1
|
Read JE, Vasile-Tudorache A, Newsome A, Lorente MJ, Pavón CA, Howard SR. Disorders of puberty and neurodevelopment: A shared etiology? Ann N Y Acad Sci 2024. [PMID: 39431640 DOI: 10.1111/nyas.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The neuroendocrine control of puberty and reproduction is fascinatingly complex, with up- and down-regulation of key reproductive hormones during fetal, infantile, and later childhood periods that determine the correct function of the hypothalamic-pituitary-gonadal axis and the timing of puberty. Neuronal development is a vital element of these processes, and multiple conditions of disordered puberty and reproduction have their etiology in abnormal neuronal migration or function. Although there are numerous documented cases across multiple conditions wherein patients have both neurodevelopmental disorders and pubertal abnormalities, this has mostly been described ad hoc and the associations are not clearly documented. In this review, we aim to describe the overlap between these two groups of conditions and to increase awareness to ensure that puberty and reproductive function are carefully monitored in patients with neurodevelopmental conditions, and vice versa. Moreover, this commonality can be explored for clues about the disease mechanisms in these patient groups and provide new avenues for therapeutic interventions for affected individuals.
Collapse
Affiliation(s)
- Jordan E Read
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Alexandru Vasile-Tudorache
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
| | - Angel Newsome
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - María José Lorente
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
| | - Carmen Agustín Pavón
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Valencia, Spain
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Paediatric Endocrinology, Barts Health NHS Trust, London, UK
| |
Collapse
|
2
|
Sultana OF, Bandaru M, Islam MA, Reddy PH. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res Rev 2024; 100:102414. [PMID: 39002647 PMCID: PMC11384519 DOI: 10.1016/j.arr.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Achiro JM, Tao Y, Gao F, Lin CH, Watanabe M, Neumann S, Coppola G, Black DL, Martin KC. Aging differentially alters the transcriptome and landscape of chromatin accessibility in the male and female mouse hippocampus. Front Mol Neurosci 2024; 17:1334862. [PMID: 38318533 PMCID: PMC10839115 DOI: 10.3389/fnmol.2024.1334862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic function. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE-1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Sex differences in gene expression and chromatin accessibility were amplified with aging, findings that may shed light on sex differences in aging-related and pathological memory loss.
Collapse
Affiliation(s)
- Jennifer M. Achiro
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Yang Tao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Fuying Gao
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Marika Watanabe
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Sylvia Neumann
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Douglas L. Black
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Kelsey C. Martin
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
4
|
Lawande NV, Conklin EA, Christian‐Hinman CA. Sex and gonadectomy modify behavioral seizure susceptibility and mortality in a repeated low-dose kainic acid systemic injection paradigm in mice. Epilepsia Open 2023; 8:1512-1522. [PMID: 37715318 PMCID: PMC10690657 DOI: 10.1002/epi4.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVE Sex differences in epilepsy appear driven in part due to effects of gonadal steroids, with varying results in experimental models based on species, strain, and method of seizure induction. Furthermore, removing the main source of these steroids via gonadectomy may impact seizure characteristics differently in males and females. Repeated low-dose kainic acid (RLDKA) systemic injection paradigms were recently shown to reliably induce status epilepticus (SE) and hippocampal histopathology in C57BL/6J mice. Here, we investigated whether seizure susceptibility in a RLDKA injection protocol exhibits a sex difference and whether gonadectomy differentially influences response to this seizure induction paradigm in males and females. METHODS Adult C57BL/6J mice were left gonad-intact as controls or gonadectomized (females: ovariectomized, OVX; males: orchidectomized, ORX). At least 2 weeks later, KA was injected ip, every 30 minutes at 7.5 mg/kg or less until the animal reached SE, defined by at least 5 generalized seizures (GS, Racine stage 3 or higher). Parameters of susceptibility to GS induction, SE development, and mortality rates were quantified. RESULTS No differences in seizure susceptibility or mortality were observed between control males and control females. Gonadectomized mice exhibited increased susceptibility and reduced latency to both GS and SE in comparison to corresponding controls of the same sex, but the effects were stronger in males. In addition, ORX males, but not OVX females, exhibited strongly increased seizure-induced mortality. SIGNIFICANCE The RLDKA protocol is notable for its efficacy in inducing SE and seizure-induced histopathology in C57BL/6J mice, the background for many transgenic strains in current use in epilepsy research. The present results indicate that this protocol may be beneficial for investigating the effects of gonadal hormone replacement on seizure susceptibility, mortality, and seizure-induced histopathology, and that gonadectomy unmasks sex differences in susceptibility to seizures and mortality not observed in gonad-intact controls.
Collapse
Affiliation(s)
- Niraj V. Lawande
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | | | - Catherine A. Christian‐Hinman
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Neuroscience ProgramUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
5
|
Lawande NV, Conklin EA, Christian-Hinman CA. Sex and gonadectomy modify behavioral seizure susceptibility and mortality in a repeated low-dose kainic acid systemic injection paradigm in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541824. [PMID: 37292790 PMCID: PMC10245840 DOI: 10.1101/2023.05.22.541824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective Sex differences in epilepsy appear driven in part due to effects of gonadal steroids, with varying results in experimental models based on species, strain, and method of seizure induction. Furthermore, removing a main source of these steroids via gonadectomy may impact seizure characteristics differently in males and females. Repeated low-dose kainic acid (RLDKA) systemic injection paradigms were recently shown to reliably induce status epilepticus (SE) and hippocampal histopathology in C57BL/6J mice. Here, we investigated whether seizure susceptibility in a RLDKA injection protocol exhibits a sex difference, and whether gonadectomy differentially influences response to this seizure induction paradigm in males and females. Methods Adult C57BL/6J mice were left gonad-intact as controls or gonadectomized (females: ovariectomized, OVX; males: orchidectomized, ORX). At least 2 weeks later, KA was injected i.p. every 30 minutes at 7.5 mg/kg or less until the animal reached SE, defined by at least 5 generalized seizures (GS, Racine stage 3 or higher). Parameters of susceptibility to GS induction, SE development, and mortality rates were quantified. Results No differences in seizure susceptibility or mortality were observed between control males and control females. ORX males exhibited increased susceptibility and reduced latency to both GS and SE, but OVX females exhibited increased susceptibility and reduced latency to SE only. However, ORX males, but not OVX females, exhibited strongly increased seizure-induced mortality. Significance The RLDKA protocol is notable for its efficacy in inducing SE and seizure-induced histopathology in C57BL/6J mice, the background for many transgenic strains in current use in epilepsy research. The present results indicate that this protocol may be beneficial for investigating the effects of gonadal hormone replacement on seizure susceptibility, mortality, and seizure-induced histopathology, and that gonadectomy unmasks sex differences in susceptibility to seizures and mortality not observed in gonad-intact controls.
Collapse
Affiliation(s)
- Niraj V. Lawande
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
| | - Elisabeth A. Conklin
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
| | - Catherine A. Christian-Hinman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA
| |
Collapse
|
6
|
Makkai G, Abraham IM, Barabas K, Godo S, Ernszt D, Kovacs T, Kovacs G, Szocs S, Janosi TZ. Maximum likelihood-based estimation of diffusion coefficient is quick and reliable method for analyzing estradiol actions on surface receptor movements. Front Neuroinform 2023; 17:1005936. [PMID: 36970656 PMCID: PMC10031098 DOI: 10.3389/fninf.2023.1005936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
The rapid effects of estradiol on membrane receptors are in the focus of the estradiol research field, however, the molecular mechanisms of these non-classical estradiol actions are poorly understood. Since the lateral diffusion of membrane receptors is an important indicator of their function, a deeper understanding of the underlying mechanisms of non-classical estradiol actions can be achieved by investigating receptor dynamics. Diffusion coefficient is a crucial and widely used parameter to characterize the movement of receptors in the cell membrane. The aim of this study was to investigate the differences between maximum likelihood-based estimation (MLE) and mean square displacement (MSD) based calculation of diffusion coefficients. In this work we applied both MSD and MLE to calculate diffusion coefficients. Single particle trajectories were extracted from simulation as well as from α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor tracking in live estradiol-treated differentiated PC12 (dPC12) cells. The comparison of the obtained diffusion coefficients revealed the superiority of MLE over the generally used MSD analysis. Our results suggest the use of the MLE of diffusion coefficients because as it has a better performance, especially for large localization errors or slow receptor movements.
Collapse
Affiliation(s)
- Geza Makkai
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Nano-Bio-Imaging Core Facility at the Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
| | - Istvan M. Abraham
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Klaudia Barabas
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Soma Godo
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - David Ernszt
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamas Kovacs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gergely Kovacs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Szilard Szocs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Tibor Z. Janosi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Nano-Bio-Imaging Core Facility at the Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
- *Correspondence: Tibor Z. Janosi,
| |
Collapse
|
7
|
Ke B, Li C, Shang H. Sex hormones and risk of epilepsy: A bidirectional Mendelian randomization study. Front Mol Neurosci 2023; 16:1153907. [PMID: 37113268 PMCID: PMC10126428 DOI: 10.3389/fnmol.2023.1153907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Background Multiple evidence has suggested complex interaction between sex hormones and epilepsy. However, whether there exists a causal association and the effect direction remains controversial. Here we aimed to examine the causative role of hormones in the risk of epilepsy and vice versa. Methods We conducted a bidirectional two-sample Mendelian randomization analysis using summary statistics from genome-wide association studies of major sex hormones including testosterone (N = 425,097), estradiol (N = 311,675) and progesterone (N = 2,619), together with epilepsy (N = 44,889). We further performed sex-stratified analysis, and verified the significant results using summary statistics from another study on estradiol in males (N = 206,927). Results Genetically determined higher estradiol was associated with a reduced risk of epilepsy (OR: 0.90, 95% CI: 0.83-0.98, P = 9.51E-03). In the sex-stratified analysis, the protective effect was detected in males (OR: 0.92, 95% CI: 0.88-0.97, P = 9.18E-04), but not in females. Such association was further verified in the replication stage (OR: 0.44, 95% CI: 0.23-0.87, P = 0.017). In contrast, no association was identified between testosterone, progesterone and the risk of epilepsy. In the opposite direction, epilepsy was not causally associated with sex hormones. Conclusion These results demonstrated higher estradiol could reduce the risk of epilepsy, especially in males. Future development of preventive or therapeutic interventions in clinical trials could attach importance to this.
