1
|
Zhao Y, Fu Z, Barnett EJ, Wang N, Zhang K, Gao X, Zheng X, Tian J, Zhang H, Ding X, Li S, Li S, Cao Q, Chang S, Wang Y, Faraone SV, Yang L. Genome data based deep learning identified new genes predicting pharmacological treatment response of attention deficit hyperactivity disorder. Transl Psychiatry 2025; 15:46. [PMID: 39920114 PMCID: PMC11806042 DOI: 10.1038/s41398-025-03250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 12/06/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Although the efficacy of pharmacy in the treatment of attention deficit/hyperactivity disorder (ADHD) has been well established, the lack of predictors of treatment response poses great challenges for personalized treatment. The current study employed a comprehensive approach, combining genome-wide association analyses (GWAS) and deep learning (DL) methods, to elucidate the genetic underpinnings of pharmacological treatment response in ADHD. Based on genotype data of medication-naïve patients with ADHD who received pharmacological treatments for 12 weeks, the current study performed GWAS using the percentage changes in ADHD-RS score as phenotype. Then, DL models were constructed to predict percentage changes in symptom scores using genetic variants selected based on four different genome-wide P thresholds (E-02, E-03, E-04, E-05) as inputs. The current GWAS results identified two significant loci (rs10880574, P = 2.39E-09; rs2000900, P = 3.31E-09) which implicated two genes, TMEM117 and MYO5B, that were primarily associated with both brain- and gut-related disorders. The convolutional neural network (CNN) model, using variants with genome-wide P values less than E-02 (5516 SNPs), demonstrated the best performance with mean squared error (MSE) equals 0.012 (Accuracy = 0.83; Sensitivity = 0.90; Specificity = 0.75) in the validation dataset, 0.081 in an independent test dataset (Acc = 0.61, Sensitivity = 0.81; Specificity = 0.26). Notably, the variant that contributed most to the CNN model was NKAIN2, an ADHD-related gene, which is also associated with metabolic processes. To conclude, the integration of GWAS and DL methods revealed new genes contribute to ADHD pharmacological treatment responses, and underscored the interplay between neural systems and metabolic processes, potentially providing critical insights into precision treatment. Furthermore, our CNN model exhibited good performance in an independent dataset, encouraged future studies and implied potential clinical applications.
Collapse
Affiliation(s)
- Yilu Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, (Peking University S+ixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Zhao Fu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, (Peking University S+ixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Eric J Barnett
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ning Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, (Peking University S+ixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Kangfuxi Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, (Peking University S+ixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Xuping Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, (Peking University S+ixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Xiangyu Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, (Peking University S+ixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Junbin Tian
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, (Peking University S+ixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Hui Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
| | - XueTong Ding
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Shaoxian Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Shuyu Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Qingjiu Cao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, (Peking University S+ixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, (Peking University S+ixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Yufeng Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, (Peking University S+ixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, (Peking University S+ixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China.
| |
Collapse
|
2
|
Wang W, Rui M. Advances in understanding the roles of actin scaffolding and membrane trafficking in dendrite development. J Genet Genomics 2024; 51:1151-1161. [PMID: 38925347 DOI: 10.1016/j.jgg.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Dendritic morphology is typically highly branched, and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received, thus providing the basis for information processing in the nervous system. Once dendritic development is aberrantly compromised or damaged, it may lead to abnormal connectivity of the neural network, affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders. Research on the regulation of dendritic developmental processes has flourished, and much progress is now being made in its regulatory mechanisms. Noteworthily, dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone, requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them. Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development, with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly. In this review, we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites. We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wanting Wang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China
| | - Menglong Rui
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China.
| |
Collapse
|
3
|
Moya-Alvarado G, Valero-Peña X, Aguirre-Soto A, Bustos FJ, Lazo OM, Bronfman FC. PLC-γ-Ca 2+ pathway regulates axonal TrkB endocytosis and is required for long-distance propagation of BDNF signaling. Front Mol Neurosci 2024; 17:1009404. [PMID: 38660384 PMCID: PMC11040097 DOI: 10.3389/fnmol.2024.1009404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its tropomyosin receptor kinase B (TrkB) are important signaling proteins that regulate dendritic growth and maintenance in the central nervous system (CNS). After binding of BDNF, TrkB is endocytosed into endosomes and continues signaling within the cell soma, dendrites, and axon. In previous studies, we showed that BDNF signaling initiated in axons triggers long-distance signaling, inducing dendritic arborization in a CREB-dependent manner in cell bodies, processes that depend on axonal dynein and TrkB activities. The binding of BDNF to TrkB triggers the activation of different signaling pathways, including the ERK, PLC-γ and PI3K-mTOR pathways, to induce dendritic growth and synaptic plasticity. How TrkB downstream pathways regulate long-distance signaling is unclear. Here, we studied the role of PLC-γ-Ca2+ in BDNF-induced long-distance signaling using compartmentalized microfluidic cultures. We found that dendritic branching and CREB phosphorylation induced by axonal BDNF stimulation require the activation of PLC-γ in the axons of cortical neurons. Locally, in axons, BDNF increases PLC-γ phosphorylation and induces intracellular Ca2+ waves in a PLC-γ-dependent manner. In parallel, we observed that BDNF-containing signaling endosomes transport to the cell body was dependent on PLC-γ activity and intracellular Ca2+ stores. Furthermore, the activity of PLC-γ is required for BDNF-dependent TrkB endocytosis, suggesting a role for the TrkB/PLC-γ signaling pathway in axonal signaling endosome formation.
Collapse
Affiliation(s)
- Guillermo Moya-Alvarado
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile (UC), Santiago, Chile
| | - Xavier Valero-Peña
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Aguirre-Soto
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Fernando J. Bustos
- Constantin-Paton Research Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Oscar M. Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Francisca C. Bronfman
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
4
|
Ji Y, Izadi-Seitz M, Landmann A, Schwintzer L, Qualmann B, Kessels MM. EHBP1 Is Critically Involved in the Dendritic Arbor Formation and Is Coupled to Factors Promoting Actin Filament Formation. J Neurosci 2024; 44:e0236232023. [PMID: 38129132 PMCID: PMC10860635 DOI: 10.1523/jneurosci.0236-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The coordinated action of a plethora of factors is required for the organization and dynamics of membranous structures critically underlying the development and function of cells, organs, and organisms. The evolutionary acquisition of additional amino acid motifs allows for expansion and/or specification of protein functions. We identify a thus far unrecognized motif specific for chordata EHBP1 proteins and demonstrate that this motif is critically required for interaction with syndapin I, an F-BAR domain-containing, membrane-shaping protein predominantly expressed in neurons. Gain-of-function and loss-of-function studies in rat primary hippocampal neurons (of mixed sexes) unraveled that EHBP1 has an important role in neuromorphogenesis. Surprisingly, our analyses uncovered that this newly identified function of EHBP1 did not require the domain responsible for Rab GTPase binding but was strictly dependent on EHBP1's syndapin I binding interface and on the presence of syndapin I in the developing neurons. These findings were underscored by temporally and spatially remarkable overlapping dynamics of EHBP1 and syndapin I at nascent dendritic branch sites. In addition, rescue experiments demonstrated the necessity of two additional EHBP1 domains for dendritic arborization, the C2 and CH domains. Importantly, the additionally uncovered critical involvement of the actin nucleator Cobl in EHBP1 functions suggested that not only static association with F-actin via EHBP1's CH domain is important for dendritic arbor formation but also actin nucleation. Syndapin interactions organize ternary protein complexes composed of EHBP1, syndapin I, and Cobl, and our functional data show that only together these factors give rise to proper cell shape during neuronal development.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Institute of Biochemistry I, Jena University Hospital/Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maryam Izadi-Seitz
- Institute of Biochemistry I, Jena University Hospital/Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Annemarie Landmann
- Institute of Biochemistry I, Jena University Hospital/Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Lukas Schwintzer
- Institute of Biochemistry I, Jena University Hospital/Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital/Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital/Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
5
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Tsuneura Y, Kawai T, Yamada K, Aoki S, Nakashima M, Eda S, Matsuki T, Nishikawa M, Nagata KI, Enokido Y, Saitsu H, Nakayama A. A Novel Constitutively Active c.98 G > C, p.(R33P) Variant in RAB11A Associated with Intellectual Disability Promotes Neuritogenesis and Affects Oligodendroglial Arborization. Hum Mutat 2023; 2023:8126544. [PMID: 40225156 PMCID: PMC11918571 DOI: 10.1155/2023/8126544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 04/15/2025]
Abstract
Whole exome sequencing/whole genome sequencing has accelerated the identification of novel genes associated with intellectual disabilities (ID), and RAB11A which encodes an endosomal small GTPase is among them. However, consequent neural abnormalities have not been studied, and pathophysiological mechanisms underlying the ID and other clinical features in patients harboring RAB11A variants remain to be clarified. In this study, we report a novel de novo missense variant in RAB11A, NM_004663.5: c.98G > C, which would result in NP_004654.1: p.(R33P) substitution, in a Japanese boy with severe ID and hypomyelination. Biochemical analyses indicated that the RAB11A-R33P is a gain-of-function, constitutively active variant. Accordingly, the introduction of the RAB11A-R33P promoted neurite extension in neurons like a known constitutively active variant Rab11A-Q70L. In addition, the RAB11A-R33P induced excessive branching with thinner processes in oligodendrocytes. These results indicate that the gain-of-function RAB11A-R33P variant in association with ID and hypomyelination affects neural cells and can be deleterious to them, especially to oligodendrocytes, and strongly suggest the pathogenic role of the RAB11A-R33P variant in neurodevelopmental impairments, especially in the hypomyelination.
