1
|
Zota I, Chanoumidou K, Gravanis A, Charalampopoulos I. Stimulating myelin restoration with BDNF: a promising therapeutic approach for Alzheimer's disease. Front Cell Neurosci 2024; 18:1422130. [PMID: 39285941 PMCID: PMC11402763 DOI: 10.3389/fncel.2024.1422130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder constituting the most common form of dementia (60%-70% of cases). Although AD presents majorly a neurodegenerative pathology, recent clinical evidence highlights myelin impairment as a key factor in disease pathogenesis. The lack of preventive or restorative treatment is emphasizing the need to develop novel therapeutic approaches targeting to the causes of the disease. Recent studies in animals and patients have highlighted the loss of myelination of the neuronal axons as an extremely aggravating factor in AD, in addition to the formation of amyloid plaques and neurofibrillary tangles that are to date the main pathological hallmarks of the disease. Myelin breakdown represents an early stage event in AD. However, it is still unclear whether myelin loss is attributed only to exogenous factors like inflammatory processes of the tissue or to impaired oligodendrogenesis as well. Neurotrophic factors are well established protective molecules under many pathological conditions of the neural tissue, contributing also to proper myelination. Due to their inability to be used as drugs, many research efforts are focused on substituting neurotrophic activity with small molecules. Our research team has recently developed novel micromolecular synthetic neurotrophin mimetics (MNTs), selectively acting on neurotrophin receptors, and thus offering a unique opportunity for innovative therapies against neurodegenerative diseases. These small sized, lipophilic molecules address the underlying biological effect of these diseases (neuroprotective action), but also they exert significant neurogenic actions inducing neuronal replacement of the disease areas. One of the significant neurotrophin molecules in the Central Nervous System is Brain-Derived-Neurotrophin-Factor (BDNF). BDNF is a neurotrophin that not only supports neuroprotection and adult neurogenesis, but also mediates pro-myelinating effects in the CNS. BDNF binds with high-affinity on the TrkB neurotrophin receptor and enhances myelination by increasing the density of oligodendrocyte progenitor cells (OPCs) and playing an important role in CNS myelination. Conclusively, in the present review, we discuss the myelin pathophysiology in Alzheimer's Diseases, as well as the role of neurotrophins, and specifically BDNF, in myelin maintenance and restoration, revealing its valuable therapeutic potential against AD.
Collapse
Affiliation(s)
- Ioanna Zota
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
2
|
Sasmita AO, Depp C, Nazarenko T, Sun T, Siems SB, Ong EC, Nkeh YB, Böhler C, Yu X, Bues B, Evangelista L, Mao S, Morgado B, Wu Z, Ruhwedel T, Subramanian S, Börensen F, Overhoff K, Spieth L, Berghoff SA, Sadleir KR, Vassar R, Eggert S, Goebbels S, Saito T, Saido T, Saher G, Möbius W, Castelo-Branco G, Klafki HW, Wirths O, Wiltfang J, Jäkel S, Yan R, Nave KA. Oligodendrocytes produce amyloid-β and contribute to plaque formation alongside neurons in Alzheimer's disease model mice. Nat Neurosci 2024; 27:1668-1674. [PMID: 39103558 PMCID: PMC11374705 DOI: 10.1038/s41593-024-01730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
Amyloid-β (Aβ) is thought to be neuronally derived in Alzheimer's disease (AD). However, transcripts of amyloid precursor protein (APP) and amyloidogenic enzymes are equally abundant in oligodendrocytes (OLs). By cell-type-specific deletion of Bace1 in a humanized knock-in AD model, APPNLGF, we demonstrate that OLs and neurons contribute to Aβ plaque burden. For rapid plaque seeding, excitatory projection neurons must provide a threshold level of Aβ. Ultimately, our findings are relevant for AD prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Andrew Octavian Sasmita
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- International Max Planck Research School for Neurosciences, Göttingen, Germany.
| | - Constanze Depp
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Taisiia Nazarenko
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Erinne Cherisse Ong
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Yakum B Nkeh
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Böhler
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Xuan Yu
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bastian Bues
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Lisa Evangelista
- Institute for Stroke and Dementia Research, Klinikum Der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| | - Shuying Mao
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Barbara Morgado
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Zoe Wu
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Electron Microscopy Core Unit, Max Planck Institute Multidisciplinary Sciences, Göttingen, Germany
| | - Swati Subramanian
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Friederike Börensen
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katharina Overhoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katherine Rose Sadleir
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Wako, Saitama, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science Wako, Saitama, Japan
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Electron Microscopy Core Unit, Max Planck Institute Multidisciplinary Sciences, Göttingen, Germany
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research, Klinikum Der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for System Neurology (SyNergy), Munich, Germany
| | - Riqiang Yan
- Department of Neuroscience, UConn Health, Farmington, CT, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
3
|
Zhao Z, Liu Y, Ruan S, Hu Y. Current Anti-Amyloid-β Therapy for Alzheimer's Disease Treatment: From Clinical Research to Nanomedicine. Int J Nanomedicine 2023; 18:7825-7845. [PMID: 38144511 PMCID: PMC10749171 DOI: 10.2147/ijn.s444115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Recent successive approval of anti-amyloid-β (Aβ) monoclonal antibodies as disease-modifying therapies against Alzheimer's disease (AD) has raised great confidence in the development of anti-AD therapies; however, the current therapies still face the dilemma of significant adverse reactions and limited effects. In this review, we summarized the therapeutic characteristics of the approved anti-Aβ immunotherapies and dialectically analyzed the gains and losses from clinical trials. The review further proposed the reasonable selection of animal models in preclinical studies from the perspective of different animal models of Aβ deposition and deals in-depth with the recent advances of exploring preclinical nanomedical application in Aβ targeted therapy, aiming to provide a reliable systematic summary for the development of novel anti-Aβ therapies. Collectively, this review comprehensively dissects the pioneering work of Aβ-targeted therapies and proposed perspective insight into AD-modified therapies.
