1
|
Lannoo MJ, Stiles RM. The Use of Cognition by Amphibians Confronting Environmental Change: Examples from the Behavioral Ecology of Crawfish Frogs ( Rana areolata). Animals (Basel) 2025; 15:736. [PMID: 40076019 PMCID: PMC11898707 DOI: 10.3390/ani15050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Amphibian conservation concerns frequently center on the idea of 'saving' them, with the underlying assumption they are the passive victims of anthropogenic environmental change. But this approach ignores the physiological, biochemical, and behavioral flexibility amphibians have employed since they first evolved ~365 million years ago. One overlooked advantage amphibians possess in the struggle for survival, and one humans might use in their efforts to conserve them, is their brains share the same blueprint as human brains, which allows them to acquire knowledge and understanding through experiences-in other words, amphibians have cognitive capabilities that assist them in their effort to survive. Here, we use four examples from our work on the behavioral ecology of Crawfish Frogs (Rana areolata) to form hypotheses about how cognition affects amphibian reaction to environmental and social change. The first two examples describe Crawfish Frog responses to seasonality and reproductive status, the third details their reaction to ecological disturbance, and the fourth describes how their response to the same stimulus changes with growth/age. In each example, we detail the neuronal circuitry thought to be involved and hypothesize the role of cognition. We propose that as one component of our fight to conserve amphibians, researchers should consider the full range of anatomical, physiological, biochemical, and behavioral features amphibians themselves employ in their defense, which are features responsible for their historical evolutionary success up until the Anthropocene. Further, we submit that acknowledging amphibians possess cognitive abilities can enrich interpretations of not only behavioral and ecological observations but also of neuroanatomical and neurophysiological results.
Collapse
Affiliation(s)
- Michael J. Lannoo
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Rm 135 Holmstedt Hall-ISU, Terre Haute, IN 47809, USA
| | - Rochelle M. Stiles
- San Francisco Zoological Society, 1 Zoo Road, San Francisco, CA 94132, USA;
| |
Collapse
|
2
|
Gutjahr R, Kéver L, Jonsson T, Talamantes Ontiveros D, Chagnaud BP, Herrel A. Gekko gecko as a model organism for understanding aspects of laryngeal vocal evolution. J Exp Biol 2024; 227:jeb247452. [PMID: 38989535 PMCID: PMC11418165 DOI: 10.1242/jeb.247452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
The ability to communicate through vocalization plays a key role in the survival of animals across all vertebrate groups. Although avian reptiles have received much attention relating to their stunning sound repertoire, non-avian reptiles have been wrongfully assumed to have less elaborate vocalization types, and little is known about the biomechanics of sound production and their underlying neural pathways in this group. We investigated alarm calls of Gekko gecko using audio and cineradiographic recordings. Acoustic analysis revealed three distinct call types: a sinusoidal call type (type 1); a train-like call type, characterized by distinct pulse trains (type 3); and an intermediate type, which showed both sinusoidal and pulse train components (type 2). Kinematic analysis of cineradiographic recordings showed that laryngeal movements differ significantly between respiratory and vocal behavior. During respiration, animals repeatedly moved their jaws to partially open their mouths, which was accompanied by small glottal movements. During vocalization, the glottis was pulled back, contrasting with what has previously been reported. In vitro retrograde tracing of the nerve innervating the laryngeal constrictor and dilator muscles revealed round to fusiform motoneurons in the hindbrain-spinal cord transition ipsilateral to the labeled nerve. Taken together, our observations provide insight into the alarm calls generated by G. gecko, the biomechanics of this sound generation and the underlying organization of motoneurons involved in the generation of vocalizations. Our observations suggest that G. gecko may be an excellent non-avian reptile model organism for enhancing our understanding of the evolution of vertebrate vocalization.
Collapse
Affiliation(s)
- Ruth Gutjahr
- Department of Biology, University of Graz, 8010 Graz, Austria
| | - Loïc Kéver
- UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
| | - Thorin Jonsson
- Department of Biology, University of Graz, 8010 Graz, Austria
| | - Daniela Talamantes Ontiveros
- UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
| | | | - Anthony Herrel
- UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent 9000, Belgium
- Department of Biology, University of Antwerp, Wilrijk 2610, Belgium
- Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| |
Collapse
|
3
|
Hersh TA, Ravignani A, Whitehead H. Cetaceans are the next frontier for vocal rhythm research. Proc Natl Acad Sci U S A 2024; 121:e2313093121. [PMID: 38814875 PMCID: PMC11194516 DOI: 10.1073/pnas.2313093121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
While rhythm can facilitate and enhance many aspects of behavior, its evolutionary trajectory in vocal communication systems remains enigmatic. We can trace evolutionary processes by investigating rhythmic abilities in different species, but research to date has largely focused on songbirds and primates. We present evidence that cetaceans-whales, dolphins, and porpoises-are a missing piece of the puzzle for understanding why rhythm evolved in vocal communication systems. Cetaceans not only produce rhythmic vocalizations but also exhibit behaviors known or thought to play a role in the evolution of different features of rhythm. These behaviors include vocal learning abilities, advanced breathing control, sexually selected vocal displays, prolonged mother-infant bonds, and behavioral synchronization. The untapped comparative potential of cetaceans is further enhanced by high interspecific diversity, which generates natural ranges of vocal and social complexity for investigating various evolutionary hypotheses. We show that rhythm (particularly isochronous rhythm, when sounds are equally spaced in time) is prevalent in cetacean vocalizations but is used in different contexts by baleen and toothed whales. We also highlight key questions and research areas that will enhance understanding of vocal rhythms across taxa. By coupling an infraorder-level taxonomic assessment of vocal rhythm production with comparisons to other species, we illustrate how broadly comparative research can contribute to a more nuanced understanding of the prevalence, evolution, and possible functions of rhythm in animal communication.
Collapse
Affiliation(s)
- Taylor A. Hersh
- Marine Mammal Institute, Oregon State University, Newport, OR97365
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Department of Biology, Dalhousie University, HalifaxNS B3H 4R2, Canada
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen6525 XD, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus8000, Denmark
- Department of Human Neurosciences, Sapienza University of Rome, Rome00185, Italy
| | - Hal Whitehead
- Department of Biology, Dalhousie University, HalifaxNS B3H 4R2, Canada
| |
Collapse
|
4
|
Grijseels DM, Prendergast BJ, Gorman JC, Miller CT. The neurobiology of vocal communication in marmosets. Ann N Y Acad Sci 2023; 1528:13-28. [PMID: 37615212 PMCID: PMC10592205 DOI: 10.1111/nyas.15057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An increasingly popular animal model for studying the neural basis of social behavior, cognition, and communication is the common marmoset (Callithrix jacchus). Interest in this New World primate across neuroscience is now being driven by their proclivity for prosociality across their repertoire, high volubility, and rapid development, as well as their amenability to naturalistic testing paradigms and freely moving neural recording and imaging technologies. The complement of these characteristics set marmosets up to be a powerful model of the primate social brain in the years to come. Here, we focus on vocal communication because it is the area that has both made the most progress and illustrates the prodigious potential of this species. We review the current state of the field with a focus on the various brain areas and networks involved in vocal perception and production, comparing the findings from marmosets to other animals, including humans.
Collapse
Affiliation(s)
- Dori M Grijseels
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Brendan J Prendergast
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Julia C Gorman
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Fukutomi M, Carlson BA. Hormonal coordination of motor output and internal prediction of sensory consequences in an electric fish. Curr Biol 2023; 33:3350-3359.e4. [PMID: 37490922 DOI: 10.1016/j.cub.2023.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
Steroid hormones remodel neural networks to induce seasonal or developmental changes in behavior. Hormonal changes in behavior likely require coordinated changes in sensorimotor integration. Here, we investigate hormonal effects on a predictive motor signal, termed corollary discharge, that modulates sensory processing in weakly electric mormyrid fish. In the electrosensory pathway mediating communication behavior, inhibition activated by a corollary discharge blocks sensory responses to self-generated electric pulses, allowing the downstream circuit to selectively analyze communication signals from nearby fish. These pulses are elongated by increasing testosterone levels in males during the breeding season. We induced electric-pulse elongation using testosterone treatment and found that the timing of electroreceptor responses to self-generated pulses was delayed as electric-pulse duration increased. Simultaneous recordings from an electrosensory nucleus and electromotor neurons revealed that the timing of corollary discharge inhibition was delayed and elongated by testosterone. Furthermore, this shift in the timing of corollary discharge inhibition was precisely matched to the shift in timing of receptor responses to self-generated pulses. We then asked whether the shift in inhibition timing was caused by direct action of testosterone on the corollary discharge circuit or by plasticity acting on the circuit in response to altered sensory feedback. We surgically silenced the electric organ of fish and found similar hormonal modulation of corollary discharge timing between intact and silent fish, suggesting that sensory feedback was not required for this shift. Our findings demonstrate that testosterone directly regulates motor output and internal prediction of the resulting sensory consequences in a coordinated manner.
Collapse
Affiliation(s)
- Matasaburo Fukutomi
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
6
|
Tix L, Ernst L, Bungardt B, Talbot SR, Hilken G, Tolba RH. Establishment of the body condition score for adult female Xenopus laevis. PLoS One 2023; 18:e0280000. [PMID: 37099619 PMCID: PMC10132665 DOI: 10.1371/journal.pone.0280000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/19/2022] [Indexed: 04/27/2023] Open
Abstract
The assessment of animals' health and nutritional status using a Body Condition Score (BCS) has become a common and reliable tool in lab-animal science. It enables a simple, semi-objective, and non-invasive assessment (palpation of osteal prominences and subcutaneous fat tissue) in routine examination of an animal. In mammals, the BCS classification contains 5 levels: A low score describes a poor nutritional condition (BCS 1-2). A BCS of 3 to 4 is considered optimum, whereas a high score (BCS = 5) is associated with obesity. While BCS are published for most common laboratory mammals, these assessment criteria are not directly applicable to clawed frogs (Xenopus laevis) due to their intracoelomic fat body instead of subcutaneous fat tissue. Therefore, this assessment tool is still missing for Xenopus laevis. The present study aimed to establish a species-specific BCS for clawed frogs in terms of housing refinement in lab-animal facilities. Accordingly, 62 adult female Xenopus laevis were weighed and sized. Further, the body contour was defined, classified, and assigned to BCS groups. A BCS 5 was associated with a mean body weight of 193.3 g (± 27.6 g), whereas a BCS 4 ranged at 163.1 g (±16.0 g). Animals with a BCS = 3 had an average body weight of 114.7 g (±16.7 g). A BCS = 2 was determined in 3 animals (103 g, 110 g, and 111 g). One animal had a BCS = 1 (83 g), equivalent to a humane endpoint. In conclusion, individual examination using the presented visual BCS provides a quick and easy assessment of the nutritional status and overall health of adult female Xenopus laevis. Due to their ectothermic nature and the associated special metabolic situation, it can be assumed that a BCS ≥3 is to be preferred for female Xenopus laevis. In addition, BCS assessment may indicate underlying subclinical health problems that require further diagnostic investigation.
