1
|
Thomas SJ, Ghosh B, Wang Z, Yang M, Nong J, Severa J, Wright MC, Zhong Y, Lepore AC. Hepatocyte Growth Factor Delivery to Injured Cervical Spinal Cord Using an Engineered Biomaterial Protects Respiratory Neural Circuitry and Preserves Functional Diaphragm Innervation. J Neurotrauma 2024. [PMID: 39078323 DOI: 10.1089/neu.2024.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
A major portion of spinal cord injury (SCI) cases occur in the cervical region, where essential components of the respiratory neural circuitry are located. Phrenic motor neurons (PhMNs) housed at cervical spinal cord level C3-C5 directly innervate the diaphragm, and SCI-induced damage to these cells severely impairs respiratory function. In this study, we tested a biomaterial-based approach aimed at preserving this critical phrenic motor circuitry after cervical SCI by locally delivering hepatocyte growth factor (HGF). HGF is a potent mitogen that promotes survival, proliferation, migration, repair, and regeneration of a number of different cell and tissue types in response to injury. We developed a hydrogel-based HGF delivery system that can be injected into the intrathecal space for local delivery of high levels of HGF without damaging the spinal cord. Implantation of HGF hydrogel after unilateral C5 contusion-type SCI in rats preserved diaphragm function, as assessed by in vivo recordings of both compound muscle action potentials and inspiratory electromyography amplitudes. HGF hydrogel also preserved PhMN innervation of the diaphragm, as assessed by both retrograde PhMN tracing and detailed neuromuscular junction morphological analysis. Furthermore, HGF hydrogel significantly decreased lesion size and degeneration of cervical motor neuron cell bodies, as well as reduced levels surrounding the injury site of scar-associated chondroitin sulfate proteoglycan molecules that limit axon growth capacity. Our findings demonstrate that local biomaterial-based delivery of HGF hydrogel to injured cervical spinal cord is an effective strategy for preserving respiratory circuitry and diaphragm function.
Collapse
Affiliation(s)
- Samantha J Thomas
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zhicheng Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Mengxi Yang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jia Nong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jenna Severa
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, Pennsylvania, USA
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Michel-Flutot P, Cheng L, Thomas SJ, Lisi B, Schwartz H, Lam S, Lyttle M, Jaffe DA, Smith G, Li S, Wright MC, Lepore AC. PTEN inhibition promotes robust growth of bulbospinal respiratory axons and partial recovery of diaphragm function in a chronic model of cervical contusion spinal cord injury. Exp Neurol 2024; 378:114816. [PMID: 38789023 PMCID: PMC11200215 DOI: 10.1016/j.expneurol.2024.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
High spinal cord injury (SCI) leads to persistent and debilitating compromise in respiratory function. Cervical SCI not only causes the death of phrenic motor neurons (PhMNs) that innervate the diaphragm, but also damages descending respiratory pathways originating in the rostral ventral respiratory group (rVRG) located in the brainstem, resulting in denervation and consequent silencing of spared PhMNs located caudal to injury. It is imperative to determine whether interventions targeting rVRG axon growth and respiratory neural circuit reconnection are efficacious in chronic cervical contusion SCI, given that the vast majority of individuals are chronically-injured and most cases of SCI involve contusion-type damage to the cervical region. We therefore employed a rat model of chronic cervical hemicontusion to test therapeutic manipulations aimed at reconstructing damaged rVRG-PhMN-diaphragm circuitry to achieve recovery of respiratory function. At a chronic time point post-injury, we systemically administered: an antagonist peptide directed against phosphatase and tensin homolog (PTEN), a central inhibitor of neuron-intrinsic axon growth potential; an antagonist peptide directed against receptor-type protein tyrosine phosphatase sigma (PTPσ), another important negative regulator of axon growth capacity; or a combination of these two peptides. PTEN antagonist peptide (PAP4) promoted partial recovery of diaphragm motor activity out to nine months post-injury (though this effect depended on the anesthetic regimen used during recording), while PTPσ peptide did not impact diaphragm function after cervical SCI. Furthermore, PAP4 promoted robust growth of descending bulbospinal rVRG axons caudal to the injury within the denervated portion of the PhMN pool, while PTPσ peptide did not affect rVRG axon growth at this location that is critical to control of diaphragmatic respiratory function. In conclusion, we find that, when PTEN inhibition is targeted at a chronic time point following cervical contusion, our non-invasive PAP4 strategy can successfully promote significant regrowth of damaged respiratory neural circuitry and also partial recovery of diaphragm motor function.
Collapse
Affiliation(s)
- Pauline Michel-Flutot
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lan Cheng
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Samantha J Thomas
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brianna Lisi
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Harrison Schwartz
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sandy Lam
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Megan Lyttle
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David A Jaffe
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - George Smith
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 191405104, USA
| | - Shuxin Li
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, PA 191405104, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, PA 19038, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
3
|
Benevides ES, Thakre PP, Rana S, Sunshine MD, Jensen VN, Oweiss K, Fuller DD. Chemogenetic stimulation of phrenic motor output and diaphragm activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589188. [PMID: 38659846 PMCID: PMC11042184 DOI: 10.1101/2024.04.12.589188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Impaired diaphragm activation contributes to morbidity and mortality in many neurodegenerative diseases and neurologic injuries. We conducted experiments to determine if expression of an excitatory DREADD (designer receptors exclusively activation by designer drugs) in the mid-cervical spinal cord would enable respiratory-related activation of phrenic motoneurons to increase diaphragm activation. Wild type (C57/bl6) and ChAT-Cre mice received bilateral intraspinal (C4) injections of an adeno-associated virus (AAV) encoding the hM3D(Gq) excitatory DREADD. In wild type mice, this produced non-specific DREADD expression throughout the mid-cervical ventral horn. In ChAT-Cre mice, a Cre-dependent viral construct was used to drive DREADD expression in C4 ventral horn motoneurons, targeting the phrenic motoneuron pool. Diaphragm EMG was recorded during spontaneous breathing at 6-8 weeks post-AAV delivery. The selective DREADD ligand JHU37160 (J60) caused a bilateral, sustained (>1 hr) increase in inspiratory EMG bursting in both groups; the relative increase was greater in ChAT-Cre mice. Additional experiments in a ChAT-Cre rat model were conducted to determine if spinal DREADD activation could increase inspiratory tidal volume (VT) during spontaneous breathing without anesthesia. Three to four months after intraspinal (C4) injection of AAV driving Cre-dependent hM3D(Gq) expression, intravenous J60 resulted in a sustained (>30 min) increase in VT assessed using whole-body plethysmography. Subsequently, direct nerve recordings confirmed that J60 evoked a >50% increase in inspiratory phrenic output. The data show that mid-cervical spinal DREADD expression targeting the phrenic motoneuron pool enables ligand-induced, sustained increases in the neural drive to the diaphragm. Further development of this technology may enable application to clinical conditions associated with impaired diaphragm activation and hypoventilation.
Collapse
Affiliation(s)
- Ethan S Benevides
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32601
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, 32601
| | - Prajwal P Thakre
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32601
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, 32601
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32601
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32601
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, 32601
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32601
| | - Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32601
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, 32601
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32601
| | - Victoria N Jensen
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32601
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, 32601
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32601
| | - Karim Oweiss
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32601
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32601
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32601
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, 32601
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32601
| |
Collapse
|
4
|
Urban MW, Charsar BA, Heinsinger NM, Markandaiah SS, Sprimont L, Zhou W, Brown EV, Henderson NT, Thomas SJ, Ghosh B, Cain RE, Trotti D, Pasinelli P, Wright MC, Dalva MB, Lepore AC. EphrinB2 knockdown in cervical spinal cord preserves diaphragm innervation in a mutant SOD1 mouse model of ALS. eLife 2024; 12:RP89298. [PMID: 38224498 PMCID: PMC10945582 DOI: 10.7554/elife.89298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss. Importantly, non-neuronal cell types such as astrocytes also play significant roles in disease pathogenesis. However, mechanisms of astrocyte contribution to ALS remain incompletely understood. Astrocyte involvement suggests that transcellular signaling may play a role in disease. We examined contribution of transmembrane signaling molecule ephrinB2 to ALS pathogenesis, in particular its role in driving motor neuron damage by spinal cord astrocytes. In symptomatic SOD1G93A mice (a well-established ALS model), ephrinB2 expression was dramatically increased in ventral horn astrocytes. Reducing ephrinB2 in the cervical spinal cord ventral horn via viral-mediated shRNA delivery reduced motor neuron loss and preserved respiratory function by maintaining phrenic motor neuron innervation of diaphragm. EphrinB2 expression was also elevated in human ALS spinal cord. These findings implicate ephrinB2 upregulation as both a transcellular signaling mechanism in mutant SOD1-associated ALS and a promising therapeutic target.
Collapse
Affiliation(s)
- Mark W Urban
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Brittany A Charsar
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Nicolette M Heinsinger
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Shashirekha S Markandaiah
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Lindsay Sprimont
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Wei Zhou
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Eric V Brown
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Nathan T Henderson
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Samantha J Thomas
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Biswarup Ghosh
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Rachel E Cain
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Megan C Wright
- Department of Biology, Arcadia UniversityGlensideUnited States
| | - Matthew B Dalva
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane UniversityNew OrleansUnited States
| | - Angelo C Lepore
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| |
Collapse
|
5
|
Michel-Flutot P, Cheng L, Thomas SJ, Lisi B, Schwartz H, Lam S, Lyttle M, Jaffe DA, Smith G, Li S, Wright MC, Lepore AC. PTEN inhibition promotes robust growth of bulbospinal respiratory axons and partial recovery of diaphragm function in a chronic model of cervical contusion spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575021. [PMID: 38260313 PMCID: PMC10802567 DOI: 10.1101/2024.01.10.575021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
High spinal cord injury (SCI) leads to persistent and debilitating compromise in respiratory function. Cervical SCI not only causes the death of phrenic motor neurons (PhMNs) that innervate the diaphragm, but also damages descending respiratory pathways originating in the rostral ventral respiratory group (rVRG) located in the brainstem, resulting in denervation and consequent silencing of spared PhMNs located caudal to injury. It is imperative to determine whether interventions targeting rVRG axon growth and respiratory neural circuit reconnection are efficacious in chronic cervical contusion SCI, given that the vast majority of individuals are chronically-injured and most cases of SCI involve contusion-type damage to the cervical region. We therefore employed a clinically-relevant rat model of chronic cervical hemicontusion to test therapeutic manipulations aimed at reconstructing damaged rVRG-PhMN-diaphragm circuitry to achieve recovery of respiratory function. At a chronic time point post-injury, we systemically administered: an antagonist peptide directed against phosphatase and tensin homolog (PTEN), a central inhibitor of neuron-intrinsic axon growth potential; an antagonist peptide directed against receptor-type protein tyrosine phosphatase sigma (PTPσ), another important negative regulator of axon growth capacity; or a combination of these two peptides. PTEN antagonist peptide (PAP4) promoted partial recovery of diaphragm motor activity out to nine months post-injury, while PTPσ peptide did not impact diaphragm function after cervical SCI. Furthermore, PAP4 promoted robust growth of descending bulbospinal rVRG axons caudal to the injury within the denervated portion of the PhMN pool, while PTPσ peptide did not affect rVRG axon growth at this location that is critical to control of diaphragmatic respiratory function. In conclusion, we find that, when PTEN inhibition is targeted at a chronic time point following cervical contusion that is most relevant to the SCI clinical population, our non-invasive PAP4 strategy can successfully promote significant regrowth of damaged respiratory neural circuitry and also partial recovery of diaphragm motor function. HIGHLIGHTS PTEN antagonist peptide promotes partial diaphragm function recovery in chronic cervical contusion SCI.PTPσ inhibitory peptide does not impact diaphragm function recovery in chronic cervical contusion SCI.PTEN antagonist peptide promotes growth of bulbospinal rVRG axons in chronic cervical contusion SCI.PTPσ peptide does not affect rVRG axon growth in chronic cervical contusion SCI.