Collapse
Affiliation(s)
- Yumi Tsuneura
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Taeko Kawai
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Keitaro Yamada
- Department of Pediatric Neurology, Central Hospital, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Shintaro Aoki
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Shima Eda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Yasushi Enokido
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 486-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| |
Collapse
|
7
|
Kuo HY, Chen SY, Huang RC, Takahashi H, Lee YH, Pang HY, Wu CH, Graybiel AM, Liu FC. Speech- and language-linked FOXP2 mutation targets protein motors in striatal neurons. Brain 2023; 146:3542-3557. [PMID: 37137515 PMCID: PMC10393416 DOI: 10.1093/brain/awad090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 05/05/2023] Open
Abstract
Human speech and language are among the most complex motor and cognitive abilities. The discovery of a mutation in the transcription factor FOXP2 in KE family members with speech disturbances has been a landmark example of the genetic control of vocal communication in humans. Cellular mechanisms underlying this control have remained unclear. By leveraging FOXP2 mutation/deletion mouse models, we found that the KE family FOXP2R553H mutation directly disables intracellular dynein-dynactin 'protein motors' in the striatum by induction of a disruptive high level of dynactin1 that impairs TrkB endosome trafficking, microtubule dynamics, dendritic outgrowth and electrophysiological activity in striatal neurons alongside vocalization deficits. Dynactin1 knockdown in mice carrying FOXP2R553H mutations rescued these cellular abnormalities and improved vocalization. We suggest that FOXP2 controls vocal circuit formation by regulating protein motor homeostasis in striatal neurons, and that its disruption could contribute to the pathophysiology of FOXP2 mutation/deletion-associated speech disorders.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Rui-Chi Huang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hiroshi Takahashi
- Department of Neurology, National Hospital Organization, Tottori Medical Center, Tottori 689-0203, Japan
| | - Yen-Hui Lee
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hao-Yu Pang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Cheng-Hsi Wu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
8
|
Lazo OM, Schiavo G. Rab10 regulates the sorting of internalised TrkB for retrograde axonal transport. eLife 2023; 12:81532. [PMID: 36897066 PMCID: PMC10005780 DOI: 10.7554/elife.81532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Neurons process real-time information from axon terminals to coordinate gene expression, growth, and plasticity. Inputs from distal axons are encoded as a stream of endocytic organelles, termed signalling endosomes, targeted to the soma. Formation of these organelles depends on target-derived molecules, such as brain-derived neurotrophic factor (BDNF), which is recognised by TrkB receptors on the plasma membrane, endocytosed, and transported to the cell body along the microtubules network. Notwithstanding its physiological and neuropathological importance, the mechanism controlling the sorting of TrkB to signalling endosomes is currently unknown. In this work, we use primary mouse neurons to uncover the small GTPase Rab10 as critical for TrkB sorting and propagation of BDNF signalling from axon terminals to the soma. Our data demonstrate that Rab10 defines a novel membrane compartment that is rapidly mobilised towards the axon terminal upon BDNF stimulation, enabling the axon to fine-tune retrograde signalling depending on BDNF availability at the synapse. These results help clarifying the neuroprotective phenotype recently associated to Rab10 polymorphisms in Alzheimer's disease and provide a new therapeutic target to halt neurodegeneration.
Collapse
Affiliation(s)
- Oscar Marcelo Lazo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| |
Collapse
|
9
|
c-Abl Tyrosine Kinase Is Required for BDNF-Induced Dendritic Branching and Growth. Int J Mol Sci 2023; 24:ijms24031944. [PMID: 36768268 PMCID: PMC9916151 DOI: 10.3390/ijms24031944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) induces activation of the TrkB receptor and several downstream pathways (MAPK, PI3K, PLC-γ), leading to neuronal survival, growth, and plasticity. It has been well established that TrkB signaling regulation is required for neurite formation and dendritic arborization, but the specific mechanism is not fully understood. The non-receptor tyrosine kinase c-Abl is a possible candidate regulator of this process, as it has been implicated in tyrosine kinase receptors' signaling and trafficking, as well as regulation of neuronal morphogenesis. To assess the role of c-Abl in BDNF-induced dendritic arborization, wild-type and c-Abl-KO neurons were stimulated with BDNF, and diverse strategies were employed to probe the function of c-Abl, including the use of pharmacological inhibitors, an allosteric c-Abl activator, and shRNA to downregulates c-Abl expression. Surprisingly, BDNF promoted c-Abl activation and interaction with TrkB receptors. Furthermore, pharmacological c-Abl inhibition and genetic ablation abolished BDNF-induced dendritic arborization and increased the availability of TrkB in the cell membrane. Interestingly, inhibition or genetic ablation of c-Abl had no effect on the classic TrkB downstream pathways. Together, our results suggest that BDNF/TrkB-dependent c-Abl activation is a novel and essential mechanism in TrkB signaling.
Collapse
|
10
|
Moya-Alvarado G, Tiburcio-Felix R, Ibáñez MR, Aguirre-Soto AA, Guerra MV, Wu C, Mobley WC, Perlson E, Bronfman FC. BDNF/TrkB signaling endosomes in axons coordinate CREB/mTOR activation and protein synthesis in the cell body to induce dendritic growth in cortical neurons. eLife 2023; 12:77455. [PMID: 36826992 PMCID: PMC9977295 DOI: 10.7554/elife.77455] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptors tropomyosin kinase receptor B (TrkB) and the p75 neurotrophin receptor (p75) are the primary regulators of dendritic growth in the CNS. After being bound by BDNF, TrkB and p75 are endocytosed into endosomes and continue signaling within the cell soma, dendrites, and axons. We studied the functional role of BDNF axonal signaling in cortical neurons derived from different transgenic mice using compartmentalized cultures in microfluidic devices. We found that axonal BDNF increased dendritic growth from the neuronal cell body in a cAMP response element-binding protein (CREB)-dependent manner. These effects were dependent on axonal TrkB but not p75 activity. Dynein-dependent BDNF-TrkB-containing endosome transport was required for long-distance induction of dendritic growth. Axonal signaling endosomes increased CREB and mTOR kinase activity in the cell body, and this increase in the activity of both proteins was required for general protein translation and the expression of Arc, a plasticity-associated gene, indicating a role for BDNF-TrkB axonal signaling endosomes in coordinating the transcription and translation of genes whose products contribute to learning and memory regulation.
Collapse
Affiliation(s)
- Guillermo Moya-Alvarado
- Department of Physiology, Faculty of Biological Sciences and Center for Aging and Regeneration), Pontificia Universidad Católica de Chile. Av. Libertador Bernardo O´HigginsSantiagoChile
| | - Reynaldo Tiburcio-Felix
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - María Raquel Ibáñez
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - Alejandro A Aguirre-Soto
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - Miguel V Guerra
- Department of Physiology, Faculty of Biological Sciences and Center for Aging and Regeneration), Pontificia Universidad Católica de Chile. Av. Libertador Bernardo O´HigginsSantiagoChile,NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - William C Mobley
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Francisca C Bronfman
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| |
Collapse
|
11
|
Bollmann C, Schöning S, Kotschnew K, Grosse J, Heitzig N, Fischer von Mollard G. Primary neurons lacking the SNAREs vti1a and vti1b show altered neuronal development. Neural Dev 2022; 17:12. [PMID: 36419086 PMCID: PMC9682837 DOI: 10.1186/s13064-022-00168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Neurons are highly specialized cells with a complex morphology generated by various membrane trafficking steps. They contain Golgi outposts in dendrites, which are formed from somatic Golgi tubules. In trafficking membrane fusion is mediated by a specific combination of SNARE proteins. A functional SNARE complex contains four different helices, one from each SNARE subfamily (R-, Qa, Qb and Qc). Loss of the two Qb SNAREs vti1a and vti1b from the Golgi apparatus and endosomes leads to death at birth in mice with massive neurodegeneration in peripheral ganglia and defective axon tracts. METHODS Hippocampal and cortical neurons were isolated from Vti1a-/- Vti1b-/- double deficient, Vti1a-/- Vti1b+/-, Vti1a+/- Vti1b-/- and Vti1a+/- Vti1b+/- double heterozygous embryos. Neurite outgrowth was determined in cortical neurons and after stimulation with several neurotrophic factors or the Rho-associated protein kinase ROCK inhibitor Y27632, which induces exocytosis of enlargeosomes, in hippocampal neurons. Moreover, postsynaptic densities were isolated from embryonic Vti1a-/- Vti1b-/- and Vti1a+/- Vti1b+/- control forebrains and analyzed by western blotting. RESULTS Golgi outposts were present in Vti1a-/- Vti1b+/- and Vti1a+/- Vti1b-/- dendrites of hippocampal neurons but not detected in the absence of vti1a and vti1b. The length of neurites was significantly shorter in double deficient cortical neurons. These defects were not observed in Vti1a-/- Vti1b+/- and Vti1a+/- Vti1b-/- neurons. NGF, BDNF, NT-3, GDNF or Y27632 as stimulator of enlargeosome secretion did not increase the neurite length in double deficient hippocampal neurons. Vti1a-/- Vti1b-/- postsynaptic densities contained similar amounts of scaffold proteins, AMPA receptors and NMDA receptors compared to Vti1a+/- Vti1b+/-, but much more TrkB, which is the receptor for BDNF. CONCLUSION The absence of Golgi outposts did not affect the amount of AMPA and NMDA receptors in postsynaptic densities. Even though TrkB was enriched, BDNF was not able to stimulate neurite elongation in Vti1a-/- Vti1b-/- neurons. Vti1a or vti1b function as the missing Qb-SNARE together with VAMP-4 (R-SNARE), syntaxin 16 (Qa-SNARE) and syntaxin 6 (Qc-SNARE) in induced neurite outgrowth. Our data show the importance of vti1a or vti1b for two pathways of neurite elongation.