Collapse
Affiliation(s)
- Leonie Tix
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lisa Ernst
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Britta Bungardt
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Steven R. Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Gero Hilken
- Central Animal Laboratory, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Kelley DB. Convergent and divergent neural circuit architectures that support acoustic communication. Front Neural Circuits 2022; 16:976789. [PMID: 36466364 PMCID: PMC9712726 DOI: 10.3389/fncir.2022.976789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Vocal communication is used across extant vertebrates, is evolutionarily ancient, and been maintained, in many lineages. Here I review the neural circuit architectures that support intraspecific acoustic signaling in representative anuran, mammalian and avian species as well as two invertebrates, fruit flies and Hawaiian crickets. I focus on hindbrain motor control motifs and their ties to respiratory circuits, expression of receptors for gonadal steroids in motor, sensory, and limbic neurons as well as divergent modalities that evoke vocal responses. Hindbrain and limbic participants in acoustic communication are highly conserved, while forebrain participants have diverged between anurans and mammals, as well as songbirds and rodents. I discuss the roles of natural and sexual selection in driving speciation, as well as exaptation of circuit elements with ancestral roles in respiration, for producing sounds and driving rhythmic vocal features. Recent technical advances in whole brain fMRI across species will enable real time imaging of acoustic signaling partners, tying auditory perception to vocal production.
Collapse
|
8
|
Keifer J. Emergence of In Vitro Preparations and Their Contribution to Understanding the Neural Control of Behavior in Vertebrates. J Neurophysiol 2022; 128:511-526. [PMID: 35946803 DOI: 10.1152/jn.00142.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the longstanding goals of the field of neuroscience is to understand the neural control of behavior in both invertebrate and vertebrate species. A series of early discoveries showed that certain motor patterns like locomotion could be generated by neuronal circuits without sensory feedback or descending control systems. These were called fictitious, or "fictive", motor programs because they could be expressed by neurons in the absence of movement. This finding lead investigators to isolate central nervous system tissue and maintain it in a dish in vitro to better study mechanisms of motor pattern generation. A period of rapid development of in vitro preparations from invertebrate species that could generate fictive motor programs from the activity of central pattern generating circuits (CPGs) emerged that was gradually followed by the introduction of such preparations from vertebrates. Here, I will review some of the notable in vitropreparations from both mammalian and non-mammalian vertebrate species developed to study the neural circuits underlying a variety of complex behaviors. This approach has been instrumental in delineating not only the cellular substrates underlying locomotion, respiration, scratching, and other behaviors, but also mechanisms underlying the modifiability of motor pathways through synaptic plasticity. In vitro preparations have had a significant impact on the field of motor systems neuroscience and the expansion of our understanding of how nervous systems control behavior. The field is ready for further advancement of this approach to explore neural substrates for variations in behavior generated by social and seasonal context, and the environment.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
9
|
Zheng DJ, Okobi DE, Shu R, Agrawal R, Smith SK, Long MA, Phelps SM. Mapping the vocal circuitry of Alston's singing mouse with pseudorabies virus. J Comp Neurol 2022; 530:2075-2099. [PMID: 35385140 DOI: 10.1002/cne.25321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/06/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Abstract
Vocalizations are often elaborate, rhythmically structured behaviors. Vocal motor patterns require close coordination of neural circuits governing the muscles of the larynx, jaw, and respiratory system. In the elaborate vocalization of Alston's singing mouse (Scotinomys teguina) each note of its rapid, frequency-modulated trill is accompanied by equally rapid modulation of breath and gape. To elucidate the neural circuitry underlying this behavior, we introduced the polysynaptic retrograde neuronal tracer pseudorabies virus (PRV) into the cricothyroid and digastricus muscles, which control frequency modulation and jaw opening, respectively. Each virus singly labels ipsilateral motoneurons (nucleus ambiguus for cricothyroid, and motor trigeminal nucleus for digastricus). We find that the two isogenic viruses heavily and bilaterally colabel neurons in the gigantocellular reticular formation, a putative central pattern generator. The viruses also show strong colabeling in compartments of the midbrain including the ventrolateral periaqueductal gray and the parabrachial nucleus, two structures strongly implicated in vocalizations. In the forebrain, regions important to social cognition and energy balance both exhibit extensive colabeling. This includes the paraventricular and arcuate nuclei of the hypothalamus, the lateral hypothalamus, preoptic area, extended amygdala, central amygdala, and the bed nucleus of the stria terminalis. Finally, we find doubly labeled neurons in M1 motor cortex previously described as laryngeal, as well as in the prelimbic cortex, which indicate these cortical regions play a role in vocal production. The progress of both viruses is broadly consistent with vertebrate-general patterns of vocal circuitry, as well as with circuit models derived from primate literature.
Collapse
Affiliation(s)
- Da-Jiang Zheng
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Daniel E Okobi
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - Ryan Shu
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Rania Agrawal
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Samantha K Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, Langone Medical Center, New York University, New York City, New York, USA
| | - Steven M Phelps
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
10
|
Szaro BG. Neurophysiological and Behavioral Analysis in Xenopus. Cold Spring Harb Protoc 2021; 2021:pdb.top106849. [PMID: 33785562 DOI: 10.1101/pdb.top106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Because of its resilience to hypoxia and trauma, the frog has long been a favored preparation of neurophysiologists. Its use has led to the discovery of many fundamental properties of neurons and neural circuits. Neurophysiologists were originally attracted to Xenopus embryos, tadpoles, and frogs because of their ready availability, their external development, and the anatomical accessibility and relatively simple neural circuitry of the Xenopus visual, locomotory, and vocalization systems. Nowadays, the sequencing of Xenopus genomes and the panoply of tools for manipulating gene expression have created new opportunities for neurophysiologists to address the molecular underpinnings of how neurons generate behaviors in a vertebrate. Here, we introduce protocols for harnessing the power of Xenopus for performing electrophysiological studies of neural circuitry in the developing optic tectum and spinal cord, as well as in vocalization, and for studying the ontogeny of locomotory behavior.
Collapse
Affiliation(s)
- Ben G Szaro
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York 12222, USA
| |
Collapse
|
11
|
Dunlap KD, Koukos HM, Chagnaud BP, Zakon HH, Bass AH. Vocal and Electric Fish: Revisiting a Comparison of Two Teleost Models in the Neuroethology of Social Behavior. Front Neural Circuits 2021; 15:713105. [PMID: 34489647 PMCID: PMC8418312 DOI: 10.3389/fncir.2021.713105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
The communication behaviors of vocal fish and electric fish are among the vertebrate social behaviors best understood at the level of neural circuits. Both forms of signaling rely on midbrain inputs to hindbrain pattern generators that activate peripheral effectors (sonic muscles and electrocytes) to produce pulsatile signals that are modulated by frequency/repetition rate, amplitude and call duration. To generate signals that vary by sex, male phenotype, and social context, these circuits are responsive to a wide range of hormones and neuromodulators acting on different timescales at multiple loci. Bass and Zakon (2005) reviewed the behavioral neuroendocrinology of these two teleost groups, comparing how the regulation of their communication systems have both converged and diverged during their parallel evolution. Here, we revisit this comparison and review the complementary developments over the past 16 years. We (a) summarize recent work that expands our knowledge of the neural circuits underlying these two communication systems, (b) review parallel studies on the action of neuromodulators (e.g., serotonin, AVT, melatonin), brain steroidogenesis (via aromatase), and social stimuli on the output of these circuits, (c) highlight recent transcriptomic studies that illustrate how contemporary molecular methods have elucidated the genetic regulation of social behavior in these fish, and (d) describe recent studies of mochokid catfish, which use both vocal and electric communication, and that use both vocal and electric communication and consider how these two systems are spliced together in the same species. Finally, we offer avenues for future research to further probe how similarities and differences between these two communication systems emerge over ontogeny and evolution.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Haley M Koukos
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Boris P Chagnaud
- Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| | - Harold H Zakon
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States.,Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Yamaguchi A. Ex Vivo Brain Preparation to Analyze Vocal Pathways of Xenopus Frogs. Cold Spring Harb Protoc 2021; 2021:pdb.prot106872. [PMID: 33827966 DOI: 10.1101/pdb.prot106872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Understanding the neural basis of behavior is a challenging task for technical reasons. Most methods of recording neural activity require animals to be immobilized, but neural activity associated with most behavior cannot be recorded from an anesthetized, immobilized animal. Using amphibians, however, there has been some success in developing in vitro brain preparations that can be used for electrophysiological and anatomical studies. Here, we describe an ex vivo frog brain preparation from which fictive vocalizations (the neural activity that would have produced vocalizations had the brain been attached to the muscle) can be elicited repeatedly. When serotonin is applied to the isolated brains of male and female African clawed frogs, Xenopus laevis, laryngeal nerve activity that is a facsimile of those that underlie sex-specific vocalizations in vivo can be readily recorded. Recently, this preparation was successfully used in other species within the genus including Xenopus tropicalis and Xenopus victorianus This preparation allows a variety of techniques to be applied including extracellular and intracellular electrophysiological recordings and calcium imaging during vocal production, surgical and pharmacological manipulation of neurons to evaluate their impact on motor output, and tract tracing of the neural circuitry. Thus, the preparation is a powerful tool with which to understand the basic principles that govern the production of coherent and robust motor programs in vertebrates.
