1
|
Sokołowski A, Brown JA, Roy ARK, Cryns N, Scheffler A, Hardy EG, Datta S, Seeley WW, Sturm VE, Miller BL, Rosen HJ, Perry DC. Structural and functional correlates of olfactory reward processing in behavioral variant frontotemporal dementia. Cortex 2024; 181:47-58. [PMID: 39488010 DOI: 10.1016/j.cortex.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/07/2024] [Accepted: 09/03/2024] [Indexed: 11/04/2024]
Abstract
The behavioral variant of frontotemporal dementia (bvFTD) includes symptoms that reflect altered pursuit of rewards, including food, alcohol, and money. Little is known, however, about how these reward changes relate to atrophy and functional connectivity within reward-related regions. The goal of this study was to examine the structural and functional correlates of valence perception for olfactory rewards in 24 patients with bvFTD. Regression analysis of resting-state brain functional connectivity indicated that more positive valence ratings of olfactory stimuli were predicted by ventral pallidum connectivity to other reward circuit regions, particularly functional connectivity between ventral pallidum and bilateral anterior cingulate cortex/ventromedial prefrontal cortex. Structural analysis showed that atrophy of the anterior cingulate cortex was also significantly associated with perceiving stimuli as more rewarding. Finally, there was a significant interaction between ventral pallidum connectivity and atrophy of the anterior cingulate cortex. More specifically, the ventral pallidum connectivity had a greater effect on the positive perception of olfactory stimuli in the setting of low anterior cingulate cortex volume. These findings indicate that atrophy and functional connectivity within reward-relevant regions exert independent and interacting effects on the perception of pleasantness in bvFTD, potentially due to changes in hedonic "liking" signals.
Collapse
Affiliation(s)
- Andrzej Sokołowski
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jesse A Brown
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Ashlin R K Roy
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Noah Cryns
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Aaron Scheffler
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Emily G Hardy
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Samir Datta
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Virginia E Sturm
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - David C Perry
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Belilos A, Gray C, Sanders C, Black D, Mays E, Richie C, Sengupta A, Hake H, Francis TC. Nucleus accumbens local circuit for cue-dependent aversive learning. Cell Rep 2023; 42:113488. [PMID: 37995189 PMCID: PMC10795009 DOI: 10.1016/j.celrep.2023.113488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Response to threatening environmental stimuli requires detection and encoding of important environmental features that dictate threat. Aversive events are highly salient, which promotes associative learning about stimuli that signal this threat. The nucleus accumbens is uniquely positioned to process this salient, aversive information and promote motivated output, through plasticity on the major projection neurons in the brain area. We describe a nucleus accumbens core local circuit whereby excitatory plasticity facilitates learning and recall of discrete aversive cues. We demonstrate that putative nucleus accumbens substance P release and long-term excitatory plasticity on dopamine 2 receptor-expressing projection neurons are required for cue-dependent fear learning. Additionally, we find that fear learning and recall is dependent on distinct projection neuron subtypes. Our work demonstrates a critical role for nucleus accumbens substance P in cue-dependent aversive learning.
Collapse
Affiliation(s)
- Andrew Belilos
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Cortez Gray
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Christie Sanders
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Destiny Black
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Elizabeth Mays
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Richie
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ayesha Sengupta
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Holly Hake
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - T Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
3
|
Belilos A, Gray C, Sanders C, Black D, Mays E, Richie CT, Sengupta A, Hake HS, Francis TC. Nucleus Accumbens Local Circuit for Cue-Dependent Aversive Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527338. [PMID: 36798245 PMCID: PMC9934565 DOI: 10.1101/2023.02.06.527338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Response to threatening environmental stimuli requires detection and encoding of important environmental features that dictate threat. Aversive events are highly salient which promotes associative learning about stimuli that signal this threat. The nucleus accumbens is uniquely positioned to process this salient, aversive information and promote motivated output, through plasticity on the major projection neurons in the brain area. We uncovered a nucleus accumbens core local circuit whereby excitatory plasticity facilitates learning and recall of discrete aversive cues. We demonstrate that putative nucleus accumbens substance P release and long-term excitatory plasticity on dopamine 2 receptor expressing projection neurons is required for cue-dependent fear learning. Additionally, we found fear learning and recall were dependent on distinct projection-neuron subtypes. Our work demonstrates a critical role for Nucleus Accumbens substance P in cue-dependent aversive learning.
Collapse
|
4
|
Akhoondian M, Rashtiani S, Khakpour-Taleghani B, Rostampour M, Jafari A, Rohampour K. Lateral habenula deep brain stimulation alleviates depression-like behaviors and reverses the oscillatory pattern in the nucleus accumbens in an animal model of depression. Brain Res Bull 2023; 202:110745. [PMID: 37598800 DOI: 10.1016/j.brainresbull.2023.110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Depression is a series of symptoms that influence mood, thinking, and behavior and create unpleasant emotions like hopelessness and apathy. Treatment-resistant depression (TRD) affects 30 % of depression patients despite the availability of several non-invasive therapies. Deep brain stimulation (DBS) is a novel therapy for TRD. The aim of the current study was to evaluate the effect of LHb-DBS by recording local field potentials (LFP) and conducting behavioral experiments. Thirty-two mature male Wistar rats were randomly divided into four groups: control, chronic mild stress (CMS), CMS+DBS, and DBS. After surgery and electrode placement in the lateral habenula (LHb), nucleus accumbens (NAc), and prelimbic cortex (PrL), the CMS protocol was applied for 3 weeks to create depression-like models. The open field test (OFT), sucrose preference test (SPT), and forced swim test (FST) were also performed. In the DBS groups, the LHb area was stimulated for four consecutive days. Finally, on the 22nd day, LFP was recorded from the NAc and PrL and analyzed using MATLAB software. Analyzing the findings using ANOVA and P-values ≤ 0.05 was considered. LHb-DBS alleviated depression-like behaviors in chronic moderate stress model rats (P ≤ 0.05). Three weeks of CMS enhanced almost all band powers in the NAc, while LHb-DBS decreased the power of the theta, alpha, beta, and gamma bands in the NAc (P ≤ 0.05), and the low-gamma band in the PrL. CMS also boosted the NAc-PrL coherence in low-frequency bands, while LHb-DBS increased beta and low gamma band coherence (P ≤ 0.05). In sum, the results of the present study showed that depression enhances low-frequency coherence between NAc and PrL cortex. Depression also potentiates many brain oscillations in the NAc, which can be mainly reversed by LHb-DBS.
Collapse
Affiliation(s)
- Mohammad Akhoondian
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Samira Rashtiani
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Behrooz Khakpour-Taleghani
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Rostampour
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kambiz Rohampour
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
5
|
Sun S, Yu H, Wang S, Yu R. Cognitive and neural bases of visual-context-guided decision-making. Neuroimage 2023; 275:120170. [PMID: 37192677 PMCID: PMC10868706 DOI: 10.1016/j.neuroimage.2023.120170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023] Open
Abstract
Humans adjust their behavioral strategies based on feedback, a process that may depend on intrinsic preferences and contextual factors such as visual salience. In this study, we hypothesized that decision-making based on visual salience is influenced by habitual and goal-directed processes, which can be evidenced by changes in attention and subjective valuation systems. To test this hypothesis, we conducted a series of studies to investigate the behavioral and neural mechanisms underlying visual salience-driven decision-making. We first established the baseline behavioral strategy without salience in Experiment 1 (n = 21). We then highlighted the utility or performance dimension of the chosen outcome using colors in Experiment 2 (n = 30). We demonstrated that the difference in staying frequency increased along the salient dimension, confirming a salience effect. Furthermore, the salience effect was abolished when directional information was removed in Experiment 3 (n = 28), suggesting that the salience effect is feedback-specific. To generalize our findings, we replicated the feedback-specific salience effects using eye-tracking and text emphasis. The fixation differences between the chosen and unchosen values were enhanced along the feedback-specific salient dimension in Experiment 4 (n = 48) but unchanged after removing feedback-specific information in Experiment 5 (n = 32). Moreover, the staying frequency was correlated with fixation properties, confirming that salience guides attention deployment. Lastly, our neuroimaging study (Experiment 6, n = 25) showed that the striatum subregions encoded salience-based outcome evaluation, while the vmPFC encoded salience-based behavioral adjustments. The connectivity of the vmPFC-ventral striatum accounted for individual differences in utility-driven, whereas the vmPFC-dmPFC for performance-driven behavioral adjustments. Together, our results provide a neurocognitive account of how task-irrelevant visual salience drives decision-making by involving attention and the frontal-striatal valuation systems. PUBLIC SIGNIFICANCE STATEMENT: Humans may use the current outcome to make behavior adjustments. How this occurs may depend on stable individual preferences and contextual factors, such as visual salience. Under the hypothesis that visual salience determines attention and subsequently modulates subjective valuation, we investigated the underlying behavioral and neural bases of visual-context-guided outcome evaluation and behavioral adjustments. Our findings suggest that the reward system is orchestrated by visual context and highlight the critical role of attention and the frontal-striatal neural circuit in visual-context-guided decision-making that may involve habitual and goal-directed processes.