Collapse
Affiliation(s)
- Christian Bollmann
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Susanne Schöning
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Katharina Kotschnew
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Julia Grosse
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Nicole Heitzig
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Gabriele Fischer von Mollard
- grid.7491.b0000 0001 0944 9128Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
12
|
Alizadeh-Ezdini Z, Vatanparast J. Differential impact of two paradigms of early-life adversity on behavioural responses to social defeat in young adult rats and morphology of CA3 pyramidal neurons. Behav Brain Res 2022; 435:114048. [PMID: 35952779 DOI: 10.1016/j.bbr.2022.114048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 01/06/2023]
Abstract
Early life stress (ELS) is an important factor in programing the brain for future response to stress, and resilience or vulnerability to stress-induced emotional disorders. The hippocampal formation, with essential roles in both regulating the stress circuitry and emotionality, contributes to this adaptive programing. Here, we examined the effects of early handling (EH) and maternal deprivation (MD) as mild and intense postnatal stressors, respectively, on the behavioural responses to social defeat stress in young adulthood. We also evaluated the interaction of mild and intense ELS with later social defeat (SD) stress on the morphology and dendritic spine density of Golgi-cox-stained CA3 hippocampal neurons. SD stress in adult rats, as expected, increased anxiety and depressive-like behaviours in the open field, elevated plus-maze and forced swimming test. These effects were associated with reduction of dendritic spines and soma size of CA3 neurons. Both behavioural and structural alterations were significantly ameliorated in socially defeated rats that experienced early handling (EH-SD). Basal dendrites of CA3 neurons in EH-SD rats also showed longer dendrites and more intersections with Sholl circles in the distal portion, compared to both control and SD rats. On the other hand, in socially defeated rats with maternal deprivation experience (MD-SD) the stress-induced behavioural and structural alterations were generally intensified compared to SD rats. In MD-SD rats, apical dendrites of CA3 neurons demonstrated remarkable retraction; an effect that was not detected in SD rats. The reduction of dendritic spines density on the apical dendrites of CA3 neurons was also more pronounced in MD-SD rats compared to SD rats. Dendritic arbors and spines comprise the major neuronal substrate for the circuit connectivity, and cell region-specific alterations of dendrites and spines in CA3 neurons reveal plausible mechanisms that can underlie the impact of different ELSs on risk for affective disorders in response to social stress in adulthood.
Collapse
Affiliation(s)
| | - Jafar Vatanparast
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran.
| |
Collapse
|
13
|
O’Brien CE, Younger SH, Jan LY, Jan YN. The GARP complex prevents sterol accumulation at the trans-Golgi network during dendrite remodeling. J Biophys Biochem Cytol 2022; 222:213548. [PMID: 36239632 PMCID: PMC9577387 DOI: 10.1083/jcb.202112108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Membrane trafficking is essential for sculpting neuronal morphology. The GARP and EARP complexes are conserved tethers that regulate vesicle trafficking in the secretory and endolysosomal pathways, respectively. Both complexes contain the Vps51, Vps52, and Vps53 proteins, and a complex-specific protein: Vps54 in GARP and Vps50 in EARP. In Drosophila, we find that both complexes are required for dendrite morphogenesis during developmental remodeling of multidendritic class IV da (c4da) neurons. Having found that sterol accumulates at the trans-Golgi network (TGN) in Vps54KO/KO neurons, we investigated genes that regulate sterols and related lipids at the TGN. Overexpression of oxysterol binding protein (Osbp) or knockdown of the PI4K four wheel drive (fwd) exacerbates the Vps54KO/KO phenotype, whereas eliminating one allele of Osbp rescues it, suggesting that excess sterol accumulation at the TGN is, in part, responsible for inhibiting dendrite regrowth. These findings distinguish the GARP and EARP complexes in neurodevelopment and implicate vesicle trafficking and lipid transfer pathways in dendrite morphogenesis.
Collapse
Affiliation(s)
- Caitlin E. O’Brien
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA,Department of Physiology, University of California at San Francisco, San Francisco, CA
| | - Susan H. Younger
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA,Department of Physiology, University of California at San Francisco, San Francisco, CA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA,Department of Physiology, University of California at San Francisco, San Francisco, CA,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA,Department of Physiology, University of California at San Francisco, San Francisco, CA,Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
14
|
Kholghi G, Eskandari M, Shokouhi Qare Saadlou MS, Zarrindast MR, Vaseghi S. Night shift hormone: How does melatonin affect depression? Physiol Behav 2022; 252:113835. [PMID: 35504318 DOI: 10.1016/j.physbeh.2022.113835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022]
Abstract
Melatonin is the main hormone secreted by the pineal gland that modulates the circadian rhythm and mood. Previous studies have shown the therapeutic effects of melatonin, or its important analogue, agomelatine, on depression. In this review study, we aimed to discuss the potential mechanisms of melatonin involved in the treatment of depression. It was noted that disrupted circadian rhythm can lead to depressive state, and melatonin via regulating circadian rhythm shows a therapeutic effect. It was also noted that melatonin induces antidepressant effects via promoting antioxidant system and neurogenesis, and suppressing oxidative stress, neuroinflammation, and apoptosis. The interaction effect between melatonin or agomelatine and serotonergic signaling has a significant effect on depression. It was noted that the psychotropic effects of agomelatine are induced by the synergistic interaction between melatonin and 5-HT2C receptors. Agomelatine also interacts with glutamatergic signaling in brain regions involved in regulating mood and circadian rhythm. Interestingly, it was concluded that melatonin exerts both pro- and anti-inflammatory effects, depending on the grade of inflammation. It was suggested that synergistic interaction between melatonin and 5-HT2C receptors may be able to induce therapeutic effects on other psychiatric disorders. Furthermore, dualistic role of melatonin in regulating inflammation is an important point that can be examined at different levels of inflammation in animal models of depression.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
15
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
16
|
The Rab11-regulated endocytic pathway and BDNF/TrkB signaling: Roles in plasticity changes and neurodegenerative diseases. Neurobiol Dis 2022; 171:105796. [PMID: 35728773 DOI: 10.1016/j.nbd.2022.105796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Neurons are highly polarized cells that rely on the intracellular transport of organelles. This process is regulated by molecular motors such as dynein and kinesins and the Rab family of monomeric GTPases that together help move cargo along microtubules in dendrites, somas, and axons. Rab5-Rab11 GTPases regulate receptor trafficking along early-recycling endosomes, which is a process that determines the intracellular signaling output of different signaling pathways, including those triggered by BDNF binding to its tyrosine kinase receptor TrkB. BDNF is a well-recognized neurotrophic factor that regulates experience-dependent plasticity in different circuits in the brain. The internalization of the BDNF/TrkB complex results in signaling endosomes that allow local signaling in dendrites and presynaptic terminals, nuclear signaling in somas and dynein-mediated long-distance signaling from axons to cell bodies. In this review, we briefly discuss the organization of the endocytic pathway and how Rab11-recycling endosomes interact with other endomembrane systems. We further expand upon the roles of the Rab11-recycling pathway in neuronal plasticity. Then, we discuss the BDNF/TrkB signaling pathways and their functional relationships with the postendocytic trafficking of BDNF, including axonal transport, emphasizing the role of BDNF signaling endosomes, particularly Rab5-Rab11 endosomes, in neuronal plasticity. Finally, we discuss the evidence indicating that the dysfunction of the early-recycling pathway impairs BDNF signaling, contributing to several neurodegenerative diseases.
Collapse
|
17
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|
18
|
Yap CC, Winckler B. Spatial regulation of endosomes in growing dendrites. Dev Biol 2022; 486:5-14. [PMID: 35306006 PMCID: PMC10646839 DOI: 10.1016/j.ydbio.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 01/19/2023]
Abstract
Many membrane proteins are highly enriched in either dendrites or axons. This non-uniform distribution is a critical feature of neuronal polarity and underlies neuronal function. The molecular mechanisms responsible for polarized distribution of membrane proteins has been studied for some time and many answers have emerged. A less well studied feature of neurons is that organelles are also frequently non-uniformly distributed. For instance, EEA1-positive early endosomes are somatodendritic whereas synaptic vesicles are axonal. In addition, some organelles are present in both axons and dendrites, but not distributed uniformly along the processes. One well known example are lysosomes which are abundant in the soma and proximal dendrite, but sparse in the distal dendrite and the distal axon. The mechanisms that determine the spatial distribution of organelles along dendrites are only starting to be studied. In this review, we will discuss the cell biological mechanisms of how the distribution of diverse sets of endosomes along the proximal-distal axis of dendrites might be regulated. In particular, we will focus on the regulation of bulk homeostatic mechanisms as opposed to local regulation. We posit that immature dendrites regulate organelle motility differently from mature dendrites in order to spatially organize dendrite growth, branching and sculpting.
Collapse
|
19
|
Hu J, Zhu Z, Chen Z, Yang Q, Liang W, Ding G. Alteration in Rab11-mediated endocytic trafficking of LDL receptor contributes to angiotensin II-induced cholesterol accumulation and injury in podocytes. Cell Prolif 2022; 55:e13229. [PMID: 35567428 PMCID: PMC9201372 DOI: 10.1111/cpr.13229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Objectives Exposure of podocytes to angiotensin II (Ang II) enhances the abundance of the cell surface glycoprotein, low‐density lipoprotein receptor (LDLR) and promotes significant changes in the cellular cholesterol content. Recent investigation provides evidence that the small GTPase Rab11 is involved in the regulation of LDLR, but the exact mechanisms remain unknown. In this study, the role of Rab11 in post‐transcriptional regulation of LDLR was evaluated to investigate potential mechanisms of podocyte cholesterol dysregulation in chronic kidney disease. Materials and Methods Cholesterol content, LDLR and Rab11 expression were assessed in podocytes from Ang II‐infused mice. In vitro, the intracellular localization of LDLR was detected under different conditions. Rab11 expression was modulated and we then explored the effect of anti‐lipid cytotoxicity by detecting LDLR expression and trafficking, cholesterol content and apoptosis in podocytes. Results Cholesterol accumulation, upregulated expression of LDLR and Rab11 were discovered in podocytes from Ang II‐infused mice. Ang II enhanced the co‐precipitation of LDLR with Rab11 and accelerated the endocytic recycling of LDLR to the plasma membrane. Additionally, silencing Rab11 promoted lysosomal degradation of LDLR and alleviated Ang II‐induced cholesterol accumulation and apoptosis in podocytes. Conversely, overexpression of Rab11 or inhibition of lysosomal degradation up‐regulated the abundance of LDLR and aggravated podocyte cholesterol deposition. Conclusions Rab11 triggers the endocytic trafficking and recycling of LDLR; overactivation of this pathway contributes to Ang II‐induced podocyte cholesterol accumulation and injury.