Collapse
Affiliation(s)
- Zixuan Zhao
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Yun Liu
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Shirong Ruan
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Yixuan Hu
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, People’s Republic of China
- The Institute of Brain Science, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| |
Collapse
|
4
|
Hirschfeld LR, Risacher SL, Nho K, Saykin AJ. Myelin repair in Alzheimer's disease: a review of biological pathways and potential therapeutics. Transl Neurodegener 2022; 11:47. [PMID: 36284351 PMCID: PMC9598036 DOI: 10.1186/s40035-022-00321-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/15/2022] [Indexed: 11/29/2022] Open
Abstract
This literature review investigates the significant overlap between myelin-repair signaling pathways and pathways known to contribute to hallmark pathologies of Alzheimer's disease (AD). We discuss previously investigated therapeutic targets of amyloid, tau, and ApoE, as well as other potential therapeutic targets that have been empirically shown to contribute to both remyelination and progression of AD. Current evidence shows that there are multiple AD-relevant pathways which overlap significantly with remyelination and myelin repair through the encouragement of oligodendrocyte proliferation, maturation, and myelin production. There is a present need for a single, cohesive model of myelin homeostasis in AD. While determining a causative pathway is beyond the scope of this review, it may be possible to investigate the pathological overlap of myelin repair and AD through therapeutic approaches.
Collapse
Affiliation(s)
- Lauren Rose Hirschfeld
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Shannon L Risacher
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Andrew J Saykin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Jeong H, Shin H, Hong S, Kim Y. Physiological Roles of Monomeric Amyloid-β and Implications for Alzheimer's Disease Therapeutics. Exp Neurobiol 2022; 31:65-88. [PMID: 35673997 PMCID: PMC9194638 DOI: 10.5607/en22004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) progressively inflicts impairment of synaptic functions with notable deposition of amyloid-β (Aβ) as senile plaques within the extracellular space of the brain. Accordingly, therapeutic directions for AD have focused on clearing Aβ plaques or preventing amyloidogenesis based on the amyloid cascade hypothesis. However, the emerging evidence suggests that Aβ serves biological roles, which include suppressing microbial infections, regulating synaptic plasticity, promoting recovery after brain injury, sealing leaks in the blood-brain barrier, and possibly inhibiting the proliferation of cancer cells. More importantly, these functions were found in in vitro and in vivo investigations in a hormetic manner, that is to be neuroprotective at low concentrations and pathological at high concentrations. We herein summarize the physiological roles of monomeric Aβ and current Aβ-directed therapies in clinical trials. Based on the evidence, we propose that novel therapeutics targeting Aβ should selectively target Aβ in neurotoxic forms such as oligomers while retaining monomeric Aβ in order to preserve the physiological functions of Aβ monomers.
Collapse
Affiliation(s)
- Hyomin Jeong
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Heewon Shin
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Seungpyo Hong
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - YoungSoo Kim
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
6
|
Enhanced Nerve Regeneration by Exosomes Secreted by Adipose-Derived Stem Cells with or without FK506 Stimulation. Int J Mol Sci 2021; 22:ijms22168545. [PMID: 34445251 PMCID: PMC8395161 DOI: 10.3390/ijms22168545] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes secreted by adipose-derived stem cells (ADSC-exo) reportedly improve nerve regeneration after peripheral nerve injury. Herein, we investigated whether pretreatment of ADSCs with FK506, an immunosuppressive drug that enhances nerve regeneration, could secret exosomes (ADSC-F-exo) that further augment nerve regeneration. Designed exosomes were topically applied to injured nerve in a mouse model of sciatic nerve crush injury to assess the nerve regeneration efficacy. Outcomes were determined by histomorphometric analysis of semi-thin nerve sections stained with toluidine blue, mouse neurogenesis PCR array, and neurotrophin expression in distal nerve segments. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to profile potential exosomal proteins facilitating nerve regeneration. We observed that locally applied ADSC-exo and ADSC-F-exo significantly enhanced nerve regeneration after nerve crush injury. Pretreatment of ADSCs with FK506 failed to produce exosomes possessing more potent molecules for enhanced nerve regeneration. Proteomic analysis revealed that of 192 exosomal proteins detected in both ADSC-exo and ADSC-F-exo, histone deacetylases (HDACs), amyloid-beta A4 protein (APP), and integrin beta-1 (ITGB1) might be involved in enhancing nerve regeneration.
Collapse
|
7
|
Fissel JA, Farah MH. The influence of BACE1 on macrophage recruitment and activity in the injured peripheral nerve. J Neuroinflammation 2021; 18:71. [PMID: 33722254 PMCID: PMC7962400 DOI: 10.1186/s12974-021-02121-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
Following peripheral nerve injury, multiple cell types, including axons, Schwann cells, and macrophages, coordinate to promote nerve regeneration. However, this capacity for repair is limited, particularly in older populations, and current treatments are insufficient. A critical component of the regeneration response is the network of cell-to-cell signaling in the injured nerve microenvironment. Sheddases are expressed in the peripheral nerve and play a role in the regulation if this cell-to-cell signaling through cleavage of transmembrane proteins, enabling the regulation of multiple pathways through cis- and trans-cellular regulatory mechanisms. Enhanced axonal regeneration has been observed in mice with deletion of the sheddase beta-secretase (BACE1), a transmembrane aspartyl protease that has been studied in the context of Alzheimer’s disease. BACE1 knockout (KO) mice display enhanced macrophage recruitment and activity following nerve injury, although it is unclear whether this plays a role in driving the enhanced axonal regeneration. Further, it is unknown by what mechanism(s) BACE1 increases macrophage recruitment and activity. BACE1 has many substrates, several of which are known to have immunomodulatory activity. This review will discuss current knowledge of the role of BACE1 and other sheddases in peripheral nerve regeneration and outline known immunomodulatory BACE1 substrates and what potential roles they could play in peripheral nerve regeneration. Currently, the literature suggests that BACE1 and substrates that are expressed by neurons and Schwann cells are likely to be more important for this process than those expressed by macrophages. More broadly, BACE1 may play a role as an effector of immunomodulation beyond the peripheral nerve.