Collapse
|
8
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
9
|
Matovu D, Cavalheiro EA. Differences in Evolution of Epileptic Seizures and Topographical Distribution of Tissue Damage in Selected Limbic Structures Between Male and Female Rats Submitted to the Pilocarpine Model. Front Neurol 2022; 13:802587. [PMID: 35449517 PMCID: PMC9017681 DOI: 10.3389/fneur.2022.802587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological evidence shows that clinical features and comorbidities in temporal lobe epilepsy (TLE) may have different manifestations depending on the sex of patients. However, little is known about how sex-related mechanisms can interfere with the processes underlying the epileptic phenomenon. The findings of this study show that male rats with epilepsy in the pilocarpine model have longer-lasting and more severe epileptic seizures, while female rats have a higher frequency of epileptic seizures and a greater number of seizure clusters. Significant sex-linked pathological changes were also observed: epileptic brains of male and female rats showed differences in mass reduction of 41.8% in the amygdala and 18.2% in the olfactory bulb, while loss of neuronal cells was present in the hippocampus (12.3%), amygdala (18.1%), and olfactory bulb (7.5%). Another important sex-related finding was the changes in non-neuronal cells with increments for the hippocampus (36.1%), amygdala (14.7%), and olfactory bulb (37%). Taken together, our study suggests that these neuropathological changes may underlie the differences in the clinical features of epileptic seizures observed in male and female rats.
Collapse
Affiliation(s)
- Daniel Matovu
- Neuroscience Laboratory, Department of Neurology and Neurosurgery, Escola Paulista de Medicina/UNIFESP, São Paulo, Brazil
| | - Esper A Cavalheiro
- Neuroscience Laboratory, Department of Neurology and Neurosurgery, Escola Paulista de Medicina/UNIFESP, São Paulo, Brazil
| |
Collapse
|
10
|
Sex differences in the rodent hippocampal opioid system following stress and oxycodone associated learning processes. Pharmacol Biochem Behav 2022; 212:173294. [PMID: 34752798 PMCID: PMC8748406 DOI: 10.1016/j.pbb.2021.173294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Over the past two decades, opioid abuse has risen especially among women. In both sexes hippocampal neural circuits involved in associative memory formation and encoding of motivational incentives are critically important in the transition from initial drug use to drug abuse/dependence. Opioid circuits, particularly the mossy fiber pathway, are crucial for associative memory processes important for addiction. Our anatomical studies, especially those utilizing electron microscopic immunocytochemistry, have provided unique insight into sex differences in the distribution of opioid peptides and receptors in specific hippocampal circuits and how these distributions are altered following stress and oxycodone-associative learning processes. Here we review the hippocampal opioid system in rodents with respect to ovarian hormones effects and baseline sex differences then sex differences following acute and chronic stress. Next, we review sex differences in the hippocampal opioid system in unstressed and chronically stressed rats following oxycodone conditioned place preference. We show that opioid peptides and receptors are distributed within hippocampal circuits in females with elevated estrogen states in a manner that would enhance sensitivity to endogenous and exogenous opioids. Moreover, chronic stress primes the opioid system in females in a manner that would promote opioid-associative learning processes. In contrast, chronic stress has limited effects on the opioid system in males and reduces its capacity to support opioid-mediated learning processes. Interestingly, acute stress appears to prime males for opioid associative learning. On a broader scale the findings highlighted in this review have important implications in understanding sex differences in opioid drug use and abuse.
Collapse
|
11
|
Azcoitia I, Mendez P, Garcia-Segura LM. Aromatase in the Human Brain. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:189-202. [PMID: 35024691 PMCID: PMC8744447 DOI: 10.1089/andro.2021.0007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 11/30/2022]
Abstract
The aromatase cytochrome P450 (P450arom) enzyme, or estrogen synthase, which is coded by the CYP19A1 gene, is widely expressed in a subpopulation of excitatory and inhibitory neurons, astrocytes, and other cell types in the human brain. Experimental studies in laboratory animals indicate a prominent role of brain aromatization of androgens to estrogens in regulating different brain functions. However, the consequences of aromatase expression in the human brain remain poorly understood. Here, we summarize the current knowledge about aromatase expression in the human brain, abundant in the thalamus, amygdala, hypothalamus, cortex, and hippocampus and discuss its role in the regulation of sensory integration, body homeostasis, social behavior, cognition, language, and integrative functions. Since brain aromatase is affected by neurodegenerative conditions and may participate in sex-specific manifestations of autism spectrum disorders, major depressive disorder, multiple sclerosis, stroke, and Alzheimer's disease, we discuss future avenues for research and potential clinical and therapeutic implications of the expression of aromatase in the human brain.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Mendez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis M. Garcia-Segura
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
12
|
Godó S, Barabás K, Lengyel F, Ernszt D, Kovács T, Kecskés M, Varga C, Jánosi TZ, Makkai G, Kovács G, Orsolits B, Fujiwara T, Kusumi A, Ábrahám IM. Single-Molecule Imaging Reveals Rapid Estradiol Action on the Surface Movement of AMPA Receptors in Live Neurons. Front Cell Dev Biol 2021; 9:708715. [PMID: 34631701 PMCID: PMC8495425 DOI: 10.3389/fcell.2021.708715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Gonadal steroid 17β-estradiol (E2) exerts rapid, non-genomic effects on neurons and strictly regulates learning and memory through altering glutamatergic neurotransmission and synaptic plasticity. However, its non-genomic effects on AMPARs are not well understood. Here, we analyzed the rapid effect of E2 on AMPARs using single-molecule tracking and super-resolution imaging techniques. We found that E2 rapidly decreased the surface movement of AMPAR via membrane G protein-coupled estrogen receptor 1 (GPER1) in neurites in a dose-dependent manner. The cortical actin network played a pivotal role in the GPER1 mediated effects of E2 on the surface mobility of AMPAR. E2 also decreased the surface movement of AMPAR both in synaptic and extrasynaptic regions on neurites and increased the synaptic dwell time of AMPARs. Our results provide evidence for understanding E2 action on neuronal plasticity and glutamatergic neurotransmission at the molecular level.
Collapse
Affiliation(s)
- Soma Godó
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Klaudia Barabás
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Ferenc Lengyel
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Dávid Ernszt
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Tamás Kovács
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Miklós Kecskés
- PTE-NAP Cortical Microcircuits Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, Pécs, Hungary
| | - Csaba Varga
- PTE-NAP Cortical Microcircuits Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, Pécs, Hungary
| | - Tibor Z Jánosi
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Géza Makkai
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Gergely Kovács
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Barbara Orsolits
- Laboratory of Neuroimmunology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Japan
| | - István M Ábrahám
- PTE-NAP Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Center, Medical School, Institute of Physiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
13
|
Maguire MJ, Nevitt SJ. Treatments for seizures in catamenial (menstrual-related) epilepsy. Cochrane Database Syst Rev 2021; 9:CD013225. [PMID: 34528245 PMCID: PMC8444032 DOI: 10.1002/14651858.cd013225.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND This is an updated version of a Cochrane Review previously published in 2019. Catamenial epilepsy describes worsening seizures in relation to the menstrual cycle and may affect around 40% of women with epilepsy. Vulnerable days of the menstrual cycle for seizures are perimenstrually (C1 pattern), at ovulation (C2 pattern), and during the luteal phase (C3 pattern). A reduction in progesterone levels premenstrually and reduced secretion during the luteal phase is implicated in catamenial C1 and C3 patterns. A reduction in progesterone has been demonstrated to reduce sensitivity to the inhibitory neurotransmitter in preclinical studies, hence increasing risk of seizures. A pre-ovulatory surge in oestrogen has been implicated in the C2 pattern of seizure exacerbation, although the exact mechanism by which this surge increases risk is uncertain. Current treatment practices include the use of pulsed hormonal (e.g. progesterone) and non-hormonal treatments (e.g. clobazam or acetazolamide) in women with regular menses, and complete cessation of menstruation using synthetic hormones (e.g. medroxyprogesterone (Depo-Provera) or gonadotropin-releasing hormone (GnRH) analogues (triptorelin and goserelin)) in women with irregular menses. Catamenial epilepsy and seizure exacerbation is common in women with epilepsy. Women may not receive appropriate treatment for their seizures because of uncertainty regarding which treatment works best and when in the menstrual cycle treatment should be taken, as well as the possible impact on fertility, the menstrual cycle, bone health, and cardiovascular health. This review aims to address these issues to inform clinical practice and future research. OBJECTIVES To evaluate the efficacy and tolerability of hormonal and non-hormonal treatments for seizures exacerbated by the menstrual cycle in women with regular or irregular menses. We synthesised the evidence from randomised and quasi-randomised controlled trials of hormonal and non-hormonal treatments in women with catamenial epilepsy of any pattern. SEARCH METHODS We searched the following databases on 20 July 2021 for the latest update: Cochrane Register of Studies (CRS Web) and MEDLINE Ovid (1946 to 19 July 2021). CRS Web includes randomised controlled trials (RCTs) or quasi-RCTs from PubMed, Embase, ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform, the Cochrane Central Register of Controlled Trials (CENTRAL), and the specialised registers of Cochrane Review Groups including Cochrane Epilepsy. We used no language restrictions. We checked the reference lists of retrieved studies for additional reports of relevant studies. SELECTION CRITERIA We included RCTs and quasi-RCTs of blinded or open-label design that randomised participants individually (i.e. cluster-randomised trials were excluded). We included cross-over trials if each treatment period was at least 12 weeks in length and the trial had a suitable wash-out period. We included the following types of interventions: women with any pattern of catamenial epilepsy who received a hormonal or non-hormonal drug intervention in addition to an existing antiepileptic drug regimen for a minimum treatment duration of 12 weeks. DATA COLLECTION AND ANALYSIS We extracted data on study design factors and participant demographics for the included studies. The primary outcomes of interest were: proportion seizure-free, proportion of responders (at least 50% decrease in seizure frequency from baseline), and change in seizure frequency. Secondary outcomes included: number of withdrawals, number of women experiencing adverse events of interest (seizure exacerbation, cardiac events, thromboembolic events, osteoporosis and bone health, mood disorders, sedation, menstrual cycle disorders, and fertility issues), and quality of life outcomes. MAIN RESULTS Following title, abstract, and full-text screening, we included eight full-text articles reporting on four double-blind, placebo-controlled RCTs. We included two cross-over RCTs of pulsed norethisterone, and two parallel RCTs of pulsed progesterone recruiting a total of 192 women aged between 13 and 45 years with catamenial epilepsy. We found no RCTs for non-hormonal treatments of catamenial epilepsy or for women with irregular menses. Meta-analysis was not possible for the primary outcomes, therefore we undertook a narrative synthesis. For the two RCTs evaluating norethisterone versus placebo (24 participants), there were no reported treatment differences for change in seizure frequency. Outcomes for the proportion seizure-free and 50% responders were not reported. For the two RCTs evaluating progesterone versus placebo (168 participants), the studies reported conflicting results for the primary outcomes. One progesterone RCT reported no significant difference between progesterone 600 mg/day taken on day 14 to 28 and placebo with respect to 50% responders, seizure freedom rates, and change in seizure frequency for any seizure type. The other progesterone RCT reported a decrease in seizure frequency from baseline in the progesterone group that was significantly higher than the decrease in seizure frequency from baseline in the placebo group. The results of secondary efficacy outcomes showed no significant difference between groups in the pooled progesterone RCTs in terms of treatment withdrawal for any reason (pooled risk ratio (RR) 1.56, 95% confidence interval (CI) 0.81 to 3.00, P = 0.18, I2 = 0%) or treatment withdrawals due to adverse events (pooled RR 2.91, 95% CI 0.53 to 16.17, P = 0.22, I2 = 0%). No treatment withdrawals were reported from the norethisterone RCTs. The RCTs reported limited information on adverse events, although one progesterone RCT reported no significant difference in the number of women experiencing adverse events (diarrhoea, dyspepsia, nausea, vomiting, fatigue, nasopharyngitis, dizziness, headache, and depression). No studies reported on quality of life. We judged the evidence for outcomes related to the included progesterone RCTs to be of low to moderate certainty due to risk of bias, and for outcomes related to the included norethisterone RCTs to be of very low certainty due to serious imprecision and risk of bias. AUTHORS' CONCLUSIONS This review provides very low-certainty evidence of no treatment difference between norethisterone and placebo, and moderate- to low-certainty evidence of no treatment difference between progesterone and placebo for catamenial epilepsy. However, as all the included studies were underpowered, important clinical effects cannot be ruled out. Our review highlights an overall deficiency in the literature base on the effectiveness of a wide range of other hormonal and non-hormonal interventions currently being used in practice, particularly for those women who do not have regular menses. Further clinical trials are needed in this area.