Collapse
Affiliation(s)
- Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Qian Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Landínez-Macías M, Urwyler O. The Fine Art of Writing a Message: RNA Metabolism in the Shaping and Remodeling of the Nervous System. Front Mol Neurosci 2021; 14:755686. [PMID: 34916907 PMCID: PMC8670310 DOI: 10.3389/fnmol.2021.755686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023] Open
Abstract
Neuronal morphogenesis, integration into circuits, and remodeling of synaptic connections occur in temporally and spatially defined steps. Accordingly, the expression of proteins and specific protein isoforms that contribute to these processes must be controlled quantitatively in time and space. A wide variety of post-transcriptional regulatory mechanisms, which act on pre-mRNA and mRNA molecules contribute to this control. They are thereby critically involved in physiological and pathophysiological nervous system development, function, and maintenance. Here, we review recent findings on how mRNA metabolism contributes to neuronal development, from neural stem cell maintenance to synapse specification, with a particular focus on axon growth, guidance, branching, and synapse formation. We emphasize the role of RNA-binding proteins, and highlight their emerging roles in the poorly understood molecular processes of RNA editing, alternative polyadenylation, and temporal control of splicing, while also discussing alternative splicing, RNA localization, and local translation. We illustrate with the example of the evolutionary conserved Musashi protein family how individual RNA-binding proteins are, on the one hand, acting in different processes of RNA metabolism, and, on the other hand, impacting multiple steps in neuronal development and circuit formation. Finally, we provide links to diseases that have been associated with the malfunction of RNA-binding proteins and disrupted post-transcriptional regulation.
Collapse
Affiliation(s)
- María Landínez-Macías
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Olivier Urwyler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Nieuwenhuis B, Eva R. Promoting axon regeneration in the central nervous system by increasing PI3-kinase signaling. Neural Regen Res 2021; 17:1172-1182. [PMID: 34782551 PMCID: PMC8643051 DOI: 10.4103/1673-5374.327324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Much research has focused on the PI3-kinase and PTEN signaling pathway with the aim to stimulate repair of the injured central nervous system. Axons in the central nervous system fail to regenerate, meaning that injuries or diseases that cause loss of axonal connectivity have life-changing consequences. In 2008, genetic deletion of PTEN was identified as a means of stimulating robust regeneration in the optic nerve. PTEN is a phosphatase that opposes the actions of PI3-kinase, a family of enzymes that function to generate the membrane phospholipid PIP3 from PIP2 (phosphatidylinositol (3,4,5)-trisphosphate from phosphatidylinositol (4,5)-bisphosphate). Deletion of PTEN therefore allows elevated signaling downstream of PI3-kinase, and was initially demonstrated to promote axon regeneration by signaling through mTOR. More recently, additional mechanisms have been identified that contribute to the neuron-intrinsic control of regenerative ability. This review describes neuronal signaling pathways downstream of PI3-kinase and PIP3, and considers them in relation to both developmental and regenerative axon growth. We briefly discuss the key neuron-intrinsic mechanisms that govern regenerative ability, and describe how these are affected by signaling through PI3-kinase. We highlight the recent finding of a developmental decline in the generation of PIP3 as a key reason for regenerative failure, and summarize the studies that target an increase in signaling downstream of PI3-kinase to facilitate regeneration in the adult central nervous system. Finally, we discuss obstacles that remain to be overcome in order to generate a robust strategy for repairing the injured central nervous system through manipulation of PI3-kinase signaling.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Center for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard Eva
- John van Geest Center for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Amin SN, Sharawy N, El Tablawy N, Elberry DA, Youssef MF, Abdelhady EG, Rashed LA, Hassan SS. Melatonin-Pretreated Mesenchymal Stem Cells Improved Cognition in a Diabetic Murine Model. Front Physiol 2021; 12:628107. [PMID: 33815140 PMCID: PMC8012759 DOI: 10.3389/fphys.2021.628107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/11/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) is a multisystem endocrine disorder affecting the brain. Mesenchymal stem cells (MSCs) pretreated with Melatonin have been shown to increase the potency of MSCs. This work aimed to compare Melatonin, stem cells, and stem cells pretreated with Melatonin on the cognitive functions and markers of synaptic plasticity in an animal model of type I diabetes mellitus (TIDM). Thirty-six rats represented the animal model; six rats for isolation of MSCs and 30 rats were divided into five groups: control, TIDM, TIDM + Melatonin, TIDM + Stem cells, and TIDM + Stem ex vivo Melatonin. Functional assessment was performed with Y-maze, forced swimming test and novel object recognition. Histological and biochemical evaluation of hippocampal Neuroligin 1, Sortilin, Brain-Derived Neurotrophic Factor (BDNF), inducible nitric oxide synthase (iNOS), toll-like receptor 2 (TLR2), Tumor necrosis factor-alpha (TNF-α), and Growth Associated Protein 43 (GAP43). The TIDM group showed a significant decrease of hippocampal Neuroligin, Sortilin, and BDNF and a significant increase in iNOS, TNF-α, TLR2, and GAP43. Melatonin or stem cells groups showed improvement compared to the diabetic group but not compared to the control group. TIDM + Stem ex vivo Melatonin group showed a significant improvement, and some values were restored to normal. Ex vivo melatonin-treated stem cells had improved spatial working and object recognition memory and depression, with positive effects on glucose homeostasis, inflammatory markers levels and synaptic plasticity markers expression.
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nivin Sharawy
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nashwa El Tablawy
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia Azmy Elberry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mira Farouk Youssef
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ebtehal Gamal Abdelhady
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherif Sabry Hassan
- Department of Medical Education, School of Medicine, California University of Science and Medicine, San Bernardino, CA, United States.,Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Zahavi EE, Hummel JJA, Han Y, Bar C, Stucchi R, Altelaar M, Hoogenraad CC. Combined kinesin-1 and kinesin-3 activity drives axonal trafficking of TrkB receptors in Rab6 carriers. Dev Cell 2021; 56:494-508.e7. [PMID: 33571451 PMCID: PMC7907685 DOI: 10.1016/j.devcel.2021.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/18/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons depend on proper localization of neurotrophic receptors in their distal processes for their function. The Trk family of neurotrophin receptors controls neuronal survival, differentiation, and remodeling and are well known to function as retrograde signal carriers transported from the distal axon toward the cell body. However, the mechanism driving anterograde trafficking of Trk receptors into the axon is not well established. We used microfluidic compartmental devices and inducible secretion assay to systematically investigate the retrograde and anterograde trafficking routes of TrkB receptor along the axon in rat hippocampal neurons. We show that newly synthesized TrkB receptors traffic through the secretory pathway and are directly delivered into axon. We found that these TrkB carriers associate and are regulated by Rab6. Furthermore, the combined activity of kinesin-1 and kinesin-3 is needed for the formation of axon-bound TrkB secretory carriers and their effective entry and processive anterograde transport beyond the proximal axon.
Collapse
Affiliation(s)
- Eitan Erez Zahavi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Jessica J A Hummel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Yuhao Han
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Citlali Bar
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
24
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
25
|
Rozés-Salvador V, González-Billault C, Conde C. The Recycling Endosome in Nerve Cell Development: One Rab to Rule Them All? Front Cell Dev Biol 2020; 8:603794. [PMID: 33425908 PMCID: PMC7793921 DOI: 10.3389/fcell.2020.603794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Endocytic recycling is an intracellular process that returns internalized molecules back to the plasma membrane and plays crucial roles not only in the reuse of receptor molecules but also in the remodeling of the different components of this membrane. This process is required for a diversity of cellular events, including neuronal morphology acquisition and functional regulation, among others. The recycling endosome (RE) is a key vesicular component involved in endocytic recycling. Recycling back to the cell surface may occur with the participation of several different Rab proteins, which are master regulators of membrane/protein trafficking in nerve cells. The RE consists of a network of interconnected and functionally distinct tubular subdomains that originate from sorting endosomes and transport their cargoes along microtubule tracks, by fast or slow recycling pathways. Different populations of REs, particularly those formed by Rab11, Rab35, and Arf6, are associated with a myriad of signaling proteins. In this review, we discuss the cumulative evidence suggesting the existence of heterogeneous domains of REs, controlling different aspects of neurogenesis, with a particular focus on the commonalities and singularities of these REs and their contribution to nerve development and differentiation in several animal models.
Collapse
Affiliation(s)
- Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina.,Instituto de Ciencias Básicas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Cecilia Conde
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| |
Collapse
|
26
|
Nieuwenhuis B, Eva R. ARF6 and Rab11 as intrinsic regulators of axon regeneration. Small GTPases 2020; 11:392-401. [PMID: 29772958 PMCID: PMC6124649 DOI: 10.1080/21541248.2018.1457914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 10/28/2022] Open
Abstract
Adult central nervous system (CNS) axons do not regenerate after injury because of extrinsic inhibitory factors, and a low intrinsic capacity for axon growth. Developing CNS neurons have a better regenerative ability, but lose this with maturity. This mini-review summarises recent findings which suggest one reason for regenerative failure is the selective distribution of growth machinery away from axons as CNS neurons mature. These studies demonstrate roles for the small GTPases ARF6 and Rab11 as intrinsic regulators of polarised transport and axon regeneration. ARF6 activation prevents the axonal transport of integrins in Rab11 endosomes in mature CNS axons. Decreasing ARF6 activation permits axonal transport, and increases regenerative ability. The findings suggest new targets for promoting axon regeneration after CNS injury.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Richard Eva
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| |
Collapse
|
27
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
28
|
The Rab5-Rab11 Endosomal Pathway is Required for BDNF-Induced CREB Transcriptional Regulation in Hippocampal Neurons. J Neurosci 2020; 40:8042-8054. [PMID: 32928890 DOI: 10.1523/jneurosci.2063-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key regulator of the morphology and connectivity of central neurons. We have previously shown that BDNF/TrkB signaling regulates the activity and mobility of the GTPases Rab5 and Rab11, which in turn determine the postendocytic sorting of signaling TrkB receptors. Moreover, decreased Rab5 or Rab11 activity inhibits BDNF-induced dendritic branching. Whether Rab5 or Rab11 activity is important for local events only or for regulating nuclear signaling and gene expression is unknown. Here, we investigated, in rat hippocampal neuronal cultures derived from embryos of unknown sex, whether BDNF-induced signaling cascades are altered when early and recycling endosomes are disrupted by the expression of dominant-negative mutants of Rab5 and Rab11. The activity of both Rab5 and Rab11 was required for sustained activity of Erk1/2 and nuclear CREB phosphorylation, and increased transcription of a BDNF-dependent program of gene expression containing CRE binding sites, which includes activity-regulated genes such as Arc, Dusp1, c-fos, Egr1, and Egr2, and growth and survival genes such as Atf3 and Gem Based on our results, we propose that early and recycling endosomes provide a platform for the integration of neurotrophic signaling from the plasma membrane to the nucleus in neurons, and that this mechanism is likely to regulate neuronal plasticity and survival.SIGNIFICANCE STATEMENT BDNF is a neurotrophic factor that regulates plastic changes in the brain, including dendritic growth. The cellular and molecular mechanisms underlying this process are not completely understood. Our results uncover the cellular requirements that central neurons possess to integrate the plasma membrane into nuclear signaling in neurons. Our results indicate that the endosomal pathway is required for the signaling cascade initiated by BDNF and its receptors at the plasma membrane to modulate BDNF-dependent gene expression and neuronal dendritic growth mediated by the CREB transcription factor. CREB is a key transcription factor regulating circuit development and learning and memory.