Collapse
Affiliation(s)
- John A Fissel
- Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Fissel JA, Farah MH. Macrophage-specific deletion of BACE1 does not enhance macrophage recruitment to the injured peripheral nerve. J Neuroimmunol 2020; 349:577423. [PMID: 33074142 DOI: 10.1016/j.jneuroim.2020.577423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
Following peripheral nerve injury, macrophages are recruited to the injury site from circulation to clear cellular debris. Injured β-secretase 1 (BACE1) knockout mice have enhanced macrophage recruitment and debris clearance, which may be due to BACE1 activity in macrophages or the hypomyelination observed in BACE1 knockout mice. To assess if BACE1 expression by macrophages mediates enhanced macrophage recruitment we utilized mice with macrophage specific deletion of BACE1 and saw no increase in macrophage recruitment following injury. This study suggests that expression of BACE1 by macrophages may not be essential for increased recruitment observed previously in global BACE1 KO mice.
Collapse
Affiliation(s)
- John A Fissel
- Department of Neurology at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamed H Farah
- Department of Neurology at Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. Acta Neuropathol 2020; 140:417-447. [PMID: 32728795 PMCID: PMC7498448 DOI: 10.1007/s00401-020-02196-w] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Tau and amyloid beta (Aβ) are the prime suspects for driving pathology in Alzheimer's disease (AD) and, as such, have become the focus of therapeutic development. Recent research, however, shows that these proteins have been highly conserved throughout evolution and may have crucial, physiological roles. Such functions may be lost during AD progression or be unintentionally disrupted by tau- or Aβ-targeting therapies. Tau has been revealed to be more than a simple stabiliser of microtubules, reported to play a role in a range of biological processes including myelination, glucose metabolism, axonal transport, microtubule dynamics, iron homeostasis, neurogenesis, motor function, learning and memory, neuronal excitability, and DNA protection. Aβ is similarly multifunctional, and is proposed to regulate learning and memory, angiogenesis, neurogenesis, repair leaks in the blood-brain barrier, promote recovery from injury, and act as an antimicrobial peptide and tumour suppressor. This review will discuss potential physiological roles of tau and Aβ, highlighting how changes to these functions may contribute to pathology, as well as the implications for therapeutic development. We propose that a balanced consideration of both the physiological and pathological roles of tau and Aβ will be essential for the design of safe and effective therapeutics.
Collapse
Affiliation(s)
- Sarah A. Kent
- Translational Neuroscience PhD Programme, Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Tara L. Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Claire S. Durrant
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| |
Collapse
|
10
|
Zhou Y, Zhu F, Liu Y, Zheng M, Wang Y, Zhang D, Anraku Y, Zou Y, Li J, Wu H, Pang X, Tao W, Shimoni O, Bush AI, Xue X, Shi B. Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer's disease therapy. SCIENCE ADVANCES 2020; 6:6/41/eabc7031. [PMID: 33036977 PMCID: PMC7546706 DOI: 10.1126/sciadv.abc7031] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/26/2020] [Indexed: 05/21/2023]
Abstract
Toxic aggregated amyloid-β accumulation is a key pathogenic event in Alzheimer's disease (AD), which derives from amyloid precursor protein (APP) through sequential cleavage by BACE1 (β-site APP cleavage enzyme 1) and γ-secretase. Small interfering RNAs (siRNAs) show great promise for AD therapy by specific silencing of BACE1. However, lack of effective siRNA brain delivery approaches limits this strategy. Here, we developed a glycosylated "triple-interaction" stabilized polymeric siRNA nanomedicine (Gal-NP@siRNA) to target BACE1 in APP/PS1 transgenic AD mouse model. Gal-NP@siRNA exhibits superior blood stability and can efficiently penetrate the blood-brain barrier (BBB) via glycemia-controlled glucose transporter-1 (Glut1)-mediated transport, thereby ensuring that siRNAs decrease BACE1 expression and modify relative pathways. Noticeably, Gal-NP@siBACE1 administration restored the deterioration of cognitive capacity in AD mice without notable side effects. This "Trojan horse" strategy supports the utility of RNA interference therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yutong Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Feiyan Zhu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yang Liu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Yibin Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yan Zou
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jia Li
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Haigang Wu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiaobin Pang
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Shimoni
- Institute for Biomedical Materials & Devices (IBMD), School of Mathematical and Physical Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300350, China.
| | - Bingyang Shi
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
11
|
Thangavelu B, Wilfred BS, Johnson D, Gilsdorf JS, Shear DA, Boutté AM. Penetrating Ballistic-Like Brain Injury Leads to MicroRNA Dysregulation, BACE1 Upregulation, and Amyloid Precursor Protein Loss in Lesioned Rat Brain Tissues. Front Neurosci 2020; 14:915. [PMID: 33071724 PMCID: PMC7530327 DOI: 10.3389/fnins.2020.00915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Severe traumatic brain injury (TBI) is a risk factor for neurodegenerative diseases. Yet, the molecular events involving dysregulated miRNAs that may be associated with protein degradation in the brain remains elusive. Quantitation of more than 800 miRNAs was conducted using rat ipsilateral coronal brain tissues collected 1, 3, or 7 days after penetrating ballistic-like brain injury (PBBI). As a control for each time-point, Sham-operated animals received craniotomy alone. Microarray and systems biology analysis indicated that the amplitude and complexity of miRNAs affected were greatest 7 day after PBBI. Arrays and Q-PCR inferred that dysregulation of miR-135a, miR-328, miR-29c, and miR-21 were associated with altered levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), PSEN1, PSEN2, and amyloid precursor protein (APP) genes. These events were followed by increased levels of mature BACE1 protein and concomitant loss of full length APP within 3–7 days, then elevation of amyloid beta (Aβ)-40 7 days after PBBI. This study indicates that miRNA arrays, coupled with systems biology, may be used to guide study design prior validation of miRNA dysregulation. Associative analysis of miRNAs, mRNAs, and proteins within a proposed pathway are poised for further validation as biomarkers and therapeutic targets relevant to TBI-induced APP loss and subsequent Aβ peptide generation during neurodegeneration.