Collapse
Affiliation(s)
| | - Sarah J Nevitt
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
14
|
Nahvi RJ, Sabban EL. Sex Differences in the Neuropeptide Y System and Implications for Stress Related Disorders. Biomolecules 2020; 10:biom10091248. [PMID: 32867327 PMCID: PMC7564266 DOI: 10.3390/biom10091248] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
The neuropeptide Y (NPY) system is emerging as a promising therapeutic target for neuropsychiatric disorders by intranasal delivery to the brain. However, the vast majority of underlying research has been performed with males despite females being twice as susceptible to many stress-triggered disorders such as posttraumatic stress disorder, depression, anorexia nervosa, and anxiety disorders. Here, we review sex differences in the NPY system in basal and stressed conditions and how it relates to varied susceptibility to stress-related disorders. The majority of studies demonstrate that NPY expression in many brain areas under basal, unstressed conditions is lower in females than in males. This could put them at a disadvantage in dealing with stress. Knock out animals and Flinders genetic models show that NPY is important for attenuating depression in both sexes, while its effects on anxiety appear more pronounced in males. In females, NPY expression after exposure to stress may depend on age, timing, and nature and duration of the stressors and may be especially pronounced in the catecholaminergic systems. Furthermore, alterations in NPY receptor expression and affinity may contribute to the sex differences in the NPY system. Overall, the review highlights the important role of NPY and sex differences in manifestation of neuropsychiatric disorders.
Collapse
|
15
|
Neuropeptide Y Expression Defines a Novel Class of GABAergic Projection Neuron in the Inferior Colliculus. J Neurosci 2020; 40:4685-4699. [PMID: 32376782 DOI: 10.1523/jneurosci.0420-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
Located in the midbrain, the inferior colliculus (IC) integrates information from numerous auditory nuclei and is an important hub for sound processing. Despite its importance, little is known about the molecular identity and functional roles of defined neuron types in the IC. Using a multifaceted approach in mice of both sexes, we found that neuropeptide Y (NPY) expression identifies a major class of inhibitory neurons, accounting for approximately one-third of GABAergic neurons in the IC. Retrograde tracing showed that NPY neurons are principal neurons that can project to the medial geniculate nucleus. In brain slice recordings, many NPY neurons fired spontaneously, suggesting that NPY neurons may drive tonic inhibition onto postsynaptic targets. Morphologic reconstructions showed that NPY neurons are stellate cells, and the dendrites of NPY neurons in the tonotopically organized central nucleus of the IC cross isofrequency laminae. Immunostaining confirmed that NPY neurons express NPY, and we therefore hypothesized that NPY signaling regulates activity in the IC. In crosses between Npy1rcre and Ai14 Cre-reporter mice, we found that NPY Y1 receptor (Y1R)-expressing neurons are glutamatergic and were broadly distributed throughout the rostrocaudal extent of the IC. In whole-cell recordings, application of a high-affinity Y1R agonist led to hyperpolarization in most Y1R-expressing IC neurons. Thus, NPY neurons represent a novel class of inhibitory principal neurons that are well poised to use GABAergic and NPY signaling to regulate the excitability of circuits in the IC and auditory thalamus.SIGNIFICANCE STATEMENT The identification of neuron types is a fundamental question in neuroscience. In the inferior colliculus (IC), the hub of the central auditory pathway, molecular markers for distinct classes of inhibitory neurons have remained unknown. We found that neuropeptide Y (NPY) expression identifies a class of GABAergic principal neurons that constitute one-third of the inhibitory neurons in the IC. NPY neurons fire spontaneously, have a stellate morphology, and project to the auditory thalamus. Additionally, we found that NPY signaling hyperpolarized the membrane potential of a subset of excitatory IC neurons that express the NPY Y1 receptor. Thus, NPY neurons are a novel class of inhibitory neurons that use GABA and NPY signaling to regulate activity in the IC and auditory thalamus.
Collapse
|
16
|
Corder KM, Li Q, Cortes MA, Bartley AF, Davis TR, Dobrunz LE. Overexpression of neuropeptide Y decreases responsiveness to neuropeptide Y. Neuropeptides 2020; 79:101979. [PMID: 31708112 PMCID: PMC6960342 DOI: 10.1016/j.npep.2019.101979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous neuropeptide that is abundantly expressed in the central nervous system. NPY is involved in various neurological processes and neuropsychiatric disorders, including fear learning and anxiety disorders. Reduced levels of NPY are reported in Post-Traumatic Stress Disorder (PTSD) patients, and NPY has been proposed as a potential therapeutic target for PTSD. It is therefore important to understand the effects of chronic enhancement of NPY on anxiety and fear learning. Previous studies have shown that acute elevation of NPY reduces anxiety, fear learning and locomotor activity. Models of chronic NPY overexpression have produced mixed results, possibly caused by ectopic NPY expression. NPY is expressed primarily by a subset of GABAergic interneurons, providing specific spatiotemporal release patterns. Administration of exogenous NPY throughout the brain, or overexpression in cells that do not normally release NPY, can have detrimental side effects, including memory impairment. In order to determine the effects of boosting NPY only in the cells that normally release it, we utilized a transgenic mouse line that overexpresses NPY only in NPY+ cells. We tested for effects on anxiety related behaviors in adolescent mice, an age with high incidence of anxiety disorders in humans. Surprisingly, we did not observe the expected reduction in anxiety-like behavior in NPY overexpression mice. There was no change in fear learning behavior, although there was a deficit in nest building. The effect of exogenous NPY on synaptic transmission in acute hippocampal slices was also diminished, indicating that the function of NPY receptors is impaired. Reduced NPY receptor function could contribute to the unexpected behavioral outcomes. We conclude that overexpression of NPY, even in cells that normally express it, can lead to reduced responsiveness of NPY receptors, potentially affecting the ability of NPY to function as a long-term therapeutic.
Collapse
Affiliation(s)
- Katelynn M Corder
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America; University of Alabama at Birmingham, Department of Biology, 1670 University Blvd., VH G133B, Birmingham, AL 35233, United States of America
| | - Qin Li
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Mariana A Cortes
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Aundrea F Bartley
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Taylor R Davis
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Lynn E Dobrunz
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America.
| |
Collapse
|
17
|
Koyuncuoğlu T, Arabacı Tamer S, Erzik C, Karagöz A, Akakın D, Yüksel M, Yeğen BÇ. Oestrogen receptor ERα and ERβ agonists ameliorate oxidative brain injury and improve memory dysfunction in rats with an epileptic seizure. Exp Physiol 2019; 104:1911-1928. [PMID: 31608530 DOI: 10.1113/ep087986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? Could different hormonally active substances, including oestrogen receptor (ER) agonists, protect against oxidative brain damage and memory impairment induced by a single epileptic seizure in rats? If so, which signalling mechanisms are involved in their anti-inflammatory effects? What is the main finding and its importance? Chronic administration of oestrogen, progesterone, ER modulators/agonists or blockade of testosterone exhibited anti-inflammatory and antioxidant actions on single seizure-induced neuronal injury, while ER agonists additionally improved memory function and up-regulated CREB signalling and hippocampal GABA(A)α1 receptor density, suggesting that ERα or ERβ receptor activation may be beneficial in protecting against seizure-related oxidative brain injury and cognitive dysfunction. ABSTRACT The susceptibility to epileptic seizures is dependent on sex as well as fluctuations in oestrogen levels, while exogenous oestrogen was shown to have no effect or to facilitate or to inhibit seizure activity. Oestrogen receptors (ERs) mediate antioxidant and anti-inflammatory actions in several inflammatory models, but the involvement of ERs in seizure-induced neuronal injury has not been evaluated previously. In order to assess the effects of resveratrol, progesterone, oestradiol (E2), an anti-testosterone (cyproterone acetate; CPA), a selective ER modulator (tamoxifen; TMX) and ERα/ERβ agonists (propyl pyrazole triol (PPT), diarylpropionitrile (DPN)) on oxidative brain damage and memory impairment due to epileptic seizure, male Wistar rats (n = 120) received one of the treatment choices either in drinking water or intraperitoneally for 31 days, and epileptic seizure was induced on the 28th day by injection of a single-dose of pentylenetetrazole (45 mg kg-1 ). The results demonstrate that chronic pretreatment with resveratrol, progesterone, E2, CPA or TMX suppressed most of the inflammatory parameters indicative of oxidative neuronal injury, while treatment with the ER agonists DPN or PPT were found to be even more effective in limiting the oxidative damage. Treatment with DPN resulted in the up-regulation of cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) expression, while PPT up-regulated expression of CREB without affecting BDNF levels. Moreover, both ER agonists provided protection against seizure-induced memory loss with a concomitant increase in hippocampal GABA(A)α1-positive cells. In conclusion, ER agonists, and more specifically ERβ agonist, appear to provide maximum protection against seizure-induced oxidative brain injury and associated memory dysfunction by up-regulating the expression of CREB, BDNF and GABA(A)α1 receptors.