Collapse
Affiliation(s)
- Sai Sun
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki Aoba, Aoba-ku, Sendai, 980-8578, Japan; Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Hongbo Yu
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, MO 63110, USA.
| | - Rongjun Yu
- Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong
| |
Collapse
|
6
|
Tachmatzidou O, Vatakis A. Attention and schema violations of real world scenes differentially modulate time perception. Sci Rep 2023; 13:10002. [PMID: 37340029 DOI: 10.1038/s41598-023-37030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
In the real world, object arrangement follows a number of rules. Some of the rules pertain to the spatial relations between objects and scenes (i.e., syntactic rules) and others about the contextual relations (i.e., semantic rules). Research has shown that violation of semantic rules influences interval timing with the duration of scenes containing such violations to be overestimated as compared to scenes with no violations. However, no study has yet investigated whether both semantic and syntactic violations can affect timing in the same way. Furthermore, it is unclear whether the effect of scene violations on timing is due to attentional or other cognitive accounts. Using an oddball paradigm and real-world scenes with or without semantic and syntactic violations, we conducted two experiments on whether time dilation will be obtained in the presence of any type of scene violation and the role of attention in any such effect. Our results from Experiment 1 showed that time dilation indeed occurred in the presence of syntactic violations, while time compression was observed for semantic violations. In Experiment 2, we further investigated whether these estimations were driven by attentional accounts, by utilizing a contrast manipulation of the target objects. The results showed that an increased contrast led to duration overestimation for both semantic and syntactic oddballs. Together, our results indicate that scene violations differentially affect timing due to violation processing differences and, moreover, their effect on timing seems to be sensitive to attentional manipulations such as target contrast.
Collapse
Affiliation(s)
- Ourania Tachmatzidou
- Multisensory and Temporal Processing Laboratory (MultiTimeLab), Department of Psychology, Panteion University of Social and Political Sciences, 136 Syngrou Ave., 17671, Athens, Greece
| | - Argiro Vatakis
- Multisensory and Temporal Processing Laboratory (MultiTimeLab), Department of Psychology, Panteion University of Social and Political Sciences, 136 Syngrou Ave., 17671, Athens, Greece.
| |
Collapse
|
7
|
Steiger TK, Sobczak A, Reineke R, Bunzeck N. Novelty processing associated with neural beta oscillations improves recognition memory in young and older adults. Ann N Y Acad Sci 2022; 1511:228-243. [PMID: 35188272 DOI: 10.1111/nyas.14750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
Novelty anticipation activates the mesolimbic system and promotes subsequent long-term memory in younger adults. Importantly, mesolimbic structures typically degenerate with age, which might reduce positive effects of novelty anticipation. Here, we used electroencephalography in combination with an established paradigm in healthy young (19-33 years old, n = 28) and older (53-84, n = 27) humans. Colored cues predicted the subsequent presentation of either a novel or previously familiarized image (75% cue validity). On the subsequent day, recognition memory for the novel images was tested. Behaviorally, novelty anticipation improved recollection-based but not familiarity-based recognition memory in both groups, and this effect was more pronounced in older subjects. Furthermore, novelty and familiarity cues increased theta (4-8 Hz) and decreased alpha/beta power (9-20 Hz); at outcome, expected novel and familiar images both increased beta power (13-25 Hz). Finally, a subsequent memory effect for expected novel images was associated with increases in beta power independent of age. Together, novelty anticipation drives hippocampus-dependent long-term recognition memory across the life span, and this effect appears to be related to neural beta oscillations.
Collapse
Affiliation(s)
| | | | - Ramona Reineke
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
Reward learning and working memory: Effects of massed versus spaced training and post-learning delay period. Mem Cognit 2021; 50:312-324. [PMID: 34519968 PMCID: PMC8821056 DOI: 10.3758/s13421-021-01233-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Abstract
Neuroscience research has illuminated the mechanisms supporting learning from reward feedback, demonstrating a critical role for the striatum and midbrain dopamine system. However, in humans, short-term working memory that is dependent on frontal and parietal cortices can also play an important role, particularly in commonly used paradigms in which learning is relatively condensed in time. Given the growing use of reward-based learning tasks in translational studies in computational psychiatry, it is important to understand the extent of the influence of working memory and also how core gradual learning mechanisms can be better isolated. In our experiments, we manipulated the spacing between repetitions along with a post-learning delay preceding a test phase. We found that learning was slower for stimuli repeated after a long delay (spaced-trained) compared to those repeated immediately (massed-trained), likely reflecting the remaining contribution of feedback learning mechanisms when working memory is not available. For massed learning, brief interruptions led to drops in subsequent performance, and individual differences in working memory capacity positively correlated with overall performance. Interestingly, when tested after a delay period but not immediately, relative preferences decayed in the massed condition and increased in the spaced condition. Our results provide additional support for a large role of working memory in reward-based learning in temporally condensed designs. We suggest that spacing training within or between sessions is a promising approach to better isolate and understand mechanisms supporting gradual reward-based learning, with particular importance for understanding potential learning dysfunctions in addiction and psychiatric disorders.
Collapse
|
9
|
Engeli EJE, Zoelch N, Hock A, Nordt C, Hulka LM, Kirschner M, Scheidegger M, Esposito F, Baumgartner MR, Henning A, Seifritz E, Quednow BB, Herdener M. Impaired glutamate homeostasis in the nucleus accumbens in human cocaine addiction. Mol Psychiatry 2021; 26:5277-5285. [PMID: 32601455 DOI: 10.1038/s41380-020-0828-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
Cocaine addiction is characterized by overwhelming craving for the substance, which drives its escalating use despite adverse consequences. Animal models suggest a disrupted glutamate homeostasis in the nucleus accumbens to underlie addiction-like behavior. After chronic administration of cocaine, rodents show decreased levels of accumbal glutamate, whereas drug-seeking reinstatement is associated with enhanced glutamatergic transmission. However, due to technical obstacles, the role of disturbed glutamate homeostasis for cocaine addiction in humans remains only partially understood, and accordingly, no approved pharmacotherapy exists. Here, we applied a tailored proton magnetic resonance spectroscopy protocol that allows glutamate quantification within the human nucleus accumbens. We found significantly reduced basal glutamate concentrations in the nucleus accumbens in cocaine-addicted (N = 26) compared with healthy individuals (N = 30), and increased glutamate levels during cue-induced craving in cocaine-addicted individuals compared with baseline. These glutamatergic alterations, however, could not be significantly modulated by a short-term challenge of N-acetylcysteine (2400 mg/day on 2 days). Taken together, our findings reveal a disturbed accumbal glutamate homeostasis as a key neurometabolic feature of cocaine addiction also in humans. Therefore, we suggest the glutamatergic system as a promising target for the development of novel pharmacotherapies, and in addition, as a potential biomarker for a personalized medicine approach in addiction.