Collapse
|
29
|
Nieuwenhuis B, Barber AC, Evans RS, Pearson CS, Fuchs J, MacQueen AR, van Erp S, Haenzi B, Hulshof LA, Osborne A, Conceicao R, Khatib TZ, Deshpande SS, Cave J, Ffrench‐Constant C, Smith PD, Okkenhaug K, Eickholt BJ, Martin KR, Fawcett JW, Eva R. PI 3-kinase delta enhances axonal PIP 3 to support axon regeneration in the adult CNS. EMBO Mol Med 2020; 12:e11674. [PMID: 32558386 PMCID: PMC7411663 DOI: 10.15252/emmm.201911674] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Peripheral nervous system (PNS) neurons support axon regeneration into adulthood, whereas central nervous system (CNS) neurons lose regenerative ability after development. To better understand this decline whilst aiming to improve regeneration, we focused on phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol (3,4,5)-trisphosphate (PIP3 ). We demonstrate that adult PNS neurons utilise two catalytic subunits of PI3K for axon regeneration: p110α and p110δ. However, in the CNS, axonal PIP3 decreases with development at the time when axon transport declines and regenerative competence is lost. Overexpressing p110α in CNS neurons had no effect; however, expression of p110δ restored axonal PIP3 and increased regenerative axon transport. p110δ expression enhanced CNS regeneration in both rat and human neurons and in transgenic mice, functioning in the same way as the hyperactivating H1047R mutation of p110α. Furthermore, viral delivery of p110δ promoted robust regeneration after optic nerve injury. These findings establish a deficit of axonal PIP3 as a key reason for intrinsic regeneration failure and demonstrate that native p110δ facilitates axon regeneration by functioning in a hyperactive fashion.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Laboratory for Regeneration of Sensorimotor SystemsNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
| | - Amanda C Barber
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Rachel S Evans
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Craig S Pearson
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Joachim Fuchs
- Institute of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Amy R MacQueen
- Laboratory of Lymphocyte Signalling and DevelopmentBabraham InstituteCambridgeUK
| | - Susan van Erp
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUK
| | - Barbara Haenzi
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Lianne A Hulshof
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Andrew Osborne
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Raquel Conceicao
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Tasneem Z Khatib
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Sarita S Deshpande
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Joshua Cave
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | | | | | | | - Britta J Eickholt
- Institute of BiochemistryCharité – Universitätsmedizin BerlinBerlinGermany
| | - Keith R Martin
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Centre for Eye Research AustraliaRoyal Victorian Eye and Ear HospitalMelbourneVic.Australia
- OphthalmologyDepartment of SurgeryUniversity of MelbourneMelbourneVic.Australia
| | - James W Fawcett
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Centre of Reconstructive NeuroscienceInstitute of Experimental MedicineCzech Academy of SciencesPragueCzech Republic
| | - Richard Eva
- John Van Geest Centre for Brain RepairDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
30
|
Zhan Z, Wu Y, Liu Z, Quan Y, Li D, Huang Y, Yang S, Wu K, Huang L, Yu M. Reduced Dendritic Spines in the Visual Cortex Contralateral to the Optic Nerve Crush Eye in Adult Mice. Invest Ophthalmol Vis Sci 2020; 61:55. [PMID: 32866269 PMCID: PMC7463183 DOI: 10.1167/iovs.61.10.55] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 01/19/2023] Open
Abstract
Purpose To determine alteration of dendritic spines and associated changes in the primary visual cortex (V1 region) related to unilateral optic nerve crush (ONC) in adult mice. Methods Adult unilateral ONC mice were established. Retinal nerve fiber layer (RNFL) thickness was measured by spectral-domain optical coherence tomography. Visual function was estimated by flash visual evoked potentials (FVEPs). Dendritic spines were observed in the V1 region contralateral to the ONC eye by two-photon imaging in vivo. The neurons, reactive astrocytes, oligodendrocytes, and activated microglia were assessed by NeuN, glial fibrillary acidic protein, CNPase, and CD68 in immunohistochemistry, respectively. Tropomyosin receptor kinase B (TrkB) and the markers in TrkB trafficking were estimated using western blotting and co-immunoprecipitation. Transmission electron microscopy and western blotting were used to evaluate autophagy. Results The amplitude and latency of FVEPs were decreased and delayed at 3 days, 1 week, 2 weeks, and 4 weeks after ONC, and RNFL thickness was decreased at 2 and 4 weeks after ONC. Dendritic spines were reduced in the V1 region contralateral to the ONC eye at 2, 3, and 4 weeks after ONC, with an unchanged number of neurons. Reactive astrocyte staining was increased at 2 and 4 weeks after ONC, but oligodendrocyte and activated microglia staining remained unchanged. TrkB was reduced with changes in the major trafficking proteins, and enhanced autophagy was observed in the V1 region contralateral to the ONC eye. Conclusions Dendritic spines were reduced in the V1 region contralateral to the ONC eye in adult mice. Reactive astrocytes and decreased TrkB may be associated with the reduced dendritic spines.
Collapse
Affiliation(s)
- Zongyi Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yali Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zitian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yadan Quan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Deling Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiru Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shana Yang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lianyan Huang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
ZHAO W, ZOU W. [Intrinsic and extrinsic mechanisms regulating neuronal dendrite morphogenesis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:90-99. [PMID: 32621417 PMCID: PMC8800678 DOI: 10.3785/j.issn.1008-9292.2020.02.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 06/11/2023]
Abstract
Neurons are the structural and functional unit of the nervous system. Precisely regulated dendrite morphogenesis is the basis of neural circuit assembly. Numerous studies have been conducted to explore the regulatory mechanisms of dendritic morphogenesis. According to their action regions, we divide them into two categories: the intrinsic and extrinsic regulators of neuronal dendritic morphogenesis. Intrinsic factors are cell type-specific transcription factors, actin polymerization or depolymerization regulators and regulators of the secretion or endocytic pathways. These intrinsic factors are produced by neuron itself and play an important role in regulating the development of dendrites. The extrinsic regulators are either secreted proteins or transmembrane domain containing cell adhesion molecules. They often form receptor-ligand pairs to mediate attractive or repulsive dendritic guidance. In this review, we summarize recent findings on the intrinsic and external molecular mechanisms of dendrite morphogenesis from multiple model organisms, including Caenorhabditis elegans, Drosophila and mice. These studies will provide a better understanding on how defective dendrite development and maintenance are associated with neurological diseases.
Collapse
|
33
|
Siri SO, Rozés-Salvador V, de la Villarmois EA, Ghersi MS, Quassollo G, Pérez MF, Conde C. Decrease of Rab11 prevents the correct dendritic arborization, synaptic plasticity and spatial memory formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118735. [PMID: 32389643 DOI: 10.1016/j.bbamcr.2020.118735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/30/2022]
Abstract
Emerging evidence shows that Rab11 recycling endosomes (REs Rab11) are essential for several neuronal processes, including the proper functioning of growth cones, synapse architecture regulation and neuronal migration. However, several aspects of REs Rab11 remain unclear, such as its sub-cellular distribution across neuronal development, contribution to dendritic tree organization and its consequences in memory formation. In this work we show a spatio-temporal correlation between the endogenous localization of REs Rab11 and developmental stage of neurons. Furthermore, Rab11-suppressed neurons showed an increase on dendritic branching (without altering total dendritic length) and misdistribution of dendritic proteins in cultured neurons. In addition, suppression of Rab11 in adult rat brains in vivo (by expressing shRab11 through lentiviral infection), showed a decrease on both the sensitivity to induce long-term potentiation and hippocampal-dependent memory acquisition. Taken together, our results suggest that REs Rab11 expression is required for a proper dendritic architecture and branching, controlling key aspects of synaptic plasticity and spatial memory formation.