Collapse
Affiliation(s)
- Ayako Yamaguchi
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112-0840, USA
| |
Collapse
|
13
|
Barkan CL, Leininger EC, Zornik E. Everything in modulation: neuromodulators as keys to understanding communication dynamics. Integr Comp Biol 2021; 61:854-866. [PMID: 34038510 DOI: 10.1093/icb/icab102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across the animal kingdom, the ability to produce communication signals appropriate to social encounters is essential, but how these behaviors are selected and adjusted in a context-dependent manner is poorly understood. This question can be addressed on many levels, including sensory processing by peripheral organs and the CNS, sensorimotor integration in decision-making brain regions, and motor circuit activation and modulation. Because neuromodulator systems act at each of these levels, they are a useful lens through which to explore the mechanisms underlying complex patterns of communication. It has been clear for decades that understanding the logic of input-output decision making by the nervous system requires far more than simply identifying the connections linking sensory organs to motor circuits; this is due in part to the fact that neuromodulators can promote distinct and temporally dynamic responses to similar signals. We focus on the vocal circuit dynamics of Xenopus frogs, and describe complementary examples from diverse vertebrate communication systems. While much remains to be discovered about how neuromodulators direct flexibility in communication behaviors, these examples illustrate that several neuromodulators can act upon the same circuit at multiple levels of control, and that the functional consequence of neuromodulation can depend on species-specific factors as well as dynamic organismal characteristics like internal state.
Collapse
Affiliation(s)
| | | | - Erik Zornik
- Reed College, Biology Department, Portland, OR
| |
Collapse
|
14
|
South KE, Klingenberg B, Leininger EC. A novel degree of sex difference in laryngeal physiology of Xenopus muelleri: behavioral and evolutionary implications. J Exp Biol 2021; 224:jeb.231712. [PMID: 34424964 DOI: 10.1242/jeb.231712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023]
Abstract
Characterizing sex and species differences in muscle physiology can contribute to a better understanding of proximate mechanisms underlying behavioral evolution. In Xenopus, the laryngeal muscle's ability to contract rapidly and its electromyogram potentiation allows males to produce calls that are more rapid and intensity-modulated than female calls. Prior comparative studies have shown that some species lacking typical male features of vocalizations sometimes show reduced sex differences in underlying laryngeal physiology. To further understand the evolution of sexually differentiated laryngeal muscle physiology and its role in generating behavior, we investigated sex differences in the laryngeal physiology of X. muelleri, a species in which male and female calls are similar in rapidity but different with respect to intensity modulation. We delivered ethologically relevant stimulus patterns to ex vivo X. muelleri larynges to investigate their ability to produce various call patterns, and we also delivered stimuli over a broader range of intervals to assess sex differences in muscle tension and electromyogram potentiation. We found a small but statistically significant sex difference in laryngeal electromyogram potentiation that varied depending on the number of stimuli. We also found a small interaction between sex and stimulus interval on muscle tension over an ethologically relevant range of stimulus intervals; male larynges were able to produce similar tensions to female larynges at slightly smaller (11-12 ms) inter-stimulus intervals. These findings are consistent with behavioral observations and present a previously undescribed intermediate sex difference in Xenopus laryngeal muscle physiology.
Collapse
Affiliation(s)
- Kelly E South
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA
| | - Bernhard Klingenberg
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA.,Department of Mathematics & Statistics, Williams College, Williamstown, MA 01267, USA
| | | |
Collapse
|
15
|
Timothy M, Forlano PM. Serotonin distribution in the brain of the plainfin midshipman: Substrates for vocal-acoustic modulation and a reevaluation of the serotonergic system in teleost fishes. J Comp Neurol 2020; 528:3451-3478. [PMID: 32361985 DOI: 10.1002/cne.24938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Serotonin (5-HT) is a modulator of neural circuitry underlying motor patterning, homeostatic control, and social behavior. While previous studies have described 5-HT distribution in various teleosts, serotonergic raphe subgroups in fish are not well defined and therefore remain problematic for cross-species comparisons. Here we used the plainfin midshipman fish, Porichthys notatus, a well-studied model for investigating the neural and hormonal mechanisms of vertebrate vocal-acoustic communication, to redefine raphe subgroups based on both stringent neuroanatomical landmarks as well as quantitative cell measurements. In addition, we comprehensively characterized 5-HT-immunoreactive (-ir) innervation throughout the brain, including well-delineated vocal and auditory nuclei. We report neuroanatomical heterogeneity in populations of the serotonergic raphe nuclei of the brainstem reticular formation, with three discrete subregions in the superior raphe, an intermediate 5-HT-ir cell cluster, and an extensive inferior raphe population. 5-HT-ir neurons were also observed within the vocal motor nucleus (VMN), forming putative contacts on those cells. In addition, three major 5-HT-ir cell groups were identified in the hypothalamus and one group in the pretectum. Significant 5-HT-ir innervation was found in components of the vocal pattern generator and cranial motor nuclei. All vocal midbrain nuclei showed considerable 5-HT-ir innervation, as did thalamic and hindbrain auditory and lateral line areas and vocal-acoustic integration sites in the preoptic area and ventral telencephalon. This comprehensive atlas offers new insights into the organization of 5-HT nuclei in teleosts and provides neuroanatomical evidence for serotonin as a modulator of vocal-acoustic circuitry and behavior in midshipman fish, consistent with findings in vocal tetrapods.
Collapse
Affiliation(s)
- Miky Timothy
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA
| | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology Subprogram in Ecology, Evolution, and Behavior, The Graduate Center, City University of New York, 365 5th Avenue, New York, New York, 10016, USA.,Biology Subprogram in Neuroscience, The Graduate Center, City University of New York, 365 5th Avenue, New York, New York, 10016, USA.,Psychology Subprogram in Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, 365 5th Avenue, New York, New York, 10016, USA.,Aquatic Research and Environmental Assessment Center, Brooklyn College, Brooklyn, New York, USA
| |
Collapse
|
16
|
Inagaki RT, Raghuraman S, Chase K, Steele T, Zornik E, Olivera B, Yamaguchi A. Molecular characterization of frog vocal neurons using constellation pharmacology. J Neurophysiol 2020; 123:2297-2310. [PMID: 32374212 DOI: 10.1152/jn.00105.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Identification and characterization of neuronal cell classes in motor circuits are essential for understanding the neural basis of behavior. It is a challenging task, especially in a non-genetic-model organism, to identify cell-specific expression of functional macromolecules. Here, we performed constellation pharmacology, calcium imaging of dissociated neurons to pharmacologically identify functional receptors expressed by vocal neurons in adult male and female African clawed frogs, Xenopus laevis. Previously we identified a population of vocal neurons called fast trill neurons (FTNs) in the amphibian parabrachial nucleus (PB) that express N-methyl-d-aspartate (NMDA) receptors and GABA and/or glycine receptors. Using constellation pharmacology, we identified four cell classes of putative fast trill neurons (pFTNs, responsive to both NMDA and GABA/glycine applications). We discovered that some pFTNs responded to the application of substance P (SP), acetylcholine (ACh), or both. Electrophysiological recordings obtained from FTNs using an ex vivo preparation verified that SP and/or ACh depolarize FTNs. Bilateral injection of ACh, SP, or their antagonists into PBs showed that ACh receptors are not sufficient but necessary for vocal production, and SP receptors play a role in shaping the morphology of vocalizations. Additionally, we discovered that the PB of adult female X. laevis also contains all the subclasses of neurons at a similar frequency as in males, despite their sexually distinct vocalizations. These results reveal novel neuromodulators that regulate X. laevis vocal production and demonstrate the power of constellation pharmacology in identifying the neuronal subtypes marked by functional expression of cell-specific receptors in non-genetic-model organisms.NEW & NOTEWORTHY Molecular profiles of neurons are critical for understanding the neuronal functions, but their identification is challenging especially in non-genetic-model organisms. Here, we characterized the functional expression of membrane macromolecules in vocal neurons of African clawed frogs, Xenopus laevis, using a technique called constellation pharmacology. We discovered that receptors for acetylcholine and/or substance P are expressed by some classes of vocal neurons, and their activation plays a role in the production of normal vocalizations.