Collapse
Affiliation(s)
- Bharani Thangavelu
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard S Wilfred
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - David Johnson
- Department of Pathology and Area Laboratory Services, Landstuhl Regional Medical Center, Landstuhl, Germany
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Angela M Boutté
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
12
|
Stassart RM, Woodhoo A. Axo-glial interaction in the injured PNS. Dev Neurobiol 2020; 81:490-506. [PMID: 32628805 DOI: 10.1002/dneu.22771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
Axons share a close relationship with Schwann cells, their glial partners in peripheral nerves. An intricate axo-glia network of signals and bioactive molecules regulates the major aspects of nerve development and normal functioning of the peripheral nervous system. Disruptions to these complex axo-glial interactions can have serious neurological consequences, as typically seen in injured nerves. Recent studies in inherited neuropathies have demonstrated that damage to one of the partners in this symbiotic unit ultimately leads to impairment of the other partner, emphasizing the bidirectional influence of axon to glia and glia to axon signaling in these diseases. After physical trauma to nerves, dramatic alterations in the architecture and signaling environment of peripheral nerves take place. Here, axons and Schwann cells respond adaptively to these perturbations and change the nature of their reciprocal interactions, thereby driving the remodeling and regeneration of peripheral nerves. In this review, we focus on the nature and importance of axon-glia interactions in injured nerves, both for the reshaping and repair of nerves after trauma, and in driving pathology in inherited peripheral neuropathies.
Collapse
Affiliation(s)
- Ruth M Stassart
- Department of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Ashwin Woodhoo
- Nerve Disorders Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
13
|
Tallon C, Marshall KL, Kennedy ME, Hyde LA, Farah MH. Pharmacological BACE Inhibition Improves Axonal Regeneration in Nerve Injury and Disease Models. Neurotherapeutics 2020; 17:973-988. [PMID: 32236823 PMCID: PMC7609814 DOI: 10.1007/s13311-020-00852-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
While the peripheral nervous system is able to repair itself following injury and disease, recovery is often slow and incomplete, with no available treatments to enhance the effectiveness of regeneration. Using knock-out and transgenic overexpressor mice, we previously reported that BACE1, an aspartyl protease, as reported by Hemming et al. (PLoS One 4:12, 2009), negatively regulates peripheral nerve regeneration. Here, we investigated whether pharmacological inhibition of BACE may enhance peripheral nerve repair following traumatic nerve injury or neurodegenerative disease. BACE inhibitor-treated mice had increased numbers of regenerating axons and enhanced functional recovery after a sciatic nerve crush while inhibition increased axonal sprouting following a partial nerve injury. In the SOD1G93A ALS mouse model, BACE inhibition increased axonal regeneration with improved muscle re-innervation. CHL1, a BACE1 substrate, was elevated in treated mice and may mediate enhanced regeneration. Our data demonstrates that pharmacological BACE inhibition accelerates peripheral axon regeneration after varied nerve injuries and could be used as a potential therapy.
Collapse
Affiliation(s)
- Carolyn Tallon
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Katherine L Marshall
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | | | | | - Mohamed H Farah
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Pellegatta M, Taveggia C. The Complex Work of Proteases and Secretases in Wallerian Degeneration: Beyond Neuregulin-1. Front Cell Neurosci 2019; 13:93. [PMID: 30949030 PMCID: PMC6436609 DOI: 10.3389/fncel.2019.00093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/26/2019] [Indexed: 01/24/2023] Open
Abstract
After damage, axons in the peripheral nervous system (PNS) regenerate and regrow following a process termed Wallerian degeneration, but the regenerative process is often incomplete and usually the system does not reach full recovery. Key steps to the creation of a permissive environment for axonal regrowth are the trans-differentiation of Schwann cells and the remodeling of the extracellular matrix (ECM). In this review article, we will discuss how proteases and secretases promote effective regeneration and remyelination. We will detail how they control neuregulin-1 (NRG-1) activity at the post-translational level, as the concerted action of alpha, beta and gamma secretases cooperates to balance activating and inhibitory signals necessary for physiological myelination and remyelination. In addition, we will discuss the role of other proteases in nerve repair, among which A Disintegrin And Metalloproteinases (ADAMs) and gamma-secretases substrates. Moreover, we will present how matrix metalloproteinases (MMPs) and proteases of the blood coagulation cascade participate in forming newly synthetized myelin and in regulating axonal regeneration. Overall, we will highlight how a deeper comprehension of secretases and proteases mechanism of action in Wallerian degeneration might be useful to develop new therapies with the potential of readily and efficiently improve the regenerative process.
Collapse
Affiliation(s)
- Marta Pellegatta
- Division of Neuroscience and INSPE at IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carla Taveggia
- Division of Neuroscience and INSPE at IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Consequences of Pharmacological BACE Inhibition on Synaptic Structure and Function. Biol Psychiatry 2018; 84:478-487. [PMID: 29945719 DOI: 10.1016/j.biopsych.2018.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder among elderly persons. Overt accumulation and aggregation of the amyloid-β peptide (Aβ) is thought to be the initial causative factor for Alzheimer's disease. Aβ is produced by sequential proteolytic cleavage of the amyloid precursor protein. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the initial and rate-limiting protease for the generation of Aβ. Therefore, inhibiting BACE1 is considered one of the most promising therapeutic approaches for potential treatment of Alzheimer's disease. Currently, several drugs blocking this enzyme (BACE inhibitors) are being evaluated in clinical trials. However, high-dosage BACE-inhibitor treatment interferes with structural and functional synaptic plasticity in mice. These adverse side effects may mask the therapeutic benefit of lowering the Aβ concentration. In this review, we focus on the consequences of BACE inhibition-mediated synaptic deficits and the potential clinical implications.