Collapse
Affiliation(s)
- Sebastian O Siri
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Investigación Médica Mercedes y Martıín Ferreyra (INIMEC-CONICET-UNC), Av. Friuli 2434, 5016 Córdoba, Argentina
| | - Victoria Rozés-Salvador
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto A.P. de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina
| | - Emilce Artur de la Villarmois
- IFEC, CONICET, Departamento de Farmacologia, Facultad de Ciencias Químicas, UNC, Haya de la Torre Y Medina Allende, 5000 Córdoba, Argentina
| | - Marisa S Ghersi
- IFEC, CONICET, Departamento de Farmacologia, Facultad de Ciencias Químicas, UNC, Haya de la Torre Y Medina Allende, 5000 Córdoba, Argentina
| | - Gonzalo Quassollo
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Investigación Médica Mercedes y Martıín Ferreyra (INIMEC-CONICET-UNC), Av. Friuli 2434, 5016 Córdoba, Argentina
| | - Mariela F Pérez
- IFEC, CONICET, Departamento de Farmacologia, Facultad de Ciencias Químicas, UNC, Haya de la Torre Y Medina Allende, 5000 Córdoba, Argentina
| | - Cecilia Conde
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Investigación Médica Mercedes y Martıín Ferreyra (INIMEC-CONICET-UNC), Av. Friuli 2434, 5016 Córdoba, Argentina.
| |
Collapse
|
34
|
Zhang J, Su G, Wu Q, Liu J, Tian Y, Liu X, Zhou J, Gao J, Chen W, Chen D, Zhang Z. Rab11-mediated recycling endosome role in nervous system development and neurodegenerative diseases. Int J Neurosci 2020; 131:1012-1018. [PMID: 32329391 DOI: 10.1080/00207454.2020.1761354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
STUDY Membrane trafficking process is significant for the complex and precise regulatory of the nervous system. Rab11, as a small GTPase of the Rab superfamily, controls endocytic vesicular trafficking to the cell surface after sorting in recycling endosome (RE), coordinating with its receptors to maintain neurological function. MATERIALS AND METHODS This article reviewed the literature of Rab11 in nervous system. RESULTS Rab11-positive vesicles targeted transport growth-related molecules, such as integrins, protrudin, tropomyosin receptor kinase (Trk) A/B receptor and AMPA receptor (AMPAR) to membrane surface to promote the regeneration capacity of axon and dendrites and maintain synaptic plasticity. In addition, many studies have shown that the expression of Rab11 is decreased in multiple neurodegenerative diseases, which is highly correlated with the process of production, transport and clearance of disease-related pathological proteins. And overexpression or increased activity of Rab11 can greatly improve the defect of membrane trafficking and slow down the disease process. CONCLUSION With increasing research efforts on Rab11-dependent membrane trafficking mechanisms, a potential target for nerve regeneration and neurodegenerative diseases will be provided.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Qionghui Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jifei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ye Tian
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoyan Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Juanping Zhou
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Deyi Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
35
|
In vitro modeling of dendritic atrophy in Rett syndrome: determinants for phenotypic drug screening in neurodevelopmental disorders. Sci Rep 2020; 10:2491. [PMID: 32051524 PMCID: PMC7016139 DOI: 10.1038/s41598-020-59268-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/21/2020] [Indexed: 01/16/2023] Open
Abstract
Dendritic atrophy, defined as the reduction in complexity of the neuronal arborization, is a hallmark of several neurodevelopmental disorders, including Rett Syndrome (RTT). RTT, affecting 1:10,000 girls worldwide, is mainly caused by mutations in the MECP2 gene and has no cure. We describe here an in vitro model of dendritic atrophy in Mecp2−/y mouse hippocampal primary cultures, suitable for phenotypic drug-screening. Using High-Content Imaging techniques, we systematically investigated the impact of culturing determinants on several parameters such as neuronal survival, total dendritic length, dendritic endpoints, soma size, cell clusterization, spontaneous activity. Determinants included cell-seeding density, glass or polystyrene substrates, coating with poly-Ornithine with/without Matrigel and miniaturization from 24 to 96-half surface multiwell plates. We show that in all plate-sizes at densities below 320 cells/mm2, morphological parameters remained constant while spontaneous network activity decreased according to the cell-density. Mecp2−/y neurons cultured at 160 cells/mm2 density in 96 multiwell plates, displayed significant dendritic atrophy and showed a marked increase in dendritic length following treatment with Brain-derived neurotrophic factor (BDNF) or Mirtazapine. In conclusion, we have established a phenotypic assay suitable for fast screening of hundreds of compounds, which may be extended to other neurodevelopmental diseases with dendritic atrophy.
Collapse
|
36
|
Malik BR, Maddison DC, Smith GA, Peters OM. Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol Brain 2019; 12:100. [PMID: 31783880 PMCID: PMC6884906 DOI: 10.1186/s13041-019-0504-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Due to their post-mitotic state, metabolic demands and often large polarised morphology, the function and survival of neurons is dependent on an efficient cellular waste clearance system both for generation of materials for metabolic processes and removal of toxic components. It is not surprising therefore that deficits in protein clearance can tip the balance between neuronal health and death. Here we discuss how autophagy and lysosome-mediated degradation pathways are disrupted in several neurological disorders. Both genetic and cell biological evidence show the diversity and complexity of vesicular clearance dysregulation in cells, and together may ultimately suggest a unified mechanism for neuronal demise in degenerative conditions. Causative and risk-associated mutations in Alzheimer's disease, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, Parkinson's disease, Huntington's disease and others have given the field a unique mechanistic insight into protein clearance processes in neurons. Through their broad implication in neurodegenerative diseases, molecules involved in these genetic pathways, in particular those involved in autophagy, are emerging as appealing therapeutic targets for intervention in neurodegeneration.
Collapse
Affiliation(s)
- Bilal R Malik
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Daniel C Maddison
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gaynor A Smith
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Medicine, Cardiff University, Cardiff, Wales, UK.
| | - Owen M Peters
- UK Dementia Research Institute at Cardiff University, Cardiff, Wales, UK.
- School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
37
|
Fred SM, Laukkanen L, Brunello CA, Vesa L, Göös H, Cardon I, Moliner R, Maritzen T, Varjosalo M, Casarotto PC, Castrén E. Pharmacologically diverse antidepressants facilitate TRKB receptor activation by disrupting its interaction with the endocytic adaptor complex AP-2. J Biol Chem 2019; 294:18150-18161. [PMID: 31631060 PMCID: PMC6885648 DOI: 10.1074/jbc.ra119.008837] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/15/2019] [Indexed: 01/19/2023] Open
Abstract
Several antidepressant drugs activate tropomyosin-related kinase B (TRKB) receptor, but it remains unclear whether these compounds employ a common mechanism for TRKB activation. Here, using MS, we found that a single intraperitoneal injection of fluoxetine disrupts the interaction of several proteins with TRKB in the hippocampus of mice. These proteins included members of adaptor protein complex-2 (AP-2) involved in vesicular endocytosis. The interaction of TRKB with the cargo-docking μ subunit of the AP-2 complex (AP2M) was confirmed to be disrupted by both acute and repeated fluoxetine treatments. Of note, fluoxetine disrupted the coupling between full-length TRKB and AP2M, but not the interaction between AP2M and the TRKB C-terminal region, indicating that the fluoxetine-binding site in TRKB lies outside the TRKB:AP2M interface. ELISA experiments revealed that in addition to fluoxetine, other chemically diverse antidepressants, such as imipramine, rolipram, phenelzine, ketamine, and its metabolite 2R,6R-hydroxynorketamine, also decreased the interaction between TRKB and AP2M in vitro Silencing the expression of AP2M in a TRKB-expressing mouse fibroblast cell line (MG87.TRKB) increased cell-surface expression of TRKB and facilitated its activation by brain-derived neurotrophic factor (BDNF), observed as levels of phosphorylated TRKB. Moreover, animals haploinsufficient for the Ap2m1 gene displayed increased levels of active TRKB, along with enhanced cell-surface expression of the receptor in cultured hippocampal neurons. Taken together, our results suggest that disruption of the TRKB:AP2M interaction is a common mechanism underlying TRKB activation by several chemically diverse antidepressants.
Collapse
Affiliation(s)
- Senem Merve Fred
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Liina Laukkanen
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Cecilia A Brunello
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Liisa Vesa
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Helka Göös
- Institute of Biotechnology-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Iseline Cardon
- Brain Master Program, Faculty of Science, Aix-Marseille Université, 13007 Marseille, France
| | - Rafael Moliner
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Markku Varjosalo
- Institute of Biotechnology-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Plinio C Casarotto
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
| | - Eero Castrén
- Neuroscience Center-HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
38
|
Boecker CA, Olenick MA, Gallagher ER, Ward ME, Holzbaur ELF. ToolBox: Live Imaging of intracellular organelle transport in induced pluripotent stem cell-derived neurons. Traffic 2019; 21:138-155. [PMID: 31603614 DOI: 10.1111/tra.12701] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022]
Abstract
Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in live human neurons and to shed new light on the role of dysfunctional transport in neurodegenerative disorders. Here, we describe an approach for live imaging of axonal and dendritic transport in iPSC-derived cortical neurons. We use transfection and transient expression of genetically-encoded fluorescent markers to characterize the motility of Rab-positive vesicles, including early, late and recycling endosomes, as well as autophagosomes and mitochondria in iPSC-derived neurons. Comparing transport parameters of these organelles with data from primary rat hippocampal neurons, we uncover remarkable similarities. In addition, we generated lysosomal-associated membrane protein 1 (LAMP1)-enhanced green fluorescent protein (EGFP) knock-in iPSCs and show that knock-in neurons can be used to study the transport of endogenously labeled vesicles, as a parallel approach to the transient overexpression of fluorescently labeled organelle markers.
Collapse
Affiliation(s)
- Clemens Alexander Boecker
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mara A Olenick
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth R Gallagher
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael E Ward
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Zanin JP, Montroull LE, Volosin M, Friedman WJ. The p75 Neurotrophin Receptor Facilitates TrkB Signaling and Function in Rat Hippocampal Neurons. Front Cell Neurosci 2019; 13:485. [PMID: 31736712 PMCID: PMC6828739 DOI: 10.3389/fncel.2019.00485] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/14/2019] [Indexed: 01/02/2023] Open
Abstract
Neurotrophins activate Trk receptor signaling to support neuronal survival and many aspects of neuronal function. Early studies demonstrated that TrkA formed a complex with the p75 neurotrophin receptor (p75NTR), which increased the affinity and selectivity of NGF binding, however, whether interaction of p75NTR with other Trk receptors performs a similar function to enhance ligand binding has not been demonstrated. We investigated the interaction of TrkB with full length p75NTR in hippocampal neurons in response to BDNF and found that the association of these receptors occurs after ligand binding and requires phosphorylation of TrkB, indicating that formation of this receptor complex was not necessary for ligand binding. Moreover, the interaction of these receptors required internalization and localization to early endosomes. We found that association of TrkB with p75NTR was necessary for optimal downstream signaling of the PI3K-Akt pathway, but not the Erk pathway, in hippocampal neurons. The absence of p75NTR impaired the ability of BDNF to rescue hippocampal neurons in a trophic deprivation model, suggesting that p75NTR facilitates the ability of TrkB to activate specific pathways to promote neuronal survival.