Collapse
Affiliation(s)
- Ryota T Inagaki
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| | | | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| | | | - Erik Zornik
- Biology Department, Reed College, Portland, Oregon
| | - Baldomero Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| | - Ayako Yamaguchi
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
17
|
Borde M, Quintana L, Comas V, Silva A. Hormone‐mediated modulation of the electromotor CPG in pulse‐type weakly electric fish. Commonalities and differences across species. Dev Neurobiol 2020; 80:70-80. [DOI: 10.1002/dneu.22732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Michel Borde
- Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Virginia Comas
- Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
- Laboratorio de Neurociencias Facultad de Ciencias Universidad de la República Montevideo Uruguay
| |
Collapse
|
18
|
Kelley DB, Ballagh IH, Barkan CL, Bendesky A, Elliott TM, Evans BJ, Hall IC, Kwon YM, Kwong-Brown U, Leininger EC, Perez EC, Rhodes HJ, Villain A, Yamaguchi A, Zornik E. Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication. J Neurosci 2020; 40:22-36. [PMID: 31896561 PMCID: PMC6939475 DOI: 10.1523/jneurosci.0736-19.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
In many species, vocal communication is essential for coordinating social behaviors including courtship, mating, parenting, rivalry, and alarm signaling. Effective communication requires accurate production, detection, and classification of signals, as well as selection of socially appropriate responses. Understanding how signals are generated and how acoustic signals are perceived is key to understanding the neurobiology of social behaviors. Here we review our long-standing research program focused on Xenopus, a frog genus which has provided valuable insights into the mechanisms and evolution of vertebrate social behaviors. In Xenopus laevis, vocal signals differ between the sexes, through development, and across the genus, reflecting evolutionary divergence in sensory and motor circuits that can be interrogated mechanistically. Using two ex vivo preparations, the isolated brain and vocal organ, we have identified essential components of the vocal production system: the sexually differentiated larynx at the periphery, and the hindbrain vocal central pattern generator (CPG) centrally, that produce sex- and species-characteristic sound pulse frequencies and temporal patterns, respectively. Within the hindbrain, we have described how intrinsic membrane properties of neurons in the vocal CPG generate species-specific vocal patterns, how vocal nuclei are connected to generate vocal patterns, as well as the roles of neurotransmitters and neuromodulators in activating the circuit. For sensorimotor integration, we identified a key forebrain node that links auditory and vocal production circuits to match socially appropriate vocal responses to acoustic features of male and female calls. The availability of a well supported phylogeny as well as reference genomes from several species now support analysis of the genetic architecture and the evolutionary divergence of neural circuits for vocal communication. Xenopus thus provides a vertebrate model in which to study vocal communication at many levels, from physiology, to behavior, and from development to evolution. As one of the most comprehensively studied phylogenetic groups within vertebrate vocal communication systems, Xenopus provides insights that can inform social communication across phyla.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027,
| | - Irene H Ballagh
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Zoology, University of British Columbia, Vancouver V6T132, Canada
| | - Charlotte L Barkan
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Reed College, Portland, Oregon 97202
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology and Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Taffeta M Elliott
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Psychology and Education, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801
| | - Ben J Evans
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Ian C Hall
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Benedictine University, Lisle, Illinois 60532
| | - Young Mi Kwon
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Ecology, Evolution and Environmental Biology and Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Ursula Kwong-Brown
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Elizabeth C Leininger
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Division of Natural Sciences, New College of Florida, Sarasota, Florida 34243
| | - Emilie C Perez
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Heather J Rhodes
- Department of Biology, Boston University, Boston, Massachusetts 02215
- Department of Biology, Denison University, Granville, Ohio 43023, and
| | - Avelyne Villain
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Ayako Yamaguchi
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Boston University, Boston, Massachusetts 02215
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | - Erik Zornik
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Reed College, Portland, Oregon 97202
- Department of Biology, Boston University, Boston, Massachusetts 02215
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
19
|
Berkowitz A. Expanding our horizons: central pattern generation in the context of complex activity sequences. J Exp Biol 2019; 222:222/20/jeb192054. [DOI: 10.1242/jeb.192054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
ABSTRACT
Central pattern generators (CPGs) are central nervous system (CNS) networks that can generate coordinated output in the absence of patterned sensory input. For decades, this concept was applied almost exclusively to simple, innate, rhythmic movements with essentially identical cycles that repeat continually (e.g. respiration) or episodically (e.g. locomotion). But many natural movement sequences are not simple rhythms, as they include different elements in a complex order, and some involve learning. The concepts and experimental approaches of CPG research have also been applied to the neural control of complex movement sequences, such as birdsong, though this is not widely appreciated. Experimental approaches to the investigation of CPG networks, both for simple rhythms and for complex activity sequences, have shown that: (1) brief activation of the CPG elicits a long-lasting naturalistic activity sequence; (2) electrical stimulation of CPG elements alters the timing of subsequent cycles or sequence elements; and (3) warming or cooling CPG elements respectively speeds up or slows down the rhythm or sequence rate. The CPG concept has also been applied to the activity rhythms of populations of mammalian cortical neurons. CPG concepts and methods might further be applied to a variety of fixed action patterns typically used in courtship, rivalry, nest building and prey capture. These complex movements could be generated by CPGs within CPGs (‘nested’ CPGs). Stereotypical, non-motor, non-rhythmic neuronal activity sequences may also be generated by CPGs. My goal here is to highlight previous applications of the CPG concept to complex but stereotypical activity sequences and to suggest additional possible applications, which might provoke new hypotheses and experiments.
Collapse
Affiliation(s)
- Ari Berkowitz
- Department of Biology and Cellular & Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
20
|
Fan Y, Yue X, Xue F, Cui J, Brauth SE, Tang Y, Fang G. Auditory perception exhibits sexual dimorphism and left telencephalic dominance in Xenopus laevis. Biol Open 2018; 7:7/12/bio035956. [PMID: 30509903 PMCID: PMC6310876 DOI: 10.1242/bio.035956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sex differences in both vocalization and auditory processing have been commonly found in vocal animals, although the underlying neural mechanisms associated with sexual dimorphism of auditory processing are not well understood. In this study we investigated whether auditory perception exhibits sexual dimorphism in Xenopus laevis. To do this we measured event-related potentials (ERPs) evoked by white noise (WN) and conspecific calls in the telencephalon, diencephalon and mesencephalon respectively. Results showed that (1) the N1 amplitudes evoked in the right telencephalon and right diencephalon of males by WN are significantly different from those evoked in females; (2) in males the N1 amplitudes evoked by conspecific calls are significantly different from those evoked by WN; (3) in females the N1 amplitude for the left mesencephalon was significantly lower than for other brain areas, while the P2 and P3 amplitudes for the right mesencephalon were the smallest; in contrast these amplitudes for the left mesencephalon were the smallest in males. These results suggest auditory perception is sexually dimorphic. Moreover, the amplitude of each ERP component (N1, P2 and P3) for the left telencephalon was the largest in females and/or males, suggesting that left telencephalic dominance exists for auditory perception in Xenopus. Summary: Investigation of auditory neural mechanisms in the South African clawed frog (Xenopus laevis) indicates that auditory perception exhibits sexual dimorphism and left telencephalic advantage.
Collapse
Affiliation(s)
- Yanzhu Fan
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, People's Republic of China
| | - Xizi Yue
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China
| | - Fei Xue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 26 Panda Road, Northern Suburb, Chengdu, Sichuan 610081, People's Republic of China
| | - Jianguo Cui
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China
| | - Steven E Brauth
- Department of Psychology, University of Maryland, College Park, MD20742, USA
| | - Yezhong Tang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China
| | - Guangzhan Fang
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, No.9 Section 4, Renmin South Road, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
21
|
Yamaguchi A, Woller DJ, Rodrigues P. Development of an Acute Method to Deliver Transgenes Into the Brains of Adult Xenopus laevis. Front Neural Circuits 2018; 12:92. [PMID: 30416430 PMCID: PMC6213920 DOI: 10.3389/fncir.2018.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/03/2018] [Indexed: 01/06/2023] Open
Abstract
The central vocal pathway of the African clawed frog, Xenopus laevis, is a powerful vertebrate model to understand mechanisms underlying central pattern generation. However, fast and efficient methods of introducing exogenous genes into the neurons of adult X. laevis are currently not available. Here, we systematically tested methods of transgene delivery into adult X. laevis neurons. Although successfully used for tadpole neurons for over a decade, electroporation was not efficient in transfecting adult neurons. Similarly, adeno-associated virus (AAV) was not reliable, and lentivirus (LV) failed to function as viral vector in adult Xenopus neurons. In contrast, vesicular stomatitis virus (VSV) was a fast and robust vector for adult X. laevis neurons. Although toxic to the host cells, VSV appears to be less virulent to frog neurons than they are to mice neurons. At a single cell level, infected neurons showed normal physiological properties up to 7 days post infection and vocal circuits that included infected neurons generated normal fictive vocalizations up to 9 days post infection. The relatively long time window during which the physiology of VSV-infected neurons can be studied presents an ideal condition for the use of optogenetic tools. We showed that VSV does not gain entry into myelinated axons, but is taken up by both the soma and axon terminal; this is an attractive feature that drives transgene expression in projection neurons. Previous studies showed that VSVs can spread across synapses in anterograde or retrograde directions depending on the types of glycoprotein that are encoded. However, rVSV did not spread across synapses in the Xenopus central nervous system. The successful use of VSV as a transgene vector in amphibian brains not only allows us to exploit the full potential of the genetic tools to answer questions central to understanding central pattern generation, but also opens the door to other research programs that focus on non-genetic model organisms to address unique questions.
Collapse
Affiliation(s)
- Ayako Yamaguchi
- Department of Biology, University of Utah, Salt Lake City, UT, United States
| | - Diana J Woller
- Department of Biology, University of Utah, Salt Lake City, UT, United States
| | - Paulo Rodrigues
- Department of Biology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
22
|
Premotor Neuron Divergence Reflects Vocal Evolution. J Neurosci 2018; 38:5325-5337. [PMID: 29875228 DOI: 10.1523/jneurosci.0089-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/09/2018] [Accepted: 04/28/2018] [Indexed: 11/21/2022] Open
Abstract
To identify mechanisms of behavioral evolution, we investigated the hindbrain circuit that generates distinct vocal patterns in two closely related frog species. Male Xenopus laevis and Xenopus petersii produce courtship calls that include a fast trill: trains of ∼60 Hz sound pulses. Although fast trill rates are similar, X. laevis fast trills have a longer duration and period than those of X. petersii To pinpoint the neural basis of these differences, we used whole-cell patch-clamp recordings in a key premotor hindbrain nucleus (the Xenopus parabrachial area, PBX) in ex vivo brains that produce fictive vocalizations, vocal nerve activity corresponding to advertisement call patterns. We found two populations of PBX neurons with distinct properties: fast trill neurons (FTNs) and early vocal neurons (EVNs). FTNs, but not EVNs, appear to be intrinsically tuned to produce each species' call patterns because: (1) X. laevis FTNs generate longer and slower depolarizations than X. petersii FTNs during their respective fictive vocalizations, (2) current steps in FTNs induce burst durations that are significantly longer in X. laevis than X. petersii, and (3) synaptically isolated FTNs oscillate in response to NMDA in a species-specific manner: longer and slower in X. laevis than in X. petersii Therefore, divergence of premotor neuron membrane properties is a strong candidate for generating vocal differences between species.SIGNIFICANCE STATEMENT The vertebrate hindbrain includes multiple neural circuits that generate rhythmic behaviors including vocalizations. Male African clawed frogs produce courtship calls that are unique to each species and differ in temporal patterns. Here, we identified two functional subtypes of neurons located in the parabrachial nucleus: a hindbrain region implicated in vocal and respiratory control across vertebrates. One of these neuronal subtypes exhibits distinct properties across species that can account for the evolutionary divergence of song patterns. Our results suggest that changes to this group of neurons during evolution may have had a major role in establishing novel behaviors in closely related species.
Collapse
|
23
|
Rosner E, Rohmann KN, Bass AH, Chagnaud BP. Inhibitory and modulatory inputs to the vocal central pattern generator of a teleost fish. J Comp Neurol 2018; 526:1368-1388. [PMID: 29424431 PMCID: PMC5901028 DOI: 10.1002/cne.24411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 12/24/2022]
Abstract
Vocalization is a behavioral feature that is shared among multiple vertebrate lineages, including fish. The temporal patterning of vocal communication signals is set, in part, by central pattern generators (CPGs). Toadfishes are well-established models for CPG coding of vocalization at the hindbrain level. The vocal CPG comprises three topographically separate nuclei: pre-pacemaker, pacemaker, motor. While the connectivity between these nuclei is well understood, their neurochemical profile remains largely unexplored. The highly vocal Gulf toadfish, Opsanus beta, has been the subject of previous behavioral, neuroanatomical and neurophysiological studies. Combining transneuronal neurobiotin-labeling with immunohistochemistry, we map the distribution of inhibitory neurotransmitters and neuromodulators along with gap junctions in the vocal CPG of this species. Dense GABAergic and glycinergic label is found throughout the CPG, with labeled somata immediately adjacent to or within CPG nuclei, including a distinct subset of pacemaker neurons co-labeled with neurobiotin and glycine. Neurobiotin-labeled motor and pacemaker neurons are densely co-labeled with the gap junction protein connexin 35/36, supporting the hypothesis that transneuronal neurobiotin-labeling occurs, at least in part, via gap junction coupling. Serotonergic and catecholaminergic label is also robust within the entire vocal CPG, with additional cholinergic label in pacemaker and prepacemaker nuclei. Likely sources of these putative modulatory inputs are neurons within or immediately adjacent to vocal CPG neurons. Together with prior neurophysiological investigations, the results reveal potential mechanisms for generating multiple classes of social context-dependent vocalizations with widely divergent temporal and spectral properties.
