, present findings add evidence to the assumption that multiple brain regions and psychological processes are associated with ADHD.
Collapse
Affiliation(s)
| | - Sara López-Martín
- Department of Health and Biological Psychology, Faculty of Psychology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jacobo Albert
- Human Brain Mapping Unit, Pluridisciplinary Institute, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | - Diana Quiñones Tapia
- Radiodiagnostics Service, Magnetic Resonance Unit, Hospital Nuestra Señora del Rosario, 28006 Madrid, Spain
| | | |
Collapse
|
21
|
Levenson RW, Sturm VE, Haase CM. Emotional and behavioral symptoms in neurodegenerative disease: a model for studying the neural bases of psychopathology. Annu Rev Clin Psychol 2014; 10:581-606. [PMID: 24437433 PMCID: PMC3980958 DOI: 10.1146/annurev-clinpsy-032813-153653] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Disruptions in emotional, cognitive, and social behavior are common in neurodegenerative disease and in many forms of psychopathology. Because neurodegenerative diseases have patterns of brain atrophy that are much clearer than those of psychiatric disorders, they may provide a window into the neural bases of common emotional and behavioral symptoms. We discuss five common symptoms that occur in both neurodegenerative disease and psychopathology (i.e., anxiety, dysphoric mood, apathy, disinhibition, and euphoric mood) and their associated neural circuitry. We focus on two neurodegenerative diseases (i.e., Alzheimer's disease and frontotemporal dementia) that are common and well characterized in terms of emotion, cognition, and social behavior and in patterns of associated atrophy. Neurodegenerative diseases provide a powerful model system for studying the neural correlates of psychopathological symptoms; this is supported by evidence indicating convergence with psychiatric syndromes (e.g., symptoms of disinhibition associated with dysfunction in orbitofrontal cortex in both frontotemporal dementia and bipolar disorder). We conclude that neurodegenerative diseases can play an important role in future approaches to the assessment, prevention, and treatment of mental illness.
Collapse
Affiliation(s)
- Robert W. Levenson
- Department of Psychology and Institute of Personality and Social Research, University of California, Berkeley
| | | | | |
Collapse
|
22
|
Ameis SH, Ducharme S, Albaugh MD, Hudziak JJ, Botteron KN, Lepage C, Zhao L, Khundrakpam B, Collins DL, Lerch JP, Wheeler A, Schachar R, Evans AC, Karama S. Cortical thickness, cortico-amygdalar networks, and externalizing behaviors in healthy children. Biol Psychiatry 2014; 75:65-72. [PMID: 23890738 DOI: 10.1016/j.biopsych.2013.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/22/2013] [Accepted: 06/07/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Fronto-amygdalar networks are implicated in childhood psychiatric disorders characterized by high rates of externalizing (aggressive, noncompliant, oppositional) behavior. Although externalizing behaviors are distributed continuously across clinical and nonclinical samples, little is known about how brain variations may confer risk for problematic behavior. Here, we studied cortical thickness, amygdala volume, and cortico-amygdalar network correlates of externalizing behavior in a large sample of healthy children. METHODS Two hundred ninety-seven healthy children (6-18 years; mean = 12 ± 3 years), with 517 magnetic resonance imaging scans, from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development, were studied. Relationships between externalizing behaviors (measured with the Child Behavior Checklist) and cortical thickness, amygdala volume, and cortico-amygdalar structural networks were examined using first-order linear mixed-effects models, after controlling for age, sex, scanner, and total brain volume. Results significant at p ≤ .05, following multiple comparison correction, are reported. RESULTS Left orbitofrontal, right retrosplenial cingulate, and medial temporal cortex thickness were negatively correlated with externalizing behaviors. Although amygdala volume alone was not correlated with externalizing behaviors, an orbitofrontal cortex-amygdala network predicted rates of externalizing behavior. Children with lower levels of externalizing behaviors exhibited positive correlations between orbitofrontal cortex and amygdala structure, while these regions were not correlated in children with higher levels of externalizing behavior. CONCLUSIONS Our findings identify key cortical nodes in frontal, cingulate, and temporal cortex associated with externalizing behaviors in children; and indicate that orbitofrontal-amygdala network properties may influence externalizing behaviors, along a continuum and across healthy and clinical samples.