Collapse
|
6
|
Urban MW, Charsar BA, Heinsinger NM, Markandaiah SS, Sprimont L, Zhou W, Brown EV, Henderson NT, Thomas SJ, Ghosh B, Cain RE, Trotti D, Pasinelli P, Wright MC, Dalva MB, Lepore AC. EphrinB2 knockdown in cervical spinal cord preserves diaphragm innervation in a mutant SOD1 mouse model of ALS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.538887. [PMID: 37215009 PMCID: PMC10197713 DOI: 10.1101/2023.05.10.538887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss. Importantly, non-neuronal cell types such as astrocytes also play significant roles in disease pathogenesis. However, mechanisms of astrocyte contribution to ALS remain incompletely understood. Astrocyte involvement suggests that transcellular signaling may play a role in disease. We examined contribution of transmembrane signaling molecule ephrinB2 to ALS pathogenesis, in particular its role in driving motor neuron damage by spinal cord astrocytes. In symptomatic SOD1-G93A mice (a well-established ALS model), ephrinB2 expression was dramatically increased in ventral horn astrocytes. Reducing ephrinB2 in the cervical spinal cord ventral horn via viral-mediated shRNA delivery reduced motor neuron loss and preserved respiratory function by maintaining phrenic motor neuron innervation of diaphragm. EphrinB2 expression was also elevated in human ALS spinal cord. These findings implicate ephrinB2 upregulation as both a transcellular signaling mechanism in mutant SOD1-associated ALS and a promising therapeutic target.
Collapse
|
7
|
Ge X, Ye W, Zhu Y, Cui M, Zhou J, Xiao C, Jiang D, Tang P, Wang J, Wang Z, Ji C, Zhou X, Cao X, Liu W, Cai W. USP1/UAF1-Stabilized METTL3 Promotes Reactive Astrogliosis and Improves Functional Recovery after Spinal Cord Injury through m 6A Modification of YAP1 mRNA. J Neurosci 2023; 43:1456-1474. [PMID: 36653190 PMCID: PMC10008067 DOI: 10.1523/jneurosci.1209-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
RNA N6-methyladenosine (m6A) modification is involved in diverse biological processes. However, its role in spinal cord injury (SCI) is poorly understood. The m6A level increases in injured spinal cord, and METTL3, which is the core subunit of methyltransferase complex, is upregulated in reactive astrocytes and further stabilized by the USP1/UAF1 complex after SCI. The USP1/UAF1 complex specifically binds to and subsequently removes K48-linked ubiquitination of the METTL3 protein to maintain its stability after SCI. Moreover, conditional knockout of astrocytic METTL3 in both sexes of mice significantly suppressed reactive astrogliosis after SCI, thus resulting in widespread infiltration of inflammatory cells, aggravated neuronal loss, hampered axonal regeneration, and impaired functional recovery. Mechanistically, the YAP1 transcript was identified as a potential target of METTL3 in astrocytes. METTL3 could selectively methylate the 3'-UTR region of the YAP1 transcript, which subsequently maintains its stability in an IGF2BP2-dependent manner. In vivo, YAP1 overexpression by adeno-associated virus injection remarkably contributed to reactive astrogliosis and partly reversed the detrimental effects of METTL3 knockout on functional recovery after SCI. Furthermore, we found that the methyltransferase activity of METTL3 plays an essential role in reactive astrogliosis and motor repair, whereas METTL3 mutant without methyltransferase function failed to promote functional recovery after SCI. Our study reveals the previously unreported role of METTL3-mediated m6A modification in SCI and might provide a potential therapy for SCI.SIGNIFICANCE STATEMENT Spinal cord injury is a devastating trauma of the CNS involving motor and sensory impairments. However, epigenetic modification in spinal cord injury is still unclear. Here, we propose an m6A regulation effect of astrocytic METTL3 following spinal cord injury, and we further characterize its underlying mechanism, which might provide promising strategies for spinal cord injury treatment.
Collapse
Affiliation(s)
- Xuhui Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wu Ye
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yufeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Min Cui
- Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiawen Zhou
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Chenyu Xiao
- Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongdong Jiang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Pengyu Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiaxing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhuanghui Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chengyue Ji
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Liu
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
8
|
Kong F, Zhang Y, Wang T, Zhong L, Feng C, Wu Y. Repeated sevoflurane exposures inhibit neurogenesis by inducing the upregulation of glutamate transporter 1 in astrocytes. Eur J Neurosci 2023; 57:217-232. [PMID: 36440503 DOI: 10.1111/ejn.15874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Sevoflurane is a widely used general anaesthetic in paediatric patients. Although repeated sevoflurane exposure is known to cause neurodevelopmental disorders in children, the mechanism of this neurotoxicity remains largely unknown. Herein, we investigated the role of glutamate transporter 1 (GLT1) in sevoflurane-induced decreased neurogenesis. Neonatal rat pups (postnatal Day 7, PN7) were exposed to 3% sevoflurane for 2 h for three consecutive days. Neuron loss and decreased neurogenesis have been observed in the neonatal rat brain, along with decreased number of astrocytes. Apoptotic astrocytes were observed after repeated sevoflurane exposure in vitro, resulting in decreased levels of brain-derived neurotrophic factor (BDNF). Calcium overload was observed in astrocytes after repeated sevoflurane exposure, in addition to upregulation of GLT1. Inhibition of GLT1 activity ameliorates repeated sevoflurane exposure-induced cognitive deficits in adult rats. Mechanically, the upregulation of GLT1 was caused by the activation of mRNA translation. RNA-sequencing analysis further confirmed that translation-related genes were activated by repeated sevoflurane exposure. These results indicate that cognitive deficits caused by repeated sevoflurane exposure during PN7-9 are triggered decreased neurogenesis. The proposed underlying mechanism involves upregulation of apoptosis in astrocytes induced by GLT1; therefore, we propose GLT1 as a potential pharmacological target for brain injury in paediatric practice.
Collapse
Affiliation(s)
- Fanli Kong
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- Endocrine Department of Liyuan Hospital; Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Wang
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Zhong
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Feng
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Wu
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Jensen BK, McAvoy KJ, Heinsinger NM, Lepore AC, Ilieva H, Haeusler AR, Trotti D, Pasinelli P. Targeting TNFα produced by astrocytes expressing amyotrophic lateral sclerosis-linked mutant fused in sarcoma prevents neurodegeneration and motor dysfunction in mice. Glia 2022; 70:1426-1449. [PMID: 35474517 PMCID: PMC9540310 DOI: 10.1002/glia.24183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022]
Abstract
Genetic mutations that cause amyotrophic lateral sclerosis (ALS), a progressively lethal motor neuron disease, are commonly found in ubiquitously expressed genes. In addition to direct defects within motor neurons, growing evidence suggests that dysfunction of non-neuronal cells is also an important driver of disease. Previously, we demonstrated that mutations in DNA/RNA binding protein fused in sarcoma (FUS) induce neurotoxic phenotypes in astrocytes in vitro, via activation of the NF-κB pathway and release of pro-inflammatory cytokine TNFα. Here, we developed an intraspinal cord injection model to test whether astrocyte-specific expression of ALS-causative FUSR521G variant (mtFUS) causes neuronal damage in vivo. We show that restricted expression of mtFUS in astrocytes is sufficient to induce death of spinal motor neurons leading to motor deficits through upregulation of TNFα. We further demonstrate that TNFα is a key toxic molecule as expression of mtFUS in TNFα knockout animals does not induce pathogenic changes. Accordingly, in mtFUS-transduced animals, administration of TNFα neutralizing antibodies prevents neurodegeneration and motor dysfunction. Together, these studies strengthen evidence that astrocytes contribute to disease in ALS and establish, for the first time, that FUS-ALS astrocytes induce pathogenic changes to motor neurons in vivo. Our work identifies TNFα as the critical driver of mtFUS-astrocytic toxicity and demonstrates therapeutic success of targeting TNFα to attenuate motor neuron dysfunction and death. Ultimately, through defining and subsequently targeting this toxic mechanism, we provide a viable FUS-ALS specific therapeutic strategy, which may also be applicable to sporadic ALS where FUS activity and cellular localization are frequently perturbed.
Collapse
Affiliation(s)
- Brigid K. Jensen
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Kevin J. McAvoy
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Present address:
Manfredi LaboratoryWeill Cornell Medicine, Cornell UniversityNew YorkNYUSA
| | - Nicolette M. Heinsinger
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Angelo C. Lepore
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Hristelina Ilieva
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Aaron R. Haeusler
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
10
|
Yu G, Zhang Y, Ning B. Reactive Astrocytes in Central Nervous System Injury: Subgroup and Potential Therapy. Front Cell Neurosci 2022; 15:792764. [PMID: 35002629 PMCID: PMC8733560 DOI: 10.3389/fncel.2021.792764] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic central nervous system (CNS) injury, which includes both traumatic brain injury (TBI) and spinal cord injury (SCI), is associated with irreversible loss of neurological function and high medical care costs. Currently, no effective treatment exists to improve the prognosis of patients. Astrocytes comprise the largest population of glial cells in the CNS and, with the advancements in the field of neurology, are increasingly recognized as having key functions in both the brain and the spinal cord. When stimulated by disease or injury, astrocytes become activated and undergo a series of changes, including alterations in gene expression, hypertrophy, the loss of inherent functions, and the acquisition of new ones. Studies have shown that astrocytes are highly heterogeneous with respect to their gene expression profiles, and this heterogeneity accounts for their observed context-dependent phenotypic diversity. In the inured CNS, activated astrocytes play a dual role both as regulators of neuroinflammation and in scar formation. Identifying the subpopulations of reactive astrocytes that exert beneficial or harmful effects will aid in deciphering the pathological mechanisms underlying CNS injuries and ultimately provide a theoretical basis for the development of effective strategies for the treatment of associated conditions. Following CNS injury, as the disease progresses, astrocyte phenotypes undergo continuous changes. Although current research methods do not allow a comprehensive and accurate classification of astrocyte subpopulations in complex pathological contexts, they can nonetheless aid in understanding the roles of astrocytes in disease. In this review, after a brief introduction to the pathology of CNS injury, we summarize current knowledge regarding astrocyte activation following CNS injury, including: (a) the regulatory factors involved in this process; (b) the functions of different astrocyte subgroups based on the existing classification of astrocytes; and (c) attempts at astrocyte-targeted therapy.
Collapse
Affiliation(s)
- GuiLian Yu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhang
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Ning
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
11
|
Brown EV, Falnikar A, Heinsinger N, Cheng L, Andrews CE, DeMarco M, Lepore AC. Cervical spinal cord injury-induced neuropathic pain in male mice is associated with a persistent pro-inflammatory macrophage/microglial response in the superficial dorsal horn. Exp Neurol 2021; 343:113757. [PMID: 33991526 DOI: 10.1016/j.expneurol.2021.113757] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 01/31/2023]
Abstract
A significant portion of individuals living with traumatic spinal cord injury (SCI) experiences some degree of debilitating neuropathic pain (NP). This pain remains largely intractable in a majority of cases, due in part to an incomplete understanding of its underlying mechanisms. Central sensitization, an increase in excitability of pain transmission neurons located in superficial dorsal horn (sDH), plays a key role in development and maintenance of SCI-induced NP. Resident microglia and peripheral monocyte-derived macrophages (referred to collectively as MMΦ) are involved in promoting SCI-induced DH neuron hyperexcitability. Importantly, these MMΦ consist of populations of cells that can exert pro-inflammatory or anti-inflammatory signaling within injured spinal cord. It is critical to spatiotemporally characterize this heterogeneity to understand MMΦ contribution to NP after SCI. Given that a majority of SCI cases are cervical in nature, we used a model of unilateral C5/C6 contusion that results in persistent at-level thermal hyperalgesia and mechanical allodynia, two forms of NP-related behavior, in the forepaw. The aim of this study was to characterize the sDH MMΦ response within intact cervical spinal cord segments caudal to the lesion (i.e. the location of primary afferent nociceptive input from the forepaw plantar surface). Cervical SCI promoted a persistent MMΦ response in sDH that coincided with the chronic NP phenotype. Using markers of pro- and anti-inflammatory MMΦ, we found that the MMΦ population within sDH exhibited significant heterogeneity that evolved over time post-injury, including a robust and persistent increase in pro-inflammatory MMΦ that was especially pronounced at later times. C5/C6 contusion SCI also induced below-level thermal hyperalgesia and mechanical allodynia in the hindpaw; however, we did not observe a pronounced MMΦ response in sDH of L4/L5 spinal cord, suggesting that different inflammatory cell mechanisms occurring in sDH may be involved in at-level versus below-level NP following SCI. In conclusion, our findings reveal significant MMΦ heterogeneity both within and across pain transmission locations after SCI. These data also show a prominent and persistent pro-inflammatory MMΦ response, suggesting a possible role in DH neuron hyperexcitability and NP.