Collapse
Affiliation(s)
- Türkan Koyuncuoğlu
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Sevil Arabacı Tamer
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ayça Karagöz
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Vocational School of Health-Related Professions, Marmara University, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
18
|
Abstract
BACKGROUND Catamenial epilepsy describes a worsening of seizures in relation to the menstrual cycle and may affect around 40% of women with epilepsy. Vulnerable days of the menstrual cycle for seizures are perimenstrually (C1 pattern), at ovulation (C2 pattern), and during the luteal phase (C3 pattern). A reduction in progesterone levels premenstrually and reduced secretion during the luteal phase is implicated in catamenial C1 and C3 patterns. A reduction in progesterone has been demonstrated to reduce sensitivity to the inhibitory neurotransmitter in preclinical studies, hence increasing risk of seizures. A pre-ovulatory surge in oestrogen has been implicated in the C2 pattern of seizure exacerbation, although the exact mechanism by which this surge increases risk is uncertain. Current treatment practices include the use of pulsed hormonal (e.g. progesterone) and non-hormonal treatments (e.g. clobazam or acetazolamide) in women with regular menses, and complete cessation of menstruation using synthetic hormones (e.g. medroxyprogesterone (Depo-Provera) or gonadotropin-releasing hormone (GnRH) analogues (triptorelin and goserelin)) in women with irregular menses.Catamenial epilepsy and seizure exacerbation is common in women with epilepsy, and may have a significant negative impact on quality of life. Women may not be receiving appropriate treatment for their seizures because of uncertainty regarding which treatment works best and when in the menstrual cycle treatment should be taken, as well as the possible impact on fertility, the menstrual cycle, bone health, and cardiovascular health. This review aimed to address these issues in order to inform clinical practice and future research. OBJECTIVES To evaluate the efficacy and tolerability of hormonal and non-hormonal treatments for seizures exacerbated by the menstrual cycle in women with regular or irregular menses. We synthesised the evidence from randomised controlled trials of hormonal and non-hormonal treatments in women with catamenial epilepsy of any pattern. SEARCH METHODS We searched the following databases to 10 January 2019: Cochrane Register of Studies (CRS Web; includes the Cochrane Epilepsy Group Specialized Register and the Cochrane Central Register of Controlled Trials (CENTRAL)), MEDLINE (Ovid: 1946 to 9 January 2019), ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). We used no language restrictions. We checked the reference lists of retrieved studies for additional reports of relevant studies. SELECTION CRITERIA We included randomised and quasi-randomised controlled trials (RCTs) of blinded or opeṉlabel design that randomised participants individually (i.e. cluster-randomised trials were excluded). We included cross-over trials if each treatment period was at least 12 weeks in length and the trial had a suitable wash-out period. Types of interventions included: women with any pattern of catamenial epilepsy who received a hormonal or non-hormonal drug intervention in addition to an existing antiepileptic drug regimen for a minimum treatment duration of 12 weeks. DATA COLLECTION AND ANALYSIS We extracted data on study design factors and participant demographics for the included studies. The primary outcomes of interest were: proportion seizure-free, proportion of responders (at least 50% decrease in seizure frequency from baseline), and mean change in seizure frequency. Secondary outcomes included: number of withdrawals, number of women experiencing adverse events of interest (seizure exacerbation, cardiac events, thromboembolic events, osteoporosis and bone health, mood disorders, sedation, menstrual cycle disorders, and fertility issues), and quality of life outcomes. MAIN RESULTS We identified 62 records from the databases and search strategies. Following title, abstract, and full-text screening, we included eight full-text articles reporting on four double-blind, placebo-controlled RCTs. We included two cross-over RCTs of pulsed norethisterone and two parallel RCTs of pulsed progesterone recruiting a total of 192 women aged between 13 and 45 years with catamenial epilepsy. We found no RCTs for non-hormonal treatments of catamenial epilepsy or for women with irregular menses.Meta-analysis was not possible for the primary outcomes, therefore we undertook a narrative synthesis. For the two RCTs evaluating norethisterone versus placebo (24 participants), there were no reported treatment differences for mean change in seizure frequency. Outcomes for the proportion seizure-free and 50% responders were not reported. For the RCTs evaluating progesterone versus placebo (168 participants), the studies reported conflicting results on the primary outcomes. One progesterone RCT reported no significant difference between progesterone 600 mg/day taken on day 14 to 28 and placebo with respect to 50% responders, seizure freedom rates, and change in seizure frequency for any seizure type. The other progesterone RCT reported that the decrease in seizure frequency from baseline in the progesterone group was significantly higher than the decrease in seizure frequency from baseline in the placebo group.Results of secondary efficacy outcomes showed no significant difference in terms of treatment withdrawal for any reason in the pooled progesterone RCTs when compared to placebo (pooled risk ratio (RR) 1.56, 95% confidence interval (CI) 0.81 to 3.00, P = 0.18, I2 = 0%) or for treatment withdrawals due to adverse events (pooled RR 2.91, 95% CI 0.53 to 16.17, P = 0.22, I2 = 0%). No treatment withdrawals from the norethisterone RCTs were reported. The RCTs reported limited information on adverse events, although one progesterone RCT reported no significant difference in the number of women experiencing adverse events (diarrhoea, dyspepsia, nausea, vomiting, fatigue, nasopharyngitis, dizziness, headache, and depression). No studies reported on quality of life.We judged the evidence from the included progesterone RCTs to be of low to moderate certainty due to risk of bias and from the included norethisterone RCTs to be of very low certainty due to serious imprecision and risk of bias. AUTHORS' CONCLUSIONS This review provides very low-certainty evidence of no treatment difference between norethisterone and placebo, and moderate- to low-certainty evidence of no treatment difference between progesterone and placebo for catamenial epilepsy. However, as all the included studies were underpowered, important clinical effects cannot be ruled out.Our review highlighted an overall deficiency in the literature base on the effectiveness of a wide range of other hormonal and non-hormonal interventions currently being used in practice, particularly for those patients who do not have regular menses. Further clinical trials are needed in this area.
Collapse
Affiliation(s)
- Melissa J Maguire
- Leeds General InfirmaryDepartment of NeurologyGreat George StreetLeedsUK
| | - Sarah J Nevitt
- University of LiverpoolDepartment of BiostatisticsBlock F, Waterhouse Building1‐5 Brownlow HillLiverpoolUKL69 3GL
| | | |
Collapse
|
19
|
Pottoo FH, Javed MN, Barkat MA, Alam MS, Nowshehri JA, Alshayban DM, Ansari MA. Estrogen and Serotonin: Complexity of Interactions and Implications for Epileptic Seizures and Epileptogenesis. Curr Neuropharmacol 2019; 17:214-231. [PMID: 29956631 PMCID: PMC6425080 DOI: 10.2174/1570159x16666180628164432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
A burgeoning literature documents the confluence of ovarian steroids and central serotonergic systems in the in-junction of epileptic seizures and epileptogenesis. Estrogen administration in animals reduces neuronal death from seizures by up-regulation of the prosurvival molecule i.e. Bcl-2, anti-oxidant potential and protection of NPY interneurons. Serotonin modulates epileptiform activity in either direction i.e administration of 5-HT agonists or reuptake inhibitors leads to the acti-vation of 5-HT3 and 5-HT1A receptors tending to impede focal and generalized seizures, while depletion of brain 5-HT along with the destruction of serotonergic terminals leads to expanded neuronal excitability hence abatement of seizure threshold in experimental animal models. Serotonergic neurotransmission is influenced by the organizational activity of ster-oid hormones in the growing brain and the actuation effects of steroids which come in adulthood. It is further established that ovarian steroids bring induction of dendritic spine proliferation on serotonin neurons thus thawing a profound effect on sero-tonergic transmission. This review features 5-HT1A and 5-HT3 receptors as potential targets for ameliorating seizure-induced neurodegeneration and recurrent hypersynchronous neuronal activity. Indeed 5-HT3 receptors mediate cross-talk be-tween estrogenic and serotonergic pathways, and could be well exploited for combinatorial drug therapy against epileptogen-esis.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New-Delhi, India
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Javaid Ashraf Nowshehri
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India
| | - Dhafer Mahdi Alshayban
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
20
|
Estrogen-Dominant Ovarian Cycle Stages Are Associated with Neural Network Dysfunction and Cognitive and Behavioral Deficits in the hAPP-J20 Mouse Model of Alzheimer's Disease. eNeuro 2019; 6:6/3/ENEURO.0179-19.2019. [PMID: 31147386 PMCID: PMC6565846 DOI: 10.1523/eneuro.0179-19.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 01/30/2023] Open
Abstract
Highlighted Research Paper:Ovarian Cycle Stages Modulate Alzheimer-Related Cognitive and Brain Network Alterations in Female Mice, by Lauren Broestl, Kurtresha Worden, Arturo J. Moreno, Emily J. Davis, Dan Wang, Bayardo Garay, Tanya Singh, Laure Verret, Jorge J. Palop, and Dena B. Dubal
Collapse
|
21
|
Randesi M, Contoreggi NH, Zhou Y, Rubin BR, Bellamy JR, Yu F, Gray JD, McEwen BS, Milner TA, Kreek MJ. Sex Differences in Neuroplasticity- and Stress-Related Gene Expression and Protein Levels in the Rat Hippocampus Following Oxycodone Conditioned Place Preference. Neuroscience 2019; 410:274-292. [PMID: 31071414 DOI: 10.1016/j.neuroscience.2019.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Prescription opioid abuse is a serious public health issue. Recently, we showed that female and male Sprague-Dawley rats acquire conditioned place preference (CPP) to the mu opioid receptor agonist oxycodone. Anatomical analysis of the hippocampus from these rats unveiled sex differences in the opioid system in a way that would support excitation and opiate associative learning processes especially in females. In this study, we examined the expression and protein densities of opioid, plasticity, stress and related kinase and signaling molecules in the hippocampus of female and male rats following oxycodone CPP. Oxycodone CPP females have: a) increases in ARC (activity regulated cytoskeletal-associated protein)-immunoreactivity (ir) in CA3 pyramidal cells; b) decreases in Npy (neuropeptide Y) gene expression in the medial hippocampus but higher numbers of NPY-containing hilar interneurons compared to males; c) increases in Crhr2 (corticotropin releasing factor receptor 2) expression in CA2/3; d) increases in Akt1 (AKT serine/threonine kinase 1) expression in medial hippocampus; and e) decreases in phosphorylated MAPK (mitogen activated protein kinase)-ir in CA1 and dentate gyrus. Oxycodone CPP males have: a) increases in Bdnf (brain derived-neurotrophic factor) expression, which is known to be produced in granule cells, relative to females; b) elevated Mapk1 expression and pMAPK-ir in the dentate hilus which harbors newly generated granule cells; and c) increases in CRHR1-ir in CA3 pyramidal cell soma. These sex-specific changes in plasticity, stress and kinase markers in hippocampal circuitry parallel previously observed sex differences in the opioid system after oxycodone CPP.