Collapse
Affiliation(s)
- Etna J E Engeli
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| | - Niklaus Zoelch
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Andreas Hock
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Carlos Nordt
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Lea M Hulka
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias Kirschner
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Markus R Baumgartner
- Centre for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Max-Planck-Institute for Biological Cybernetics, Tuebingen, Germany.,Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Marcus Herdener
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Tivadar RI, Knight RT, Tzovara A. Automatic Sensory Predictions: A Review of Predictive Mechanisms in the Brain and Their Link to Conscious Processing. Front Hum Neurosci 2021; 15:702520. [PMID: 34489663 PMCID: PMC8416526 DOI: 10.3389/fnhum.2021.702520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/12/2021] [Indexed: 01/22/2023] Open
Abstract
The human brain has the astonishing capacity of integrating streams of sensory information from the environment and forming predictions about future events in an automatic way. Despite being initially developed for visual processing, the bulk of predictive coding research has subsequently focused on auditory processing, with the famous mismatch negativity signal as possibly the most studied signature of a surprise or prediction error (PE) signal. Auditory PEs are present during various consciousness states. Intriguingly, their presence and characteristics have been linked with residual levels of consciousness and return of awareness. In this review we first give an overview of the neural substrates of predictive processes in the auditory modality and their relation to consciousness. Then, we focus on different states of consciousness - wakefulness, sleep, anesthesia, coma, meditation, and hypnosis - and on what mysteries predictive processing has been able to disclose about brain functioning in such states. We review studies investigating how the neural signatures of auditory predictions are modulated by states of reduced or lacking consciousness. As a future outlook, we propose the combination of electrophysiological and computational techniques that will allow investigation of which facets of sensory predictive processes are maintained when consciousness fades away.
Collapse
Affiliation(s)
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, Bern, Switzerland
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Sleep-Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Elibol R, Şengör NS. Modeling nucleus accumbens : A Computational Model from Single Cell to Circuit Level. J Comput Neurosci 2020; 49:21-35. [PMID: 33165797 DOI: 10.1007/s10827-020-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022]
Abstract
Nucleus accumbens is part of the neural structures required for reward based learning and cognitive processing of motivation. Understanding its cellular dynamics and its role in basal ganglia circuits is important not only in diagnosing behavioral disorders and psychiatric problems as addiction and depression but also for developing therapeutic treatments for them. Building a computational model would expand our comprehension of nucleus accumbens. In this work, we are focusing on establishing a model of nucleus accumbens which has not been considered as much as dorsal striatum in computational neuroscience. We will begin by modeling the behavior of single cells and then build a holistic model of nucleus accumbens considering the effect of synaptic currents. We will verify the validity of the model by showing the consistency of simulation results with the empirical data. Furthermore, the simulation results reveal the joint effect of cortical stimulation and dopaminergic modulation on the activity of medium spiny neurons. This effect differentiates with the type of dopamine receptors.
Collapse
Affiliation(s)
- Rahmi Elibol
- Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey. .,Engineering Faculty, Erzincan University, Erzincan, Turkey.
| | - Neslihan Serap Şengör
- Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
12
|
The ventral striatum dissociates information expectation, reward anticipation, and reward receipt. Proc Natl Acad Sci U S A 2020; 117:15200-15208. [PMID: 32527855 DOI: 10.1073/pnas.1911778117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Do dopaminergic reward structures represent the expected utility of information similarly to a reward? Optimal experimental design models from Bayesian decision theory and statistics have proposed a theoretical framework for quantifying the expected value of information that might result from a query. In particular, this formulation quantifies the value of information before the answer to that query is known, in situations where payoffs are unknown and the goal is purely epistemic: That is, to increase knowledge about the state of the world. Whether and how such a theoretical quantity is represented in the brain is unknown. Here we use an event-related functional MRI (fMRI) task design to disentangle information expectation, information revelation and categorization outcome anticipation, and response-contingent reward processing in a visual probabilistic categorization task. We identify a neural signature corresponding to the expectation of information, involving the left lateral ventral striatum. Moreover, we show a temporal dissociation in the activation of different reward-related regions, including the nucleus accumbens, medial prefrontal cortex, and orbitofrontal cortex, during information expectation versus reward-related processing.
Collapse
|
13
|
Biel D, Steiger TK, Volkmann T, Jochems N, Bunzeck N. The gains of a 4-week cognitive training are not modulated by novelty. Hum Brain Mapp 2020; 41:2596-2610. [PMID: 32180305 PMCID: PMC7294066 DOI: 10.1002/hbm.24965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/15/2020] [Accepted: 02/13/2020] [Indexed: 11/15/2022] Open
Abstract
Cognitive training should not only improve performance of the trained task, but also untrained abilities. Exposure to novelty can improve subsequent memory performance, suggesting that novelty exposure might be a critical factor to promote the effects of cognitive training. Therefore, we combined a 4‐week working memory training with novelty exposure. Neuropsychological tests and MRI data were acquired before and after training to analyze behavior and changes in gray matter volume, myelination, and iron levels. In total, 83 healthy older humans participated in one of three groups: Two groups completed a 4‐week computerized cognitive training of a two‐back working memory task, either in combination with novel or with familiarized nature movies. A third group did not receive any training. As expected, both training groups showed improvements in task specific working memory performance and reaction times. However, there were no transfer or novelty effects on fluid intelligence, verbal memory, digit‐span, and executive functions. At the neural level, no significant micro‐ or macrostructural changes emerged in either group. Our findings suggest that working memory training in healthy older adults is associated with task‐specific improvements, but these gains do not transfer to other cognitive domains, and it does not lead to structural brain changes.
Collapse
Affiliation(s)
- Davina Biel
- Institute of Psychology I, University of Lübeck, Lübeck, Germany
| | - Tineke K Steiger
- Institute of Psychology I, University of Lübeck, Lübeck, Germany
| | - Torben Volkmann
- Institute for Multimedia and Interactive Systems, University of Lübeck, Lübeck, Germany
| | - Nicole Jochems
- Institute for Multimedia and Interactive Systems, University of Lübeck, Lübeck, Germany
| | - Nico Bunzeck
- Institute of Psychology I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
14
|
Beck AK, Sandmann P, Dürschmid S, Schwabe K, Saryyeva A, Krauss JK. Neuronal activation in the human centromedian-parafascicular complex predicts cortical responses to behaviorally significant auditory events. Neuroimage 2020; 211:116583. [PMID: 32006682 DOI: 10.1016/j.neuroimage.2020.116583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 10/25/2022] Open
Abstract
Studies with non-human primates have suggested an excitatory influence of the thalamus on the cerebral cortex, with the centromedian-parafascicular complex (CM-Pf) being particularly involved in processes of sensory event-driven attention and arousal. To define the involvement of the human CM-Pf in bottom-up and top-down auditory attention, we simultaneously recorded cortical EEG activity and intracranial local field potentials (LFPs) via electrodes implanted for deep brain stimulation for the treatment of neuropathic pain. The patients (N = 6) performed an auditory three-class oddball paradigm with frequent standard stimuli and two types of infrequent deviant stimuli (target and distractor). We found a parietal P3b to targets and a central P3a to distractors at the scalp level. Subcortical recordings in the CM-Pf revealed enhanced activation to targets compared to standards. Interarea-correlation analyses showed that activation in the CM-Pf predicted the generation of longer latency P3b scalp potentials specifically in the target condition. Our results provide first direct human evidence for a functional temporal relationship between target-related activation in the CM-Pf and an enhanced cortical target response. These results corroborate the hypothetical model of a cortico-basal ganglia loop system that switches from top-down to bottom-up mode in response to salient, task-relevant external events that are not predictable.