Collapse
Affiliation(s)
- Eric V Brown
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States
| | - Aditi Falnikar
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States
| | - Nicolette Heinsinger
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States
| | - Lan Cheng
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States
| | - Carrie E Andrews
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States
| | - Michael DeMarco
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, BLSB 245, Philadelphia, PA 19107, United States.
| |
Collapse
|
12
|
Cheng L, Sami A, Ghosh B, Goudsward HJ, Smith GM, Wright MC, Li S, Lepore AC. Respiratory axon regeneration in the chronically injured spinal cord. Neurobiol Dis 2021; 155:105389. [PMID: 33975016 DOI: 10.1016/j.nbd.2021.105389] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Promoting the combination of robust regeneration of damaged axons and synaptic reconnection of these growing axon populations with appropriate neuronal targets represents a major therapeutic goal following spinal cord injury (SCI). A key impediment to achieving this important aim includes an intrinsic inability of neurons to extend axons in adult CNS, particularly in the context of the chronically-injured spinal cord. We tested whether an inhibitory peptide directed against phosphatase and tensin homolog (PTEN: a central inhibitor of neuron-intrinsic axon growth potential) could restore inspiratory diaphragm function by reconnecting critical respiratory neural circuitry in a rat model of chronic cervical level 2 (C2) hemisection SCI. We found that systemic delivery of PTEN antagonist peptide 4 (PAP4) starting at 8 weeks after C2 hemisection promoted substantial, long-distance regeneration of injured bulbospinal rostral Ventral Respiratory Group (rVRG) axons into and through the lesion and back toward phrenic motor neurons (PhMNs) located in intact caudal C3-C5 spinal cord. Despite this robust rVRG axon regeneration, PAP4 stimulated only minimal recovery of diaphragm function. Furthermore, re-lesion through the hemisection site completely removed PAP4-induced functional improvement, demonstrating that axon regeneration through the lesion was responsible for this partial functional recovery. Interestingly, there was minimal formation of putative excitatory monosynaptic connections between regrowing rVRG axons and PhMN targets, suggesting that (1) limited rVRG-PhMN synaptic reconnectivity was responsible at least in part for the lack of a significant functional effect, (2) chronically-injured spinal cord presents an obstacle to achieving synaptogenesis between regenerating axons and post-synaptic targets, and (3) addressing this challenge is a potentially-powerful strategy to enhance therapeutic efficacy in the chronic SCI setting. In conclusion, our study demonstrates a non-invasive and transient pharmacological approach in chronic SCI to repair the critically-important neural circuitry controlling diaphragmatic respiratory function, but also sheds light on obstacles to circuit plasticity presented by the chronically-injured spinal cord.
Collapse
Affiliation(s)
- Lan Cheng
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Armin Sami
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hannah J Goudsward
- Department of Biology, Arcadia University, 450 S. Easton Rd., 220 Boyer Hall, Glenside, PA 19038, USA
| | - George M Smith
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140-5104, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, 450 S. Easton Rd., 220 Boyer Hall, Glenside, PA 19038, USA
| | - Shuxin Li
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140-5104, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
13
|
Duan H, Pang Y, Zhao C, Zhou T, Sun C, Hou M, Ning G, Feng S. A novel, minimally invasive technique to establish the animal model of spinal cord injury. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:881. [PMID: 34164515 PMCID: PMC8184457 DOI: 10.21037/atm-21-2063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background Spinal cord injury (SCI) is a traumatic disease that is associated with high morbidity, disability, and mortality worldwide. The animal spinal cord contusion model is similar to clinical SCI; therefore, this model is often used to study the pathophysiological changes and treatment strategies for humans after SCI. The present study aimed to introduce a novel, minimally invasive technique to establish an SCI model, and to evaluate its advantages compared with conventional methods. Methods Incision length, blood loss, length of time, and model success rate during the operation were recorded. Postoperative hematuria, incision hematoma, scoliosis [detected by micro computed tomography (Micro-CT)] and mortality were analyzed to evaluate surgical complications. The visual observation of the tissue was used to compare the effect of laminectomy by 2 methods on the scar hyperplasia at the injured site. Basso-Beattie-Bresnahan (BBB) score and catwalk automated quantitative gait analysis were conducted to measure behavioral function recovery. To evaluate the nerve function recovery of rats postoperatively, somatosensory evoked potential (SEP) and motor evoked potential (MEP) were studied by electrophysiological analyses. Results The results of operation-related parameters of the two models (conventional surgery group vs. minimally invasive surgery group) were as follows: surgical incision length: 23.58±1.58 versus 12.67±1.50 mm (P<0.05), blood loss: 3.96±1.05 versus 1.34±0.87 mL (P<0.05), and total operative time: 12.67±1.78 versus 10.33±1.92 min (P<0.05). In addition, the success rate of the 2 models was 100%. Surgical complications (conventional surgery group vs. minimally invasive surgery group) were as follows: hematuria: 25% versus 8.3%, kyphosis: 25% versus 0%, incision hematoma: 30% versus 9%, and mortality: 25% versus 8.3%. Micro-CT indicated severe scoliosis in the conventional surgery group. Gross tissue results showed that the conventional surgery group had more severe fibrous scar hyperplasia. The results of the BBB scores, catwalk automated quantitative gait analysis, and electrophysiology showed that the difference between the two groups was statistically significant in terms of behavioral recovery and neuroelectrophysiology. Conclusions The minimally invasive technique has the advantages of small incision and reduced tissue damage and surgical complications, and may be used as an alternative spinal cord contusion method.
Collapse
Affiliation(s)
- Huiquan Duan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Yilin Pang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Tiangang Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Mengfan Hou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, China.,Shandong University Center for Orthopaedics, Shandong University, Jinan, China
| |
Collapse
|
14
|
Cheng L, Sami A, Ghosh B, Urban MW, Heinsinger NM, Liang SS, Smith GM, Wright MC, Li S, Lepore AC. LAR inhibitory peptide promotes recovery of diaphragm function and multiple forms of respiratory neural circuit plasticity after cervical spinal cord injury. Neurobiol Dis 2020; 147:105153. [PMID: 33127470 PMCID: PMC7726004 DOI: 10.1016/j.nbd.2020.105153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/14/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs), up-regulated in and around the lesion after traumatic spinal cord injury (SCI), are key extracellular matrix inhibitory molecules that limit axon growth and consequent recovery of function. CSPG-mediated inhibition occurs via interactions with axonal receptors, including leukocyte common antigen- related (LAR) phosphatase. We tested the effects of a novel LAR inhibitory peptide in rats after hemisection at cervical level 2, a SCI model in which bulbospinal inspiratory neural circuitry originating in the medullary rostral ventral respiratory group (rVRG) becomes disconnected from phrenic motor neuron (PhMN) targets in cervical spinal cord, resulting in persistent partial-to-complete diaphragm paralysis. LAR peptide was delivered by a soaked gelfoam, which was placed directly over the injury site immediately after C2 hemisection and replaced at 1 week post-injury. Axotomized rVRG axons originating in ipsilateral medulla or spared rVRG fibers originating in contralateral medulla were separately assessed by anterograde tracing via AAV2-mCherry injection into rVRG. At 8 weeks post-hemisection, LAR peptide significantly improved ipsilateral hemidiaphragm function, as assessed in vivo with electromyography recordings. LAR peptide promoted robust regeneration of ipsilateral-originating rVRG axons into and through the lesion site and into intact caudal spinal cord to reach PhMNs located at C3-C5 levels. Furthermore, regenerating rVRG axons re-established putative monosynaptic connections with their PhMNs targets. In addition, LAR peptide stimulated robust sprouting of both modulatory serotonergic axons and contralateral-originating rVRG fibers within the PhMN pool ipsilateral/ caudal to the hemisection. Our study demonstrates that targeting LAR-based axon growth inhibition promotes multiple forms of respiratory neural circuit plasticity and provides a new peptide-based therapeutic strategy to ameliorate the devastating respiratory consequences of SCI.
Collapse
Affiliation(s)
- Lan Cheng
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Armin Sami
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Mark W Urban
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Nicolette M Heinsinger
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Sophia S Liang
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - George M Smith
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140-5104, United States of America
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, PA 19038, United States of America
| | - Shuxin Li
- Department of Anatomy and Cell Biology, Shriners Hospitals for Pediatric Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140-5104, United States of America
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America.
| |
Collapse
|
15
|
Martins-Macedo J, Lepore AC, Domingues HS, Salgado AJ, Gomes ED, Pinto L. Glial restricted precursor cells in central nervous system disorders: Current applications and future perspectives. Glia 2020; 69:513-531. [PMID: 33052610 DOI: 10.1002/glia.23922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022]
Abstract
The crosstalk between glial cells and neurons represents an exceptional feature for maintaining the normal function of the central nervous system (CNS). Increasing evidence has revealed the importance of glial progenitor cells in adult neurogenesis, reestablishment of cellular pools, neuroregeneration, and axonal (re)myelination. Several types of glial progenitors have been described, as well as their potentialities for recovering the CNS from certain traumas or pathologies. Among these precursors, glial-restricted precursor cells (GRPs) are considered the earliest glial progenitors and exhibit tripotency for both Type I/II astrocytes and oligodendrocytes. GRPs have been derived from embryos and embryonic stem cells in animal models and have maintained their capacity for self-renewal. Despite the relatively limited knowledge regarding the isolation, characterization, and function of these progenitors, GRPs are promising candidates for transplantation therapy and reestablishment/repair of CNS functions in neurodegenerative and neuropsychiatric disorders, as well as in traumatic injuries. Herein, we review the definition, isolation, characterization and potentialities of GRPs as cell-based therapies in different neurological conditions. We briefly discuss the implications of using GRPs in CNS regenerative medicine and their possible application in a clinical setting. MAIN POINTS: GRPs are progenitors present in the CNS with differentiation potential restricted to the glial lineage. These cells have been employed in the treatment of a myriad of neurodegenerative and traumatic pathologies, accompanied by promising results, herein reviewed.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Helena S Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
16
|
Gross SK, Shim BS, Bartus RT, Deaver D, McEachin Z, Bétourné A, Boulis NM, Maragakis NJ. Focal and dose-dependent neuroprotection in ALS mice following AAV2-neurturin delivery. Exp Neurol 2020; 323:113091. [DOI: 10.1016/j.expneurol.2019.113091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
|
17
|
Long-Distance Axon Regeneration Promotes Recovery of Diaphragmatic Respiratory Function after Spinal Cord Injury. eNeuro 2019; 6:ENEURO.0096-19.2019. [PMID: 31427403 PMCID: PMC6794082 DOI: 10.1523/eneuro.0096-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
Compromise in inspiratory breathing following cervical spinal cord injury (SCI) is caused by damage to descending bulbospinal axons originating in the rostral ventral respiratory group (rVRG) and consequent denervation and silencing of phrenic motor neurons (PhMNs) that directly control diaphragm activation. In a rat model of high-cervical hemisection SCI, we performed systemic administration of an antagonist peptide directed against phosphatase and tensin homolog (PTEN), a central inhibitor of neuron-intrinsic axon growth potential. PTEN antagonist peptide (PAP4) robustly restored diaphragm function, as determined with electromyography (EMG) recordings in living SCI animals. PAP4 promoted substantial, long-distance regeneration of injured rVRG axons through the lesion and back toward PhMNs located throughout the C3–C5 spinal cord. These regrowing rVRG axons also formed putative excitatory synaptic connections with PhMNs, demonstrating reconnection of rVRG-PhMN-diaphragm circuitry. Lastly, re-lesion through the hemisection site completely ablated functional recovery induced by PAP4. Collectively, our findings demonstrate that axon regeneration in response to systemic PAP4 administration promoted recovery of diaphragmatic respiratory function after cervical SCI.
Collapse
|
18
|
Kobashi S, Terashima T, Katagi M, Nakae Y, Okano J, Suzuki Y, Urushitani M, Kojima H. Transplantation of M2-Deviated Microglia Promotes Recovery of Motor Function after Spinal Cord Injury in Mice. Mol Ther 2019; 28:254-265. [PMID: 31604678 DOI: 10.1016/j.ymthe.2019.09.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Despite the poor prognosis of spinal cord injury (SCI), effective treatments are lacking. Diverse factors regulate SCI prognosis. In this regard, microglia play crucial roles depending on their phenotype. The M1 phenotype exacerbates neuroinflammation, whereas the M2 phenotype promotes tissue repair and provides anti-inflammatory effects. Therefore, we compared the effects of M2 and M1 microglia transplantation on SCI. First, we established a method for effective induction of M1 or M2 microglia by exposure to granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin (IL)-4, respectively, to be used for transplantation in a SCI mouse model. In the M2 microglia transplantation group, significant recovery of motor function was observed compared with the control and M1 groups. Elevated transcription of several neuroprotective molecules including mannose receptor C type 1 (Mrc1), arginase 1 (Arg1), and insulin-like growth factor 1 (Igf1) was observed. Moreover, intramuscular injection of FluoroRuby dye revealed recovery of retrograde axonal transport from the neuromuscular junction to upstream of the injured spinal cord only in the M2-transplanted group, although the number of migrated microglia were comparable in both M1 and M2 groups. In conclusion, our results indicated that M2 microglia obtained by IL-4 stimulation may be a promising candidate for cell transplantation therapy for SCI.