Collapse
|
16
|
Wang P, Zheng X, Guo Q, Yang P, Pang X, Qian K, Lu W, Zhang Q, Jiang X. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer's disease. J Control Release 2018; 279:220-233. [DOI: 10.1016/j.jconrel.2018.04.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/22/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
17
|
Alldred MJ, Chao HM, Lee SH, Beilin J, Powers BE, Petkova E, Strupp BJ, Ginsberg SD. CA1 pyramidal neuron gene expression mosaics in the Ts65Dn murine model of Down syndrome and Alzheimer's disease following maternal choline supplementation. Hippocampus 2018; 28:251-268. [PMID: 29394516 PMCID: PMC5874173 DOI: 10.1002/hipo.22832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022]
Abstract
Although there are changes in gene expression and alterations in neuronal density and afferent inputs in the forebrain of trisomic mouse models of Down syndrome (DS) and Alzheimer's disease (AD), there is a lack of systematic assessments of gene expression and encoded proteins within individual vulnerable cell populations, precluding translational investigations at the molecular and cellular level. Further, no effective treatment exists to combat intellectual disability and basal forebrain cholinergic neurodegeneration seen in DS. To further our understanding of gene expression changes before and following cholinergic degeneration in a well-established mouse model of DS/AD, the Ts65Dn mouse, we assessed RNA expression levels from CA1 pyramidal neurons at two adult ages (∼6 months of age and ∼11 months of age) in both Ts65Dn and their normal disomic (2N) littermates. We further examined a therapeutic intervention, maternal choline supplementation (MCS), which has been previously shown to lessen dysfunction in spatial cognition and attention, and have protective effects on the survival of basal forebrain cholinergic neurons in the Ts65Dn mouse model. Results indicate that MCS normalized expression of several genes in key gene ontology categories, including synaptic plasticity, calcium signaling, and AD-associated neurodegeneration related to amyloid-beta peptide (Aβ) clearance. Specifically, normalized expression levels were found for endothelin converting enzyme-2 (Ece2), insulin degrading enzyme (Ide), Dyrk1a, and calcium/calmodulin-dependent protein kinase II (Camk2a), among other relevant genes. Single population expression profiling of vulnerable CA1 pyramidal neurons indicates that MCS is a viable therapeutic for long-term reprogramming of key transcripts involved in neuronal signaling that are dysregulated in the trisomic mouse brain which have translational potential for DS and AD.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
| | - Helen M. Chao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
| | - Sang Han Lee
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY
- Child Psychiatry, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
- Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY
| | - Judah Beilin
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
| | | | - Eva Petkova
- Child Psychiatry, Nathan Kline Institute, Orangeburg, NY
- Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY
| | - Barbara J. Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
- Department of Psychology, Cornell University, Ithaca, NY
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY
- Departments of Psychiatry, New York University Langone Medical Center, New York, NY
- Neuroscience & Physiology, New York University Langone Medical Center, New York, NY
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY
| |
Collapse
|
18
|
Tallon C, Farah MH. Beta secretase activity in peripheral nerve regeneration. Neural Regen Res 2017; 12:1565-1574. [PMID: 29171411 PMCID: PMC5696827 DOI: 10.4103/1673-5374.217319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
While the peripheral nervous system has the capacity to regenerate following a nerve injury, it is often at a slow rate and results in unsatisfactory recovery, leaving patients with reduced function. Many regeneration associated genes have been identified over the years, which may shed some insight into how we can manipulate this intrinsic regenerative ability to enhance repair following peripheral nerve injuries. Our lab has identified the membrane bound protease beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1), or beta secretase, as a potential negative regulator of peripheral nerve regeneration. When beta secretase activity levels are abolished via a null mutation in mice, peripheral regeneration is enhanced following a sciatic nerve crush injury. Conversely, when activity levels are greatly increased by overexpressing beta secretase in mice, nerve regeneration and functional recovery are impaired after a sciatic nerve crush injury. In addition to our work, many substrates of beta secretase have been found to be involved in regulating neurite outgrowth and some have even been identified as regeneration associated genes. In this review, we set out to discuss BACE1 and its substrates with respect to axonal regeneration and speculate on the possibility of utilizing BACE1 inhibitors to enhance regeneration following acute nerve injury and potential uses in peripheral neuropathies.
Collapse
Affiliation(s)
- Carolyn Tallon
- Department of Neurology at Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mohamed H. Farah
- Department of Neurology at Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Huang N, Lu S, Liu XG, Zhu J, Wang YJ, Liu RT. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer's disease mice. Oncotarget 2017; 8:81001-81013. [PMID: 29113362 PMCID: PMC5655257 DOI: 10.18632/oncotarget.20944] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by the formation of extracellular senile plaques and neuronal loss caused by amyloid β (Aβ) aggregates in the brains of AD patients. Conventional strategies failed to treat AD in clinical trials, partly due to the poor solubility, low bioavailability and ineffectiveness of the tested drugs to cross the blood-brain barrier (BBB). Moreover, AD is a complex, multifactorial neurodegenerative disease; one-target strategies may be insufficient to prevent the processes of AD. Here, we designed novel kind of poly(lactide-co-glycolic acid) (PLGA) nanoparticles by loading with Aβ generation inhibitor S1 (PQVGHL peptide) and curcumin to target the detrimental factors in AD development and by conjugating with brain targeting peptide CRT (cyclic CRTIGPSVC peptide), an iron-mimic peptide that targets transferrin receptor (TfR), to improve BBB penetration. The average particle size of drug-loaded PLGA nanoparticles and CRT-conjugated PLGA nanoparticles were 128.6 nm and 139.8 nm, respectively. The results of Y-maze and new object recognition test demonstrated that our PLGA nanoparticles significantly improved the spatial memory and recognition in transgenic AD mice. Moreover, PLGA nanoparticles remarkably decreased the level of Aβ, reactive oxygen species (ROS), TNF-α and IL-6, and enhanced the activities of super oxide dismutase (SOD) and synapse numbers in the AD mouse brains. Compared with other PLGA nanoparticles, CRT peptide modified-PLGA nanoparticles co-delivering S1 and curcumin exhibited most beneficial effect on the treatment of AD mice, suggesting that conjugated CRT peptide, and encapsulated S1 and curcumin exerted their corresponding functions for the treatment.