Collapse
Affiliation(s)
- Elisabeth Rosner
- Department Biologie II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany.,Graduate School of Systemic Neurosciences Munich, Planegg-Martinsried, 82152, Germany
| | - Kevin N Rohmann
- Department of Neurobiology and Behavior, W239/233 Mudd Hall Cornell University, Ithaca, New York, 14853
| | - Andrew H Bass
- Department of Neurobiology and Behavior, W239/233 Mudd Hall Cornell University, Ithaca, New York, 14853
| | - Boris P Chagnaud
- Department Biologie II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
24
|
Thompson KJ. Oviposition-like central pattern generators in pregenital segments of male and female grasshoppers. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:419-433. [PMID: 29423751 DOI: 10.1007/s00359-018-1249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
Grasshoppers produce an extraordinary oviposition behavior that is associated with multiple specializations of the skeletal and neuromuscular systems in the posterior abdomen, including a central pattern generator (CPG) in the female's terminal abdominal ganglion. Two pairs of shovel-shaped appendages, the ovipositor valves on the abdomen tip, excavate the soil for deposition of eggs. By contrast, the sexually monomorphic pregenital region of the abdomen is without appendages. Morphological homologues of ovipositor muscles and efferent neurons in the eighth abdominal segment are nevertheless present in pregenital segments of males and females. In both sexes, a robust rhythmic motor program was induced in pregenital segments by the same experimental methods used to elicit oviposition digging. The activity, recorded extracellularly, was oviposition-like in burst period (5-6 s) and homologous muscle phase relationships, and it persisted after sensory inputs were removed, indicating the presence of pregenital CPGs. The abdomen exhibited posterior-going waves of activity with an intersegmental phase delay of approximately 1 s. These results indicate that serially homologous motor systems, including functional CPGs, provided the foundation for the evolution of oviposition behavior.
Collapse
Affiliation(s)
- Karen J Thompson
- Department of Biology, Agnes Scott College, 141 E College Ave., Decatur, 30030, GA, USA.
| |
Collapse
|
25
|
Kelley DB, Elliott TM, Evans BJ, Hall IC, Leininger EC, Rhodes HJ, Yamaguchi A, Zornik E. Probing forebrain to hindbrain circuit functions in Xenopus. Genesis 2017; 55. [PMID: 28095617 DOI: 10.1002/dvg.22999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022]
Abstract
The vertebrate hindbrain includes neural circuits that govern essential functions including breathing, blood pressure and heart rate. Hindbrain circuits also participate in generating rhythmic motor patterns for vocalization. In most tetrapods, sound production is powered by expiration and the circuitry underlying vocalization and respiration must be linked. Perception and arousal are also linked; acoustic features of social communication sounds-for example, a baby's cry-can drive autonomic responses. The close links between autonomic functions that are essential for life and vocal expression have been a major in vivo experimental challenge. Xenopus provides an opportunity to address this challenge using an ex vivo preparation: an isolated brain that generates vocal and breathing patterns. The isolated brain allows identification and manipulation of hindbrain vocal circuits as well as their activation by forebrain circuits that receive sensory input, initiate motor patterns and control arousal. Advances in imaging technologies, coupled to the production of Xenopus lines expressing genetically encoded calcium sensors, provide powerful tools for imaging neuronal patterns in the entire fictively behaving brain, a goal of the BRAIN Initiative. Comparisons of neural circuit activity across species (comparative neuromics) with distinctive vocal patterns can identify conserved features, and thereby reveal essential functional components.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences, Columbia University, New York, New York, 10027
| | - Taffeta M Elliott
- Department of Psychology, New Mexico Tech, Socorro, New Mexico, 87801
| | - Ben J Evans
- Department of Biology, McMaster University, Hamilton, Ontario, Ontario, L8S4K1, Canada
| | - Ian C Hall
- Department of Biology, Benedictine University, Lisle, Illinois
| | | | - Heather J Rhodes
- Department of Biology, Denison University, Granville, Ohio, 43023
| | - Ayako Yamaguchi
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112
| | - Erik Zornik
- Biology Department, Reed College, Portland, Oregon, 97201
| |
Collapse
|
26
|
Hartline JT, Smith AN, Kabelik D. Serotonergic activation during courtship and aggression in the brown anole, Anolis sagrei. PeerJ 2017; 5:e3331. [PMID: 28533977 PMCID: PMC5436558 DOI: 10.7717/peerj.3331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/19/2017] [Indexed: 11/20/2022] Open
Abstract
The role of serotonin (5-hydroxytryptamine, 5-HT) in social behavior regulation is not fully understood. While 5-HT release in nuclei of the social behavior network has generally been associated with inhibition of aggressive behavior across multiple classes of vertebrates, less is known about its effects on sexual, especially non-copulatory courtship display behaviors. Furthermore, most research has examined effects at 5-HT release sites, while studies examining the behavioral relevance of source cell populations have generated contradictory findings. This study utilized immunohistochemistry to examine the colocalization of 5-HT with Fos, an immediate early gene product and marker of neural activity, in the raphe and superior reticular nuclei of male brown anoles (Anolis sagrei) exposed to either aggression, courtship, or control social interactions. Supporting previous research, copulation was associated with a decrease in 5-HT activity, while a novel link between 5-HT activity and latency to non-copulatory courtship was also found. Within the aggression group, intensity and frequency of behavior were both associated with decreased 5-HT activity. An effect of social context was also seen, with anoles exposed to either courtship or aggression encounters showing decreased 5-HT activity in certain raphe and superior reticular nuclei populations compared to controls. Interestingly, context effects and behavioral effects were seen at separate brain nuclei, suggesting the presence of separate systems with distinct functional roles.
Collapse
Affiliation(s)
- Jacob T Hartline
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| | - Alexandra N Smith
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| | - David Kabelik
- Department of Biology, Rhodes College, Memphis, TN, United States of America.,Program in Neuroscience, Rhodes College, Memphis, TN, United States of America
| |
Collapse
|
27
|
Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator. J Neurosci 2017; 37:3264-3275. [PMID: 28219984 DOI: 10.1523/jneurosci.2755-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/05/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022] Open
Abstract
Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50-60 Hz "fast trill" song used by males during courtship. We recorded "fictive vocalizations" in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity.SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from the motor to premotor region. Our results indicate that motor neurons activate this bottom-up connection, and blocking this signal eliminates normal premotor activity. These findings may promote increased awareness of potential involvement of motor neurons in a wider range of CPGs, perhaps clarifying our understanding of network principles underlying motor behaviors in numerous organisms, including humans.
Collapse
|
28
|
Yamaguchi A, Cavin Barnes J, Appleby T. Rhythm generation, coordination, and initiation in the vocal pathways of male African clawed frogs. J Neurophysiol 2017; 117:178-194. [PMID: 27760822 PMCID: PMC5209533 DOI: 10.1152/jn.00628.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/15/2016] [Indexed: 01/12/2023] Open
Abstract
Central pattern generators (CPGs) in the brain stem are considered to underlie vocalizations in many vertebrate species, but the detailed mechanisms underlying how motor rhythms are generated, coordinated, and initiated remain unclear. We addressed these issues using isolated brain preparations of Xenopus laevis from which fictive vocalizations can be elicited. Advertisement calls of male X. laevis that consist of fast and slow trills are generated by vocal CPGs contained in the brain stem. Brain stem central vocal pathways consist of a premotor nucleus [dorsal tegmental area of medulla (DTAM)] and a laryngeal motor nucleus [a homologue of nucleus ambiguus (n.IX-X)] with extensive reciprocal connections between the nuclei. In addition, DTAM receives descending inputs from the extended amygdala. We found that unilateral transection of the projections between DTAM and n.IX-X eliminated premotor fictive fast trill patterns but did not affect fictive slow trills, suggesting that the fast and slow trill CPGs are distinct; the slow trill CPG is contained in n.IX-X, and the fast trill CPG spans DTAM and n.IX-X. Midline transections that eliminated the anterior, posterior, or both commissures caused no change in the temporal structure of fictive calls, but bilateral synchrony was lost, indicating that the vocal CPGs are contained in the lateral halves of the brain stem and that the commissures synchronize the two oscillators. Furthermore, the elimination of the inputs from extended amygdala to DTAM, in addition to the anterior commissure, resulted in autonomous initiation of fictive fast but not slow trills by each hemibrain stem, indicating that the extended amygdala provides a bilateral signal to initiate fast trills. NEW & NOTEWORTHY Central pattern generators (CPGs) are considered to underlie vocalizations in many vertebrate species, but the detailed mechanisms underlying their functions remain unclear. We addressed this question using an isolated brain preparation of African clawed frogs. We discovered that two vocal phases are mediated by anatomically distinct CPGs, that there are a pair of CPGs contained in the left and right half of the brain stem, and that mechanisms underlying initiation of the two vocal phases are distinct.