Collapse
Affiliation(s)
- Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Julia R Bellamy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Fangmin Yu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America.
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| |
Collapse
|
22
|
Ovarian Cycle Stages Modulate Alzheimer-Related Cognitive and Brain Network Alterations in Female Mice. eNeuro 2018; 5:eN-NWR-0132-17. [PMID: 30627643 PMCID: PMC6325547 DOI: 10.1523/eneuro.0132-17.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/02/2023] Open
Abstract
Alzheimer’s disease (AD) begins several decades before the onset of clinical symptoms, at a time when women may still undergo reproductive cycling. Whether ovarian functions alter substrates of AD pathogenesis is unknown. Here we show that ovarian cycle stages significantly modulate AD-related alterations in neural network patterns, cognitive impairments, and pathogenic protein production in the hAPP-J20 mouse model of AD. Female hAPP mice spent more time in estrogen-dominant cycle stages and these ovarian stages worsened AD-related network dysfunction and cognitive impairments. In contrast, progesterone-dominant stages and gonadectomy attenuated these AD-related deficits. Further studies revealed a direct role for estradiol in stimulating neural network excitability and susceptibility to seizures in hAPP mice and increasing amyloid beta levels. Understanding dynamic effects of the ovarian cycle on the female nervous system in disease, including AD, is of critical importance and may differ from effects on a healthy brain. The pattern of ovarian cycle effects on disease-related networks, cognition, and pathogenic protein expression may be relevant to young women at risk for AD.
Collapse
|
23
|
Marchese E, Corvino V, Di Maria V, Furno A, Giannetti S, Cesari E, Lulli P, Michetti F, Geloso MC. The Neuroprotective Effects of 17β-Estradiol Pretreatment in a Model of Neonatal Hippocampal Injury Induced by Trimethyltin. Front Cell Neurosci 2018; 12:385. [PMID: 30416427 PMCID: PMC6213803 DOI: 10.3389/fncel.2018.00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Hippocampal dysfunction plays a central role in neurodevelopmental disorders, resulting in severe impairment of cognitive abilities, including memory and learning. On this basis, developmental studies represent an important tool both to understanding the cellular and molecular phenomena underlying early hippocampal damage and to study possible therapeutic interventions, that may modify the progression of neuronal death. Given the modulatory role played by 17β-estradiol (E2) on hippocampal functions and its neuroprotective properties, the present study investigates the effects of pretreatment with E2 in a model of neonatal hippocampal injury obtained by trimethyltin (TMT) administration, characterized by neuronal loss in CA1 and CA3 subfields and astroglial and microglial activation. At post-natal days (P)5 and P6 animals received E2 administration (0.2 mg/kg/die i.p.) or vehicle. At P7 they received a single dose of TMT (6.5 mg/kg i.p.) and were sacrificed 72 h (P10) or 7 days after TMT treatment (P14). Our findings indicate that pretreatment with E2 exerts a protective effect against hippocampal damage induced by TMT administration early in development, reducing the extent of neuronal death in the CA1 subfield, inducing the activation of genes involved in neuroprotection, lowering the neuroinflammatory response and restoring neuropeptide Y- and parvalbumin- expression, which is impaired in the early phases of TMT-induced damage. Our data support the efficacy of estrogen-based neuroprotective approaches to counteract early occurring hippocampal damage in the developing hippocampus.
Collapse
Affiliation(s)
- Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Epilepsy Center, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Alfredo Furno
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Giannetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eleonora Cesari
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - Paola Lulli
- Laboratorio di Biochimica Clinica e Biologia Molecolare, IRCCS Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Facoltà di Medicina e Chirurgia - IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan, Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
24
|
Zhang L, Hernández VS, Swinny JD, Verma AK, Giesecke T, Emery AC, Mutig K, Garcia-Segura LM, Eiden LE. A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling. Transl Psychiatry 2018; 8:50. [PMID: 29479060 PMCID: PMC5865187 DOI: 10.1038/s41398-018-0099-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
The lateral habenula (LHb) has a key role in integrating a variety of neural circuits associated with reward and aversive behaviors. There is limited information about how the different cell types and neuronal circuits within the LHb coordinate physiological and motivational states. Here, we report a cell type in the medial division of the LHb (LHbM) in male rats that is distinguished by: (1) a molecular signature for GABAergic neurotransmission (Slc32a1/VGAT) and estrogen receptor (Esr1/ERα) expression, at both mRNA and protein levels, as well as the mRNA for vesicular glutamate transporter Slc17a6/VGLUT2, which we term the GABAergic estrogen-receptive neuron (GERN); (2) its axonal projection patterns, identified by in vivo juxtacellular labeling, to both local LHb and to midbrain modulatory systems; and (3) its somatic expression of receptors for vasopressin, serotonin and dopamine, and mRNA for orexin receptor 2. This cell type is anatomically located to receive afferents from midbrain reward (dopamine and serotonin) and hypothalamic water and energy homeostasis (vasopressin and orexin) circuits. These afferents shared the expression of estrogen synthase (aromatase) and VGLUT2, both in their somata and axon terminals. We demonstrate dynamic changes in LHbM VGAT+ cell density, dependent upon gonadal functional status, that closely correlate with motivational behavior in response to predator and forced swim stressors. The findings suggest that the homeostasis and reward-related glutamatergic convergent projecting pathways to LHbMC employ a localized neurosteroid signaling mechanism via axonal expression of aromatase, to act as a switch for GERN excitation/inhibition output prevalence, influencing depressive or motivated behavior.
Collapse
Affiliation(s)
- Limei Zhang
- Departmento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico. .,Section on Molecular Neuroscience, National Institute of Mental Health (NIH), Bethesda, USA.
| | - Vito S. Hernández
- 0000 0001 2159 0001grid.9486.3Departmento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jerome D. Swinny
- 0000 0001 0728 6636grid.4701.2Institute for Biomedical and Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Anil K. Verma
- 0000 0001 2159 0001grid.9486.3Departmento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Torsten Giesecke
- 0000 0001 2218 4662grid.6363.0Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrew C. Emery
- 0000 0004 0464 0574grid.416868.5Section on Molecular Neuroscience, National Institute of Mental Health (NIH), Bethesda, USA
| | - Kerim Mutig
- 0000 0001 2218 4662grid.6363.0Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luis M. Garcia-Segura
- 0000 0001 2177 5516grid.419043.bInstituto Cajal, C.S.I.C., Madrid, Spain ,0000 0000 9314 1427grid.413448.eCIBERFES, Instituto de Salud Carlos III, Madrid, Spain
| | - Lee E. Eiden
- 0000 0004 0464 0574grid.416868.5Section on Molecular Neuroscience, National Institute of Mental Health (NIH), Bethesda, USA
| |
Collapse
|
25
|
Abstract
Contrary to popular belief, sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Many neural and behavioral functions are affected by estrogens, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences, and responses to sex hormones in brain regions and upon functions not previously regarded as subject to such differences, indicate that we are entering a new era in our ability to understand and appreciate the diversity of gender-related behaviors and brain functions.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, the Rockefeller University, New York, New York, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, the Rockefeller University, New York, New York, USA
| |
Collapse
|
26
|
Endogenously Released Neuropeptide Y Suppresses Hippocampal Short-Term Facilitation and Is Impaired by Stress-Induced Anxiety. J Neurosci 2017; 37:23-37. [PMID: 28053027 DOI: 10.1523/jneurosci.2599-16.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety. The mechanisms that regulate NPY release, and its effects on CA1 synaptic function, are not fully understood. Here we show in acute hippocampal slices from mice that endogenous NPY, released in response to optogenetic stimulation or synaptically evoked spiking of NPY+ cells, suppresses both of the feedforward pathways to CA1. Stimulation of temporoammonic synapses with a physiologically derived spike train causes NPY release that reduces short-term facilitation, whereas the release of NPY that modulates Schaffer collateral synapses requires integration of both the Schaffer collateral and temporoammonic pathways. Pathway specificity of NPY release is conferred by three functionally distinct NPY+ cell types, with differences in intrinsic excitability and short-term plasticity of their inputs. Predator scent stress abolishes the release of endogenous NPY onto temporoammonic synapses, a stress-sensitive pathway, thereby causing enhanced short-term facilitation. Our results demonstrate how stress alters CA1 circuit function through the impairment of endogenous NPY release, potentially contributing to heightened anxiety. SIGNIFICANCE STATEMENT Neuropeptide Y (NPY) has robust anxiolytic properties, and its levels are reduced in patients with post-traumatic stress disorder. The effects of endogenously released NPY during physiologically relevant stimulation, and the impact of stress-induced reductions in NPY on circuit function, are unknown. By demonstrating that NPY release modulates hippocampal synaptic plasticity and is impaired by predator scent stress, our results provide a novel mechanism by which stress-induced anxiety alters circuit function. These studies fill an important gap in knowledge between the molecular and behavioral effects of NPY. This article also advances the understanding of NPY+ cells and the factors that regulate their spiking, which could pave the way for new therapeutic targets to increase endogenous NPY release in patients in a spatially and temporally appropriate manner.