Collapse
Affiliation(s)
- Anne-Kathrin Beck
- Department of Neurosurgery, Hannover Medical School, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.
| | - Pascale Sandmann
- Department of Otorhinolaryngology, University of Cologne, Germany
| | - Stefan Dürschmid
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence "Hearing4all", Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence "Hearing4all", Germany
| |
Collapse
|
15
|
Penrod RD, Kumar J, Smith LN, McCalley D, Nentwig T, Hughes B, Barry G, Glover K, Taniguchi M, Cowan CW. Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) regulates anxiety- and novelty-related behaviors. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12561. [PMID: 30761730 PMCID: PMC6692244 DOI: 10.1111/gbb.12561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 01/19/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
The activity-regulated cytoskeleton-associated protein (Arc, also known as Arg3.1) regulates glutamatergic synapse plasticity and has been linked to neuropsychiatric illness; however, its role in behaviors associated with mood and anxiety disorders remains unclear. We find that stress upregulates Arc expression in the adult mouse nucleus accumbens (NAc)-a brain region implicated in mood and anxiety behaviors. Global Arc knockout mice have altered AMPAR-subunit surface levels in the adult NAc, and the Arc-deficient mice show reductions in anxiety-like behavior, deficits in social novelty preference, and antidepressive-like behavior. Viral-mediated expression of Arc in the adult NAc of male, global Arc KO mice restores normal levels of anxiety-like behavior in the elevated plus maze (EPM). Consistent with this finding, viral-mediated reduction of Arc in the adult NAc reduces anxiety-like behavior in male, but not female, mice in the EPM. NAc-specific reduction of Arc also produced significant deficits in both object and social novelty preference tasks. Together our findings indicate that Arc is essential for regulating normal mood- and anxiety-related behaviors and novelty discrimination, and that Arc's function within the adult NAc contributes to these behavioral effects.
Collapse
Affiliation(s)
- Rachel D. Penrod
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston SC 29425
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont MA 02478
| | - Jaswinder Kumar
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont MA 02478
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas TX 75390-9070
| | - Laura N. Smith
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont MA 02478
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas TX 75390-9070
| | - Daniel McCalley
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston SC 29425
| | - Todd Nentwig
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston SC 29425
| | - Brandon Hughes
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston SC 29425
| | - Gabriella Barry
- Department of Science and Mathematics, Honors College, College of Charleston, Charleston SC 29424
| | - Kelsey Glover
- Department of Science and Mathematics, Honors College, College of Charleston, Charleston SC 29424
| | - Makoto Taniguchi
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston SC 29425
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont MA 02478
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas TX 75390-9070
| | - Christopher W. Cowan
- Departments of Neuroscience and Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston SC 29425
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont MA 02478
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas TX 75390-9070
| |
Collapse
|
16
|
de Oliveira J, Drabowski B, Rodrigues S, Maciel R, Moraes M, Cota V. Seizure suppression by asynchronous non-periodic electrical stimulation of the amygdala is partially mediated by indirect desynchronization from nucleus accumbens. Epilepsy Res 2019; 154:107-115. [DOI: 10.1016/j.eplepsyres.2019.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
|
17
|
Biel D, Bunzeck N. Novelty Before or After Word Learning Does Not Affect Subsequent Memory Performance. Front Psychol 2019; 10:1379. [PMID: 31316414 PMCID: PMC6610293 DOI: 10.3389/fpsyg.2019.01379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
In humans, exposure to novel images and exploration of novel virtual environments before the encoding of words improved subsequent memory performance. Animal studies revealed similar effects of novelty, both before and after learning, and could show that hippocampus-dependent dopaminergic neuromodulation plays an important role. Here, we further investigated the effects of novelty on long-term memory in humans using a novel paradigm employing short sequences of nature movies presented either before or at two time points after learning of unrelated words. Since novelty processing is associated with a release of dopamine into the hippocampus, we hypothesized that novelty exposure primarily affects hippocampus-dependent memory (i.e., recollection) but not hippocampus-independent memory (i.e., familiarity). We tested 182 healthy human subjects in three experiments including a word-learning task followed by a 1-day delayed recognition task. Importantly, participants were exposed to novel (NOV) or familiar movies (FAM) at three time points: (experiment 1) directly after encoding of the word list, (experiment 2) 15 min after encoding, (experiment 3) 15 min prior to encoding. As expected, novel movies were perceived as more interesting and led to better mood. During word recognition, reaction times were faster for remember as compared to familiarity responses in all three experiments, but this effect was not modulated by novelty. In contrast to our main hypothesis, there was no effect of novelty – before or after encoding – on subsequent word recognition, including recollection and familiarity scores. Therefore, an exposure to novel movies without an active task does not affect hippocampus-dependent and hippocampus-independent long-term recognition memory for words in humans.
Collapse
Affiliation(s)
- Davina Biel
- Institute of Psychology I, University of Lübeck, Lübeck, Germany
| | - Nico Bunzeck
- Institute of Psychology I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Camalier CR, Scarim K, Mishkin M, Averbeck BB. A Comparison of Auditory Oddball Responses in Dorsolateral Prefrontal Cortex, Basolateral Amygdala, and Auditory Cortex of Macaque. J Cogn Neurosci 2019; 31:1054-1064. [PMID: 30883292 DOI: 10.1162/jocn_a_01387] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mismatch negativity (MMN) is an ERP component seen in response to unexpected "novel" stimuli, such as in an auditory oddball task. The MMN is of wide interest and application, but the neural responses that generate it are poorly understood. This is in part due to differences in design and focus between animal and human oddball paradigms. For example, one of the main explanatory models, the "predictive error hypothesis", posits differences in timing and selectivity between signals carried in auditory and prefrontal cortex (PFC). However, these predictions have not been fully tested because (1) noninvasive techniques used in humans lack the combined spatial and temporal precision necessary for these comparisons and (2) single-neuron studies in animal models, which combine necessary spatial and temporal precision, have not focused on higher order contributions to novelty signals. In addition, accounts of the MMN traditionally do not address contributions from subcortical areas known to be involved in novelty detection, such as the amygdala. To better constrain hypotheses and to address methodological gaps between human and animal studies, we recorded single neuron activity from the auditory cortex, dorsolateral PFC, and basolateral amygdala of two macaque monkeys during an auditory oddball paradigm modeled after that used in humans. Consistent with predictions of the predictive error hypothesis, novelty signals in PFC were generally later than in auditory cortex and were abstracted from stimulus-specific effects seen in auditory cortex. However, we found signals in amygdala that were comparable in magnitude and timing to those in PFC, and both prefrontal and amygdala signals were generally much weaker than those in auditory cortex. These observations place useful quantitative constraints on putative generators of the auditory oddball-based MMN and additionally indicate that there are subcortical areas, such as the amygdala, that may be involved in novelty detection in an auditory oddball paradigm.