Collapse
Affiliation(s)
- Stephanie H Ameis
- Department of Psychiatry, The Hospital for Sick Children, University of Toronto, Toronto
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Neumann D, Keiski MA, McDonald BC, Wang Y. Neuroimaging and facial affect processing: implications for traumatic brain injury. Brain Imaging Behav 2013; 8:460-73. [DOI: 10.1007/s11682-013-9285-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study. Eur Arch Psychiatry Clin Neurosci 2013; 263:607-16. [PMID: 23568089 DOI: 10.1007/s00406-013-0403-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
Abstract
The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging.
Collapse
|
25
|
Insula's functional connectivity with ventromedial prefrontal cortex mediates the impact of trait alexithymia on state tobacco craving. Psychopharmacology (Berl) 2013; 228:143-55. [PMID: 23455594 PMCID: PMC3873099 DOI: 10.1007/s00213-013-3018-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
Abstract
RATIONALE Alexithymia is a personality trait characterized by difficulty indentifying and describing subjective emotional experiences. Decreased aptitude in the perception, evaluation, and communication of affectively laden mental states has been associated with reduced emotion regulation, more severe drug craving in addicts, and structural/functional alterations in insula and anterior cingulate cortex (ACC). The insula and ACC represent sites of convergence between the putative neural substrates of alexithymia and those perpetuating cigarette smoking. OBJECTIVES We examined the interrelations between alexithymia, tobacco craving, and insula/ACC neurocircuitry using resting-state functional connectivity (rsFC). METHODS Overnight-deprived smokers (n = 24) and nonsmokers (n = 20) completed six neuroimaging assessments on different days both in the absence of, and following, varenicline and/or nicotine administration. In this secondary analysis of data from a larger study, we assessed trait alexithymia and state tobacco craving using self-reports and examined the rsFC of bilateral insular subregions (anterior, middle, posterior) and dorsal ACC. RESULTS Higher alexithymia in smokers predicted reduced rsFC strength between the right anterior insula (aI) and ventromedial prefrontal cortex (vmPFC). Higher alexithymia also predicted more severe tobacco craving during nicotine withdrawal. Critically, the identified aI-vmPFC circuit fully mediated this alexithymia-craving relation. That is, elevated alexithymia predicted decreased aI-vmPFC rsFC and, in turn, decreased aI-vmPFC rsFC predicted increased craving during withdrawal. A moderated mediation analysis indicated that this aI-vmPFC mediational effect was not observed following drug administration. CONCLUSIONS These results suggest that a weakened right aI-vmPFC functional circuit confers increased liability for tobacco craving during smoking abstinence. Individual differences in alexithymia and/or aI-vmPFC functional coupling may be relevant factors for smoking cessation success.
Collapse
|
26
|
Ducharme S, Albaugh MD, Hudziak JJ, Botteron KN, Nguyen TV, Truong C, Evans AC, Karama S. Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cereb Cortex 2013; 24:2941-50. [PMID: 23749874 DOI: 10.1093/cercor/bht151] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The relationship between anxious/depressed traits and neuromaturation remains largely unstudied. Characterizing this relationship during healthy neurodevelopment is critical to understanding processes associated with the emergence of child/adolescent onset mood/anxiety disorders. In this study, mixed-effects models were used to determine longitudinal cortical thickness correlates of Child Behavior Checklist (CBCL) and Young Adult Self Report Anxious/Depressed scores in healthy children. Analyses included 341 subjects from 4.9 to 22.3 year-old with repeated MRI at up to 3 time points, at 2-year intervals (586 MRI scans). There was a significant "CBCL Anxious/Depressed by Age" interaction on cortical thickness in the right ventromedial prefrontal cortex (vmPFC), including the medial orbito-frontal, gyrus rectus, and subgenual anterior cingulate areas. Anxious/Depressed scores were negatively associated with thickness at younger ages (<9 years), but positively associated with thickness at older ages (15-22 years), with the shift in polarity occurring around age 12. This was secondary to a slower rate of vmPFC cortical thinning in subjects with higher scores. In young adults (18-22 years), Anxious/Depressed scores were also positively associated with precuneus/posterior cingulate cortical thickness. Potential neurobiological mechanisms underlying this maturation pattern are proposed. These results demonstrate the dynamic impact of age on relations between vmPFC and negative affect in the developing brain.