Collapse
Affiliation(s)
- Ayako Yamaguchi
- Department of Biology, University of Utah, Salt Lake City, Utah
| | | | - Todd Appleby
- Department of Biology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
29
|
Barkan CL, Zornik E, Kelley DB. Evolution of vocal patterns: tuning hindbrain circuits during species divergence. ACTA ACUST UNITED AC 2016; 220:856-867. [PMID: 28011819 DOI: 10.1242/jeb.146845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023]
Abstract
The neural circuits underlying divergent courtship behaviors of closely related species provide a framework for insight into the evolution of motor patterns. In frogs, male advertisement calls serve as unique species identifiers and females prefer conspecific to heterospecific calls. Advertisement calls of three relatively recently (∼8.5 Mya) diverged species - Xenopus laevis, X. petersii and X. victorianus - include rapid trains of sound pulses (fast trills). We show that while fast trills are similar in pulse rate (∼60 pulses s-1) across the three species, they differ in call duration and period (time from the onset of one call to the onset of the following call). Previous studies of call production in X. laevis used an isolated brain preparation in which the laryngeal nerve produces compound action potentials that correspond to the advertisement call pattern (fictive calling). Here, we show that serotonin evokes fictive calling in X. petersii and X. victorianus as it does in X. laevis As in X. laevis, fictive fast trill in X. petersii and X. victorianus is accompanied by an N-methyl-d-aspartate receptor-dependent local field potential wave in a rostral hindbrain nucleus, DTAM. Across the three species, wave duration and period are strongly correlated with species-specific fast trill duration and period, respectively. When DTAM is isolated from the more rostral forebrain and midbrain and/or more caudal laryngeal motor nucleus, the wave persists at species-typical durations and periods. Thus, intrinsic differences within DTAM could be responsible for the evolutionary divergence of call patterns across these related species.
Collapse
Affiliation(s)
- Charlotte L Barkan
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - Erik Zornik
- Biology Department, Reed College, Portland, OR 97202, USA
| | - Darcy B Kelley
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA .,Department of Biological Sciences, Columbia University, New York, NY 10025, USA
| |
Collapse
|
30
|
Hall IC, Woolley SMN, Kwong-Brown U, Kelley DB. Sex differences and endocrine regulation of auditory-evoked, neural responses in African clawed frogs (Xenopus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:17-34. [PMID: 26572136 PMCID: PMC4699871 DOI: 10.1007/s00359-015-1049-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 12/01/2022]
Abstract
Mating depends on the accurate detection of signals that convey species identity and reproductive state. In African clawed frogs, Xenopus, this information is conveyed by vocal signals that differ in temporal patterns and spectral features between sexes and across species. We characterized spectral sensitivity using auditory-evoked potentials (AEPs), commonly known as the auditory brainstem response, in males and females of four Xenopus species. In female X. amieti, X. petersii, and X. laevis, peripheral auditory sensitivity to their species own dyad-two, species-specific dominant frequencies in the male advertisement call-is enhanced relative to males. Males were most sensitive to lower frequencies including those in the male-directed release calls. Frequency sensitivity was influenced by endocrine state; ovariectomized females had male-like auditory tuning while dihydrotestosterone-treated, ovariectomized females maintained female-like tuning. Thus, adult, female Xenopus demonstrate an endocrine-dependent sensitivity to the spectral features of conspecific male advertisement calls that could facilitate mating. Xenopus AEPs resemble those of other species in stimulus and level dependence, and in sensitivity to anesthetic (MS222). AEPs were correlated with body size and sex within some species. A frequency following response, probably encoded by the amphibian papilla, might facilitate dyad source localization via interaural time differences.
Collapse
Affiliation(s)
- Ian C Hall
- Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA.
- Department of Biology, St. Mary's College of Maryland, Schaeffer Hall 258, St. Mary's City, MD, 20686, USA.
| | - Sarah M N Woolley
- Department of Psychology, Columbia University, Schermerhorn Hall, MC 5501, New York, NY, 10027, USA
| | - Ursula Kwong-Brown
- Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA
- Center for New Music and Audio Technologies, University of California, Berkeley, CA, 94720, USA
| | - Darcy B Kelley
- Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA
| |
Collapse
|
31
|
Leininger EC, Kelley DB. Evolution of Courtship Songs in Xenopus: Vocal Pattern Generation and Sound Production. Cytogenet Genome Res 2015; 145:302-14. [DOI: 10.1159/000433483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The extant species of African clawed frogs (Xenopus and Silurana) provide an opportunity to link the evolution of vocal characters to changes in the responsible cellular and molecular mechanisms. In this review, we integrate several robust lines of research: evolutionary trajectories of Xenopus vocalizations, cellular and circuit-level mechanisms of vocalization in selected Xenopus model species, and Xenopus evolutionary history and speciation mechanisms. Integrating recent findings allows us to generate and test specific hypotheses about the evolution of Xenopus vocal circuits. We propose that reduced vocal sex differences in some Xenopus species result from species-specific losses of sexually differentiated neural and neuromuscular features. Modification of sex-hormone-regulated developmental mechanisms is a strong candidate mechanism for reduced vocal sex differences.
Collapse
|
32
|
Leininger EC, Kitayama K, Kelley DB. Species-specific loss of sexual dimorphism in vocal effectors accompanies vocal simplification in African clawed frogs (Xenopus). ACTA ACUST UNITED AC 2015; 218:849-57. [PMID: 25788725 DOI: 10.1242/jeb.115048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phylogenetic studies can reveal patterns of evolutionary change, including the gain or loss of elaborate courtship traits in males. Male African clawed frogs generally produce complex and rapid courtship vocalizations, whereas female calls are simple and slow. In a few species, however, male vocalizations are also simple and slow, suggesting loss of male-typical traits. Here, we explore features of the male vocal organ that could contribute to loss in two species with simple, slow male calls. In Xenopus boumbaensis, laryngeal morphology is more robust in males than in females. Larynges are larger, have a more complex cartilaginous morphology and contain more muscle fibers. Laryngeal muscle fibers are exclusively fast-twitch in males but are both fast- and slow-twitch in females. The laryngeal electromyogram, a measure of neuromuscular synaptic strength, shows greater potentiation in males than in females. Male-specific physiological features are shared with X. laevis, as well as with a species of the sister clade, Silurana tropicalis, and thus are likely ancestral. In X. borealis, certain aspects of laryngeal morphology and physiology are sexually monomorphic rather than dimorphic. In both sexes, laryngeal muscle fibers are of mixed-twitch type, which limits the production of muscle contractions at rapid intervals. Muscle activity potentiation and discrete tension transients resemble female rather than male X. boumbaensis. The de-masculinization of these laryngeal features suggests an alteration in sensitivity to the gonadal hormones that are known to control the sexual differentiation of the larynx in other Xenopus and Silurana species.
Collapse
Affiliation(s)
- Elizabeth C Leininger
- Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA Department of Biological Sciences, Columbia University, New York, NY 10027, USA Biology Department, St Mary's College of Maryland, St Mary's City MD 20868, USA
| | - Ken Kitayama
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Darcy B Kelley
- Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
33
|
Sweeney LB, Kelley DB. Harnessing vocal patterns for social communication. Curr Opin Neurobiol 2014; 28:34-41. [PMID: 24995669 PMCID: PMC4177452 DOI: 10.1016/j.conb.2014.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/23/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
Abstract
Work on vocal communication, influenced by a drive to understand the evolution of language, has focused on auditory processing and forebrain control of learned vocalizations. The actual hindbrain neural mechanisms used to create communication signals are understudied, in part because of the difficulty of experimental studies in species that rely on respiration for vocalization. In these experimental systems-including those that embody vocal learning-vocal behaviors have rhythmic qualities. Recent studies using molecular markers and 'fictive' patterns produced by isolated brains are beginning to reveal how hindbrain circuits generate vocal patterns. Insights from central pattern generators for respiration and locomotion are illuminating common neural and developmental mechanisms. Choice of vocal patterns is responsive to socially salient input. Studies of the vertebrate social brain network suggest mechanisms used to integrate socially salient information and produce an appropriate vocal response.
Collapse
Affiliation(s)
- Lora B Sweeney
- Molecular Neurobiology Laboratory, Salk Institute, 10010 N Torrey Pines Rd, La Jolla, CA 92037, United States
| | - Darcy B Kelley
- Dept. of Biological Sciences, Columbia University, 1616 Amsterdam Avenue, New York, NY 10027, United States.
| |
Collapse
|
34
|
Remage-Healey L. Frank Beach Award Winner: Steroids as neuromodulators of brain circuits and behavior. Horm Behav 2014; 66:552-60. [PMID: 25110187 PMCID: PMC4180446 DOI: 10.1016/j.yhbeh.2014.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/27/2022]
Abstract
Neurons communicate primarily via action potentials that transmit information on the timescale of milliseconds. Neurons also integrate information via alterations in gene transcription and protein translation that are sustained for hours to days after initiation. Positioned between these two signaling timescales are the minute-by-minute actions of neuromodulators. Over the course of minutes, the classical neuromodulators (such as serotonin, dopamine, octopamine, and norepinephrine) can alter and/or stabilize neural circuit patterning as well as behavioral states. Neuromodulators allow many flexible outputs from neural circuits and can encode information content into the firing state of neural networks. The idea that steroid molecules can operate as genuine behavioral neuromodulators - synthesized by and acting within brain circuits on a minute-by-minute timescale - has gained traction in recent years. Evidence for brain steroid synthesis at synaptic terminals has converged with evidence for the rapid actions of brain-derived steroids on neural circuits and behavior. The general principle emerging from this work is that the production of steroid hormones within brain circuits can alter their functional connectivity and shift sensory representations by enhancing their information coding. Steroids produced in the brain can therefore change the information content of neuronal networks to rapidly modulate sensory experience and sensorimotor functions.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 01003, USA.
| |
Collapse
|
35
|
Abstract
Social interaction requires that relevant sensory information is collected, classified, and distributed to the motor areas that initiate an appropriate behavioral response. Vocal exchanges, in particular, depend on linking auditory processing to an appropriate motor expression. Because of its role in integrating sensory information for the purpose of action selection, the amygdala has been implicated in social behavior in many mammalian species. Here, we show that two nuclei of the extended amygdala play essential roles in vocal communication in the African clawed frog, Xenopus laevis. Transport of fluorescent dextran amines identifies the X. laevis central amygdala (CeA) as a target for ascending auditory information from the central thalamic nucleus and as a major afferent to the vocal pattern generator of the hindbrain. In the isolated (ex vivo) brain, electrical stimulation of the CeA, or the neighboring bed nucleus of the stria terminalis (BNST), initiates bouts of fictive calling. In vivo, lesioning the CeA of males disrupts the production of appropriate vocal responses to females and to broadcasts of female calls. Lesioning the BNST in males produces an overall decrease in calling behavior. Together, these results suggest that the anuran CeA evaluates the valence of acoustic cues and initiates socially appropriate vocal responses to communication signals, whereas the BNST plays a role in the initiation of vocalizations.