Collapse
Affiliation(s)
- Shuhei Kobashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan; Department of Neurology, Shiga University of Medical Science, Shiga, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan.
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Yuki Nakae
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Junko Okano
- Department of Plastic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihisa Suzuki
- Department of Plastic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
19
|
Peterson AR, Binder DK. Post-translational Regulation of GLT-1 in Neurological Diseases and Its Potential as an Effective Therapeutic Target. Front Mol Neurosci 2019; 12:164. [PMID: 31338020 PMCID: PMC6629900 DOI: 10.3389/fnmol.2019.00164] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Glutamate transporter-1 (GLT-1) is a Na+-dependent transporter that plays a key role in glutamate homeostasis by removing excess glutamate in the central nervous system (CNS). GLT-1 dysregulation occurs in various neurological diseases including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and epilepsy. Downregulation or dysfunction of GLT-1 has been a common finding across these diseases but how this occurs is still under investigation. This review aims to highlight post-translational regulation of GLT-1 which leads to its downregulation including sumoylation, palmitoylation, nitrosylation, ubiquitination, and subcellular localization. Various therapeutic interventions to restore GLT-1, their proposed mechanism of action and functional effects will be examined as potential treatments to attenuate the neurological symptoms associated with loss or downregulation of GLT-1.
Collapse
Affiliation(s)
- Allison R Peterson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
20
|
Ghosh B, Nong J, Wang Z, Urban MW, Heinsinger NM, Trovillion VA, Wright MC, Lepore AC, Zhong Y. A hydrogel engineered to deliver minocycline locally to the injured cervical spinal cord protects respiratory neural circuitry and preserves diaphragm function. Neurobiol Dis 2019; 127:591-604. [PMID: 31028873 DOI: 10.1016/j.nbd.2019.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/06/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
We tested a biomaterial-based approach to preserve the critical phrenic motor circuitry that controls diaphragm function by locally delivering minocycline hydrochloride (MH) following cervical spinal cord injury (SCI). MH is a clinically-available antibiotic and anti-inflammatory drug that targets a broad range of secondary injury mechanisms via its anti-inflammatory, anti-oxidant and anti-apoptotic properties. However, MH is only neuroprotective at high concentrations that cannot be achieved by systemic administration, which limits its clinical efficacy. We have developed a hydrogel-based MH delivery system that can be injected into the intrathecal space for local delivery of high concentrations of MH, without damaging spinal cord tissue. Implantation of MH hydrogel after unilateral level-C4/5 contusion SCI robustly preserved diaphragm function, as assessed by in vivo recordings of compound muscle action potential (CMAP) and electromyography (EMG) amplitudes. MH hydrogel also decreased lesion size and degeneration of cervical motor neuron somata, demonstrating its central neuroprotective effects within the injured cervical spinal cord. Furthermore, MH hydrogel significantly preserved diaphragm innervation by the axons of phrenic motor neurons (PhMNs), as assessed by both detailed neuromuscular junction (NMJ) morphological analysis and retrograde PhMN labeling from the diaphragm using cholera toxin B (CTB). In conclusion, our findings demonstrate that local MH hydrogel delivery to the injured cervical spinal cord is effective in preserving respiratory function after SCI by protecting the important neural circuitry that controls diaphragm activation.
Collapse
Affiliation(s)
- Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America
| | - Jia Nong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 7-716, Philadelphia, PA 19104, United States of America
| | - Zhicheng Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 7-716, Philadelphia, PA 19104, United States of America
| | - Mark W Urban
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America
| | - Nicolette M Heinsinger
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America
| | - Victoria A Trovillion
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America
| | - Megan C Wright
- Department of Biology, Arcadia University, 450 S Easton Rd, 220 Boyer Hall, Glenside, PA 19038, United States of America
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, 233 S. 10th St., Bluemle Life Sciences Building - Room 245, Philadelphia, PA 19107, United States of America.
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 7-716, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
21
|
Warren PM, Alilain WJ. Plasticity Induced Recovery of Breathing Occurs at Chronic Stages after Cervical Contusion. J Neurotrauma 2019; 36:1985-1999. [PMID: 30565484 DOI: 10.1089/neu.2018.6186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Severe midcervical contusion injury causes profound deficits throughout the respiratory motor system that last from acute to chronic time points post-injury. We use chondroitinase ABC (ChABC) to digest chondroitin sulphate proteoglycans within the extracellular matrix (ECM) surrounding the respiratory system at both acute and chronic time points post-injury to explore whether augmentation of plasticity can recover normal motor function. We demonstrate that, regardless of time post-injury or treatment application, the lesion cavity remains consistent, showing little regeneration or neuroprotection within our model. Through electromyography (EMG) recordings of multiple inspiratory muscles, however, we show that application of the enzyme at chronic time points post-injury initiates the recovery of normal breathing in previously paralyzed respiratory muscles. This reduced the need for compensatory activity throughout the motor system. Application of ChABC at acute time points recovered only modest amounts of respiratory function. To further understand this effect, we assessed the anatomical mechanism of this recovery. Increased EMG activity in previously paralyzed muscles was brought about by activation of spared bulbospinal pathways through the site of injury and/or sprouting of spared serotonergic fibers from the contralateral side of the cord. Accordingly, we demonstrate that alterations to the ECM and augmentation of plasticity at chronic time points post-cervical contusion can cause functional recovery of the respiratory motor system and reveal mechanistic evidence of the pathways that govern this effect.
Collapse
Affiliation(s)
- Philippa Mary Warren
- 1 Department of Neurosciences, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, Ohio.,2 King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Guy's Campus, London Bridge, London, United Kingdom
| | - Warren Joseph Alilain
- 1 Department of Neurosciences, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, Ohio.,3 Department of Neuroscience, Spinal Cord and Brain Injury Research Centre, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
22
|
Goulão M, Ghosh B, Urban MW, Sahu M, Mercogliano C, Charsar BA, Komaravolu S, Block CG, Smith GM, Wright MC, Lepore AC. Astrocyte progenitor transplantation promotes regeneration of bulbospinal respiratory axons, recovery of diaphragm function, and a reduced macrophage response following cervical spinal cord injury. Glia 2018; 67:452-466. [PMID: 30548313 DOI: 10.1002/glia.23555] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/10/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Stem/progenitor cell transplantation delivery of astrocytes is a potentially powerful strategy for spinal cord injury (SCI). Axon extension into SCI lesions that occur spontaneously or in response to experimental manipulations is often observed along endogenous astrocyte "bridges," suggesting that augmenting this response via astrocyte lineage transplantation can enhance axon regrowth. Given the importance of respiratory dysfunction post-SCI, we transplanted glial-restricted precursors (GRPs)-a class of lineage-restricted astrocyte progenitors-into the C2 hemisection model and evaluated effects on diaphragm function and the growth response of descending rostral ventral respiratory group (rVRG) axons that innervate phrenic motor neurons (PhMNs). GRPs survived long term and efficiently differentiated into astrocytes in injured spinal cord. GRPs promoted significant recovery of diaphragm electromyography amplitudes and stimulated robust regeneration of injured rVRG axons. Although rVRG fibers extended across the lesion, no regrowing axons re-entered caudal spinal cord to reinnervate PhMNs, suggesting that this regeneration response-although impressive-was not responsible for recovery. Within ipsilateral C3-5 ventral horn (PhMN location), GRPs induced substantial sprouting of spared fibers originating in contralateral rVRG and 5-HT axons that are important for regulating PhMN excitability; this sprouting was likely involved in functional effects of GRPs. Finally, GRPs reduced the macrophage response (which plays a key role in inducing axon retraction and limiting regrowth) both within the hemisection and at intact caudal spinal cord surrounding PhMNs. These findings demonstrate that astrocyte progenitor transplantation promotes significant plasticity of rVRG-PhMN circuitry and restoration of diaphragm function and suggest that these effects may be in part through immunomodulation.
Collapse
Affiliation(s)
- Miguel Goulão
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania.,Life and Health Sciences Research Institute (ICVS), School of Medicine, ICVS/3B's - PT Government Associate Laborator, University of Minho, Braga, Portugal
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mark W Urban
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Malya Sahu
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christina Mercogliano
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Brittany A Charsar
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sreeya Komaravolu
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cole G Block
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - George M Smith
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, Pennsylvania
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Johnson CDL, Zuidema JM, Kearns KR, Maguire AB, Desmond GP, Thompson DM, Gilbert RJ. The Effect of Electrospun Fiber Diameter on Astrocyte-Mediated Neurite Guidance and Protection. ACS APPLIED BIO MATERIALS 2018; 2:104-117. [PMID: 31061987 DOI: 10.1021/acsabm.8b00432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The topography of electrospun fiber scaffolds modifies astrocytes toward in vivo-like morphologies and behaviors. However, little is known about how electrospun fiber diameter influences astrocyte behavior. In this work, aligned fibers with two distinct nanoscale fiber diameters (808 and 386 nm) were prepared, and the astrocyte response was measured over time. Astrocytes on the large diameter fibers showed significantly increased elongation as early as 2 h after seeding and remained significantly more elongated for up to 4 days compared to those on small diameter fibers. Astrocytes extending along larger diameter fibers were better equipped to support long neurite outgrowth from dorsal root ganglia neurons, and neurite outgrowth along these astrocytes was less branched than outgrowth along astrocytes cultured on small diameter fibers. The differences in astrocyte shape observed on the small or large diameter fibers did not translate into differences in GLT-1, GFAP, or GLAST protein expression. Thus, different fiber diameters were unable to influence astrocyte protein expression uniquely. Nevertheless, astrocytes cultured in either small or large fibers significantly increased their expression of GLT-1 compared to astrocytes cultured on nonfiber (film) controls. Fibrous-induced increases in astrocyte GLT-1 expression protected astrocyte/neuron cocultures from toxicity generated by high extracellular glutamate. Alternatively, astrocytes/neurons cultured on films were less able to protect these cells from culture conditions consisting of high glutamate levels. Biomaterials, such as the fibrous materials presented here, may help stimulate astrocytes to increase GLT-1 expression and uptake more glutamate, since astrocytes are less likely to uptake glutamate in neurodegenerative pathologies or following central nervous system injury.
Collapse
Affiliation(s)
- Christopher D L Johnson
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States
| | - Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Kathryn R Kearns
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States
| | - Alianna B Maguire
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States
| | - Gregory P Desmond
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States
| | - Deanna M Thompson
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States
| | - Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590, United States
| |
Collapse
|
24
|
Goldshmit Y, Jona G, Schmukler E, Solomon S, Pinkas-Kramarski R, Ruban A. Blood Glutamate Scavenger as a Novel Neuroprotective Treatment in Spinal Cord Injury. J Neurotrauma 2018; 35:2581-2590. [DOI: 10.1089/neu.2017.5524] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yona Goldshmit
- Steyer School of Health Professions, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Australian Regenerative Medicine Institute, Monash Biotechnology, Clayton, Victoria, Australia
| | - Ghil Jona
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Schmukler
- Department of Neurobiology, Tel-Aviv University, Tel Aviv, Israel
| | - Shira Solomon
- Department of Neurobiology, Tel-Aviv University, Tel Aviv, Israel
| | | | - Angela Ruban
- Steyer School of Health Professions, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Local BDNF Delivery to the Injured Cervical Spinal Cord using an Engineered Hydrogel Enhances Diaphragmatic Respiratory Function. J Neurosci 2018; 38:5982-5995. [PMID: 29891731 DOI: 10.1523/jneurosci.3084-17.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
We developed an innovative biomaterial-based approach to repair the critical neural circuitry that controls diaphragm activation by locally delivering brain-derived neurotrophic factor (BDNF) to injured cervical spinal cord. BDNF can be used to restore respiratory function via a number of potential repair mechanisms; however, widespread BDNF biodistribution resulting from delivery methods such as systemic injection or lumbar puncture can lead to inefficient drug delivery and adverse side effects. As a viable alternative, we developed a novel hydrogel-based system loaded with polysaccharide-BDNF particles self-assembled by electrostatic interactions that can be safely implanted in the intrathecal space for achieving local BDNF delivery with controlled dosing and duration. Implantation of BDNF hydrogel after C4/C5 contusion-type spinal cord injury (SCI) in female rats robustly preserved diaphragm function, as assessed by in vivo recordings of compound muscle action potential and electromyography amplitudes. However, BDNF hydrogel did not decrease lesion size or degeneration of cervical motor neuron soma, suggesting that its therapeutic mechanism of action was not neuroprotection within spinal cord. Interestingly, BDNF hydrogel significantly preserved diaphragm innervation by phrenic motor neurons (PhMNs), as assessed by detailed neuromuscular junction morphological analysis and retrograde PhMN labeling from diaphragm using cholera toxin B. Furthermore, BDNF hydrogel enhanced the serotonergic axon innervation of PhMNs that plays an important role in modulating PhMN excitability. Our findings demonstrate that local BDNF hydrogel delivery is a robustly effective and safe strategy to restore diaphragm function after SCI. In addition, we demonstrate novel therapeutic mechanisms by which BDNF can repair respiratory neural circuitry.SIGNIFICANCE STATEMENT Respiratory compromise is a leading cause of morbidity and mortality following traumatic spinal cord injury (SCI). We used an innovative biomaterial-based drug delivery system in the form of a hydrogel that can be safely injected into the intrathecal space for achieving local delivery of brain-derived neurotrophic factor (BDNF) with controlled dosing and duration, while avoiding side effects associated with other delivery methods. In a clinically relevant rat model of cervical contusion-type SCI, BDNF hydrogel robustly and persistently improved diaphragmatic respiratory function by enhancing phrenic motor neuron (PhMN) innervation of the diaphragm neuromuscular junction and by increasing serotonergic innervation of PhMNs in ventral horn of the cervical spinal cord. These exciting findings demonstrate that local BDNF hydrogel delivery is a safe and robustly effective strategy to maintain respiratory function after cervical SCI.