Collapse
Affiliation(s)
- Juan P Zanin
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Laura E Montroull
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Marta Volosin
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| |
Collapse
|
40
|
Rab GTPases: Switching to Human Diseases. Cells 2019; 8:cells8080909. [PMID: 31426400 PMCID: PMC6721686 DOI: 10.3390/cells8080909] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Rab proteins compose the largest family of small GTPases and control the different steps of intracellular membrane traffic. More recently, they have been shown to also regulate cell signaling, division, survival, and migration. The regulation of these processes generally occurs through recruitment of effectors and regulatory proteins, which control the association of Rab proteins to membranes and their activation state. Alterations in Rab proteins and their effectors are associated with multiple human diseases, including neurodegeneration, cancer, and infections. This review provides an overview of how the dysregulation of Rab-mediated functions and membrane trafficking contributes to these disorders. Understanding the altered dynamics of Rabs and intracellular transport defects might thus shed new light on potential therapeutic strategies.
Collapse
|
41
|
Fawcett JW. The Struggle to Make CNS Axons Regenerate: Why Has It Been so Difficult? Neurochem Res 2019; 45:144-158. [PMID: 31388931 PMCID: PMC6942574 DOI: 10.1007/s11064-019-02844-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Axon regeneration in the CNS is inhibited by many extrinsic and intrinsic factors. Because these act in parallel, no single intervention has been sufficient to enable full regeneration of damaged axons in the adult mammalian CNS. In the external environment, NogoA and CSPGs are strongly inhibitory to the regeneration of adult axons. CNS neurons lose intrinsic regenerative ability as they mature: embryonic but not mature neurons can grow axons for long distances when transplanted into the adult CNS, and regeneration fails with maturity in in vitro axotomy models. The causes of this loss of regeneration include partitioning of neurons into axonal and dendritic fields with many growth-related molecules directed specifically to dendrites and excluded from axons, changes in axonal signalling due to changes in expression and localization of receptors and their ligands, changes in local translation of proteins in axons, and changes in cytoskeletal dynamics after injury. Also with neuronal maturation come epigenetic changes in neurons, with many of the transcription factor binding sites that drive axon growth-related genes becoming inaccessible. The overall aim for successful regeneration is to ensure that the right molecules are expressed after axotomy and to arrange for them to be transported to the right place in the neuron, including the damaged axon tip.
Collapse
Affiliation(s)
- James W Fawcett
- John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
- Centre of Reconstructive Neuroscience, Institute for Experimental Medicine ASCR, Prague, Czech Republic.
| |
Collapse
|
42
|
Harish RK, Tendulkar S, Deivasigamani S, Ratnaparkhi A, Ratnaparkhi GS. Monensin Sensitive 1 Regulates Dendritic Arborization in Drosophila by Modulating Endocytic Flux. Front Cell Dev Biol 2019; 7:145. [PMID: 31428611 PMCID: PMC6687774 DOI: 10.3389/fcell.2019.00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/16/2019] [Indexed: 12/03/2022] Open
Abstract
Monensin Sensitive 1 (Mon1) is a component of the Mon1:Ccz1 complex that mediates Rab5 to Rab7 conversion in eukaryotic cells by serving as a guanine nucleotide exchange factor for Rab7 during vesicular trafficking. We find that Mon1 activity modulates the complexity of Class IV dendritic arborization (da) neurons during larval development. Loss of Mon1 function leads to an increase in arborization and complexity, while increased expression, leads to reduced arborization. The ability of Mon1 to influence dendritic development is possibly a function of its interactions with Rab family GTPases that are central players in vesicular trafficking. Earlier, these GTPases, specifically Rab1, Rab5, Rab10, and Rab11 have been shown to regulate dendritic arborization. We have conducted genetic epistasis experiments, by modulating the activity of Rab5, Rab7, and Rab11 in da neurons, in Mon1 mutants, and demonstrate that the ability of Mon1 to regulate arborization is possibly due to its effect on the recycling pathway. Dendritic branching is critical for proper connectivity and physiological function of the neuron. An understanding of regulatory elements, such as Mon1, as demonstrated in our study, is essential to understand neuronal function.
Collapse
Affiliation(s)
| | - Shweta Tendulkar
- Indian Institutes of Science Education and Research, Pune, India
| | | | | | | |
Collapse
|
43
|
Arriagada C, Silva P, Millet M, Solano L, Moraga C, Torres VA. Focal adhesion kinase-dependent activation of the early endocytic protein Rab5 is associated with cell migration. J Biol Chem 2019; 294:12836-12845. [PMID: 31292193 DOI: 10.1074/jbc.ra119.008667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Focal adhesion kinase (FAK) is a central regulator of integrin-dependent cell adhesion and migration and has recently been shown to co-localize with endosomal proteins. The early endocytic protein Rab5 controls integrin trafficking, focal adhesion disassembly, and cell migration and has been shown to be activated upon integrin engagement by mechanisms that remain unclear. Because FAK is a critical regulator of integrin-dependent signaling and Rab5 recapitulates FAK-mediated effects, we evaluated the possibility that FAK activates Rab5 and contributes to cell migration. Pulldown assays revealed that Rab5-GTP levels are decreased upon treatment with a pharmacological inhibitor of FAK, PF562,271, in resting A549 cells. These events were associated with decreased peripheral Rab5 puncta and a reduced number of early endosome antigen 1 (EEA1)-positive early endosomes. Accordingly, as indicated by FAK inhibition experiments and in FAK-null fibroblasts, adhesion-induced FAK activity increased Rab5-GTP levels. In fact, expression of WT FAK and FAK/Y180A/M183A (open conformation), but not FAK/Arg454 (kinase-dead), augmented Rab5-GTP levels in FAK-null fibroblasts and A549 cells. Moreover, expression of a GDP-bound Rab5 mutant (Rab5/S34N) or shRNA-mediated knockdown of endogenous Rab5 prevented FAK-induced A549 cell migration, whereas expression of WT or GTP-bound Rab5 (Rab5/Q79L), but not Rab5/S34N, promoted cell migration in FAK-null fibroblasts. Mechanistically, FAK co-immunoprecipitated with the GTPase-activating protein p85α in a phosphorylation (Tyr397)-dependent manner, preventing Rab5-GTP loading, as shown by knockdown and transfection recovery experiments. Taken together, these results reveal that FAK activates Rab5, leading to cell migration.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
| | - Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile.,Faculty of Health Sciences, Universidad Central de Chile, Santiago 8380000, Chile
| | - Martial Millet
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
| | - Luis Solano
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
| | - Carolina Moraga
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile .,Advanced Center for Chronic Diseases, Universidad de Chile, Santiago 8380000, Chile
| |
Collapse
|
44
|
Boakye PA, Rancic V, Whitlock KH, Simmons D, Longo FM, Ballanyi K, Smith PA. Receptor dependence of BDNF actions in superficial dorsal horn: relation to central sensitization and actions of macrophage colony stimulating factor 1. J Neurophysiol 2019; 121:2308-2322. [PMID: 30995156 DOI: 10.1152/jn.00839.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral nerve injury elicits an enduring increase in the excitability of the spinal dorsal horn. This change, which contributes to the development of neuropathic pain, is a consequence of release and prolonged exposure of dorsal horn neurons to various neurotrophins and cytokines. We have shown in rats that nerve injury increases excitatory synaptic drive to excitatory neurons but decreases drive to inhibitory neurons. Both effects, which contribute to an increase in dorsal horn excitability, appear to be mediated by microglia-derived BDNF. We have used multiphoton Ca2+ imaging and whole cell recording of spontaneous excitatory postsynaptic currents in defined-medium organotypic cultures of GAD67-GFP+ mice spinal cord to determine the receptor dependence of these opposing actions of BDNF. In mice, as in rats, BDNF enhances excitatory transmission onto excitatory neurons. This is mediated via presynaptic TrkB and p75 neurotrophin receptors and exclusively by postsynaptic TrkB. By contrast with findings from rats, in mice BDNF does not decrease excitation of inhibitory neurons. The cytokine macrophage colony-stimulating factor 1 (CSF-1) has also been implicated in the onset of neuropathic pain. Nerve injury provokes its de novo synthesis in primary afferents, its release in spinal cord, and activation of microglia. We now show that CSF-1 increases excitatory drive to excitatory neurons via a BDNF-dependent mechanism and decreases excitatory drive to inhibitory neurons via BDNF-independent processes. Our findings complete missing steps in the cascade of events whereby peripheral nerve injury instigates increased dorsal horn excitability in the context of central sensitization and the onset of neuropathic pain. NEW & NOTEWORTHY Nerve injury provokes synthesis of macrophage colony-stimulating factor 1 (CSF-1) in primary afferents and its release in the dorsal horn. We show that CSF-1 increases excitatory drive to excitatory dorsal horn neurons via BDNF activation of postsynaptic TrkB and presynaptic TrkB and p75 neurotrophin receptors. CSF-1 decreases excitatory drive to inhibitory neurons via a BDNF-independent processes. This completes missing steps in understanding how peripheral injury instigates central sensitization and the onset of neuropathic pain.
Collapse
Affiliation(s)
- Paul A Boakye
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada
| | - Vladimir Rancic
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada.,Department of Physiology, University of Alberta , Edmonton , Canada
| | - Kerri H Whitlock
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada
| | - Danielle Simmons
- Department of Neurology and Neurological Sciences, Stanford University , Stanford, California
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University , Stanford, California
| | - Klaus Ballanyi
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada.,Department of Physiology, University of Alberta , Edmonton , Canada
| | - Peter A Smith
- Neuroscience and Mental Health Institute, University of Alberta , Edmonton , Canada.,Department of Pharmacology, University of Alberta , Edmonton , Canada
| |
Collapse
|
45
|
De Vincenti AP, Ríos AS, Paratcha G, Ledda F. Mechanisms That Modulate and Diversify BDNF Functions: Implications for Hippocampal Synaptic Plasticity. Front Cell Neurosci 2019; 13:135. [PMID: 31024262 PMCID: PMC6465932 DOI: 10.3389/fncel.2019.00135] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that has pleiotropic effects on neuronal morphology and synaptic plasticity that underlie hippocampal circuit development and cognition. Recent advances established that BDNF function is controlled and diversified by molecular and cellular mechanisms including trafficking and subcellular compartmentalization of different Bdnf mRNA species, pre- vs. postsynaptic release of BDNF, control of BDNF signaling by tropomyosin receptor kinase B (TrkB) receptor interactors and conversion of pro-BDNF to mature BDNF and BDNF-propeptide. Defects in these regulatory mechanisms affect dendritic spine formation and morphology of pyramidal neurons as well as synaptic integration of newborn granule cells (GCs) into preexisting circuits of mature hippocampus, compromising the cognitive function. Here, we review recent findings describing novel dynamic mechanisms that diversify and locally control the function of BDNF in hippocampal neurons.