Collapse
Affiliation(s)
- Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Matthew D Albaugh
- Vermont Center for Children, Youth, and Families, University of Vermont, Burlington, VT 05401, USA
| | - James J Hudziak
- Vermont Center for Children, Youth, and Families, University of Vermont, Burlington, VT 05401, USA
| | - Kelly N Botteron
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA and
| | - Tuong-Vi Nguyen
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Catherine Truong
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alan C Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sherif Karama
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R2, Canada
| | | |
Collapse
|
27
|
Marsden WN. Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:168-84. [PMID: 23268191 DOI: 10.1016/j.pnpbp.2012.12.012] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 12/31/2022]
Abstract
Synaptic plasticity confers environmental adaptability through modification of the connectivity between neurons and neuronal circuits. This is achieved through changes to synapse-associated signaling systems and supported by complementary changes to cellular morphology and metabolism within the tripartite synapse. Mounting evidence suggests region-specific changes to synaptic form and function occur as a result of chronic stress and in depression. Within subregions of the prefrontal cortex (PFC) and hippocampus structural and synapse-related findings seem consistent with a deficit in long-term potentiation (LTP) and facilitation of long-term depression (LTD), particularly at excitatory pyramidal synapses. Other brain regions are less well-studied; however the amygdala may feature a somewhat opposite synaptic pathology including reduced inhibitory tone. Changes to synaptic plasticity in stress and depression may correlate those to several signal transduction pathways (e.g. NOS-NO, cAMP-PKA, Ras-ERK, PI3K-Akt, GSK-3, mTOR and CREB) and upstream receptors (e.g. NMDAR, TrkB and p75NTR). Deficits in synaptic plasticity may further correlate disrupted brain redox and bioenergetics. Finally, at a functional level region-specific changes to synaptic plasticity in depression may relate to maladapted neurocircuitry and parallel reduced cognitive control over negative emotion.
Collapse
Affiliation(s)
- W N Marsden
- Highclere Court, Woking, Surrey, GU21 2QP, UK.
| |
Collapse
|
28
|
Regulating Prefrontal Cortex Activation: An Emerging Role for the 5-HT2A Serotonin Receptor in the Modulation of Emotion-Based Actions? Mol Neurobiol 2013; 48:841-53. [DOI: 10.1007/s12035-013-8472-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
|
29
|
Albaugh MD, Ducharme S, Collins DL, Botteron KN, Althoff RR, Evans AC, Karama S, Hudziak JJ. Evidence for a cerebral cortical thickness network anti-correlated with amygdalar volume in healthy youths: implications for the neural substrates of emotion regulation. Neuroimage 2013; 71:42-9. [PMID: 23313419 DOI: 10.1016/j.neuroimage.2012.12.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/12/2012] [Accepted: 12/27/2012] [Indexed: 12/20/2022] Open
Abstract
Recent functional connectivity studies have demonstrated that, in resting humans, activity in a dorsally-situated neocortical network is inversely associated with activity in the amygdalae. Similarly, in human neuroimaging studies, aspects of emotion regulation have been associated with increased activity in dorsolateral, dorsomedial, orbital and ventromedial prefrontal regions, as well as concomitant decreases in amygdalar activity. These findings indicate the presence of two countervailing systems in the human brain that are reciprocally related: a dorsally-situated cognitive control network, and a ventrally-situated limbic network. We investigated the extent to which this functional reciprocity between limbic and dorsal neocortical regions is recapitulated from a purely structural standpoint. Specifically, we hypothesized that amygdalar volume would be related to cerebral cortical thickness in cortical regions implicated in aspects of emotion regulation. In 297 typically developing youths (162 females, 135 males; 572 MRIs), the relationship between cortical thickness and amygdalar volume was characterized. Amygdalar volume was found to be inversely associated with thickness in bilateral dorsolateral and dorsomedial prefrontal, inferior parietal, as well as bilateral orbital and ventromedial prefrontal cortices. Our findings are in line with previous work demonstrating that a predominantly dorsally-centered neocortical network is reciprocally related to core limbic structures such as the amygdalae. Future research may benefit from investigating the extent to which such cortical-limbic morphometric relations are qualified by the presence of mood and anxiety psychopathology.