Collapse
Affiliation(s)
- Na Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Shuai Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Ge Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Jiong Wang
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
20
|
Tallon C, Rockenstein E, Masliah E, Farah MH. Increased BACE1 activity inhibits peripheral nerve regeneration after injury. Neurobiol Dis 2017; 106:147-157. [PMID: 28687442 DOI: 10.1016/j.nbd.2017.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/26/2017] [Accepted: 07/02/2017] [Indexed: 12/20/2022] Open
Abstract
Axons of the peripheral nervous system possess the capacity to regenerate following injury. Previously, we showed that genetically knocking out Beta-Site APP-Cleaving Enzyme 1 (BACE1) leads to increased nerve regeneration. Two cellular components, macrophages and neurons, contribute to enhanced nerve regeneration in BACE1 knockout mice. Here, we utilized a transgenic mouse model that overexpresses BACE1 in its neurons to investigate whether neuronal BACE1 has an inverse effect on regeneration following nerve injury. We performed a sciatic nerve crush in BACE1 transgenic mice and control wild-type littermates, and evaluated the extent of both morphological and physiological improvements over time. At the earliest time point of 3days, we observed a significant decrease in the length of axonal sprouts growing out from the crush site in BACE1 transgenic mice. At later times (10 and 15days post-crush), there were significant reductions in the number of myelinated axons in the sciatic nerve and the percentage of re-innervated neuromuscular junctions in the gastrocnemius muscle. Transgenic mice had a functional electrophysiological delay in the recovery up to 8weeks post-crush compared to controls. These results indicate that BACE1 activity levels have an inverse effect on peripheral nerve repair after injury. The results obtained in this study provide evidence that neuronal BACE1 activity levels impact peripheral nerve regeneration. This data has clinical relevance by highlighting a novel drug target to enhance peripheral nerve repair, an area which currently does not have any approved therapeutics.
Collapse
Affiliation(s)
- Carolyn Tallon
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Edward Rockenstein
- Department of Neurosciences, San Diego School of Medicine, University of California, San Diego, CA, United States
| | - Eliezer Masliah
- Department of Neurosciences, San Diego School of Medicine, University of California, San Diego, CA, United States; Department of Molecular Pathology, San Diego School of Medicine, University of California, San Diego, CA, United States
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
21
|
Hu X, Hou H, Bastian C, He W, Qiu S, Ge Y, Yin X, Kidd GJ, Brunet S, Trapp BD, Baltan S, Yan R. BACE1 regulates the proliferation and cellular functions of Schwann cells. Glia 2017; 65:712-726. [PMID: 28191691 PMCID: PMC5357169 DOI: 10.1002/glia.23122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/31/2022]
Abstract
BACE1 is an indispensable enzyme for generating β-amyloid peptides, which are excessively accumulated in brains of Alzheimer's patients. However, BACE1 is also required for proper myelination of peripheral nerves, as BACE1-null mice display hypomyelination. To determine the precise effects of BACE1 on myelination, here we have uncovered a role of BACE1 in the control of Schwann cell proliferation during development. We demonstrate that BACE1 regulates the cleavage of Jagged-1 and Delta-1, two membrane-bound ligands of Notch. BACE1 deficiency induces elevated Jag-Notch signaling activity, which in turn facilitates proliferation of Schwann cells. This increase in proliferation leads to shortened internodes and decreased Schmidt-Lanterman incisures. Functionally, evoked compound action potentials in BACE1-null nerves were significantly smaller and slower, with a clear decrease in excitability. BACE1-null nerves failed to effectively use lactate as an alternative energy source under conditions of increased physiological activity. Correlatively, BACE1-null mice showed reduced performance on rotarod tests. Collectively, our data suggest that BACE1 deficiency enhances proliferation of Schwann cell due to the elevated Jag1/Delta1-Notch signaling, but fails to myelinate axons efficiently due to impaired the neuregulin1-ErbB signaling, which has been documented.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Chinthasagar Bastian
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Shupeng Qiu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Yingying Ge
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Xinhua Yin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Grahame J. Kidd
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Sylvain Brunet
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
22
|
Yan R. Physiological Functions of the β-Site Amyloid Precursor Protein Cleaving Enzyme 1 and 2. Front Mol Neurosci 2017; 10:97. [PMID: 28469554 PMCID: PMC5395628 DOI: 10.3389/fnmol.2017.00097] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/22/2017] [Indexed: 01/18/2023] Open
Abstract
BACE1 was discovered as the β-secretase for initiating the cleavage of amyloid precursor protein (APP) at the β-secretase site, while its close homology BACE2 cleaves APP within the β-amyloid (Aβ) domain region and shows distinct cleavage preferences in vivo. Inhibition of BACE1 proteolytic activity has been confirmed to decrease Aβ generation and amyloid deposition, and thus specific inhibition of BACE1 by small molecules is a current focus for Alzheimer’s disease therapy. While BACE1 inhibitors are being tested in advanced clinical trials, knowledge regarding the properties and physiological functions of BACE is highly important and this review summarizes advancements in BACE1 research over the past several years. We and others have shown that BACE1 is not only a critical enzyme for testing the “Amyloid Hypothesis” associated with Alzheimer’s pathogenesis, but also important for various functions such as axon growth and pathfinding, astrogenesis, neurogenesis, hyperexcitation, and synaptic plasticity. BACE2 appears to play different roles such as glucose homeostasis and pigmentation. This knowledge regarding BACE1 functions is critical for monitoring the safe use of BACE1 inhibitors in humans.