Collapse
|
19
|
Theta oscillations underlie retrieval success effects in the nucleus accumbens and anterior thalamus: Evidence from human intracranial recordings. Neurobiol Learn Mem 2018; 155:104-112. [DOI: 10.1016/j.nlm.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 06/07/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022]
|
20
|
Oscillatory local field potentials of the nucleus accumbens and the anterior limb of the internal capsule in heroin addicts. Clin Neurophysiol 2018; 129:1242-1253. [DOI: 10.1016/j.clinph.2018.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022]
|
21
|
|
22
|
Beck AK, Lütjens G, Schwabe K, Dengler R, Krauss JK, Sandmann P. Thalamic and basal ganglia regions are involved in attentional processing of behaviorally significant events: evidence from simultaneous depth and scalp EEG. Brain Struct Funct 2017; 223:461-474. [PMID: 28871419 DOI: 10.1007/s00429-017-1506-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 08/22/2017] [Indexed: 10/18/2022]
Abstract
Extensive descriptions exist on cortical responses to change in the acoustic environment. However, the involvement of subcortical regions is not well understood. Here we present simultaneous recordings of cortical and subcortical event-related potentials (ERPs) to different pure tones in patients undergoing surgery for deep brain stimulation (DBS). These patients had externalized electrodes in the subthalamic nucleus (STN), the ventrolateral posterior thalamus (VLp) or the globus pallidus internus (GPi). Subcortical and cortical ERPs were analyzed upon presentation of one frequent non-target stimulus and two infrequent stimuli, either being a target or a distractor stimulus. The results revealed that amplitudes of scalp-recorded P3 and subcortical late attention-modulated responses (AMR) were largest upon presentation of target stimuli compared with distractor stimuli. This suggests that thalamic and basal ganglia regions are sensitive to behaviorally relevant auditory events. Comparison of the subcortical structures showed that responses in VLp have shorter latency than in GPi and STN. Further, the subcortical responses in VLp and STN emerged significantly prior to the cortical P3 response. Our findings point to higher-order cognitive functions already at a subcortical level. Auditory events are categorized as behaviorally relevant in subcortical loops involving basal ganglia and thalamic regions. This label is then distributed to cortical regions by ascending projections.
Collapse
Affiliation(s)
- Anne-Kathrin Beck
- Department of Neurosurgery, Hannover Medical School, Medical University Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Cluster of Excellence "Hearing4all", Hannover, Germany.
| | - Götz Lütjens
- Department of Neurosurgery, Hannover Medical School, Medical University Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Medical University Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Reinhard Dengler
- Department of Neurology, Medical University Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Medical University Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Pascale Sandmann
- Department of Neurology, Medical University Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Department of Otorhinolaryngology, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Cluster of Excellence "Hearing4all", Hannover, Germany
| |
Collapse
|
23
|
Sweeney-Reed CM, Zaehle T, Voges J, Schmitt FC, Buentjen L, Borchardt V, Walter M, Hinrichs H, Heinze HJ, Rugg MD, Knight RT. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest. Front Hum Neurosci 2017; 11:358. [PMID: 28775684 PMCID: PMC5518534 DOI: 10.3389/fnhum.2017.00358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/22/2017] [Indexed: 12/15/2022] Open
Abstract
Cross-frequency coupling (CFC) between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC), is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN) during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz) phase and high frequency band (80–150 Hz) amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.
Collapse
Affiliation(s)
- Catherine M Sweeney-Reed
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Tino Zaehle
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Jürgen Voges
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Friedhelm C Schmitt
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Lars Buentjen
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Viola Borchardt
- Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Martin Walter
- Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Psychiatry, Eberhard Karls UniversityTübingen, Germany
| | - Hermann Hinrichs
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Otto von Guericke UniversityMagdeburg, Germany
| | - Hans-Jochen Heinze
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Otto von Guericke UniversityMagdeburg, Germany
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of TexasDallas, TX, United States
| | - Robert T Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
24
|
Schepers IM, Beck AK, Bräuer S, Schwabe K, Abdallat M, Sandmann P, Dengler R, Rieger JW, Krauss JK. Human centromedian-parafascicular complex signals sensory cues for goal-oriented behavior selection. Neuroimage 2017; 152:390-399. [PMID: 28288908 DOI: 10.1016/j.neuroimage.2017.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 01/21/2023] Open
Abstract
Experimental research has shown that the centromedian-parafascicular complex (CM-Pf) of the intralaminar thalamus is activated in attentional orienting and processing of behaviorally relevant stimuli. These observations resulted in the hypothesis that the CM-Pf plays a pivotal role in goal-oriented behavior selection. We here set out to test this hypothesis with electrophysiological recordings from patients with electrodes implanted in CM-Pf for deep brain stimulation (DBS) treatment of chronic neuropathic pain. Six patients participated in (1) an auditory three-class oddball experiment, which required a button press to target tones, but not to standard and deviant tones and in (2) a multi-speaker experiment with a target word that required attention selection and a target image that required response selection. Subjects showed transient neural responses (8-15Hz) to the target tone and the target word. Two subjects additionally showed transient neural responses (15-25Hz) to the target image. All sensory target stimuli were related to an internal goal and required a behavior selection (attention selection, response selection). In group analyses, neural responses were greater to target tones than deviant and standard tones and to target words than other task-relevant words that did not require attention selection. The transient neural responses occurred after the target stimuli but prior to the overt behavioral response. Our results demonstrate that in human subjects the CM-Pf is involved in signaling sensory inputs related to goal-oriented selection of behavior.
Collapse
Affiliation(s)
- Inga M Schepers
- Department of Psychology, Oldenburg University, Germany; Cluster of Excellence Hearing4All, Germany.
| | - Anne-Kathrin Beck
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence Hearing4All, Germany
| | - Susann Bräuer
- Department of Psychology, Oldenburg University, Germany; Cluster of Excellence Hearing4All, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence Hearing4All, Germany
| | | | - Pascale Sandmann
- Department of Otorhinolaryngology, University of Cologne, Cologne, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Hanover, Germany; Cluster of Excellence Hearing4All, Germany
| | - Jochem W Rieger
- Department of Psychology, Oldenburg University, Germany; Cluster of Excellence Hearing4All, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Germany; Cluster of Excellence Hearing4All, Germany
| |
Collapse
|
25
|
Contributions of the Ventral Striatum to Conscious Perception: An Intracranial EEG Study of the Attentional Blink. J Neurosci 2016; 37:1081-1089. [PMID: 27986925 DOI: 10.1523/jneurosci.2282-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/04/2016] [Accepted: 11/11/2016] [Indexed: 11/21/2022] Open
Abstract
The brain is limited in its capacity to consciously process information, necessitating gating of information. While conscious perception is robustly associated with sustained, recurrent interactions between widespread cortical regions, subcortical regions, including the striatum, influence cortical activity. Here, we examined whether the ventral striatum, given its ability to modulate cortical information flow, contributes to conscious perception. Using intracranial EEG, we recorded ventral striatum activity while 7 patients performed an attentional blink task in which they had to detect two targets (T1 and T2) in a stream of distractors. Typically, when T2 follows T1 within 100-500 ms, it is often not perceived (i.e., the attentional blink). We found that conscious T2 perception was influenced and signaled by ventral striatal activity. Specifically, the failure to perceive T2 was foreshadowed by a T1-induced increase in α and low β oscillatory activity as early as 80 ms after T1, indicating that the attentional blink to T2 may be due to very early T1-driven attentional capture. Moreover, only consciously perceived targets were associated with an increase in θ activity between 200 and 400 ms. These unique findings shed new light on the mechanisms that give rise to the attentional blink by revealing that conscious target perception may be determined by T1 processing at a much earlier processing stage than traditionally believed. More generally, they indicate that ventral striatum activity may contribute to conscious perception, presumably by gating cortical information flow. SIGNIFICANCE STATEMENT What determines whether we become aware of a piece of information or not? Conscious access has been robustly associated with activity within a distributed network of cortical regions. Using intracranial electrophysiological recordings during an attentional blink task, we tested the idea that the ventral striatum, because of its ability to modulate cortical information flow, may contribute to conscious perception. We find that conscious perception is influenced and signaled by ventral striatal activity. Short-latency (80-140 ms) striatal responses to a first target determined conscious perception of a second target. Moreover, conscious perception of the second target was signaled by longer-latency (200-400 ms) striatal activity. These results suggest that the ventral striatum may be part of a subcortical network that influences conscious experience.