Collapse
|
26
|
Falnikar A, Stratton J, Lin R, Andrews CE, Tyburski A, Trovillion VA, Gottschalk C, Ghosh B, Iacovitti L, Elliott MB, Lepore AC. Differential Response in Novel Stem Cell Niches of the Brain after Cervical Spinal Cord Injury and Traumatic Brain Injury. J Neurotrauma 2018; 35:2195-2207. [PMID: 29471717 DOI: 10.1089/neu.2017.5497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Populations of neural stem cells (NSCs) reside in a number of defined niches in the adult central nervous system (CNS) where they continually give rise to mature cell types throughout life, including newly born neurons. In addition to the prototypical niches of the subventricular zone (SVZ) and subgranular zone (SGZ) of the hippocampal dentate gyrus, novel stem cell niches that are also neurogenic have recently been identified in multiple midline structures, including circumventricular organs (CVOs) of the brain. These resident NSCs serve as a homeostatic source of new neurons and glial cells under intact physiological conditions. Importantly, they may also have the potential for reparative processes in pathological states such as traumatic spinal cord injury (SCI) and traumatic brain injury (TBI). As the response in these novel CVO stem cell niches has been characterized after stroke but not following SCI or TBI, we quantitatively assessed cell proliferation and the neuronal and glial lineage fate of resident NSCs in three CVO nuclei-area postrema (AP), median eminence (ME), and subfornical organ (SFO) -in rat models of cervical contusion-type SCI and controlled cortical impact (CCI)-induced TBI. Using bromodeoxyuridine (BrdU) labeling of proliferating cells, we find that TBI significantly enhanced proliferation in AP, ME, and SFO, whereas cervical SCI had no effects at early or chronic time-points post-injury. In addition, SCI did not alter NSC differentiation profile into doublecortin-positive neuroblasts, GFAP-expressing astrocytes, or Olig2-labeled cells of the oligodendrocyte lineage within AP, ME, or SFO at both time-points. In contrast, CCI induced a pronounced increase in Sox2- and doublecortin-labeled cells in the AP and Iba1-labeled microglia in the SFO. Lastly, plasma derived from CCI animals significantly increased NSC expansion in an in vitro neurosphere assay, whereas plasma from SCI animals did not exert such an effect, suggesting that signaling factors present in blood may be relevant to stimulating CVO niches after CNS injury and may explain the differential in vivo effects of SCI and TBI on the novel stem cell niches.
Collapse
Affiliation(s)
- Aditi Falnikar
- 1 Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Jarred Stratton
- 2 Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Ruihe Lin
- 1 Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Carrie E Andrews
- 1 Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Ashley Tyburski
- 2 Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Victoria A Trovillion
- 1 Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Chelsea Gottschalk
- 1 Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Biswarup Ghosh
- 1 Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Lorraine Iacovitti
- 1 Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Melanie B Elliott
- 1 Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, Pennsylvania.,2 Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Angelo C Lepore
- 1 Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Logan CN, LaCrosse AL, Knackstedt LA. Nucleus accumbens GLT-1a overexpression reduces glutamate efflux during reinstatement of cocaine-seeking but is not sufficient to attenuate reinstatement. Neuropharmacology 2018; 135:297-307. [PMID: 29567092 PMCID: PMC6383073 DOI: 10.1016/j.neuropharm.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/14/2018] [Accepted: 03/17/2018] [Indexed: 12/22/2022]
Abstract
Cocaine use disorder is a chronically relapsing disease without FDA-approved treatments. Using a rodent model of cocaine relapse, we and others have previously demonstrated that the beta-lactam antibiotic ceftriaxone attenuates cue- and cocaine-primed reinstatement of cocaine-seeking. Ceftriaxone restores cocaine-induced deficits in both system xc- and GLT-1 expression and function in the nucleus accumbens core (NAc). We recently demonstrated that restoration of GLT-1 expression in the NAc is necessary for ceftriaxone to attenuate reinstatement of cocaine-seeking. Here we used an adeno-associated virus (AAV) to overexpress GLT-1a in the NAc to investigate whether such restoration is sufficient to attenuate cue- and cocaine-primed reinstatement. Rats self-administered cocaine for two weeks and received injections of either AAV-GFAP-GLT-1a or AAV-GFAP-eGFP in the NAc following the last day of self-administration. Rats then underwent three weeks of extinction training (during which time transduction and expression occurred) before undergoing a cue- or cocaine-primed reinstatement test. Microdialysis for the quantification of glutamate efflux in the NAc was conducted during the cocaine-primed test. Rats that received AAV-GFAP-GLT-1a reinstated cue-primed cocaine-seeking in a similar manner as rats that received the control AAV-GFAP-eGFP. Upregulation of GLT-1a attenuated glutamate efflux during a cocaine-primed reinstatement test, but was not sufficient to attenuate reinstatement. We confirmed that GLT-1a upregulation resulted in functional upregulation of glutamate transport and expression, without affecting sodium-independent glutamate uptake, indicating system xc-was not altered. These results indicate that upregulation of NAc GLT-1 transporters alone is not sufficient to prevent the reinstatement of cocaine-seeking and implicate additional mechanisms in regulating glutamate efflux.
Collapse
Affiliation(s)
- Carly N Logan
- Psychology Department, University of Florida, Gainesville, FL, United States.
| | - Amber L LaCrosse
- Psychology Department, University of Florida, Gainesville, FL, United States
| | - Lori A Knackstedt
- Psychology Department, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
Astrocytic JWA deletion exacerbates dopaminergic neurodegeneration by decreasing glutamate transporters in mice. Cell Death Dis 2018; 9:352. [PMID: 29500411 PMCID: PMC5834463 DOI: 10.1038/s41419-018-0381-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/29/2022]
Abstract
Astrocytic JWA exerts neuroprotective roles by alleviating oxidative stress and inhibiting inflammation. However, the molecular mechanisms of how astrocytic JWA is involved in dopaminergic neurodegeneration in Parkinson's disease (PD) remain largely unknown. In this study, we found that astrocyte-specific JWA knockout mice (JWA CKO) exacerbated dopamine (DA) neuronal loss and motor dysfunction, and reduced the levels of DA and its metabolites in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced PD model. Astrocytic JWA deficiency repressed expression of excitatory amino-acid transporter 2 (GLT-1) and glutamate uptake both in vivo and in vitro. Further, the regulation of GLT-1 expression was involved in JWA-triggered activation of the MAPK and PI3K signaling pathways. JWA-increased GLT-1 expression was abolished by inhibitors of MEK and PI3K. Silencing CREB also abrogated JWA-increased GLT-1 expression and glutamate uptake. Additionally, JWA deficiency activated glial fibrillary acidic protein (GFAP), and increased the expression of STAT3. Similarly to the MPTP model, paraquat (PQ) exposure produced PD-like phenotypes in JWA CKO mice. Taken together, our findings provide novel insights into astrocytic JWA function in the pathogenesis of neurotoxin mouse models of PD.
Collapse
|
29
|
Vandeweerd JM, Hontoir F, De Knoop A, De Swert K, Nicaise C. Retrograde Neuroanatomical Tracing of Phrenic Motor Neurons in Mice. J Vis Exp 2018. [PMID: 29553523 DOI: 10.3791/56758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Phrenic motor neurons are cervical motor neurons originating from C3 to C6 levels in most mammalian species. Axonal projections converge into phrenic nerves innervating the respiratory diaphragm. In spinal cord slices, phrenic motor neurons cannot be identified from other motor neurons on morphological or biochemical criteria. We provide the description of procedures for visualizing phrenic motor neuron cell bodies in mice, following intrapleural injections of cholera toxin subunit beta (CTB) conjugated to a fluorophore. This fluorescent neuroanatomical tracer has the ability to be caught up at the diaphragm neuromuscular junction, be carried retrogradely along the phrenic axons and reach the phrenic cell bodies. Two methodological approaches of intrapleural CTB delivery are compared: transdiaphragmatic versus transthoracic injections. Both approaches are successful and result in similar number of CTB-labeled phrenic motor neurons. In conclusion, these techniques can be applied to visualize or quantify the phrenic motor neurons in various experimental studies such as those focused on the diaphragm-phrenic circuitry.
Collapse
|
30
|
Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat 2018; 87:25-31. [DOI: 10.1016/j.jchemneu.2017.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022]
|
31
|
Hammond SL, Leek AN, Richman EH, Tjalkens RB. Cellular selectivity of AAV serotypes for gene delivery in neurons and astrocytes by neonatal intracerebroventricular injection. PLoS One 2017; 12:e0188830. [PMID: 29244806 PMCID: PMC5731760 DOI: 10.1371/journal.pone.0188830] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
The non-pathogenic parvovirus, adeno-associated virus (AAV), is an efficient vector for transgene expression in vivo and shows promise for treatment of brain disorders in clinical trials. Currently, there are more than 100 AAV serotypes identified that differ in the binding capacity of capsid proteins to specific cell surface receptors that can transduce different cell types and brain regions in the CNS. In the current study, multiple AAV serotypes expressing a GFP reporter (AAV1, AAV2/1, AAVDJ, AAV8, AAVDJ8, AAV9, AAVDJ9) were screened for their infectivity in both primary murine astrocyte and neuronal cell cultures. AAV2/1, AAVDJ8 and AAV9 were selected for further investigation of their tropism throughout different brain regions and cell types. Each AAV was administered to P0-neonatal mice via intracerebroventricular injections (ICV). Brains were then systematically analyzed for GFP expression at 3 or 6 weeks post-infection in various regions, including the olfactory bulb, striatum, cortex, hippocampus, substantia nigra (SN) and cerebellum. Cell counting data revealed that AAV2/1 infections were more prevalent in the cortical layers but penetrated to the midbrain less than AAVDJ8 and AAV9. Additionally, there were differences in the persistence of viral transgene expression amongst the three serotypes examined in vivo at 3 and 6 weeks post-infection. Because AAV-mediated transgene expression is of interest in neurodegenerative diseases such as Parkinson's Disease, we examined the SN with microscopy techniques, such as CLARITY tissue transmutation, to identify AAV serotypes that resulted in optimal transgene expression in either astrocytes or dopaminergic neurons. AAVDJ8 displayed more tropism in astrocytes compared to AAV9 in the SN region. We conclude that ICV injection results in lasting expression of virally encoded transgene when using AAV vectors and that specific AAV serotypes are required to selectively deliver transgenes of interest to different brain regions in both astrocytes and neurons.
Collapse
Affiliation(s)
- Sean L. Hammond
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Ashley N. Leek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Evan H. Richman
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Ronald B. Tjalkens
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
- * E-mail:
| |
Collapse
|
32
|
Zhang M, Tao W, Yuan Z, Liu Y. Mst-1 deficiency promotes post-traumatic spinal motor neuron survival via enhancement of autophagy flux. J Neurochem 2017; 143:244-256. [PMID: 28833175 DOI: 10.1111/jnc.14154] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
Abstract
The mammalian Ste20-like kinase 1 (Mst-1) is a serine-threonine kinase and a component of the Hippo tumor suppressor pathway, which reacts to pathologically relevant stress and regulates cell death. However, little is known about its role in spinal cord injury. Here, we found that p-Mst-1, the activated form of Mst-1, was induced in the post-traumatic spinal motor neurons. In vivo evidence demonstrated that Mst-1 deficiency promoted post-traumatic spinal motor neuron survival, Basso mouse scale scores, and synapse survival. Moreover, we found that autophagosome formation and autolysosome degradation enhanced by Mst-1 deficiency were crucial to attenuate the death of injured spinal motor neurons. Taken together, our findings demonstrate that Mst-1 deficiency promotes post-traumatic spinal motor neuron survival via enhancement of autophagy flux.