Collapse
|
27
|
McEwen BS, Milner TA. Understanding the broad influence of sex hormones and sex differences in the brain. J Neurosci Res 2017; 95:24-39. [PMID: 27870427 PMCID: PMC5120618 DOI: 10.1002/jnr.23809] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/23/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
Abstract
Sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes, where they are associated with presynaptic terminals, mitochondria, spine apparatus, and postsynaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects on gene expression induce spine synapses, up- or downregulate and alter the distribution of neurotransmitter receptors, and regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, which influence functions not previously regarded as subject to such differences, indicate that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Feil Family Brain and Mind Research Institute, Weill Cornell School of Medicine, 407 East 61st Street, New York, NY 10065
| |
Collapse
|
28
|
Mazid S, Hall BS, Odell SC, Stafford K, Dyer AD, Van Kempen TA, Selegean J, McEwen BS, Waters EM, Milner TA. Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress. Neurobiol Stress 2016; 5:37-53. [PMID: 27981195 PMCID: PMC5145913 DOI: 10.1016/j.ynstr.2016.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/18/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and chronic stress similarly alters the levels and trafficking of hippocampal delta opioid receptors (DORs). Immediately after acute immobilization stress (AIS) or one-day after chronic immobilization stress (CIS), the brains of adult female and male rats were perfusion-fixed with aldehydes. The CA3b region and the dentate hilus of the dorsal hippocampus were quantitatively analyzed by light microscopy using DOR immunoperoxidase or dual label electron microscopy for DOR using silver intensified immunogold particles (SIG) and GABA using immunoperoxidase. At baseline, females compared to males had more DORs near the plasmalemma of pyramidal cell dendrites and about 3 times more DOR-labeled CA3 dendritic spines contacted by mossy fibers. In AIS females, near-plasmalemmal DOR-SIGs decreased in GABAergic hilar dendrites. However, in AIS males, near-plasmalemmal DOR-SIGs increased in CA3 pyramidal cell and hilar GABAergic dendrites and the percentage of CA3 dendritic spines contacted by mossy fibers increased to about half that seen in unstressed females. Conversely, after CIS, near-plasmalemmal DOR-SIGs increased in hilar GABA-labeled dendrites of females whereas in males plasmalemmal DOR-SIGs decreased in CA3 pyramidal cell dendrites and near-plasmalemmal DOR-SIGs decreased hilar GABA-labeled dendrites. As CIS in females, but not males, redistributed DOR-SIGs near the plasmalemmal of hilar GABAergic dendrites, a subsequent experiment examined the acute affect of oxycodone on the redistribution of DOR-SIGs in a separate cohort of CIS females. Plasmalemmal DOR-SIGs were significantly elevated on hilar interneuron dendrites one-hour after oxycodone (3 mg/kg, I.P.) administration compared to saline administration in CIS females. These data indicate that DORs redistribute within CA3 pyramidal cells and dentate hilar GABAergic interneurons in a sexually dimorphic manner that would promote activation and drug related learning in males after AIS and in females after CIS. Females have more near-plasmalemmal DORs in pyramidal CA3 dendrites than males. Acute stress in males relocates DORs in CA3 & GABA dendrites to promote activation. Chronic stress in females relocates DORs in GABA dendrites in females to promote activation. Chronic stress in males relocates DORs in GABA dendrites opposite of females. DOR-stress relocation may contribute to sexually dimorphic effects on drug related learning.
Collapse
Affiliation(s)
- Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Baila S Hall
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States
| | - Shannon C Odell
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States
| | - Khalifa Stafford
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Andreina D Dyer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States
| | - Jane Selegean
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| |
Collapse
|
29
|
London SE. Influences of non-canonical neurosteroid signaling on developing neural circuits. Curr Opin Neurobiol 2016; 40:103-110. [PMID: 27429051 DOI: 10.1016/j.conb.2016.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/21/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
Developing neural circuits are especially susceptible to environmental perturbation. Endocrine signaling systems such as steroids provide a mechanism to encode physiological changes and integrate function across various biological systems including the brain. 'Neurosteroids' are synthesized and act within the brain across development. There is a long history of steroids sculpting developing neural circuits; more recently, evidence has demonstrated how neurosteroids influence the early potential for neural circuits to organize and transmit precise information via non-canonical receptor types.
Collapse
Affiliation(s)
- Sarah E London
- University of Chicago, Psychology, 940 E 57th Street, 125C BPSB, Chicago, IL 60637, United States.
| |
Collapse
|
30
|
Use of Gonadotropin-Releasing Hormone for Intractable Seizures in a Girl with Precocious Puberty without Hypothalamic Hamartoma. J Pediatr 2016; 174:264-6. [PMID: 27156180 DOI: 10.1016/j.jpeds.2016.03.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/15/2016] [Accepted: 03/31/2016] [Indexed: 02/07/2023]
Abstract
The use of gonadotropin-releasing hormone analogs has been reported in the treatment of gelastic seizures and precocious puberty associated with hypothalamic hamartomas, but not in other seizure types without hypothalamic hamartoma. We describe a 7.5 year-old girl whose seizures subsided after gonadotropin-releasing hormone analog implant, administered for precocious puberty.
Collapse
|
31
|
Velíšková J, Iacobas D, Iacobas S, Sidyelyeva G, Chachua T, Velíšek L. Oestradiol Regulates Neuropeptide Y Release and Gene Coupling with the GABAergic and Glutamatergic Synapses in the Adult Female Rat Dentate Gyrus. J Neuroendocrinol 2015; 27:911-20. [PMID: 26541912 DOI: 10.1111/jne.12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous modulator of neuronal activity affecting both GABAergic and glutamatergic transmission. Previously, we found that oestradiol modifies the number of NPY immunoreactive neurones in the hippocampal dentate gyrus. In the present study, we investigated which oestrogen receptor type is responsible for these changes in the number of NPY-positive neurones. Furthermore, we determined the effects of oestrogen receptor activation on NPY release. Finally, we examined the contribution of oestrogen toward the remodelling of the GABAergic and glutamatergic gene networks in terms of coupling with Npy gene expression in ovariectomised rats. We found that activation of either oestrogen receptor type (ERα or ERβ) increases the number of NPY-immunopositive neurones and enhances NPY release in the dentate gyrus. We also found that, compared to oestrogen-lacking ovariectomised rats, oestrogen replacement increases the probability of synergistic/antagonistic coupling between the Npy and GABAergic synapse genes, whereas the glutamatergic synapse genes are less likely to be coupled with Npy under similar conditions. The data together suggest that oestrogens play a critical role in the regulation of NPY system activity and are also involved in the coupling/uncoupling of the Npy gene with the GABAergic and glutamatergic synapses in the female rat dentate gyrus.
Collapse
Affiliation(s)
- J Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - D Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - S Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - G Sidyelyeva
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - T Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - L Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
32
|
Corvino V, Di Maria V, Marchese E, Lattanzi W, Biamonte F, Michetti F, Geloso MC. Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats. Front Cell Neurosci 2015; 9:433. [PMID: 26594149 PMCID: PMC4633568 DOI: 10.3389/fncel.2015.00433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022] Open
Abstract
Given the well-documented involvement of estrogens in the modulation of hippocampal functions in both physiological and pathological conditions, the present study investigates the effects of 17-beta estradiol (E2) administration in the rat model of hippocampal neurodegeneration induced by trimethyltin (TMT) administration (8 mg/kg), characterized by loss of pyramidal neurons in CA1, CA3/hilus hippocampal subfields, associated with astroglial and microglial activation, seizures and cognitive impairment. After TMT/saline treatment, ovariectomized animals received two doses of E2 (0.2 mg/kg intra-peritoneal) or vehicle, and were sacrificed 48 h or 7 days after TMT-treatment. Our results indicate that in TMT-treated animals E2 administration induces the early (48 h) upregulation of genes involved in neuroprotection and synaptogenesis, namely Bcl2, trkB, cadherin 2 and cyclin-dependent-kinase-5. Increased expression levels of glutamic acid decarboxylase (gad) 67, neuropeptide Y (Npy), parvalbumin, Pgc-1α and Sirtuin 1 genes, the latter involved in parvalbumin (PV) synthesis, were also evident. Unbiased stereology performed on rats sacrificed 7 days after TMT treatment showed that although E2 does not significantly influence the extent of TMT-induced neuronal death, significantly enhances the TMT-induced modulation of GABAergic interneuron population size in selected hippocampal subfields. In particular, E2 administration causes, in TMT-treated rats, a significant increase in the number of GAD67-expressing interneurons in CA1 stratum oriens, CA3 pyramidal layer, hilus and dentate gyrus, accompanied by a parallel increase in NPY-expressing cells, essentially in the same regions, and of PV-positive cells in CA1 pyramidal layer. The present results add information concerning the role of in vivo E2 administration on mechanisms involved in cellular plasticity in the adult brain.
Collapse
Affiliation(s)
- Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Filippo Biamonte
- Institute of Histology and Embryology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
33
|
McEwen BS, Gray JD, Nasca C. 60 YEARS OF NEUROENDOCRINOLOGY: Redefining neuroendocrinology: stress, sex and cognitive and emotional regulation. J Endocrinol 2015; 226:T67-83. [PMID: 25934706 PMCID: PMC4515381 DOI: 10.1530/joe-15-0121] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 12/12/2022]
Abstract
The discovery of steroid hormone receptors in brain regions that mediate every aspect of brain function has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the brain and the body via hormonal and neural pathways. The brain is the central organ of stress and adaptation to stress because it perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor. The adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neuronal replacement, dendritic remodeling, and synapse turnover. Stress causes an imbalance of neural circuitry subserving cognition, decision-making, anxiety and mood that can alter expression of those behaviors and behavioral states. This imbalance, in turn, affects systemic physiology via neuroendocrine, autonomic, immune and metabolic mediators. In the short term, as for increased fearful vigilance and anxiety in a threatening environment, these changes may be adaptive. But, if the danger passes and the behavioral state persists along with the changes in neural circuitry, such maladaptation may need intervention with a combination of pharmacological and behavioral therapies, as is the case for chronic anxiety and depression. There are important sex differences in the brain responses to stressors that are in urgent need of further exploration. Moreover, adverse early-life experience, interacting with alleles of certain genes, produce lasting effects on brain and body over the life-course via epigenetic mechanisms. While prevention is most important, the plasticity of the brain gives hope for therapies that take into consideration brain-body interactions.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of NeuroendocrinologyThe Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Jason D Gray
- Laboratory of NeuroendocrinologyThe Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Carla Nasca
- Laboratory of NeuroendocrinologyThe Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
34
|
D'Amour J, Magagna-Poveda A, Moretto J, Friedman D, LaFrancois JJ, Pearce P, Fenton AA, MacLusky NJ, Scharfman HE. Interictal spike frequency varies with ovarian cycle stage in a rat model of epilepsy. Exp Neurol 2015; 269:102-19. [PMID: 25864929 PMCID: PMC4446145 DOI: 10.1016/j.expneurol.2015.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/27/2014] [Accepted: 04/02/2015] [Indexed: 01/31/2023]
Abstract
In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility.