Collapse
|
26
|
Fernández-Lamo I, Sánchez-Campusano R, Gruart A, Delgado-García M JM. Functional states of rat cortical circuits during the unpredictable availability of a reward-related cue. Sci Rep 2016; 6:37650. [PMID: 27869181 PMCID: PMC5116647 DOI: 10.1038/srep37650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/28/2016] [Indexed: 12/23/2022] Open
Abstract
Proper performance of acquired abilities can be disturbed by the unexpected occurrence of external changes. Rats trained with an operant conditioning task (to press a lever in order to obtain a food pellet) using a fixed-ratio (1:1) schedule were subsequently placed in a Skinner box in which the lever could be removed randomly. Field postsynaptic potentials (fPSPs) were chronically evoked in perforant pathway-hippocampal CA1 (PP-CA1), CA1-subiculum (CA1-SUB), CA1-medial prefrontal cortex (CA1-mPFC), mPFC-nucleus accumbens (mPFC-NAc), and mPFC-basolateral amygdala (mPFC-BLA) synapses during lever IN and lever OUT situations. While lever presses were accompanied by a significant increase in fPSP slopes at the five synapses, the unpredictable absence of the lever were accompanied by decreased fPSP slopes in all, except PP-CA1 synapses. Spectral analysis of local field potentials (LFPs) recorded when the animal approached the corresponding area in the lever OUT situation presented lower spectral powers than during lever IN occasions for all recording sites, apart from CA1. Thus, the unpredictable availability of a reward-related cue modified the activity of cortical and subcortical areas related with the acquisition of operant learning tasks, suggesting an immediate functional reorganization of these neural circuits to address the changed situation and to modify ongoing behaviors accordingly.
Collapse
Affiliation(s)
- Iván Fernández-Lamo
- Division of Neurosciences, Pablo de Olavide University, Seville-41013, Spain
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville-41013, Spain
| | | |
Collapse
|
27
|
Stenner MP, Dürschmid S, Rutledge RB, Zaehle T, Schmitt FC, Kaufmann J, Voges J, Heinze HJ, Dolan RJ, Schoenfeld MA. Perimovement decrease of alpha/beta oscillations in the human nucleus accumbens. J Neurophysiol 2016; 116:1663-1672. [PMID: 27486103 PMCID: PMC5144692 DOI: 10.1152/jn.00142.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/09/2016] [Indexed: 11/23/2022] Open
Abstract
The present work clarifies how the nucleus accumbens contributes to action. This region is often assumed to influence behavior “off-line” by evaluating outcomes. Studying rare recordings of local field potentials from the human nucleus accumbens, we observe a perimovement decrease of alpha and beta oscillations in seven of eight individuals, a signal that, in the motor system, is directly related to action preparation. Our results support the idea of an online role of this region for imminent action. The human nucleus accumbens is thought to play an important role in guiding future action selection via an evaluation of current action outcomes. Here we provide electrophysiological evidence for a more direct, i.e., online, role during action preparation. We recorded local field potentials from the nucleus accumbens in patients with epilepsy undergoing surgery for deep brain stimulation. We found a consistent decrease in the power of alpha/beta oscillations (10–30 Hz) before and around the time of movements. This perimovement alpha/beta desynchronization was observed in seven of eight patients and was present both before instructed movements in a serial reaction time task as well as before self-paced, deliberate choices in a decision making task. A similar beta decrease over sensorimotor cortex and in the subthalamic nucleus has been directly related to movement preparation and execution. Our results support the idea of a direct role of the human nucleus accumbens in action preparation and execution.
Collapse
Affiliation(s)
- Max-Philipp Stenner
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany;
| | - Stefan Dürschmid
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Robb B Rutledge
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, United Kingdom; and
| | - Tino Zaehle
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto von Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, United Kingdom; and
| | - Mircea Ariel Schoenfeld
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
28
|
Valenza G, Greco A, Gentili C, Lanata A, Sebastiani L, Menicucci D, Gemignani A, Scilingo EP. Combining electroencephalographic activity and instantaneous heart rate for assessing brain-heart dynamics during visual emotional elicitation in healthy subjects. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0176. [PMID: 27044990 PMCID: PMC4822439 DOI: 10.1098/rsta.2015.0176] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 05/03/2023]
Abstract
Emotion perception, occurring in brain areas such as the prefrontal cortex and amygdala, involves autonomic responses affecting cardiovascular dynamics. However, how such brain-heart dynamics is further modulated by emotional valence (pleasantness/unpleasantness), also considering different arousing levels (the intensity of the emotional stimuli), is still unknown. To this extent, we combined electroencephalographic (EEG) dynamics and instantaneous heart rate estimates to study emotional processing in healthy subjects. Twenty-two healthy volunteers were elicited through affective pictures gathered from the International Affective Picture System. The experimental protocol foresaw 110 pictures, each of which lasted 10 s, associated to 25 different combinations of arousal and valence levels, including neutral elicitations. EEG data were processed using short-time Fourier transforms to obtain time-varying maps of cortical activation, whereas the associated instantaneous cardiovascular dynamics was estimated in the time and frequency domains through inhomogeneous point-process models. Brain-heart linear and nonlinear coupling was estimated through the maximal information coefficient (MIC). Considering EEG oscillations in theθband (4-8 Hz), MIC highlighted significant arousal-dependent changes between positive and negative stimuli, especially occurring at intermediate arousing levels through the prefrontal cortex interplay. Moreover, high arousing elicitations seem to mitigate changes in brain-heart dynamics in response to pleasant/unpleasant visual elicitation.
Collapse
Affiliation(s)
- G Valenza
- University of Pisa, Pisa, Italy Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - A Greco
- University of Pisa, Pisa, Italy
| | - C Gentili
- University of Pisa, Pisa, Italy University of Padua, Padua, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Bunzeck N, Thiel C. Neurochemical modulation of repetition suppression and novelty signals in the human brain. Cortex 2015; 80:161-73. [PMID: 26625882 DOI: 10.1016/j.cortex.2015.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/22/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022]
Abstract
The repeated processing of a sensory stimulus, such as a picture or sound, leads to a decrement in response in neurons that fired to the initial presentation. These effects are well known from single cell recordings in the inferior temporal cortex in monkeys, and functional neuroimaging in humans on large-scale neural activity could show similar effects in extrastriate, frontal and medial temporal lobe (MTL) regions. The role of specific neurotransmitters in repeated processing of information is, however, less clear. In the first part of this article, we will introduce the two concepts of repetition suppression and novelty signals, which is followed by a brief overview of pharmacological neuroimaging in humans. We will then summarize human studies suggesting that gamma-aminobutyric-acid (GABA) and acetylcholine (ACh) play an important role in modulating behavioral priming and associated repetition suppression in extrastriate and frontal brain regions. Finally, we review studies on neural novelty signals in the dopaminergic mesolimbic system, and conclude that dopamine (DA) regulates the temporal aspects of novelty processing and closely relates to long-term memory encoding rather than behavioral priming. As such, this review describes differential roles of GABA, ACh and DA in repeated stimulus processing, and further suggests that repetition suppression and neural novelty signals may not be two sides of the same coin but rather independent processes.
Collapse
Affiliation(s)
- Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck, Germany; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Christiane Thiel
- Biological Psychology, Department of Psychology, European Medical School, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
30
|
Attentional Modulation of Brain Responses to Primary Appetitive and Aversive Stimuli. PLoS One 2015; 10:e0130880. [PMID: 26158468 PMCID: PMC4497686 DOI: 10.1371/journal.pone.0130880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/26/2015] [Indexed: 11/21/2022] Open
Abstract
Studies of subjective well-being have conventionally relied upon self-report, which directs subjects’ attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure) by using functional magnetic resonance imaging (fMRI) to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly) the activity of brain mechanisms thought to represent hedonic value.