Collapse
Affiliation(s)
- Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, ClevelandOH, USA
| |
Collapse
|
23
|
Abstract
Alzheimer's disease (AD) is the primary cause of dementia in the elderly. It remains incurable and poses a huge socio-economic challenge for developed countries with an aging population. AD manifests by progressive decline in cognitive functions and alterations in behaviour, which are the result of the extensive degeneration of brain neurons. The AD pathogenic mechanism involves the accumulation of amyloid beta peptide (Aβ), an aggregating protein fragment that self-associates to form neurotoxic fibrils that trigger a cascade of cellular events leading to neuronal injury and death. Researchers from academia and the pharmaceutical industry have pursued a rational approach to AD drug discovery and targeted the amyloid cascade. Schemes have been devised to prevent the overproduction and accumulation of Aβ in the brain. The extensive efforts of the past 20 years have been translated into bringing new drugs to advanced clinical trials. The most progressed mechanism-based therapies to date consist of immunological interventions to clear Aβ oligomers, and pharmacological drugs to inhibit the secretase enzymes that produce Aβ, namely β-site amyloid precursor-cleaving enzyme (BACE) and γ-secretase. After giving an update on the development and current status of new AD therapeutics, this review will focus on BACE inhibitors and, in particular, will discuss the prospects of verubecestat (MK-8931), which has reached phase III clinical trials.
Collapse
Affiliation(s)
- Genevieve Evin
- Florey Institute of Neuroscience and Mental Health, Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
24
|
Xiang F, Wei D, Yang Y, Chi H, Yang K, Sun Y. Tissue-engineered nerve graft with tetramethylpyrazine for repair of sciatic nerve defects in rats. Neurosci Lett 2016; 638:114-120. [PMID: 27988347 DOI: 10.1016/j.neulet.2016.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022]
Abstract
A tissue-engineered nerve with tetramethylpyrazine (TMP) was repaired for sciatic nerve defects in rats. A total of 55 adult Sprague Dawley (SD) rats were classified into 4 groups, with 15 rats in each of groups A, B, and C as well as 10 rats in group D. About 1.5cm of a sciatic nerve of the right hind limb located 0.5cm below the inferior margin of the piriformis was resected to form the defects. Four types of nerve grafts used for bridging nerve defects in the SD rats corresponded to the 4 groups: tissue-engineered nerves with TMP in group A, tissue-engineered nerves without TMP in group B, acellular nerve grafts (ANGs) in group C, and autologous nerves in group D. Twelve weeks post-surgery, the sciatic functional index, nerve conduction velocity, and gastrocnemius wet weight of groups A and D were higher than those of groups B and C (P<0.05). Results of fluorescence microscopy and histological staining indicated that group A performed better than groups B and C (P<0.05). Similarly, the number of horseradish peroxidase-labeled positive cells was significantly larger in group A than in groups B and C. Regenerative nerve fibers were abundant in group A and consisted mainly of myelinated nerve fibers, which were better than those in groups B and C (P<0.05). The study demonstrated that tissue-engineered nerves constructed by ANGs seeded with neural stem cells and combined with TMP can effectively repair sciatic nerve defects in rats.
Collapse
Affiliation(s)
- Feifan Xiang
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Daiqing Wei
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yunkang Yang
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Haotian Chi
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Kun Yang
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanlin Sun
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
25
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
26
|
Liu L, Fissel JA, Tasnim A, Borzan J, Gocke A, Calabresi PA, Farah MH. Increased TNFR1 expression and signaling in injured peripheral nerves of mice with reduced BACE1 activity. Neurobiol Dis 2016; 93:21-7. [PMID: 27080468 DOI: 10.1016/j.nbd.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/01/2016] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
Hematogenous macrophages remove myelin debris from injured peripheral nerves to provide a micro-environment conducive to axonal regeneration. Previously, we observed that injured peripheral nerves from Beta-site APP Cleaving Enzyme 1 (BACE1) knockout (KO) mice displayed earlier influx of and enhanced phagocytosis by macrophages when compared to wild-type (WT) mice. These observations suggest that BACE1 might regulate macrophage influx into distal stumps of injured nerves. To determine through which pathway BACE1 influences macrophage influx, we used a mouse inflammation antibody array to assay the expression of inflammation-related proteins in injured nerves of BACE1 KO and WT mice. The most significant change was in expression of tumor necrosis factor receptor 1 (TNFR1) in the distal stump of injured BACE1 KO nerves. Western blotting of protein extracts confirmed increased expression of TNFR1 and its downstream transcriptional factor NFκB in the BACE1 KO distal stumps. Additionally, treatment of WT mice with a BACE1 inhibitor resulted in increased TNFR1 expression and signaling in the distal stump of injured nerves. Exogenous TNFα increased nuclear translocation of p65 NFκB in BACE1 KO tissue and cultured fibroblasts compared with control WT. BACE1 regulates TNFR1 expression at the level of gene expression and not through proteolytic processing. The accelerated macrophage influx in injured nerves of BACE1 KO mice correlates with increased expression and signaling via TNFR1, indicating a link between BACE1 activity and TNFR1 expression/signaling that might contribute to repair of the injured nervous system.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Neurology, Johns Hopkins University School of Medicine, United States
| | - John A Fissel
- Department of Neurology, Johns Hopkins University School of Medicine, United States
| | - Aniqa Tasnim
- Department of Neurology, Johns Hopkins University School of Medicine, United States
| | - Jasenka Borzan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States
| | - Anne Gocke
- Department of Neurology, Johns Hopkins University School of Medicine, United States
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, United States
| | - Mohamed H Farah
- Department of Neurology, Johns Hopkins University School of Medicine, United States.
| |
Collapse
|
27
|
Tomassy GS, Dershowitz LB, Arlotta P. Diversity Matters: A Revised Guide to Myelination. Trends Cell Biol 2016; 26:135-147. [PMID: 26442841 PMCID: PMC4727993 DOI: 10.1016/j.tcb.2015.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 11/28/2022]
Abstract
The evolutionary success of the vertebrate nervous system is largely due to a unique structural feature--the myelin sheath, a fatty envelope that surrounds the axons of neurons. By increasing the speed by which electrical signals travel along axons, myelin facilitates neuronal communication between distant regions of the nervous system. We review the cellular and molecular mechanisms that regulate the development of myelin as well as its homeostasis in adulthood. We discuss how finely tuned neuron-oligodendrocyte interactions are central to myelin formation during development and in the adult, and how these interactions can have profound implications for the plasticity of the adult brain. We also speculate how the functional diversity of both neurons and oligodendrocytes may impact on the myelination process in both health and disease.