Collapse
|
36
|
de Campos D, Ellwanger JH, do Nascimento PS, da Rosa HT, Saur L, Jotz GP, Xavier LL. Sexual Dimorphism in the Human Vocal Fold Innervation. J Voice 2013; 27:267-72. [DOI: 10.1016/j.jvoice.2012.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
37
|
Leininger EC, Kelley DB. Distinct neural and neuromuscular strategies underlie independent evolution of simplified advertisement calls. Proc Biol Sci 2013; 280:20122639. [PMID: 23407829 DOI: 10.1098/rspb.2012.2639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Independent or convergent evolution can underlie phenotypic similarity of derived behavioural characters. Determining the underlying neural and neuromuscular mechanisms sheds light on how these characters arose. One example of evolutionarily derived characters is a temporally simple advertisement call of male African clawed frogs (Xenopus) that arose at least twice independently from a more complex ancestral pattern. How did simplification occur in the vocal circuit? To distinguish shared from divergent mechanisms, we examined activity from the calling brain and vocal organ (larynx) in two species that independently evolved simplified calls. We find that each species uses distinct neural and neuromuscular strategies to produce the simplified calls. Isolated Xenopus borealis brains produce fictive vocal patterns that match temporal patterns of actual male calls; the larynx converts nerve activity faithfully into muscle contractions and single clicks. In contrast, fictive patterns from isolated Xenopus boumbaensis brains are short bursts of nerve activity; the isolated larynx requires stimulus bursts to produce a single click of sound. Thus, unlike X. borealis, the output of the X. boumbaensis hindbrain vocal pattern generator is an ancestral burst-type pattern, transformed by the larynx into single clicks. Temporally simple advertisement calls in genetically distant species of Xenopus have thus arisen independently via reconfigurations of central and peripheral vocal neuroeffectors.
Collapse
Affiliation(s)
- Elizabeth C Leininger
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, NY, USA.
| | | |
Collapse
|
38
|
Abstract
Vocalizations involve complex rhythmic motor patterns, but the underlying temporal coding mechanisms in the nervous system are poorly understood. Using a recently developed whole-brain preparation from which "fictive" vocalizations are readily elicited in vitro, we investigated the cellular basis of temporal complexity of African clawed frogs (Xenopus laevis). Male advertisement calls contain two alternating components--fast trills (∼300 ms) and slow trills (∼700 ms) that contain clicks repeated at ∼60 and ∼30 Hz, respectively. We found that males can alter the duration of fast trills without changing click rates. This finding led us to hypothesize that call rate and duration are regulated by independent mechanisms. We tested this by obtaining whole-cell patch-clamp recordings in the "fictively" calling isolated brain. We discovered a single type of premotor neuron with activity patterns correlated with both the rate and duration of fast trills. These "fast-trill neurons" (FTNs) exhibited long-lasting depolarizations (LLDs) correlated with each fast trill and action potentials that were phase-locked with motor output-neural correlates of call duration and rate, respectively. When depolarized without central pattern generator activation, FTNs produced subthreshold oscillations and action potentials at fast-trill rates, indicating FTN resonance properties are tuned to, and may dictate, the fast-trill rhythm. NMDA receptor (NMDAR) blockade eliminated LLDs in FTNs, and NMDAR activation in synaptically isolated FTNs induced repetitive LLDs. These results suggest FTNs contain an NMDAR-dependent mechanism that may regulate fast-trill duration. We conclude that a single premotor neuron population employs distinct mechanisms to regulate call rate and duration.
Collapse
|
39
|
Yamaguchi A, Muñoz MM, Bose TO, Oberlander JG, Smith S. Sexually distinct development of vocal pathways in Xenopus laevis. Dev Neurobiol 2011; 70:862-74. [PMID: 20635351 DOI: 10.1002/dneu.20822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deterministic rules, rather than experience, are thought to regulate the development of simple behaviors in vertebrates and invertebrates. We revisited this issue through examination of the sexually distinct vocalizations of African clawed frogs (Xenopus laevis), a reproductive behavior used by sexually mature males and females. We discovered that, as expected for simple behavior, female vocalizations develop through deterministic rules. The rare calls of juvenile females are indistinguishable from those of adult females. The vocal pathways of juvenile females, as measured by the contractile properties of the laryngeal muscles (the vocal muscles) and the laryngeal motoneuron somata (vocal motoneurons) size, are the developmental default and do not differentiate as they mature. Male Xenopus, in contrast, produce extensive vocalizations with rudimentary acoustic structure before reaching sexual maturity. Moreover, the functional properties of the vocal central pattern generator mature before muscle fibers and motoneuron size are fully masculinized. The results suggest that neuronal activity during development may be important in organizing the contractile properties of the muscle fibers in male, but not in female Xenopus.
Collapse
Affiliation(s)
- Ayako Yamaguchi
- Biology Department, Boston University, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
40
|
A neuroendocrine basis for the hierarchical control of frog courtship vocalizations. Front Neuroendocrinol 2011; 32:353-66. [PMID: 21192966 PMCID: PMC3090693 DOI: 10.1016/j.yfrne.2010.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 12/23/2010] [Indexed: 01/14/2023]
Abstract
Seasonal courtship signals, such as mating calls, are orchestrated by steroid hormones. Sex differences are also sculpted by hormones, typically during brief sensitive periods. The influential organizational-activational hypothesis [50] established the notion of a strong distinction between long-lasting (developmental) and cyclical (adult) effects. While the dichotomy is not always strict [1], experimental paradigms based on this hypothesis have indeed revealed long-lasting hormone actions during development and more transient anatomical, physiological and behavioral effects of hormonal variation in adulthood. Sites of action during both time periods include forebrain and midbrain sensorimotor integration centers, hindbrain and spinal cord motor centers, and muscles. African clawed frog (Xenopus laevis) courtship vocalizations follow the basic organization-activation pattern of hormone-dependence with some exceptions, including expanded steroid-sensitive periods. Two highly-tractable preparations-the isolated larynx and the fictively calling brain-make this model system powerful for dissecting the hierarchical action of hormones. We discuss steroid effects from larynx to forebrain, and introduce new directions of inquiry for which Xenopus vocalizations are especially well-suited.
Collapse
|
41
|
Estrogen and Progestogen Correlates of the Structure of Female Copulation Calls in Semi-Free-Ranging Barbary Macaques (Macaca sylvanus). INT J PRIMATOL 2011; 32:992-1006. [PMID: 21892238 PMCID: PMC3139882 DOI: 10.1007/s10764-011-9517-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/15/2011] [Indexed: 02/02/2023]
Abstract
Females of many Old World primates produce conspicuous vocalizations in combination with copulations. Indirect evidence exists that in Barbary macaques (Macaca sylvanus), the structure of these copulation calls is related to changes in reproductive hormone levels. However, the structure of these calls does not vary significantly around the timing of ovulation when estrogen and progestogen levels show marked changes. We here aimed to clarify this paradox by investigating how the steroid hormones estrogen and progesterone are related to changes in the acoustic structure of copulation calls. We collected data on semi-free-ranging Barbary macaques in Gibraltar and at La Forêt des Singes in Rocamadour, France. We determined estrogen and progestogen concentrations from fecal samples and combined them with a fine-grained structural analysis of female copulation calls (N = 775 calls of 11 females). Our analysis indicates a time lag of 3 d between changes in fecal hormone levels, adjusted for the excretion lag time, and in the acoustic structure of copulation calls. Specifically, we found that estrogen increased the duration and frequency of the calls, whereas progestogen had an antagonistic effect. Importantly, however, variation in acoustic variables did not track short-term changes such as the peak in estrogen occurring around the timing of ovulation. Taken together, our results help to explain why female Barbary macaque copulation calls are related to changes in hormone levels but fail to indicate the fertile phase.
Collapse
|
42
|
Zornik E, Yamaguchi A. Vocal pathway degradation in gonadectomized Xenopus laevis adults. J Neurophysiol 2011; 105:601-14. [PMID: 21148092 PMCID: PMC3059166 DOI: 10.1152/jn.00883.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/04/2010] [Indexed: 01/26/2023] Open
Abstract
Reproductive behaviors of many vertebrate species are activated in adult males by elevated androgen levels and abolished by castration. Neural and muscular components controlling these behaviors contain numerous hormone-sensitive sites including motor initiation centers (such as the basal ganglia), central pattern generators (CPGs), and muscles; therefore it is difficult to confirm the role of each hormone-activated target using behavioral assays alone. Our goal was to address this issue by determining the site of androgen-induced vocal activation using male Xenopus laevis, a species in which androgen dependence of vocal activation has been previously determined. We compared in vivo calling patterns and functionality of two in vitro preparations-the isolated larynx and an isolated brain from which fictive courtship vocalizations can be evoked--in castrated and control males. The isolated larynx allowed us to test whether castrated males were capable of transducing male-typical nerve signals into vocalizations and the fictively vocalizing brain preparation allowed us to directly examine vocal CPG function separate from the issue of vocal initiation. The results indicate that all three components--vocal initiation, CPG, and larynx--require intact gonads. Vocal production decreased dramatically in castrates and laryngeal contractile properties of castrated males were demasculinized, whereas no changes were observed in control animals. In addition, fictive calls of castrates were degraded compared with those of controls. To our knowledge, this finding represents the first demonstration of gonad-dependent maintenance of a CPG for courtship behavior in adulthood. Because previous studies showed that androgen-replacement can prevent castration-induced vocal impairments, we conclude that degradation of vocal initiation centers, larynx, and CPG function are most likely due to steroid hormone deprivation.