Collapse
|
31
|
Stenner MP, Rutledge RB, Zaehle T, Schmitt FC, Kopitzki K, Kowski AB, Voges J, Heinze HJ, Dolan RJ. No unified reward prediction error in local field potentials from the human nucleus accumbens: evidence from epilepsy patients. J Neurophysiol 2015; 114:781-92. [PMID: 26019312 PMCID: PMC4533060 DOI: 10.1152/jn.00260.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/26/2015] [Indexed: 11/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI), cyclic voltammetry, and single-unit electrophysiology studies suggest that signals measured in the nucleus accumbens (Nacc) during value-based decision making represent reward prediction errors (RPEs), the difference between actual and predicted rewards. Here, we studied the precise temporal and spectral pattern of reward-related signals in the human Nacc. We recorded local field potentials (LFPs) from the Nacc of six epilepsy patients during an economic decision-making task. On each trial, patients decided whether to accept or reject a gamble with equal probabilities of a monetary gain or loss. The behavior of four patients was consistent with choices being guided by value expectations. Expected value signals before outcome onset were observed in three of those patients, at varying latencies and with nonoverlapping spectral patterns. Signals after outcome onset were correlated with RPE regressors in all subjects. However, further analysis revealed that these signals were better explained as outcome valence rather than RPE signals, with gamble gains and losses differing in the power of beta oscillations and in evoked response amplitudes. Taken together, our results do not support the idea that postsynaptic potentials in the Nacc represent a RPE that unifies outcome magnitude and prior value expectation. We discuss the generalizability of our findings to healthy individuals and the relation of our results to measurements of RPE signals obtained from the Nacc with other methods.
Collapse
Affiliation(s)
- Max-Philipp Stenner
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom; Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany;
| | - Robb B Rutledge
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Klaus Kopitzki
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Alexander B Kowski
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité Universitätsmedizin, Berlin, Germany; and
| | - Jürgen Voges
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| |
Collapse
|
32
|
Stenner MP, Litvak V, Rutledge RB, Zaehle T, Schmitt FC, Voges J, Heinze HJ, Dolan RJ. Cortical drive of low-frequency oscillations in the human nucleus accumbens during action selection. J Neurophysiol 2015; 114:29-39. [PMID: 25878159 PMCID: PMC4518721 DOI: 10.1152/jn.00988.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/09/2015] [Indexed: 11/24/2022] Open
Abstract
The nucleus accumbens is thought to contribute to action selection by integrating behaviorally relevant information from multiple regions, including prefrontal cortex. Studies in rodents suggest that information flow to the nucleus accumbens may be regulated via task-dependent oscillatory coupling between regions. During instrumental behavior, local field potentials (LFP) in the rat nucleus accumbens and prefrontal cortex are coupled at delta frequencies (Gruber AJ, Hussain RJ, O'Donnell P. PLoS One 4: e5062, 2009), possibly mediating suppression of afferent input from other areas and thereby supporting cortical control (Calhoon GG, O'Donnell P. Neuron 78: 181–190, 2013). In this report, we demonstrate low-frequency cortico-accumbens coupling in humans, both at rest and during a decision-making task. We recorded LFP from the nucleus accumbens in six epilepsy patients who underwent implantation of deep brain stimulation electrodes. All patients showed significant coherence and phase-synchronization between LFP and surface EEG at delta and low theta frequencies. Although the direction of this coupling as indexed by Granger causality varied between subjects in the resting-state data, all patients showed a cortical drive of the nucleus accumbens during action selection in a decision-making task. In three patients this was accompanied by a significant coherence increase over baseline. Our results suggest that low-frequency cortico-accumbens coupling represents a highly conserved regulatory mechanism for action selection.
Collapse
Affiliation(s)
- Max-Philipp Stenner
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom; Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany;
| | - Vladimir Litvak
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Robb B Rutledge
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| | - Tino Zaehle
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Friedhelm C Schmitt
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; and
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; and
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| |
Collapse
|
33
|
Rapid feedback processing in human nucleus accumbens and motor thalamus. Neuropsychologia 2015; 70:246-54. [DOI: 10.1016/j.neuropsychologia.2015.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/19/2015] [Accepted: 02/21/2015] [Indexed: 01/26/2023]
|
34
|
Dürschmid S, Zaehle T, Hinrichs H, Heinze HJ, Voges J, Garrido MI, Dolan RJ, Knight RT. Sensory Deviancy Detection Measured Directly Within the Human Nucleus Accumbens. Cereb Cortex 2015; 26:1168-1175. [PMID: 25576536 DOI: 10.1093/cercor/bhu304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rapid changes in the environment evoke a comparison between expectancy and actual outcome to inform optimal subsequent behavior. The nucleus accumbens (NAcc), a key interface between the hippocampus and neocortical regions, is a candidate region for mediating this comparison. Here, we report event-related potentials obtained from the NAcc using direct intracranial recordings in 5 human participants while they listened to trains of auditory stimuli differing in their degree of deviation from repetitive background stimuli. NAcc recordings revealed an early mismatch signal (50-220 ms) in response to all deviants. NAcc activity in this time window was also sensitive to the statistics of stimulus deviancy, with larger amplitudes as a function of the level of deviancy. Importantly, this NAcc mismatch signal also predicted generation of longer latency scalp potentials (300-400 ms). The results provide direct human evidence that the NAcc is a key component of a network engaged in encoding statistics of the sensory environmental.
Collapse
Affiliation(s)
- Stefan Dürschmid
- Helen Wills Neuroscience Institute.,Department of Behavioral Neurology, Leibniz Institute of Neurobiology, Magdeburg, Germany.,Department of Neurology
| | - Tino Zaehle
- Department of Behavioral Neurology, Leibniz Institute of Neurobiology, Magdeburg, Germany.,Department of Neurology.,Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute of Neurobiology, Magdeburg, Germany.,Department of Neurology.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Forschungscampus STIMULATE
| | - Hans-Jochen Heinze
- Department of Behavioral Neurology, Leibniz Institute of Neurobiology, Magdeburg, Germany.,Department of Neurology.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Forschungscampus STIMULATE
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Marta I Garrido
- Queensland Brain Institute.,Centre for Advanced Imaging.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Queensland, Brisbane St Lucia, QLD 4072, Australia
| | - Raymond J Dolan
- Wellcome Trust Centre for Neuroimaging, UCL, London, UK.,Visiting Einstein Fellow, Humboldt University Berlin, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Robert T Knight
- Helen Wills Neuroscience Institute.,Department of Psychology, University of California, Berkeley, CA, USA
| |
Collapse
|
35
|
The Role of Reward in Word Learning and Its Implications for Language Acquisition. Curr Biol 2014; 24:2606-11. [DOI: 10.1016/j.cub.2014.09.044] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/17/2014] [Indexed: 01/17/2023]
|
36
|
Sepede G, Spano MC, Lorusso M, Berardis DD, Salerno RM, Giannantonio MD, Gambi F. Sustained attention in psychosis: Neuroimaging findings. World J Radiol 2014; 6:261-273. [PMID: 24976929 PMCID: PMC4072813 DOI: 10.4329/wjr.v6.i6.261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/07/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023] Open
Abstract
To provide a systematic review of scientific literature on functional magnetic resonance imaging (fMRI) studies on sustained attention in psychosis. We searched PubMed to identify fMRI studies pertaining sustained attention in both affective and non-affective psychosis. Only studies conducted on adult patients using a sustained attention task during fMRI scanning were included in the final review. The search was conducted on September 10th, 2013. 15 fMRI studies met our inclusion criteria: 12 studies were focused on Schizophrenia and 3 on Bipolar Disorder Type I (BDI). Only half of the Schizophrenia studies and two of the BDI studies reported behavioral abnormalities, but all of them evidenced significant functional differences in brain regions related to the sustained attention system. Altered functioning of the insula was found in both Schizophrenia and BDI, and therefore proposed as a candidate trait marker for psychosis in general. On the other hand, other brain regions were differently impaired in affective and non-affective psychosis: alterations of cingulate cortex and thalamus seemed to be more common in Schizophrenia and amygdala dysfunctions in BDI. Neural correlates of sustained attention seem to be of great interest in the study of psychosis, highlighting differences and similarities between Schizophrenia and BDI.