Collapse
Affiliation(s)
- Mengting Zhang
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| | - Wufan Tao
- Obstetrics & Gynecology Hospital and Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Zengqiang Yuan
- Brain Science Center at the Institute of Basic Medical Science, Haidian District, Beijing, China
| | - Yaobo Liu
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| |
Collapse
|
33
|
Functional Indicators of Glutamate Transport in Single Striatal Astrocytes and the Influence of Kir4.1 in Normal and Huntington Mice. J Neurosci 2017; 36:4959-75. [PMID: 27147650 DOI: 10.1523/jneurosci.0316-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/01/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED This study evaluates single-cell indicators of glutamate transport in sulforhodamine 101-positive astrocytes of Q175 mice, a knock-in model of Huntington's disease (HD). Transport-related fluorescent ratio signals obtained with sodium-binding benzofuran isophtalate (SBFI) AM from unperturbed or voltage-clamped astrocytes and respective glutamate transporter currents (GTCs) were induced by photolytic or synaptic glutamate release and isolated pharmacologically. The HD-induced deficit ranged from -27% (GTC maximum at -100 mV in Ba(2+)) to -41% (sodium transients in astrocytes after loading SBFI-AM). Our specific aim was to clarify the mechanism(s) by which Kir4.1 channels can influence glutamate transport, as determined by either Na(+) imaging or transport-associated electrical signals. A decrease of Kir4.1 conductance was mimicked with Ba(2+) (200 μm), and an increase of Kir4.1 expression was obtained by intravenous administration of AAV9-gfaABC1D-Kir4.1-EGFP. The decrease of Kir4.1 conductance reduced the sodium transients but increased the amplitudes of somatic GTCs. Accordingly, after genetic upregulation of Kir4.1, somatic GTCs were found to be decreased. In individual cells, there was a negative correlation between Kir4.1 currents and GTCs. The relative effect of the Kir4.1 conductance was higher in the astrocyte periphery. These and other results suggest that the Kir4.1 conductance affects glutamate transporter activity in a dual manner: (1) by providing the driving force (voltage dependency of the transport itself) and (2) by limiting the lateral charge transfer (thereby reducing the interference with other electrogenic transporter functions). This leads to the testable prediction that restoring the high conductance state of passive astrocytes will not only normalize glutamate uptake but also restore other astrocytic transporter activities afflicted with HD. SIGNIFICANCE STATEMENT Insufficiency of astrocytic glutamate uptake is a major element in the pathophysiology of neurodegenerative diseases. Considering the heterogeneity of astrocytes and their differential susceptibility to therapeutic interventions, it becomes necessary to evaluate the determinants of transport activity in individual astroglial cells. We have examined intracellular Na(+) transients and glutamate transporter currents as the most telling indicators of glutamate clearance after synaptic or photolytic release of glutamate in striatal slices. The results show that, in Huntington's disease, glutamate uptake activity critically depends on Kir4.1. These channels enable the high conductance state of the astrocytic plasma membrane, which ensures the driving force for glutamate transport and dumps the transport-associated depolarization along the astrocyte processes. This has significant implications for developing therapeutic targets.
Collapse
|
34
|
Ugbode CI, Smith I, Whalley BJ, Hirst WD, Rattray M. Sonic hedgehog signalling mediates astrocyte crosstalk with neurons to confer neuroprotection. J Neurochem 2017; 142:429-443. [PMID: 28485896 PMCID: PMC5575469 DOI: 10.1111/jnc.14064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/18/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Sonic hedgehog (SHH) is a glycoprotein associated with development that is also expressed in the adult CNS and released after brain injury. Since the SHH receptors patched homolog‐1 and Smoothened are highly expressed on astrocytes, we hypothesized that SHH regulates astrocyte function. Primary mouse cortical astrocytes derived from embryonic Swiss mouse cortices, were treated with two chemically distinct agonists of the SHH pathway, which caused astrocytes to elongate and proliferate. These changes are accompanied by decreases in the major astrocyte glutamate transporter‐1 and the astrocyte intermediate filament protein glial fibrillary acidic protein. Multisite electrophysiological recordings revealed that the SHH agonist, smoothened agonist suppressed neuronal firing in astrocyte‐neuron co‐cultures and this was abolished by the astrocyte metabolic inhibitor ethylfluoroacetate, revealing that SHH stimulation of metabolically active astrocytes influences neuronal firing. Using three‐dimensional co‐culture, MAP2 western blotting and immunohistochemistry, we show that SHH‐stimulated astrocytes protect neurons from kainate‐induced cell death. Altogether the results show that SHH regulation of astrocyte function represents an endogenous neuroprotective mechanism. ![]()
Collapse
Affiliation(s)
- Christopher I Ugbode
- School of Pharmacy, University of Bradford, Bradford, UK.,School of Chemistry, Food & Pharmacy, University of Reading, Reading, UK.,Department of Biology, University of York, Heslington, UK
| | - Imogen Smith
- School of Chemistry, Food & Pharmacy, University of Reading, Reading, UK.,Portsmouth Brain Tumour Research Centre, University of Portsmouth, Portsmouth, UK
| | - Benjamin J Whalley
- School of Chemistry, Food & Pharmacy, University of Reading, Reading, UK
| | - Warren D Hirst
- Neurodegeneration and Neurologic Diseases, Pfizer Neuroscience Research Unit, Cambridge, Massachusetts, USA
| | - Marcus Rattray
- School of Pharmacy, University of Bradford, Bradford, UK
| |
Collapse
|
35
|
Okoreeh AK, Bake S, Sohrabji F. Astrocyte-specific insulin-like growth factor-1 gene transfer in aging female rats improves stroke outcomes. Glia 2017; 65:1043-1058. [PMID: 28317235 DOI: 10.1002/glia.23142] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/25/2022]
Abstract
Middle aged female rats sustain larger stroke infarction and disability than younger female rats. This older group also shows age-related reduction of insulin like growth factor (IGF)-1 in serum and in astrocytes, a cell type necessary for poststroke recovery. To determine the impact of astrocytic IGF-1 for ischemic stroke, these studies tested the hypothesis that gene transfer of IGF-1 to astrocytes will improve stroke outcomes in middle aged female rats. Middle aged (10-12 month old), acyclic female rats were injected with recombinant adeno-associated virus serotype 5 (AAV5) packaged with the coding sequence of the human (h)IGF-1 gene downstream of an astrocyte-specific promoter glial fibrillary acidic protein (GFAP) (AAV5-GFP-hIGF-1) into the striatum and cortex. The AAV5-control consisted of an identical shuttle vector construct without the hIGF-1 gene (AAV5-GFAP-control). Six to eight weeks later, animals underwent transient (90 min) middle cerebral artery occlusion via intraluminal suture. While infarct volume was not altered, AAV5-GFAP-hIGF-1 treatment significantly improved blood pressure and neurological score in the early acute phase of stroke (2 days) and sensory-motor performance at both the early and late (5 days) acute phase of stroke. AAV5-GFAP-hIGF-1 treatment also reduced circulating serum levels of GFAP, a biomarker for blood brain barrier permeability. Flow cytometry analysis of immune cells in the brain at 24 hr poststroke showed that AAV5-GFAP-hIGF-1 altered the type of immune cells trafficked to the ischemic hemisphere, promoting an anti-inflammatory profile. Collectively, these studies show that targeted enhancement of IGF-1 in astrocytes of middle-aged females improves stroke-induced behavioral impairment and neuroinflammation.
Collapse
Affiliation(s)
- Andre K Okoreeh
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, 77807
| | - Shameena Bake
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, 77807
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, 77807
| |
Collapse
|
36
|
Guo L, Hou J, Zhong J, Liu J, Sun T, Liu H. Association between injury severity and amyloid β protein levels in serum and cerebrospinal fluid in rats with traumatic spinal cord injury. Mol Med Rep 2017; 15:2241-2246. [DOI: 10.3892/mmr.2017.6261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/09/2016] [Indexed: 11/06/2022] Open
|
37
|
Semple BD, Sadjadi R, Carlson J, Chen Y, Xu D, Ferriero DM, Noble-Haeusslein LJ. Long-Term Anesthetic-Dependent Hypoactivity after Repetitive Mild Traumatic Brain Injuries in Adolescent Mice. Dev Neurosci 2016; 38:220-238. [PMID: 27548472 DOI: 10.1159/000448089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/28/2016] [Indexed: 11/19/2022] Open
Abstract
Recent evidence supports the hypothesis that repetitive mild traumatic brain injuries (rmTBIs) culminate in neurological impairments and chronic neurodegeneration, which have wide-ranging implications for patient management and return-to-play decisions for athletes. Adolescents show a high prevalence of sports-related head injuries and may be particularly vulnerable to rmTBIs due to ongoing brain maturation. However, it remains unclear whether rmTBIs, below the threshold for acute neuronal injury or symptomology, influence long-term outcomes. To address this issue, we first defined a very mild injury in adolescent mice (postnatal day 35) as evidenced by an increase in Iba-1- labeled microglia in white matter in the acutely injured brain, in the absence of indices of cell death, axonal injury, and vasogenic edema. Using this level of injury severity and Avertin (2,2,2-tribromoethanol) as the anesthetic, we compared mice subjected to either a single mTBI or 2 rmTBIs, each separated by 48 h. Neurobehavioral assessments were conducted at 1 week and at 1 and 3 months postimpact. Mice subjected to rmTBIs showed transient anxiety and persistent and pronounced hypoactivity compared to sham control mice, alongside normal sensorimotor, cognitive, social, and emotional function. As isoflurane is more commonly used than Avertin in animal models of TBI, we next examined long-term outcomes after rmTBIs in mice that were anesthetized with this agent. However, there was no evidence of abnormal behaviors even with the addition of a third rmTBI. To determine whether isoflurane may be neuroprotective, we compared the acute pathology after a single mTBI in mice anesthetized with either Avertin or isoflurane. Pathological findings were more pronounced in the group exposed to Avertin compared to the isoflurane group. These collective findings reveal distinct behavioral phenotypes (transient anxiety and prolonged hypoactivity) that emerge in response to rmTBIs. Our findings further suggest that selected anesthetics may confer early neuroprotection after rmTBIs, and as such mask long-term abnormal phenotypes that may otherwise emerge as a consequence of acute pathogenesis.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neurological Surgery, University of California San Francisco, San Francisco, Calif., USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Charsar BA, Urban MW, Lepore AC. Harnessing the power of cell transplantation to target respiratory dysfunction following spinal cord injury. Exp Neurol 2016; 287:268-275. [PMID: 27531634 DOI: 10.1016/j.expneurol.2016.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/29/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022]
Abstract
The therapeutic benefit of cell transplantation has been assessed in a host of central nervous system (CNS) diseases, including disorders of the spinal cord such as traumatic spinal cord injury (SCI). The promise of cell transplantation to preserve and/or restore normal function can be aimed at a variety of therapeutic mechanisms, including replacement of lost or damaged CNS cell types, promotion of axonal regeneration or sprouting, neuroprotection, immune response modulation, and delivery of gene products such as neurotrophic factors, amongst other possibilities. Despite significant work in the field of transplantation in models of SCI, limited attention has been directed at harnessing the therapeutic potential of cell grafting for preserving respiratory function after SCI, despite the critical role pulmonary compromise plays in patient outcome in this devastating disease. Here, we will review the limited number of studies that have demonstrated the therapeutic potential of intraspinal transplantation of a variety of cell types for addressing respiratory dysfunction in SCI.
Collapse
Affiliation(s)
- Brittany A Charsar
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States
| | - Mark W Urban
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States
| | - Angelo C Lepore
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States.
| |
Collapse
|
39
|
Turner SMF, Hoyt AK, ElMallah MK, Falk DJ, Byrne BJ, Fuller DD. Neuropathology in respiratory-related motoneurons in young Pompe (Gaa(-/-)) mice. Respir Physiol Neurobiol 2016; 227:48-55. [PMID: 26921786 PMCID: PMC4880056 DOI: 10.1016/j.resp.2016.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 12/25/2022]
Abstract
Respiratory and/or lingual dysfunction are among the first motor symptoms in Pompe disease, a disorder resulting from absence or dysfunction of the lysosomal enzyme acid α-glucosidase (GAA). Here, we histologically evaluated the medulla, cervical and thoracic spinal cords in 6 weeks old asymptomatic Pompe (Gaa(-/-)) mice to determine if neuropathology in respiratory motor regions has an early onset. Periodic acid-Schiff (PAS) staining indicated glycogen accumulation was exclusively occurring in Gaa(-/-) hypoglossal, mid-cervical and upper thoracic motoneurons. Markers of DNA damage (Tunel) and ongoing apoptosis (Cleaved Caspase 3) did not co-localize with PAS staining, but were prominent in a medullary region which included the nucleus tractus solitarius, and also in the thoracic spinal dorsal horn. We conclude that respiratory-related motoneurons are particularly susceptible to GAA deficiency and that neuronal glycogen accumulation and neurodegeneration may occur independently in early stage disease. The data support early therapeutic intervention in Pompe disease.