Collapse
Affiliation(s)
- Matthew D Albaugh
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hegarty CE, Foland-Ross LC, Narr KL, Sugar CA, McGough JJ, Thompson PM, Altshuler LL. ADHD comorbidity can matter when assessing cortical thickness abnormalities in patients with bipolar disorder. Bipolar Disord 2012; 14:843-55. [PMID: 23167934 PMCID: PMC3506177 DOI: 10.1111/bdi.12024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Attention-deficit hyperactivity disorder (ADHD) is prevalent in patients with bipolar disorder (BP), but very few studies consider this when interpreting magnetic resonance imaging findings. No studies, to our knowledge, have screened for or controlled for the presence of ADHD when examining cortical thickness in patients with BP. We used a 2 × 2 design to evaluate the joint effects of BP and ADHD on cortical thickness and uncover the importance of ADHD comorbidity in BP subjects. METHODS The study included 85 subjects: 31 healthy controls, 17 BP-only, 19 ADHD-only, and 18 BP/ADHD. All patients with BP were subtype I, euthymic, and not taking lithium. Groups did not differ significantly in age or gender distribution. We used cortical thickness measuring tools combined with cortical pattern matching methods to align sulcal/gyral anatomy across participants. Significance maps were used to check for both main effects of BP and ADHD and their interaction. Post-hoc comparisons assessed how the effects of BP on cortical thickness varied as a function of the presence or absence of ADHD. RESULTS Interactions of BP and ADHD diagnoses were found in the left subgenual cingulate and right orbitofrontal cortex, demonstrating that the effect of BP on cortical thickness depends on ADHD status. CONCLUSIONS Some brain abnormalities attributed to BP may result from the presence of ADHD. Diagnostic interactions were found in regions previously implicated in the pathophysiology of BP, making it vital to control for an ADHD comorbid diagnosis when attempting to isolate neural or genetic abnormalities specific to BP.
Collapse
Affiliation(s)
- Catherine E Hegarty
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles
| | - Lara C Foland-Ross
- Mood and Anxiety Disorders Laboratory, Department of Psychology, Stanford University, Stanford
| | - Katherine L Narr
- Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, UCLA
| | - Catherine A Sugar
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles,Department of Biostatistics, School of Public Health, UCLA,Department of Psychiatry, VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, UCLA, Los Angeles, USA
| | - James J McGough
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - Paul M Thompson
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles,Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, UCLA
| | - Lori L Altshuler
- Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California at Los Angeles (UCLA), Los Angeles,Department of Psychiatry, VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, UCLA, Los Angeles, USA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles, USA
| |
Collapse
|
31
|
Identification of neuronal loci involved with displays of affective aggression in NC900 mice. Brain Struct Funct 2012; 218:1033-49. [PMID: 22847115 DOI: 10.1007/s00429-012-0445-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/16/2012] [Indexed: 01/12/2023]
Abstract
Aggression is a complex behavior that is essential for survival. Of the various forms of aggression, impulsive violent displays without prior planning or deliberation are referred to as affective aggression. Affective aggression is thought to be caused by aberrant perceptions of, and consequent responses to, threat. Understanding the neuronal networks that regulate affective aggression is pivotal to development of novel approaches to treat chronic affective aggression. Here, we provide a detailed anatomical map of neuronal activity in the forebrain of two inbred lines of mice that were selected for low (NC100) and high (NC900) affective aggression. Attack behavior was induced in male NC900 mice by exposure to an unfamiliar male in a novel environment. Forebrain maps of c-Fos+ nuclei, which are surrogates for neuronal activity during behavior, were then generated and analyzed. NC100 males rarely exhibited affective aggression in response to the same stimulus, thus their forebrain c-Fos maps were utilized to identify unique patterns of neuronal activity in NC900s. Quantitative results indicated robust differences in the distribution patterns and densities of c-Fos+ nuclei in distinct thalamic, subthalamic, and amygdaloid nuclei, together with unique patterns of neuronal activity in the nucleus accumbens and the frontal cortices. Our findings implicate these areas as foci regulating differential behavioral responses to an unfamiliar male in NC900 mice when expressing affective aggression. Based on the highly conserved patterns of connections and organization of neuronal limbic structures from mice to humans, we speculate that neuronal activities in analogous networks may be disrupted in humans prone to maladaptive affective aggression.