Collapse
|
37
|
El Karoui I, King JR, Sitt J, Meyniel F, Van Gaal S, Hasboun D, Adam C, Navarro V, Baulac M, Dehaene S, Cohen L, Naccache L. Event-Related Potential, Time-frequency, and Functional Connectivity Facets of Local and Global Auditory Novelty Processing: An Intracranial Study in Humans. Cereb Cortex 2014; 25:4203-12. [PMID: 24969472 DOI: 10.1093/cercor/bhu143] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Auditory novelty detection has been associated with different cognitive processes. Bekinschtein et al. (2009) developed an experimental paradigm to dissociate these processes, using local and global novelty, which were associated, respectively, with automatic versus strategic perceptual processing. They have mostly been studied using event-related potentials (ERPs), but local spiking activity as indexed by gamma (60-120 Hz) power and interactions between brain regions as indexed by modulations in beta-band (13-25 Hz) power and functional connectivity have not been explored. We thus recorded 9 epileptic patients with intracranial electrodes to compare the precise dynamics of the responses to local and global novelty. Local novelty triggered an early response observed as an intracranial mismatch negativity (MMN) contemporary with a strong power increase in the gamma band and an increase in connectivity in the beta band. Importantly, all these responses were strictly confined to the temporal auditory cortex. In contrast, global novelty gave rise to a late ERP response distributed across brain areas, contemporary with a sustained power decrease in the beta band (13-25 Hz) and an increase in connectivity in the alpha band (8-13 Hz) within the frontal lobe. We discuss these multi-facet signatures in terms of conscious access to perceptual information.
Collapse
Affiliation(s)
- Imen El Karoui
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Equipe PICNIC Paris 75013, France
| | - Jean-Remi King
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Equipe PICNIC Paris 75013, France Cognitive Neuroimaging Unit, INSERM U992, Gif-sur-Yvette 91191, France NeuroSpin Center, Institute of BioImaging, Commissariat à l'Energie Atomique, Gif-sur-Yvette 91191, France
| | - Jacobo Sitt
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Equipe PICNIC Paris 75013, France Cognitive Neuroimaging Unit, INSERM U992, Gif-sur-Yvette 91191, France NeuroSpin Center, Institute of BioImaging, Commissariat à l'Energie Atomique, Gif-sur-Yvette 91191, France
| | - Florent Meyniel
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Equipe PICNIC Paris 75013, France
| | - Simon Van Gaal
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Equipe PICNIC Paris 75013, France Cognitive Neuroimaging Unit, INSERM U992, Gif-sur-Yvette 91191, France NeuroSpin Center, Institute of BioImaging, Commissariat à l'Energie Atomique, Gif-sur-Yvette 91191, France
| | - Dominique Hasboun
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Equipe PICNIC Paris 75013, France AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurophysiology, Paris 75013, France
| | - Claude Adam
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Paris 75013, France
| | - Vincent Navarro
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Equipe PICNIC Paris 75013, France Cognitive Neuroimaging Unit, INSERM U992, Gif-sur-Yvette 91191, France AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Paris 75013, France
| | - Michel Baulac
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Paris 75013, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM U992, Gif-sur-Yvette 91191, France NeuroSpin Center, Institute of BioImaging, Commissariat à l'Energie Atomique, Gif-sur-Yvette 91191, France Université Paris 11, Orsay 91400, France Collège de France, Paris 75005, France
| | - Laurent Cohen
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Equipe PICNIC Paris 75013, France AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Paris 75013, France
| | - Lionel Naccache
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Equipe PICNIC Paris 75013, France AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurophysiology, Paris 75013, France AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Paris 75013, France
| |
Collapse
|
38
|
Daniel R, Pollmann S. A universal role of the ventral striatum in reward-based learning: evidence from human studies. Neurobiol Learn Mem 2014; 114:90-100. [PMID: 24825620 DOI: 10.1016/j.nlm.2014.05.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/01/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
Abstract
Reinforcement learning enables organisms to adjust their behavior in order to maximize rewards. Electrophysiological recordings of dopaminergic midbrain neurons have shown that they code the difference between actual and predicted rewards, i.e., the reward prediction error, in many species. This error signal is conveyed to both the striatum and cortical areas and is thought to play a central role in learning to optimize behavior. However, in human daily life rewards are diverse and often only indirect feedback is available. Here we explore the range of rewards that are processed by the dopaminergic system in human participants, and examine whether it is also involved in learning in the absence of explicit rewards. While results from electrophysiological recordings in humans are sparse, evidence linking dopaminergic activity to the metabolic signal recorded from the midbrain and striatum with functional magnetic resonance imaging (fMRI) is available. Results from fMRI studies suggest that the human ventral striatum (VS) receives valuation information for a diverse set of rewarding stimuli. These range from simple primary reinforcers such as juice rewards over abstract social rewards to internally generated signals on perceived correctness, suggesting that the VS is involved in learning from trial-and-error irrespective of the specific nature of provided rewards. In addition, we summarize evidence that the VS can also be implicated when learning from observing others, and in tasks that go beyond simple stimulus-action-outcome learning, indicating that the reward system is also recruited in more complex learning tasks.
Collapse
Affiliation(s)
- Reka Daniel
- Department of Experimental Psychology, Otto-von-Guericke-Universität Magdeburg, D-39016 Magdeburg, Germany; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
| | - Stefan Pollmann
- Department of Experimental Psychology, Otto-von-Guericke-Universität Magdeburg, D-39016 Magdeburg, Germany; Center for Behavioral Brain Sciences, D-39016 Magdeburg, Germany
| |
Collapse
|
39
|
Clauss JA, Seay AL, VanDerKlok RM, Avery SN, Cao A, Cowan RL, Benningfield MM, Blackford JU. Structural and functional bases of inhibited temperament. Soc Cogn Affect Neurosci 2014; 9:2049-58. [PMID: 24493850 DOI: 10.1093/scan/nsu019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Children born with an inhibited temperament are at heightened risk for developing anxiety, depression and substance use. Inhibited temperament is believed to have a biological basis; however, little is known about the structural brain basis of this vulnerability trait. Structural MRI scans were obtained from 84 (44 inhibited, 40 uninhibited) young adults. Given previous findings of amygdala hyperactivity in inhibited individuals, groups were compared on three measures of amygdala structure. To identify novel substrates of inhibited temperament, a whole brain analysis was performed. Functional activation and connectivity were examined across both groups. Inhibited adults had larger amygdala and caudate volume and larger volume predicted greater activation to neutral faces. In addition, larger amygdala volume predicted greater connectivity with subcortical and higher order visual structures. Larger caudate volume predicted greater connectivity with the basal ganglia, and less connectivity with primary visual and auditory cortex. We propose that larger volume in these salience detection regions may result in increased activation and enhanced connectivity in response to social stimuli. Given the strong link between inhibited temperament and risk for psychiatric illness, novel therapeutics that target these brain regions and related neural circuits have the potential to reduce rates of illness in vulnerable individuals.
Collapse
Affiliation(s)
- Jacqueline A Clauss
- Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA
| | - April L Seay
- Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA
| | - Ross M VanDerKlok
- Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA
| | - Suzanne N Avery
- Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA
| | - Aize Cao
- Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA
| | - Ronald L Cowan
- Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medi
| | - Margaret M Benningfield
- Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA
| | - Jennifer Urbano Blackford
- Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA Department of Psychiatry, Vanderbilt University Medical School, 1601 23rd Avenue South, Nashville, TN 37212, USA, Department of Clinical Psychology, Illinois School of Professional Psychology at Argosy University, 225 North Michigan Avenue, Chicago, IL 60601, USA, Department of Biostatistics, Middle Tennessee State University, 1301 E. Main St, Murfreesboro, TN 37132, USA, Department of Psychology, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA, Department of Radiology and Radiological Sciences, Vanderbilt University Medical School, 116 21st Avenue South, Nashville, TN 37203, USA, and Department of Pediatrics, Vanderbilt University Medical School, 2200 Children's Way, Nashville, TN 37232, USA
| |
Collapse
|
40
|
|