Collapse
Affiliation(s)
- Erik Zornik
- Biology Department, Boston University, Boston, Massachusetts, USA.
| | | |
Collapse
|
43
|
Kelley DB, Bass AH. Neurobiology of vocal communication: mechanisms for sensorimotor integration and vocal patterning. Curr Opin Neurobiol 2010; 20:748-53. [PMID: 20829032 DOI: 10.1016/j.conb.2010.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 08/10/2010] [Indexed: 01/22/2023]
Abstract
This review will focus on recent developments in the sensorimotor integration of vocal communication. Two broad themes are emphasized: the evolution of vocal production and perception, and the role of social context. Advances include: a proposal for the emergence of vocal patterning during vertebrate evolution, the role of sensory mechanisms such as categorical perception in decoding communication signals, contributions of sensorimotor integration phenomena including mirror neurons and vocal learning, and mechanisms of hormone-dependent plasticity in both auditory and vocal systems. Transcriptional networks activated in humans but not in chimps by the FoxP2 gene suggest molecular mechanisms underlying vocal gestures and the emergence of human language.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences, MC2432, Columbia University, New York, NY 10025, USA.
| | | |
Collapse
|
44
|
Milsom WK. Adaptive trends in respiratory control: a comparative perspective. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1-10. [DOI: 10.1152/ajpregu.00069.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 1941, August Krogh published a monograph entitled The Comparative Physiology of Respiratory Mechanisms (Philadelphia, PA: University of Pennsylvania Press, 1941). Since that time comparative studies have continued to contribute significantly to our understanding of the fundamentals of respiratory physiology and the adaptive trends in these processes that support a broad range of metabolic performance under demanding environmental conditions. This review specifically focuses on recent advances in our understanding of adaptive trends in respiratory control. Respiratory rhythm generators most likely arose from, and must remain integrated with, rhythm generators for chewing, suckling, and swallowing. Within the central nervous system there are multiple “segmental” rhythm generators, and through evolution there is a caudal shift in the predominant respiratory rhythm-generating site. All sites, however, may still be capable of producing or modulating respiratory rhythm under appropriate conditions. Expression of the respiratory rhythm is conditional on (tonic) input. Once the rhythm is expressed, it is often episodic as the basic medullary rhythm is turned on/off subject to a hierarchy of controls. Breathing patterns reflect differences in pulmonary mechanics resulting from differences in body wall and lung architecture and are modulated in different species by various combinations of upper and lower airway mechanoreceptors and arterial chemoreceptors to protect airways, reduce dead space ventilation, enhance gas exchange efficiency, and reduce the cost of breathing.
Collapse
Affiliation(s)
- William K. Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
45
|
Zornik E, Katzen AW, Rhodes HJ, Yamaguchi A. NMDAR-dependent control of call duration in Xenopus laevis. J Neurophysiol 2010; 103:3501-15. [PMID: 20393064 DOI: 10.1152/jn.00155.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many rhythmic behaviors, such as locomotion and vocalization, involve temporally dynamic patterns. How does the brain generate temporal complexity? Here, we use the vocal central pattern generator (CPG) of Xenopus laevis to address this question. Isolated brains can elicit fictive vocalizations, allowing us to study the CPG in vitro. The X. laevis advertisement call is temporally modulated; calls consist of rhythmic click trills that alternate between fast (approximately 60 Hz) and slow (approximately 30 Hz) rates. We investigated the role of two CPG nuclei--the laryngeal motor nucleus (n.IX-X) and the dorsal tegmental area of the medulla (DTAM)--in setting rhythm frequency and call durations. We discovered a local field potential wave in DTAM that coincides with fictive fast trills and phasic activity that coincides with fictive clicks. After disrupting n.IX-X connections, the wave persists, whereas phasic activity disappears. Wave duration was temperature dependent and correlated with fictive fast trills. This correlation persisted when wave duration was modified by temperature manipulations. Selectively cooling DTAM, but not n.IX-X, lengthened fictive call and fast trill durations, whereas cooling either nucleus decelerated the fictive click rate. The N-methyl-d-aspartate receptor (NMDAR) antagonist dAPV blocked waves and fictive fast trills, suggesting that the wave controls fast trill activation and, consequently, call duration. We conclude that two functionally distinct CPG circuits exist: 1) a pattern generator in DTAM that determines call duration and 2) a rhythm generator (spanning DTAM and n.IX-X) that determines click rates. The newly identified DTAM pattern generator provides an excellent model for understanding NDMAR-dependent rhythmic circuits.
Collapse
Affiliation(s)
- Erik Zornik
- Biology Department, Boston University, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
46
|
Rubow TK, Bass AH. Reproductive and diurnal rhythms regulate vocal motor plasticity in a teleost fish. ACTA ACUST UNITED AC 2009; 212:3252-62. [PMID: 19801430 DOI: 10.1242/jeb.032748] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Seasonal and circadian rhythms control fundamental physiological processes including neural excitability and synaptic plasticity that can lead to the periodic modulation of motor behaviors like social vocalizations. Parental male midshipman fish produce three call types during the breeding season: long duration (min to >1 h) advertisement 'hums', frequency and amplitude modulated agonistic 'growls' (s), and very brief (ms) agonistic 'grunts' produced either singly or repetitively as ;grunt trains' for up to several minutes. Fictive grunts that establish the temporal properties of natural grunts are readily evoked and recorded in vivo from vocal occipital nerve roots at any time of day or year by electrical microstimulation in either the midbrain periaqueductal gray or a hindbrain vocal pre-pacemaker nucleus. Now, as shown here, the longer duration fictive growls and hums can also be elicited, but are restricted to the nocturnal reproductive season. A significant drop in call threshold accompanies the fictive growls and hums that are distinguished by their much longer duration and lower and more regular firing frequency. Lastly, the long duration fictive calls are dependent upon increased stimulation time and intensity and hence may result from activity-dependent changes in the vocal motor circuit that are themselves modulated by seasonal and circadian rhythms.
Collapse
Affiliation(s)
- Tine K Rubow
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
47
|
Yu HJ, Yamaguchi A. Endogenous serotonin acts on 5-HT2C-like receptors in key vocal areas of the brain stem to initiate vocalizations in Xenopus laevis. J Neurophysiol 2009; 103:648-58. [PMID: 19955293 DOI: 10.1152/jn.00827.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin initiates various rhythmic behaviors in vertebrates. Previously we have shown that serotonergic neurons innervate the central vocal pathway in the African clawed frog (Xenopus laevis). We also discovered that exogenous serotonin applied to isolated brains in vitro activates fictive vocalizations by activating 5-HT(2C)-like receptors. In this study, we examined the location of 5-HT(2C)-like receptors and determined whether endogenously released serotonin also initiates vocalizations by activating 5-HT(2C)-like receptors in male Xenopus brains. To this end, we first identified the specific location of 5-HT(2C)-like receptors using immunohistochemistry. We next examined which of the populations of neurons that express 5-HT(2C)-like receptors are functionally relevant for initiating fictive vocalizations by applying a 5-HT(2C) receptor agonist to brains transected at various levels. Of four populations of immunopositive neurons, we showed that 5-HT(2C)-like receptors located in two areas of the brain stem vocal circuit, the raphe nucleus and motor nucleus IX-X, initiate fictive vocalizations. We next showed that endogenous serotonin can also activate fictive vocalizations by increasing the extracellular concentration of endogenous serotonin using a selective serotonin reuptake inhibitor (SSRI). The SSRI-induced vocal initiation is also mediated by activation of 5-HT(2C)-like receptors because blockade of these receptors prevents fictive vocalization. The results suggest that in vivo release of serotonin initiates male vocalizations by activating 5-HT(2C)-like receptors in the brain stem vocal nuclei.
Collapse
Affiliation(s)
- Heather J Yu
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
48
|
Yu HJ, Yamaguchi A. 5-HT2C-like receptors in the brain of Xenopus laevis initiate sex-typical fictive vocalizations. J Neurophysiol 2009; 102:752-65. [PMID: 19474172 DOI: 10.1152/jn.90469.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vocalizations of male and female African clawed frogs (Xenopus laevis) are generated by brain stem central pattern generators. Serotonin (5-HT) is likely important for vocal initiation because, when applied in vitro, sex-typical fictive vocalizations are evoked from isolated brains. To explore the mechanisms underlying vocal initiation, we identified the types of serotonin receptors mediating vocal activation pharmacologically using a whole brain, fictive preparation. The results showed that 5-HT(2C)-like receptors are important for activation of fictive vocalizations in the sexes. 5-HT(2C) receptor agonists elicited fictive vocalizations, and 5-HT(2C) receptor antagonists blocked 5-HT-induced fictive vocalizations, whereas agonists and antagonists of 5-HT(2A) and 5-HT(2B) receptors failed to initiate or block 5-HT-induced fictive vocalizations in the sexes. The results indicate that serotonin initiates fictive vocalizations by binding to 5-HT(2C)-like receptors located either within or upstream of the vocal central pattern generator in both sexes. We conclude that the basic mechanism of vocal initiation is shared by the sexes despite the differences in the actual vocalizations between males and females. Sex-typical vocalizations, therefore, most likely arise from activation of different populations of 5-HT(2C) receptor expressing cells or from differential activation of downstream pattern generating neurons.
Collapse
Affiliation(s)
- H J Yu
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
49
|
Abstract
Circulating hormone levels can mediate changes in the quality of courtship signals by males and/or mate choice by females and may thus play an important role in the evolution of courtship signals. Costs associated with shifts in hormone levels of males, for example, could effectively stabilize directional selection by females on male signals. Alternatively, if hormone levels affect the selection of mates by females, then variation in hormone levels among females could contribute to the maintenance of variability in the quality of males' signals. Here, I review what is known regarding the effects of hormone levels on the quality of acoustic signals produced by males and on the choice of mates by females in anuran amphibians. Surprisingly, despite the long history of anuran amphibians as model organisms for studying acoustic communication and physiology, we know very little about how variation in circulating hormone levels contributes to variation in the vocal quality of males. Proposed relationships between androgen levels and vocal quality depicted in recent models, for example, are subject to the same criticisms raised for similar models proposed in relation to birds, namely that the evidence for graded effects of androgens on vocal performance is often weak or not rigorously tested and responses seen in one species are often not observed in other species. Although several studies offer intriguing support for graded effects of hormones on calling behavior, additional comparative studies will be required to understand these relationships. Recent studies indicate that hormones may also mediate changes in anuran females' choice of mates, suggesting that the hormone levels of females can influence the evolution of males' mating signals. No studies to date have concurrently addressed the potential complexity of hormone-behavior relationships from the perspective of sender as well as receiver, nor have any studies addressed the costs that are potentially associated with changes in circulating hormone levels in anurans (i.e., life-history tradeoffs associated with elevations in circulating androgens in males). The mechanisms involved in hormonally induced changes in signal production and selectivity also require further investigation. Anuran amphibians are, in many ways, conducive to investigating such questions.
Collapse
|
50
|
Serotonin modulates vocalizations and territorial behavior in an amphibian. Behav Brain Res 2008; 193:144-7. [DOI: 10.1016/j.bbr.2008.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 04/24/2008] [Accepted: 05/02/2008] [Indexed: 11/21/2022]
|