Collapse
Affiliation(s)
- Sara M F Turner
- Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States
| | - Aaron K Hoyt
- Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States
| | - Mai K ElMallah
- Department of Pediatrics, Division of Pulmonary Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Darin J Falk
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL 32610, United States; Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, United States; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States
| | - Barry J Byrne
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL 32610, United States; Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, United States; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States
| | - David D Fuller
- Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
40
|
Zhao J, Zhang Y, Zhao J, Wang C, Mao J, Li T, Wang X, Nie X, Jiang S, Wu Q. 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure influence the expression of glutamate transporter GLT-1 in C6 glioma cells via the Ca(2+) /protein kinase C pathway. J Appl Toxicol 2016; 36:1409-17. [PMID: 26988466 DOI: 10.1002/jat.3294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/16/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
The widespread environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is considered one of the most toxic dioxin-like compounds. Although epidemiological studies have shown that TCDD exposure is linked to some neurological and neurophysiological disorders, the underlying mechanism of TCDD-mediated neurotoxicity has remained unclear. Astrocytes are the most abundant cells in the nervous systems, and are recognized as the important mediators of normal brain functions as well as neurological, neurodevelopmental and neurodegenerative brain diseases. In this study, we investigated the role of TCDD in regulating the expression of glutamate transporter GLT-1 in astrocytes. TCDD, at concentrations of 0.1-100 nm, had no significantly harmful effect on the viability of C6 glioma cells. However, the expression of GLT-1 in C6 glioma cells was downregulated in a dose- and time-dependent manner. TCDD also caused activation of protein kinase C (PKC), as TCDD induced translocation of the PKC from the cytoplasm or perinuclear to the membrane. The translocation of PKC was inhibited by one Ca(2+) blocker, nifedipine, suggesting that the effects are triggered by the initial elevated intracellular concentration of free Ca(2+) . Finally, we showed that inhibition of the PKC activity reverses the TCDD-triggered reduction of GLT-1. In summary, our results suggested that TCDD exposure could downregulate the expression of GLT-1 in C6 via Ca(2+) /PKC pathway. The downregulation of GLT-1 might participate in TCDD-mediated neurotoxicity. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jianmei Zhao
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Cheng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jiamin Mao
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Ting Li
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xiaoke Wang
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Shengyang Jiang
- Department of Labor and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Qiyun Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
41
|
Zhang J, Chen H, Duan Z, Chen K, Liu Z, Zhang L, Yao D, Li B. The Effects of Co-transplantation of Olfactory Ensheathing Cells and Schwann Cells on Local Inflammation Environment in the Contused Spinal Cord of Rats. Mol Neurobiol 2016; 54:943-953. [PMID: 26790672 DOI: 10.1007/s12035-016-9709-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/07/2016] [Indexed: 11/27/2022]
Abstract
Inflammatory response following spinal cord injury (SCI) is important in regulation of the repair process. Olfactory ensheathing cells (OECs) and Schwann cells (SCs) are important donor cells for repairing SCI in different animal models. However, synergistic or complementary effects of co-transplantation of both cells for this purpose have not been extensively investigated. In the present study, we investigated the effects of co-transplantation of OECs and SCs on expression of pro- or anti-inflammatory factor and polarization of macrophages in the injured spinal cord of rats. Mixed cell suspensions containing OECs and SCs were transplanted into the injured site at 7 days after contusion at the vertebral T10 level. Compared with the DMEM, SC, or OEC group, the co-transplantation group had a more extensive distribution of the grafted cells and significantly reduced number of astrocytes, microglia/macrophage infiltration, and expression of chemokines (CCL2 and CCL3) at the injured site. The co-transplantation group also significantly increased arginase+/CD206+ macrophages (IL-4) and decreased iNOS+/CD16/32+ macrophages (IFN-γ), which was followed by higher IL-10 and IL-13 and lower IL-6 and TNF-α in their expression levels, a smaller cystic cavity area, and improved motor functions. These results indicate that OEC and SC co-transplantation could promote the shift of the macrophage phenotype from M(IFN-γ) to M(IL-4), reduce inflammatory cell infiltration in the injured site, and regulate inflammatory factors and chemokine expression, which provide a better immune environment for SCI repair.
Collapse
Affiliation(s)
- Jieyuan Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Huijun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Zhaoxia Duan
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Kuijun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Zeng Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Lu Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Dongdong Yao
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China
| | - Bingcang Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Daping, Chongqing, 400042, China.
| |
Collapse
|
42
|
Alvarez-Argote S, Gransee HM, Mora JC, Stowe JM, Jorgenson AJ, Sieck GC, Mantilla CB. The Impact of Midcervical Contusion Injury on Diaphragm Muscle Function. J Neurotrauma 2015; 33:500-9. [PMID: 26413840 DOI: 10.1089/neu.2015.4054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Midcervical contusion injuries disrupt descending ipsilateral excitatory bulbospinal projections to phrenic motoneurons, compromising ventilation. We hypothesized that a unilateral contusion injury at C3 versus C5 would differentially impact phrenic activity reflecting more prominent disruption of ipsilateral descending excitatory drive to more caudal segments of the phrenic motor pool with more cranial injuries. Phrenic motoneuron counts and evidence of diaphragm muscle denervation at individual neuromuscular junctions (NMJ) were evaluated at 14 days post-injury after unilateral contusion injury (100 kDynes). Whole body plethysmography and chronic diaphragm EMG were measured before the injury and at 3, 7, and 14 days post-injury. Contusion injuries at either level resulted in a similarly sized cavity. C3 contusion resulted in loss of 39 ± 13% of ipsilateral phrenic motoneurons compared with 13 ± 21% after C5 contusion (p = 0.003). Cervical contusion injuries resulted in diaphragm muscle denervation (C3 contusion: 17 ± 4%; C5 contusion: 7 ± 4%; p = 0.047). The pattern of denervation revealed segmental innervation of the diaphragm muscle, with greater denervation ventrally after C3 contusion and dorsally after C5 contusion. Overall, diaphragm root mean square electromyography activity did not change ipsilaterally after C3 or C5 contusion, but increased contralaterally (∼ 11%) after C3 contusion only on the first day post-injury (p = 0.026). Similarly, there were no significant changes in breathing parameters during eupnea or exposure to hypoxia (10% O2) - hypercapnia (5% CO2) at any time post-injury. Unilateral midcervical contusions minimally impair ventilatory behaviors despite phrenic motoneuron loss and diaphragm muscle denervation.
Collapse
Affiliation(s)
| | - Heather M Gransee
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Juan C Mora
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Jessica M Stowe
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Amy J Jorgenson
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,2 Department of Anesthesiology, Mayo Clinic , Rochester, Minnesota
| | - Carlos B Mantilla
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,2 Department of Anesthesiology, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
43
|
Falnikar A, Hala TJ, Poulsen DJ, Lepore AC. GLT1 overexpression reverses established neuropathic pain-related behavior and attenuates chronic dorsal horn neuron activation following cervical spinal cord injury. Glia 2015; 64:396-406. [PMID: 26496514 DOI: 10.1002/glia.22936] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/06/2015] [Indexed: 01/23/2023]
Abstract
Development of neuropathic pain occurs in a major portion of traumatic spinal cord injury (SCI) patients, resulting in debilitating and often long-term physical and psychological burdens. Following SCI, chronic dysregulation of extracellular glutamate homeostasis has been shown to play a key role in persistent central hyperexcitability of superficial dorsal horn neurons that mediate pain neurotransmission, leading to various forms of neuropathic pain. Astrocytes express the major CNS glutamate transporter, GLT1, which is responsible for the vast majority of functional glutamate uptake, particularly in the spinal cord. In our unilateral cervical contusion model of mouse SCI that is associated with ipsilateral forepaw heat hypersensitivity (a form of chronic at-level neuropathic pain-related behavior), we previously reported significant and long-lasting reductions in GLT1 expression and functional GLT1-mediated glutamate uptake in cervical spinal cord dorsal horn. To therapeutically address GLT1 dysfunction following cervical contusion SCI, we injected an adeno-associated virus type 8 (AAV8)-Gfa2 vector into the superficial dorsal horn to increase GLT1 expression selectively in astrocytes. Compared to both contusion-only animals and injured mice that received AAV8-eGFP control injection, AAV8-GLT1 delivery increased GLT1 protein expression in astrocytes of the injured cervical spinal cord dorsal horn, resulting in a significant and persistent reversal of already-established heat hypersensitivity. Furthermore, AAV8-GLT1 injection significantly reduced expression of the transcription factor and marker of persistently increased neuronal activation, ΔFosB, in superficial dorsal horn neurons. These results demonstrate that focal restoration of GLT1 expression in the superficial dorsal horn is a promising target for treating chronic neuropathic pain following SCI.
Collapse
Affiliation(s)
- Aditi Falnikar
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, Pennsylvania
| | - Tamara J Hala
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, Pennsylvania
| | - David J Poulsen
- Department of Neurosurgery, University at Buffalo, SUNY-School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Angelo C Lepore
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Satkunendrarajah K, Nassiri F, Karadimas SK, Lip A, Yao G, Fehlings MG. Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection. Exp Neurol 2015; 276:59-71. [PMID: 26394202 DOI: 10.1016/j.expneurol.2015.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/03/2015] [Accepted: 09/19/2015] [Indexed: 10/23/2022]
Abstract
Cervical spinal cord injury (SCI) can result in devastating functional deficits that involve the respiratory and hand function. The mammalian spinal cord has limited ability to regenerate and restore meaningful functional recovery following SCI. Riluzole, 2-amino-6-trifluoromethoxybenzothiazole, an anti-glutamatergic drug has been shown to reduce excitotoxicity and confer neuroprotection at the site of injury following experimental SCI. Based on promising preclinical studies, riluzole is currently under Phase III clinical trial for the treatment of SCI (ClinicalTrials.gov: NCT01597518). Riluzole's anti-glutamatergic role has the potential to regulate neuronal function and provide neuroprotection and influence glutamatergic connections distal to the initial injury leading to enhanced functional recovery following SCI. In order to investigate this novel role of riluzole we used a high cervical hemisection model of SCI, which interrupts all descending input to motoneurons innervating the ipsilateral forelimb and diaphragm muscles. Following C2 spinal cord hemisection, animals were placed into one of two groups: one group received riluzole (8 mg/kg) 1 h after injury and every 12 h thereafter for 7 days at 6 mg/kg, while the second group of injured rats received vehicle solution for the same duration of time. A third group of sham injured rats underwent a C2 laminectomy without hemisection and served as uninjured control rats. Interestingly, this study reports a significant loss of motoneurons within the cervical spinal cord caudal to C2 hemisection injury. Disruption of descending input led to a decrease in glutamatergic synapses and motoneurons caudal to the injury while riluzole treatment significantly limited this decline. Functionally, Hoffmann reflex recordings revealed an increase in the excitability of the remaining ipsilateral cervical motoneurons and significant improvements in skilled and unskilled forelimb function and respiratory motor function in the riluzole-treated animals. In conclusion, using a C2 hemisection injury model, this study provides novel evidence of motoneuron loss caudal to the injury and supports riluzole's capacity to promote neuronal preservation and function of neural network caudal to the SCI resulting in early and sustained functional improvements.