Collapse
Affiliation(s)
- Giulio Srubek Tomassy
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Lori Bowe Dershowitz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
28
|
Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions. Proc Natl Acad Sci U S A 2016; 113:E479-87. [PMID: 26755586 DOI: 10.1073/pnas.1519156113] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Synaptic connections in the nervous system are rearranged during development and in adulthood as a feature of growth, plasticity, aging, and disease. Glia are implicated as active participants in these changes. Here we investigated a signal that controls the participation of peripheral glia, the terminal Schwann cells (SCs), at the neuromuscular junction (NMJ) in mice. Transgenic manipulation of the levels of membrane-tethered neuregulin1 (NRG1-III), a potent activator of SCs normally presented on motor axons, alters the rate of loss of motor inputs at NMJs during developmental synapse elimination. In addition, NMJs of adult transgenic mice that expressed excess axonal NRG1-III exhibited continued remodeling, in contrast to the more stable morphologies of controls. In fact, synaptic SCs of these adult mice with NRG1-III overexpression exhibited behaviors evident in wild type neonates during synapse elimination, including an affinity for the postsynaptic myofiber surface and phagocytosis of nerve terminals. Given that levels of NRG1-III expression normally peak during the period of synapse elimination, our findings identify axon-tethered NRG1 as a molecular determinant for SC-driven neuromuscular synaptic plasticity.
Collapse
|
29
|
Dysregulation of ErbB Receptor Trafficking and Signaling in Demyelinating Charcot-Marie-Tooth Disease. Mol Neurobiol 2016; 54:87-100. [PMID: 26732592 DOI: 10.1007/s12035-015-9668-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy with the majority of cases involving demyelination of peripheral nerves. The pathogenic mechanisms of demyelinating CMT remain unclear, and no effective therapy currently exists for this disease. The discovery that mutations in different genes can cause a similar phenotype of demyelinating peripheral neuropathy raises the possibility that there may be convergent mechanisms leading to demyelinating CMT pathogenesis. Increasing evidence indicates that ErbB receptor-mediated signaling plays a major role in the control of Schwann cell-axon communication and myelination in the peripheral nervous system. Recent studies reveal that several demyelinating CMT-linked proteins are novel regulators of endocytic trafficking and/or phosphoinositide metabolism that may affect ErbB receptor signaling. Emerging data have begun to suggest that dysregulation of ErbB receptor trafficking and signaling in Schwann cells may represent a common pathogenic mechanism in multiple subtypes of demyelinating CMT. In this review, we focus on the roles of ErbB receptor trafficking and signaling in regulation of peripheral nerve myelination and discuss the emerging evidence supporting the potential involvement of altered ErbB receptor trafficking and signaling in demyelinating CMT pathogenesis and the possibility of modulating these trafficking and signaling processes for treating demyelinating peripheral neuropathy.
Collapse
|
30
|
Hu X, Fan Q, Hou H, Yan R. Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J Neurochem 2016; 136:234-49. [PMID: 26465092 PMCID: PMC4833723 DOI: 10.1111/jnc.13395] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/09/2023]
Abstract
Inhibition of BACE1 is being pursued as a therapeutic target to treat patients suffering from Alzheimer's disease because BACE1 is the sole β-secretase that generates β-amyloid peptide. Knowledge regarding other cellular functions of BACE1 is therefore critical for the safe use of BACE1 inhibitors in human patients. Neuregulin-1 (Nrg1) is a BACE1 substrate and BACE1 cleavage of Nrg1 is critical for signaling functions in myelination, remyelination, synaptic plasticity, normal psychiatric behaviors, and maintenance of muscle spindles. This review summarizes the most recent discoveries associated with BACE1-dependent Nrg1 signaling in these areas. This body of knowledge will help to provide guidance for preventing unwanted Nrg1-based side effects following BACE1 inhibition in humans. To initiate its signaling cascade, membrane anchored Neuregulin (Nrg), mainly type I and III β1 Nrg1 isoforms and Nrg3, requires ectodomain shedding. BACE1 is one of such indispensable sheddases to release the functional Nrg signaling fragment. The dependence of Nrg on the cleavage by BACE1 is best manifested by disrupting the critical role of Nrg in the control of axonal myelination, schizophrenic behaviors as well as the formation and maintenance of muscle spindles.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hailong Hou
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
31
|
Zhang W, Liu Y, Zhu X, Cao Y, Liu Y, Mao X, Yang H, Zhou Z, Wang Y, Shen A. SCY1-Like 1-Binding Protein 1 (SCYL1BP1) Suppressed Sciatic Nerve Regeneration by Enhancing the RhoA Pathway. Mol Neurobiol 2015; 53:6342-6354. [PMID: 26572638 DOI: 10.1007/s12035-015-9531-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022]
Abstract
SCY1-like 1-binding protein 1 (SCYL1BP1) is first identified as an interacting protein with SCYL1. Since SCYL1BP1 is a soluble protein with coiled-coil domains known to be relevant with transcriptional regulation, it has been found to activate the transcription of murine double minute 2 (MDM2) and participate in neurite outgrowth and regeneration. However, the role and mechanism of SCYL1BP1 in peripheral nerve system lesion and repair are still unknown. Here in vitro, our work demonstrated that SCYL1BP1 inhibited cAMP-induced primary Schwann cell differentiation and suppressed nerve growth factor-mediated neurite outgrowth in PC12 cells by enhancing the RhoA pathway. Furthermore, we found that pretreatment with a Rho kinase inhibitor Y-27632 resulted in partial rescue of Schwann cell differentiation and neurite outgrowth. In vivo experiments showed that SCYL1BP1 could also suppress nerve fiber regeneration. In conclusion, we speculated that SCYL1BP1 participated in Schwann cell (SC) differentiation and neurite outgrowth in the sciatic nerve after crush by regulating the RhoA pathway.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yonghua Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xudong Zhu
- Medical College, Nantong University, 19 Qi-Xiu Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yi Cao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yang Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xingxing Mao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Huiguang Yang
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Zhengming Zhou
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Aiguo Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
32
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|