Collapse
Affiliation(s)
- James D'Amour
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Cantonal Hospital of Basel, Land Institute of Pathology, Mühlemattstrasse 11, CH-4410 Liestal, Switzerland; Sackler Program in Biomedical Sciences, New York University Langone Medical Center, 550 First Ave., New York, NY 10016, USA
| | - Alejandra Magagna-Poveda
- Cantonal Hospital of Basel, Land Institute of Pathology, Mühlemattstrasse 11, CH-4410 Liestal, Switzerland
| | - Jillian Moretto
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA
| | - Daniel Friedman
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Comprehensive Epilepsy Center, New York University Langone Medical Center, 334 34th St., New York, NY 10016, USA
| | - John J LaFrancois
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA
| | - Patrice Pearce
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andre A Fenton
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd, Guelph, ON N1G 2W1, Canada
| | - Helen E Scharfman
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, Physiology & Neuroscience, and Psychiatry, New York University Langone Medical Center, One Park Ave, New York, NY 10016, USA.
| |
Collapse
|
35
|
Hara Y, Waters EM, McEwen BS, Morrison JH. Estrogen Effects on Cognitive and Synaptic Health Over the Lifecourse. Physiol Rev 2015; 95:785-807. [PMID: 26109339 PMCID: PMC4491541 DOI: 10.1152/physrev.00036.2014] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Estrogen facilitates higher cognitive functions by exerting effects on brain regions such as the prefrontal cortex and hippocampus. Estrogen induces spinogenesis and synaptogenesis in these two brain regions and also initiates a complex set of signal transduction pathways via estrogen receptors (ERs). Along with the classical genomic effects mediated by activation of ER α and ER β, there are membrane-bound ER α, ER β, and G protein-coupled estrogen receptor 1 (GPER1) that can mediate rapid nongenomic effects. All key ERs present throughout the body are also present in synapses of the hippocampus and prefrontal cortex. This review summarizes estrogen actions in the brain from the standpoint of their effects on synapse structure and function, noting also the synergistic role of progesterone. We first begin with a review of ER subtypes in the brain and how their abundance and distributions are altered with aging and estrogen loss (e.g., ovariectomy or menopause) in the rodent, monkey, and human brain. As there is much evidence that estrogen loss induced by menopause can exacerbate the effects of aging on cognitive functions, we then review the clinical trials of hormone replacement therapies and their effectiveness on cognitive symptoms experienced by women. Finally, we summarize studies carried out in nonhuman primate models of age- and menopause-related cognitive decline that are highly relevant for developing effective interventions for menopausal women. Together, we highlight a new understanding of how estrogen affects higher cognitive functions and synaptic health that go well beyond its effects on reproduction.
Collapse
Affiliation(s)
- Yuko Hara
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Elizabeth M Waters
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Bruce S McEwen
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - John H Morrison
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| |
Collapse
|
36
|
Heimovics SA, Trainor BC, Soma KK. Rapid Effects of Estradiol on Aggression in Birds and Mice: The Fast and the Furious. Integr Comp Biol 2015; 55:281-93. [PMID: 25980562 DOI: 10.1093/icb/icv048] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Across invertebrates and vertebrates, steroids are potent signaling molecules that affect nearly every cell in the organism, including cells of the nervous system. Historically, researchers have focused on the genomic (or "nuclear-initiated") effects of steroids. However, all classes of steroids also have rapid non-genomic (or "membrane-initiated") effects, although there is far less basic knowledge of these non-genomic effects. In particular, steroids synthesized in the brain ("neurosteroids") have genomic and non-genomic effects on behavior. Here, we review evidence that estradiol has rapid effects on aggression, an important social behavior, and on intracellular signaling cascades in relevant regions of the brain. In particular, we focus on studies of song sparrows (Melospiza melodia) and Peromyscus mice, in which estradiol has rapid behavioral effects under short photoperiods only. Furthermore, in captive Peromyscus, estrogenic compounds (THF-diols) in corncob bedding profoundly alter the rapid effects of estradiol. Environmental factors in the laboratory, such as photoperiod, diet, and bedding, are critical variables to consider in experimental design. These studies are consistent with the hypothesis that locally-produced steroids are more likely than systemic steroids to act via non-genomic mechanisms. Furthermore, these studies illustrate the dynamic balance between genomic and non-genomic signaling for estradiol, which is likely to be relevant for other steroids, behaviors, and species.
Collapse
Affiliation(s)
- Sarah A Heimovics
- *Department of Biology, University of St Thomas, St Paul, MN 55105, USA;
| | - Brian C Trainor
- Department of Psychology, University of California-Davis, Davis, CA 95616, USA
| | - Kiran K Soma
- Departments of Psychology and Zoology, Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, V6T 1Z7, Canada
| |
Collapse
|
37
|
Opioid receptor-dependent sex differences in synaptic plasticity in the hippocampal mossy fiber pathway of the adult rat. J Neurosci 2015; 35:1723-38. [PMID: 25632146 DOI: 10.1523/jneurosci.0820-14.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mossy fiber (MF) pathway is critical to hippocampal function and influenced by gonadal hormones. Physiological data are limited, so we asked whether basal transmission and long-term potentiation (LTP) differed in slices of adult male and female rats. The results showed small sex differences in basal transmission but striking sex differences in opioid receptor sensitivity and LTP. When slices were made from females on proestrous morning, when serum levels of 17β-estradiol peak, the nonspecific opioid receptor antagonist naloxone (1 μm) enhanced MF transmission but there was no effect in males, suggesting preferential opioid receptor-dependent inhibition in females when 17β-estradiol levels are elevated. The μ-opioid receptor (MOR) antagonist Cys2,Tyr3,Orn5,Pen7-amide (CTOP; 300 nm) had a similar effect but the δ-opioid receptor (DOR) antagonist naltrindole (NTI; 1 μm) did not, implicating MORs in female MF transmission. The GABAB receptor antagonist saclofen (200 μm) occluded effects of CTOP but the GABAA receptor antagonist bicuculline (10 μm) did not. For LTP, a low-frequency (LF) protocol was used because higher frequencies elicited hyperexcitability in females. Proestrous females exhibited LF-LTP but males did not, suggesting a lower threshold for synaptic plasticity when 17β-estradiol is elevated. NTI blocked LF-LTP in proestrous females, but CTOP did not. Electron microscopy revealed more DOR-labeled spines of pyramidal cells in proestrous females than males. Therefore, we suggest that increased postsynaptic DORs mediate LF-LTP in proestrous females. The results show strong MOR regulation of MF transmission only in females and identify a novel DOR-dependent form of MF LTP specific to proestrus.
Collapse
|
38
|
McEwen BS. Sex, stress and the brain: interactive actions of hormones on the developing and adult brain. Climacteric 2014; 17 Suppl 2:18-25. [PMID: 25225752 DOI: 10.3109/13697137.2014.949662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The brain is a target of steroid hormone actions that affect brain architecture, molecular and neurochemical processes, behavior and neuroprotection via both genomic and non-genomic actions. Estrogens have such effects throughout the brain and this article provides an historical and current view of how this new view has come about and how it has affected the study of sex differences, as well as other areas of neuroscience, including the effects of stress on the brain.
Collapse
Affiliation(s)
- B S McEwen
- Alfred E. Mirsky Professor, Head, Harold and Margaret Milliken Hatch, Laboratory of Neuroendocrinology, The Rockefeller University , New York, NY , USA
| |
Collapse
|
39
|
Olivetti PR, Maheshwari A, Noebels JL. Neonatal estradiol stimulation prevents epilepsy in Arx model of X-linked infantile spasms syndrome. Sci Transl Med 2014; 6:220ra12. [PMID: 24452264 DOI: 10.1126/scitranslmed.3007231] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Infantile spasms are a catastrophic form of pediatric epilepsy with inadequate treatment. In patients, mutation of ARX, a transcription factor selectively expressed in neuronal precursors and adult inhibitory interneurons, impairs cell migration and causes a major inherited subtype of the disease X-linked infantile spasms syndrome. Using an animal model, the Arx((GCG)10+7) mouse, we determined that brief estradiol (E2) administration during early postnatal development prevented spasms in infancy and seizures in adult mutants. E2 was ineffective when delivered after puberty or 30 days after birth. Early E2 treatment altered mRNA levels of three downstream targets of Arx (Shox2, Ebf3, and Lgi1) and restored depleted interneuron populations without increasing GABAergic synaptic density. Postnatal E2 treatment may induce lasting transcriptional changes that lead to enduring disease modification and could potentially serve as a therapy for inherited interneuronopathies.
Collapse
Affiliation(s)
- Pedro R Olivetti
- Blue Bird Circle Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
40
|
Scharfman HE, MacLusky NJ. Sex differences in the neurobiology of epilepsy: a preclinical perspective. Neurobiol Dis 2014; 72 Pt B:180-92. [PMID: 25058745 DOI: 10.1016/j.nbd.2014.07.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022] Open
Abstract
When all of the epilepsies are considered, sex differences are not always clear, despite the fact that many sex differences are known in the normal brain. Sex differences in epilepsy in laboratory animals are also unclear, although robust effects of sex on seizures have been reported, and numerous effects of gonadal steroids have been shown throughout the rodent brain. Here we discuss several reasons why sex differences in seizure susceptibility are unclear or are difficult to study. Examples of robust sex differences in laboratory rats, such as the relative resistance of adult female rats to the chemoconvulsant pilocarpine compared to males, are described. We also describe a novel method that has shed light on sex differences in neuropathology, which is a relatively new technique that will potentially contribute to sex differences research in the future. The assay we highlight uses the neuronal nuclear antigen NeuN to probe sex differences in adult male and female rats and mice. In females, weak NeuN expression defines a sex difference that previous neuropathological studies have not described. We also show that in adult rats, social isolation stress can obscure the normal effects of 17β-estradiol to increase excitability in area CA3 of the hippocampus. These data underscore the importance of controlling behavioral stress in studies of seizure susceptibility in rodents and suggest that behavioral stress may be one factor that has led to inconsistencies in outcomes of sex differences research. These and other issues have made it difficult to translate our increasing knowledge about the effects of gonadal hormones on the brain to improved treatment for men and women with epilepsy.