Collapse
Affiliation(s)
- K Satkunendrarajah
- Department of Genetics and Development, Toronto Western Research Institute, and Spinal Program, Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada
| | - F Nassiri
- Department of Genetics and Development, Toronto Western Research Institute, and Spinal Program, Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada
| | - S K Karadimas
- Department of Surgery, University of Toronto, Ontario, Canada
| | - A Lip
- Department of Genetics and Development, Toronto Western Research Institute, and Spinal Program, Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada
| | - G Yao
- Department of Genetics and Development, Toronto Western Research Institute, and Spinal Program, Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada
| | - M G Fehlings
- Department of Genetics and Development, Toronto Western Research Institute, and Spinal Program, Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Ontario, Canada.
| |
Collapse
|
45
|
Li K, Javed E, Scura D, Hala TJ, Seetharam S, Falnikar A, Richard JP, Chorath A, Maragakis NJ, Wright MC, Lepore AC. Human iPS cell-derived astrocyte transplants preserve respiratory function after spinal cord injury. Exp Neurol 2015. [PMID: 26216662 DOI: 10.1016/j.expneurol.2015.07.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transplantation-based replacement of lost and/or dysfunctional astrocytes is a promising therapy for spinal cord injury (SCI) that has not been extensively explored, despite the integral roles played by astrocytes in the central nervous system (CNS). Induced pluripotent stem (iPS) cells are a clinically-relevant source of pluripotent cells that both avoid ethical issues of embryonic stem cells and allow for homogeneous derivation of mature cell types in large quantities, potentially in an autologous fashion. Despite their promise, the iPS cell field is in its infancy with respect to evaluating in vivo graft integration and therapeutic efficacy in SCI models. Astrocytes express the major glutamate transporter, GLT1, which is responsible for the vast majority of glutamate uptake in spinal cord. Following SCI, compromised GLT1 expression/function can increase susceptibility to excitotoxicity. We therefore evaluated intraspinal transplantation of human iPS cell-derived astrocytes (hIPSAs) following cervical contusion SCI as a novel strategy for reconstituting GLT1 expression and for protecting diaphragmatic respiratory neural circuitry. Transplant-derived cells showed robust long-term survival post-injection and efficiently differentiated into astrocytes in injured spinal cord of both immunesuppressed mice and rats. However, the majority of transplant-derived astrocytes did not express high levels of GLT1, particularly at early times post-injection. To enhance their ability to modulate extracellular glutamate levels, we engineered hIPSAs with lentivirus to constitutively express GLT1. Overexpression significantly increased GLT1 protein and functional GLT1-mediated glutamate uptake levels in hIPSAs both in vitro and in vivo post-transplantation. Compared to human fibroblast control and unmodified hIPSA transplantation, GLT1-overexpressing hIPSAs reduced (1) lesion size within the injured cervical spinal cord, (2) morphological denervation by respiratory phrenic motor neurons at the diaphragm neuromuscular junction, and (3) functional diaphragm denervation as measured by recording of spontaneous EMGs and evoked compound muscle action potentials. Our findings demonstrate that hiPSA transplantation is a therapeutically-powerful approach for SCI.
Collapse
Affiliation(s)
- Ke Li
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, United States.
| | - Elham Javed
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, United States.
| | - Daniel Scura
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, United States.
| | - Tamara J Hala
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, United States.
| | - Suneil Seetharam
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, United States.
| | - Aditi Falnikar
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, United States.
| | - Jean-Philippe Richard
- Department of Neurology, Johns Hopkins University School of Medicine, 855N. Wolfe St., Rangos 250, Baltimore, MD 21205, United States.
| | - Ashley Chorath
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, United States.
| | - Nicholas J Maragakis
- Department of Neurology, Johns Hopkins University School of Medicine, 855N. Wolfe St., Rangos 250, Baltimore, MD 21205, United States.
| | - Megan C Wright
- Department of Biology, Arcadia University, 450S. Easton Rd., 220 Boyer Hall, Glenside, PA 19038, United States.
| | - Angelo C Lepore
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, United States.
| |
Collapse
|
46
|
Acute Traumatic Brain Injury Does Not Exacerbate Amyotrophic Lateral Sclerosis in the SOD1 (G93A) Rat Model. eNeuro 2015; 2:eN-NWR-0059-14. [PMID: 26464984 PMCID: PMC4586929 DOI: 10.1523/eneuro.0059-14.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 05/17/2015] [Accepted: 05/21/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease in which upper and lower motor neurons degenerate, leading to muscle atrophy, paralysis, and death within 3 to 5 years of onset. While a small percentage of ALS cases are genetically linked, the majority are sporadic with unknown origin. Currently, etiological links are associated with disease onset without mechanistic understanding. Of all the putative risk factors, however, head trauma has emerged as a consistent candidate for initiating the molecular cascades of ALS. Here, we test the hypothesis that traumatic brain injury (TBI) in the SOD1G93A transgenic rat model of ALS leads to early disease onset and shortened lifespan. We demonstrate, however, that a one-time acute focal injury caused by controlled cortical impact does not affect disease onset or survival. Establishing the negligible involvement of a single acute focal brain injury in an ALS rat model increases the current understanding of the disease. Critically, untangling a single focal TBI from multiple mild injuries provides a rationale for scientists and physicians to increase focus on repeat injuries to hopefully pinpoint a contributing cause of ALS.
Collapse
|
47
|
Martin M, Li K, Wright MC, Lepore AC. Functional and morphological assessment of diaphragm innervation by phrenic motor neurons. J Vis Exp 2015:e52605. [PMID: 26066371 DOI: 10.3791/52605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This protocol specifically focuses on tools for assessing phrenic motor neuron (PhMN) innervation of the diaphragm at both the electrophysiological and morphological levels. Compound muscle action potential (CMAP) recording following phrenic nerve stimulation can be used to quantitatively assess functional diaphragm innervation by PhMNs of the cervical spinal cord in vivo in anesthetized rats and mice. Because CMAPs represent simultaneous recording of all myofibers of the whole hemi-diaphragm, it is useful to also examine the phenotypes of individual motor axons and myofibers at the diaphragm NMJ in order to track disease- and therapy-relevant morphological changes such as partial and complete denervation, regenerative sprouting and reinnervation. This can be accomplished via whole-mount immunohistochemistry (IHC) of the diaphragm, followed by detailed morphological assessment of individual NMJs throughout the muscle. Combining CMAPs and NMJ analysis provides a powerful approach for quantitatively studying diaphragmatic innervation in rodent models of CNS and PNS disease.
Collapse
Affiliation(s)
- Melanie Martin
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University; Department of Biology, Arcadia University
| | - Ke Li
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University
| | | | - Angelo C Lepore
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University;
| |
Collapse
|
48
|
Nicaise C, Mitrecic D, Falnikar A, Lepore AC. Transplantation of stem cell-derived astrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury. World J Stem Cells 2015; 7:380-398. [PMID: 25815122 PMCID: PMC4369494 DOI: 10.4252/wjsc.v7.i2.380] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/07/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Neglected for years, astrocytes are now recognized to fulfill and support many, if not all, homeostatic functions of the healthy central nervous system (CNS). During neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI), astrocytes in the vicinity of degenerating areas undergo both morphological and functional changes that might compromise their intrinsic properties. Evidence from human and animal studies show that deficient astrocyte functions or loss-of-astrocytes largely contribute to increased susceptibility to cell death for neurons, oligodendrocytes and axons during ALS and SCI disease progression. Despite exciting advances in experimental CNS repair, most of current approaches that are translated into clinical trials focus on the replacement or support of spinal neurons through stem cell transplantation, while none focus on the specific replacement of astroglial populations. Knowing the important functions carried out by astrocytes in the CNS, astrocyte replacement-based therapies might be a promising approach to alleviate overall astrocyte dysfunction, deliver neurotrophic support to degenerating spinal tissue and stimulate endogenous CNS repair abilities. Enclosed in this review, we gathered experimental evidence that argue in favor of astrocyte transplantation during ALS and SCI. Based on their intrinsic properties and according to the cell type transplanted, astrocyte precursors or stem cell-derived astrocytes promote axonal growth, support mechanisms and cells involved in myelination, are able to modulate the host immune response, deliver neurotrophic factors and provide protective molecules against oxidative or excitotoxic insults, amongst many possible benefits. Embryonic or adult stem cells can even be genetically engineered in order to deliver missing gene products and therefore maximize the chance of neuroprotection and functional recovery. However, before broad clinical translation, further preclinical data on safety, reliability and therapeutic efficiency should be collected. Although several technical challenges need to be overcome, we discuss the major hurdles that have already been met or solved by targeting the astrocyte population in experimental ALS and SCI models and we discuss avenues for future directions based on latest molecular findings regarding astrocyte biology.
Collapse
|
49
|
Li K, Hala TJ, Seetharam S, Poulsen DJ, Wright MC, Lepore AC. GLT1 overexpression in SOD1(G93A) mouse cervical spinal cord does not preserve diaphragm function or extend disease. Neurobiol Dis 2015; 78:12-23. [PMID: 25818008 DOI: 10.1016/j.nbd.2015.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/09/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by relatively rapid degeneration of both upper and lower motor neurons, with death normally occurring 2-5years following diagnosis primarily due to respiratory paralysis resulting from phrenic motor neuron (PhMN) loss and consequent diaphragm denervation. In ALS, cellular abnormalities are not limited to MNs. For example, decreased levels and aberrant functioning of the major central nervous system (CNS) glutamate transporter, GLT1, occur in spinal cord and motor cortex astrocytes of both humans with ALS and in SOD1(G93A) rodents, a widely studied ALS animal model. This results in dysregulation of extracellular glutamate homeostasis and consequent glutamate excitotoxicity, a primary mechanism responsible for MN loss in ALS animal models and in the human disease. Given these observations of GLT1 dysfunction in areas of MN loss, as well as the importance of testing therapeutic strategies for preserving PhMNs in ALS, we evaluated intraspinal delivery of an adeno-associated virus type 8 (AAV8)-Gfa2 vector to the cervical spinal cord ventral horn of SOD1(G93A) ALS mice for focally restoring intraspinal GLT1 expression. AAV8 was specifically injected into the ventral horn bilaterally throughout the cervical enlargement at 110days of age, a clinically-relevant time point coinciding with phenotypic/symptomatic disease onset. Intraspinal delivery of AAV8-Gfa2-GLT1 resulted in robust transduction primarily of GFAP(+) astrocytes that persisted until disease endstage, as well as a 2-3-fold increase in total intraspinal GLT1 protein expression in the ventral horn. Despite this robust level of astrocyte transduction and GLT1 elevation, GLT1 overexpression did not protect PhMNs, preserve histological PhMN innervation of the diaphragm NMJ, or prevent decline in diaphragmatic respiratory function as assessed by phrenic nerve-diaphragm compound muscle action potential (CMAP) recordings compared to control AAV8-Gfa2-eGFP injected mice. In addition, AAV-Gfa2-GLT1 did not delay forelimb disease onset, extend disease duration (i.e. time from either forelimb or hindlimb disease onsets to endstage) or prolong overall animal survival. These findings suggest that focal restoration of GLT1 expression in astrocytes of the cervical spinal cord using AAV delivery is not an effective therapy for ALS.
Collapse
Affiliation(s)
- Ke Li
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, USA
| | - Tamara J Hala
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, USA
| | - Suneil Seetharam
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, USA
| | - David J Poulsen
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Dr., Missoula, MT 59812, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, 450 S. Easton Rd., 220 Boyer Hall, Glenside, PA 19038, USA
| | - Angelo C Lepore
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College at Thomas Jefferson University, 900 Walnut Street, JHN 469, Philadelphia, PA 19107, USA.
| |
Collapse
|
50
|
Transplantation of glial progenitors that overexpress glutamate transporter GLT1 preserves diaphragm function following cervical SCI. Mol Ther 2014; 23:533-48. [PMID: 25492561 DOI: 10.1038/mt.2014.236] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023] Open
Abstract
Approximately half of traumatic spinal cord injury (SCI) cases affect cervical regions, resulting in chronic respiratory compromise. The majority of these injuries affect midcervical levels, the location of phrenic motor neurons (PMNs) that innervate the diaphragm. A valuable opportunity exists following SCI for preventing PMN loss that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxicity due to dysregulation of extracellular glutamate homeostasis. Astrocytes express glutamate transporter 1 (GLT1), which is responsible for the majority of CNS glutamate clearance. Given our observations of GLT1 dysfunction post-SCI, we evaluated intraspinal transplantation of Glial-Restricted Precursors (GRPs)--a class of lineage-restricted astrocyte progenitors--into ventral horn following cervical hemicontusion as a novel strategy for reconstituting GLT1 function, preventing excitotoxicity and protecting PMNs in the acutely injured spinal cord. We find that unmodified transplants express low levels of GLT1 in the injured spinal cord. To enhance their therapeutic properties, we engineered GRPs with AAV8 to overexpress GLT1 only in astrocytes using the GFA2 promoter, resulting in significantly increased GLT1 protein expression and functional glutamate uptake following astrocyte differentiation in vitro and after transplantation into C4 hemicontusion. Compared to medium-only control and unmodified GRPs, GLT1-overexpressing transplants reduced lesion size, diaphragm denervation and diaphragm dysfunction. Our findings demonstrate transplantation-based replacement of astrocyte GLT1 is a promising approach for SCI.
Collapse
|