Collapse
|
32
|
Sutherland MT, McHugh MJ, Pariyadath V, Stein EA. Resting state functional connectivity in addiction: Lessons learned and a road ahead. Neuroimage 2012; 62:2281-95. [PMID: 22326834 DOI: 10.1016/j.neuroimage.2012.01.117] [Citation(s) in RCA: 371] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/22/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022] Open
Abstract
Despite intensive scientific investigation and public health imperatives, drug addiction treatment outcomes have not significantly improved in more than 50 years. Non-invasive brain imaging has, over the past several decades, contributed important new insights into the neuroplastic adaptations that result from chronic drug intake, but additional experimental approaches and neurobiological hypotheses are needed to better capture the totality of the motivational, affective, cognitive, genetic and pharmacological complexities of the disease. Recent advances in assessing network dynamics through resting-state functional connectivity (rsFC) may allow for such systems-level assessments. In this review, we first summarize the nascent addiction-related rsFC literature and suggest that in using this tool, circuit connectivity may inform specific neurobiological substrates underlying psychological dysfunctions associated with reward, affective and cognitive processing often observed in drug addicts. Using nicotine addiction as an exemplar, we subsequently provide a heuristic framework to guide future research by linking recent findings from intrinsic network connectivity studies with those interrogating nicotine's neuropharmacological actions. Emerging evidence supports a critical role for the insula in nicotine addiction. Likewise, the anterior insula, potentially together with the anterior cingulate cortex, appears to pivotally influence the dynamics between large-scale brain networks subserving internal (default-mode network) and external (executive control network) information processing. We suggest that a better understanding of how the insula modulates the interaction between these networks is critical for elucidating both the cognitive impairments often associated with withdrawal and the performance-enhancing effects of nicotine administration. Such an understanding may be usefully applied in the design and development of novel smoking cessation treatments.
Collapse
Affiliation(s)
- Matthew T Sutherland
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH/DHHS, Baltimore, MD, USA
| | | | | | | |
Collapse
|
33
|
Ewers M, Frisoni GB, Teipel SJ, Grinberg LT, Amaro E, Heinsen H, Thompson PM, Hampel H. Staging Alzheimer's disease progression with multimodality neuroimaging. Prog Neurobiol 2011; 95:535-46. [PMID: 21718750 PMCID: PMC3223355 DOI: 10.1016/j.pneurobio.2011.06.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 01/15/2023]
Abstract
Rapid developments in medical neuroimaging have made it possible to reconstruct the trajectory of Alzheimer's disease (AD) as it spreads through the living brain. The current review focuses on the progressive signature of brain changes throughout the different stages of AD. We integrate recent findings on changes in cortical gray matter volume, white matter fiber tracts, neuropathological alterations, and brain metabolism assessed with molecular positron emission tomography (PET). Neurofibrillary tangles accumulate first in transentorhinal and cholinergic brain areas, and 4-D maps of cortical volume changes show early progressive temporo-parietal cortical thinning. Findings from diffusion tensor imaging (DTI) for assessment fiber tract integrity show cortical disconnection in corresponding brain networks. Importantly, the developmental trajectory of brain changes is not uniform and may be modulated by several factors such as onset of disease mechanisms, risk-associated and protective genes, converging comorbidity, and individual brain reserve. There is a general agreement between in vivo brain maps of cortical atrophy and amyloid pathology assessed through PET, reminiscent of post mortem histopathology studies that paved the way in the staging of AD. The association between in vivo and post mortem findings will clarify the temporal dynamics of pathophysiological alterations in the development of preclinical AD. This will be important in designing effective treatments that target specific underlying disease AD mechanisms.
Collapse
Affiliation(s)
- Michael Ewers
- Department of Radiology, University of California at San Francisco, San Francisco, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM, Marchante AN, Whalen PJ. The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav Brain Res 2011; 223:403-10. [PMID: 21536077 DOI: 10.1016/j.bbr.2011.04.025] [Citation(s) in RCA: 611] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 04/16/2011] [Indexed: 12/16/2022]
Abstract
The dynamic interactions between the amygdala and the medial prefrontal cortex (mPFC) are usefully conceptualized as a circuit that both allows us to react automatically to biologically relevant predictive stimuli as well as regulate these reactions when the situation calls for it. In this review, we will begin by discussing the role of this amygdala-mPFC circuitry in the conditioning and extinction of aversive learning in animals. We will then relate these data to emotional regulation paradigms in humans. Finally, we will consider how these processes are compromised in normal and pathological anxiety. We conclude that the capacity for efficient crosstalk between the amygdala and the mPFC, which is represented as the strength of the amygdala-mPFC circuitry, is crucial to beneficial outcomes in terms of reported anxiety.
Collapse
Affiliation(s)
- M Justin Kim
- Department of Psychological & Brain Sciences, Dartmouth College, 6207 Moore Hall, Hanover, NH 03755, USA.
| | | | | | | | | | | | | |
Collapse
|