Collapse
Affiliation(s)
- Ana Paula De Vincenti
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Antonella S Ríos
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Gustavo Paratcha
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Fernanda Ledda
- División de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
46
|
Abstract
The solute carrier (SLC) group of membrane transport proteins includes about 400 members organized into more than 50 families. The SLC family that comprises nucleoside-sugar transporters is referred to as SLC35. One of the members of this family is SLC35F1. The function of SLC35F1 is still unknown; however, recent studies demonstrated that SLC35F1 mRNA is highly expressed in the brain and in the kidney. Therefore, we examine the distribution of Slc35f1 protein in the murine forebrain using immunohistochemistry. We could demonstrate that Slc35f1 is highly expressed in the adult mouse brain in a variety of different brain structures, including the cortex, hippocampus, amygdala, thalamus, basal ganglia, and hypothalamus. To examine the possible roles of Slc35f1 and its subcellular localization, we used an in vitro glioblastoma cell line expressing Slc35f1. Co-labeling experiments were performed to reveal the subcellular localization of Slc35f1. Our results indicate that Slc35f1 neither co-localizes with markers for the Golgi apparatus nor with markers for the endoplasmic reticulum. Time-lapse microscopy of living cells revealed that Slc35f1-positive structures are highly dynamic and resemble vesicles. Using super-resolution microscopy, these Slc35f1-positive spots clearly co-localize with the recycling endosome marker Rab11.
Collapse
|
47
|
Bercier V, Rosello M, Del Bene F, Revenu C. Zebrafish as a Model for the Study of Live in vivo Processive Transport in Neurons. Front Cell Dev Biol 2019; 7:17. [PMID: 30838208 PMCID: PMC6389722 DOI: 10.3389/fcell.2019.00017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Motor proteins are responsible for transport of vesicles and organelles within the cell cytoplasm. They interact with the actin cytoskeleton and with microtubules to ensure communication and supply throughout the cell. Much work has been done in vitro and in silico to unravel the key players, including the dynein motor complex, the kinesin and myosin superfamilies, and their interacting regulatory complexes, but there is a clear need for in vivo data as recent evidence suggests previous models might not recapitulate physiological conditions. The zebrafish embryo provides an excellent system to study these processes in intact animals due to the ease of genetic manipulation and the optical transparency allowing live imaging. We present here the advantages of the zebrafish embryo as a system to study live in vivo processive transport in neurons and provide technical recommendations for successful analysis.
Collapse
Affiliation(s)
- Valérie Bercier
- Institut Curie, PSL Research University, Inserm U934, CNRS UMR3215, Paris, France.,Laboratory of Neurobiology, Center for Brain and Disease Research, Research Group Experimental Neurology, Department of Neurosciences, VIB-KU Leuven, Leuven, Belgium
| | - Marion Rosello
- Institut Curie, PSL Research University, Inserm U934, CNRS UMR3215, Paris, France
| | - Filippo Del Bene
- Institut Curie, PSL Research University, Inserm U934, CNRS UMR3215, Paris, France
| | - Céline Revenu
- Institut Curie, PSL Research University, Inserm U934, CNRS UMR3215, Paris, France
| |
Collapse
|
48
|
Moya-Alvarado G, Gonzalez A, Stuardo N, Bronfman FC. Brain-Derived Neurotrophic Factor (BDNF) Regulates Rab5-Positive Early Endosomes in Hippocampal Neurons to Induce Dendritic Branching. Front Cell Neurosci 2018; 12:493. [PMID: 30618640 PMCID: PMC6304382 DOI: 10.3389/fncel.2018.00493] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/30/2018] [Indexed: 11/24/2022] Open
Abstract
Neurotrophin receptors use endosomal pathways for signaling in neurons. However, how neurotrophins regulate the endosomal system for proper signaling is unknown. Rabs are monomeric GTPases that act as molecular switches to regulate membrane trafficking by binding a wide range of effectors. Among the Rab GTPases, Rab5 is the key GTPase regulating early endosomes and is the first sorting organelle of endocytosed receptors. The objective of our work was to study the regulation of Rab5-positive endosomes by BDNF at different levels, including dynamic, activity and protein levels in hippocampal neurons. Short-term treatment with BDNF increased the colocalization of TrkB in dendrites and cell bodies, increasing the vesiculation of Rab5-positive endosomes. Consistently, BDNF increased the number and mobility of Rab5 endosomes in dendrites. Cell body fluorescence recovery after photobleaching of Rab-EGFP-expressing neurons suggested increased movement of Rab5 endosomes from dendrites to cell bodies. These results correlated with the BDNF-induced activation of Rab5 in dendrites, followed by increased activation of Rab5 in cell bodies. Long-term treatment of hippocampal neurons with BDNF increased the protein levels of Rab5 and Rab11 in an mTOR-dependent manner. While BDNF regulation of Rab5a levels occurred at both the transcriptional and translational levels, Rab11a levels were regulated at the translational level at the time points analyzed. Finally, expression of a dominant-negative mutant of Rab5 reduced the basal arborization of nontreated neurons, and although BDNF was partially able to rescue the effect of Rab5DN at the level of primary dendrites, BDNF-induced dendritic branching was largely reduced. Our findings indicate that BDNF regulates the Rab5-Rab11 endosomal system at different levels and that these processes are likely required for BDNF-induced dendritic branching.
Collapse
Affiliation(s)
- Guillermo Moya-Alvarado
- Department of Physiology, Faculty of Biological Sciences, Center for Aging and Regeneration (CARE UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andres Gonzalez
- Department of Physiology, Faculty of Biological Sciences, Center for Aging and Regeneration (CARE UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolas Stuardo
- Department of Physiology, Faculty of Biological Sciences, Center for Aging and Regeneration (CARE UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisca C Bronfman
- Department of Physiology, Faculty of Biological Sciences, Center for Aging and Regeneration (CARE UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
49
|
Yang Q, Peng L, Wu Y, Li Y, Wang L, Luo JH, Xu J. Endocytic Adaptor Protein HIP1R Controls Intracellular Trafficking of Epidermal Growth Factor Receptor in Neuronal Dendritic Development. Front Mol Neurosci 2018; 11:447. [PMID: 30574069 PMCID: PMC6291753 DOI: 10.3389/fnmol.2018.00447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Huntington-interacting protein 1-related protein (HIP1R) was identified on the basis of its structural homology with HIP1. Based on its domain structure, HIP1R is a putative endocytosis-related protein. Our previous study had shown that knockdown of HIP1R induces a dramatic decrease of dendritic growth and branching in cultured rat hippocampal neurons. However, the underlying mechanism remains elucidative. In this study, we found that knockdown of HIP1R impaired the endocytosis of activated epidermal growth factor receptor (EGFR) and the consequent activation of the downstream ERK and Akt proteins. Meanwhile, it blocked the EGF-induced dendritic outgrowth. We also showed that the HIP1R fragment, amino acids 633–822 (HIP1R633–822), interacted with EGFR and revealed a dominant negative effect in disrupting the HIP1R-EGFR interaction-mediated neuronal development. Collectively, these results reveal a novel mechanism that HIP1R plays a critical role in neurite initiation and dendritic branching in cultured hippocampal neurons via mediating the endocytosis of EGFR and downstream signaling.
Collapse
Affiliation(s)
- Qian Yang
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Peng
- Department of Psychiatry, Jining Medical University, Jining, China
| | - Yu Wu
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanan Li
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Wang
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Hong Luo
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyu Xu
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Clayton EL, Milioto C, Muralidharan B, Norona FE, Edgar JR, Soriano A, Jafar-nejad P, Rigo F, Collinge J, Isaacs AM. Frontotemporal dementia causative CHMP2B impairs neuronal endolysosomal traffic-rescue by TMEM106B knockdown. Brain 2018; 141:3428-3442. [PMID: 30496365 PMCID: PMC6262218 DOI: 10.1093/brain/awy284] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in the endosome-associated protein CHMP2B cause frontotemporal dementia and lead to lysosomal storage pathology in neurons. We here report that physiological levels of mutant CHMP2B causes reduced numbers and significantly impaired trafficking of endolysosomes within neuronal dendrites, accompanied by increased dendritic branching. Mechanistically, this is due to the stable incorporation of mutant CHMP2B onto neuronal endolysosomes, which we show renders them unable to traffic within dendrites. This defect is due to the inability of mutant CHMP2B to recruit the ATPase VPS4, which is required for release of CHMP2B from endosomal membranes. Strikingly, both impaired trafficking and the increased dendritic branching were rescued by treatment with antisense oligonucleotides targeting the well validated frontotemporal dementia risk factor TMEM106B, which encodes an endolysosomal protein. This indicates that reducing TMEM106B levels can restore endosomal health in frontotemporal dementia. As TMEM106B is a risk factor for frontotemporal dementia caused by both C9orf72 and progranulin mutations, and antisense oligonucleotides are showing promise as therapeutics for neurodegenerative diseases, our data suggests a potential new strategy for treating the wide range of frontotemporal dementias associated with endolysosomal dysfunction.
Collapse
Affiliation(s)
- Emma L Clayton
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, UK
| | - Carmelo Milioto
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, Queen Square, London, UK
| | - Bhavana Muralidharan
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, Queen Square, London, UK
| | - Frances E Norona
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, Queen Square, London, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|