Collapse
Affiliation(s)
- Helen E Scharfman
- Department of Child & Adolescent Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Neil J MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
41
|
Ahmad A, Vohora D. Proconvulsant effects of estriol, the third estrogen, in the mouse PTZ-kindling model. Neurol Sci 2014; 35:1561-6. [DOI: 10.1007/s10072-014-1795-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/05/2014] [Indexed: 11/28/2022]
|
42
|
Sex and estrogen receptor expression influence opioid peptide levels in the mouse hippocampal mossy fiber pathway. Neurosci Lett 2013; 552:66-70. [PMID: 23933204 DOI: 10.1016/j.neulet.2013.07.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 11/21/2022]
Abstract
The opioid peptides, dynorphin (DYN) and enkephalin (L-ENK) are contained in the hippocampal mossy fiber pathway where they modulate synaptic plasticity. In rats, the levels of DYN and L-ENK immunoreactivity (-ir) are increased when estrogen levels are elevated (Torres-Reveron et al., 2008, 2009). Here, we used quantitative immunocytochemistry to examine whether opioid levels are similarly regulated in wildtype (WT) mice over the estrous cycle, and how these compared to males. Moreover, using estrogen receptor (ER) alpha and beta knock-out mice (AERKO and BERKO, respectively), the present study examined the role of ERs in rapid, membrane-initiated (6 h), or slower, nucleus-initiated (48 h) estradiol effects on mossy fiber opioid levels. Unlike rats, the levels of DYN and L-ENK-ir did not change over the estrous cycle. However, compared to males, females had higher levels of DYN-ir in CA3a and L-ENK-ir in CA3b. In WT and BERKO ovariectomized (OVX) mice, neither DYN- nor L-ENK-ir changed following 6 or 48 h estradiol benzoate (EB) administration. However, DYN-ir significantly increased 48 h after EB in the dentate gyrus (DG) and CA3b of AERKO mice only. These findings suggest that cyclic hormone levels regulate neither DYN nor L-ENK levels in the mouse mossy fiber pathway as they do in the rat. This may be due to species-specific differences in the mossy fiber pathway. However, in the mouse, DYN levels are regulated by exogenous EB in the absence of ERα possibly via an ERβ-mediated pathway requiring new gene transcription.
Collapse
|
43
|
May RM, Tabatadze N, Czech MM, Woolley CS. Estradiol regulates large dense core vesicles in the hippocampus of adult female rats. Brain Struct Funct 2013; 219:1947-54. [PMID: 23893355 DOI: 10.1007/s00429-013-0614-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/15/2013] [Indexed: 02/01/2023]
Abstract
Previous work has shown that the steroid hormone estradiol facilitates the release of anticonvulsant neuropeptides from inhibitory neurons in the hippocampus to suppress seizures. Because neuropeptides are packaged in large dense core vesicles, estradiol may facilitate neuropeptide release through regulation of dense core vesicles. In the current study, we used serial section electron microscopy in the hippocampal CA1 region of adult female rats to test three hypotheses about estradiol regulation of dense core vesicles: (1) Estradiol increases the number of dense core vesicles in axonal boutons, (2) Estradiol increases the size of dense core vesicles in axonal boutons, (3) Estradiol shifts the location of dense core vesicles toward the periphery of axonal boutons, potentially lowering the threshold for neuropeptide release during seizures. We found that estradiol increases the number and size of dense core vesicles in inhibitory axonal boutons, consistent with increased neuropeptide content, but does not shift the location of dense core vesicles closer to the bouton periphery. These effects were specific to large dense core vesicles (>80 nm) in inhibitory boutons. Estradiol had no effects on small dense core vesicles or dense core vesicles in excitatory boutons. Our results indicate that estradiol suppresses seizures at least in part by increasing the potentially releasable pool of neuropeptides in the hippocampus, and that estradiol facilitation of neuropeptide release involves a mechanism other than mobilization of dense core vesicles toward sites of release.
Collapse
Affiliation(s)
- Renee M May
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL, 60208, USA
| | | | | | | |
Collapse
|
44
|
Tabatadze N, Smejkalova T, Woolley CS. Distribution and posttranslational modification of synaptic ERα in the adult female rat hippocampus. Endocrinology 2013; 154. [PMID: 23183182 PMCID: PMC3548183 DOI: 10.1210/en.2012-1870] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acute 17β-estradiol (E2) signaling in the brain is mediated by extranuclear estrogen receptors. Here we used biochemical methods to investigate the distribution, posttranslational modification, and E2 regulation of estrogen receptor-α (ERα) in synaptosomal fractions isolated by differential centrifugation from the adult female rat hippocampus. We find that ERα is concentrated presynaptically and is highly enriched with synaptic vesicles. Immunoisolation of vesicles using vesicle subtype-specific markers showed that ERα is associated with both glutamate and γ-aminobutyric acid-containing neurotransmitter vesicles as well as with some large dense core vesicles. Experiments using broad spectrum and residue-specific phosphatases indicated that a portion of ERα in synaptosomal fractions is phosphorylated at serine/threonine residues leading to a mobility shift in SDS-PAGE and creating a double band on Western blots. The phosphorylated form of ERα runs in the upper of the two bands and is particularly concentrated with synaptic vesicles. Finally, we used E2 with or without the acyl protein thioesterase 1 inhibitor, Palmostatin B, to show that 20 min of E2 treatment of hippocampal slices depletes ERα from the synaptosomal membrane by depalmitoylation. We found no evidence that E2 regulates phosphorylation of synaptosomal ERα on this time scale. These studies begin to fill the gap between detailed molecular characterization of extranuclear ERα in previous in vitro studies and acute E2 modulation of hippocampal synapses in the adult brain.
Collapse
Affiliation(s)
- Nino Tabatadze
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
45
|
Velíšková J, Desantis KA. Sex and hormonal influences on seizures and epilepsy. Horm Behav 2013; 63:267-77. [PMID: 22504305 PMCID: PMC3424285 DOI: 10.1016/j.yhbeh.2012.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/20/2022]
Abstract
Epilepsy is the third most common chronic neurological disorder. Clinical and experimental evidence supports the role of sex and influence of sex hormones on seizures and epilepsy as well as alterations of the endocrine system and levels of sex hormones by epileptiform activity. Conversely, seizures are sensitive to changes in sex hormone levels, which in turn may affect the seizure-induced neuronal damage. The effects of reproductive hormones on neuronal excitability and seizure-induced damage are complex to contradictory and depend on different mechanisms, which have to be accounted for in data interpretation. Both estradiol and progesterone/allopregnanolone may have beneficial effects for patients with epilepsy. Individualized hormonal therapy should be considered as adjunctive treatment in patients with epilepsy to improve seizure control as well as quality of life.
Collapse
Affiliation(s)
- Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA.
| | | |
Collapse
|
46
|
Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease. Neuroscience 2012; 239:46-66. [PMID: 23276673 DOI: 10.1016/j.neuroscience.2012.12.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in the hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17β-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences the hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17β-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer's disease, epilepsy and addiction.
Collapse
|
47
|
Ferando I, Mody I. GABAAreceptor modulation by neurosteroids in models of temporal lobe epilepsies. Epilepsia 2012; 53 Suppl 9:89-101. [DOI: 10.1111/epi.12038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Verrotti A, D'Egidio C, Agostinelli S, Verrotti C, Pavone P. Diagnosis and management of catamenial seizures: a review. Int J Womens Health 2012; 4:535-41. [PMID: 23071424 PMCID: PMC3469236 DOI: 10.2147/ijwh.s28872] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Catamenial epilepsy is defined as a pattern of seizures that changes in severity during particular phases of the menstrual cycle, wherein estrogens are proconvulsant, increasing the neuronal excitability; and progesterone is anticonvulsant, enhancing GABA-mediated inhibition. Thus, changes in serum estradiol/progesterone ratio throughout a normal reproductive cycle bring about an increased or decreased risk of seizure occurrence. To date, there are no specific drug treatments for catamenial epilepsy however, non-hormonal and hormonal therapies have been proposed. The aim of this review is to report preclinical and clinical evidences about the relationship between female reproductive steroids and epileptic seizures, and to describe treatment approaches for catamenial epilepsy.
Collapse
|
49
|
Koba S, Yoshinaga K, Fujita S, Miyoshi M, Watanabe T. Exercise pressor reflex function in female rats fluctuates with the estrous cycle. J Appl Physiol (1985) 2012; 113:719-26. [PMID: 22723635 DOI: 10.1152/japplphysiol.00396.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In women, sympathoexcitation during static handgrip exercise is reduced during the follicular phase of the ovarian cycle compared with the menstrual phase. Previous animal studies have demonstrated that estrogen modulates the exercise pressor reflex, a sympathoexcitatory mechanism originating in contracting skeletal muscle. The present study was conducted in female rats to determine whether skeletal muscle contraction-evoked reflex sympathoexcitation fluctuates with the estrous cycle. The estrous cycle was judged by vaginal smear. Plasma concentrations of estrogen were significantly (P < 0.05) higher in rats during the proestrus phase of the estrus cycle than those during the diestrus phase. In decerebrate rats, either electrically induced 30-s continuous static contraction of the hindlimb muscle or 30-s passive stretch of Achilles tendon (a maneuver that selectively stimulates mechanically sensitive muscle afferents) evoked less renal sympathoexcitatory and pressor responses in the proestrus animals than in the diestrus animals. Renal sympathoexcitatory response to 1-min intermittent (1- to 4-s stimulation to relaxation) bouts of static contraction was also significantly less in the proestrus rats than that in the diestrus rats. In ovariectomized female rats, 17β-estradiol applied into a well covering the dorsal surface of the lumbar spinal cord significantly reduced skeletal muscle contraction-evoked responses. These observations demonstrate that the exercise pressor reflex function and its mechanical component fluctuate with the estrous cycle in rats. Estrogen may cause these fluctuations through its attenuating effects on the spinal component of the reflex arc.
Collapse
Affiliation(s)
- Satoshi Koba
- Division of Integrative Physiology, Tottori University Faculty of Medicine, Yonago, Japan.
| | | | | | | | | |
Collapse
|
50
|
Hajjo R, Setola V, Roth BL, Tropsha A. Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5-hydroxytryptamine-6 receptors and as potential cognition enhancers. J Med Chem 2012; 55:5704-19. [PMID: 22537153 DOI: 10.1021/jm2011657] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have devised a chemocentric informatics methodology for drug discovery integrating independent approaches to mining biomolecular databases. As a proof of concept, we have searched for novel putative cognition enhancers. First, we generated Quantitative Structure-Activity Relationship (QSAR) models of compounds binding to 5-hydroxytryptamine-6 receptor (5-HT(6)R), a known target for cognition enhancers, and employed these models for virtual screening to identify putative 5-HT(6)R actives. Second, we queried chemogenomics data from the Connectivity Map ( http://www.broad.mit.edu/cmap/ ) with the gene expression profile signatures of Alzheimer's disease patients to identify compounds putatively linked to the disease. Thirteen common hits were tested in 5-HT(6)R radioligand binding assays and ten were confirmed as actives. Four of them were known selective estrogen receptor modulators that were never reported as 5-HT(6)R ligands. Furthermore, nine of the confirmed actives were reported elsewhere to have memory-enhancing effects. The approaches discussed herein can be used broadly to identify novel drug-target-disease associations.
Collapse
Affiliation(s)
- Rima Hajjo
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|