1
|
Cai H, Schnapp WI, Mann S, Miscevic M, Shcmit MB, Conteras M, Fang C. Neural circuits regulation of satiation. Appetite 2024; 200:107512. [PMID: 38801994 PMCID: PMC11227400 DOI: 10.1016/j.appet.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Terminating a meal after achieving satiation is a critical step in maintaining a healthy energy balance. Despite the extensive collection of information over the last few decades regarding the neural mechanisms controlling overall eating, the mechanism underlying different temporal phases of eating behaviors, especially satiation, remains incompletely understood and is typically embedded in studies that measure the total amount of food intake. In this review, we summarize the neural circuits that detect and integrate satiation signals to suppress appetite, from interoceptive sensory inputs to the final motor outputs. Due to the well-established role of cholecystokinin (CCK) in regulating the satiation, we focus on the neural circuits that are involved in regulating the satiation effect caused by CCK. We also discuss several general principles of how these neural circuits control satiation, as well as the limitations of our current understanding of the circuits function. With the application of new techniques involving sophisticated cell-type-specific manipulation and mapping, as well as real-time recordings, it is now possible to gain a better understanding of the mechanisms specifically underlying satiation.
Collapse
Affiliation(s)
- Haijiang Cai
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA; Bio 5 Institute and Department of Neurology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Wesley I Schnapp
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| | - Shivani Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| | - Masa Miscevic
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA; Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Matthew B Shcmit
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| | - Marco Conteras
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| | - Caohui Fang
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
2
|
Minaya DM, Kim JS, Kirkland R, Allen J, Cullinan S, Maclang N, de Lartigue G, de La Serre CB. Transfer with microbiota from lean donors prevents excessive weight gain and restores gut-brain vagal signaling in obese rats maintained on a high fat diet. RESEARCH SQUARE 2024:rs.3.rs-4438240. [PMID: 38853960 PMCID: PMC11160927 DOI: 10.21203/rs.3.rs-4438240/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background The collection of microorganisms, mainly bacteria, which live in the gastrointestinal (GI) tract are collectible known as the gut microbiota. GI bacteria play an active role in regulation of the host's immune system and metabolism, as well as certain pathophysiological processes. Diet is the main factor modulating GI microbiota composition and recent studies have shown that high fat (HF) diets induce detrimental changes, known as dysbiosis, in the GI bacterial makeup. HF diet induced microbiota dysbiosis has been associated with structural and functional changes in gut-brain vagally mediated signaling system, associated with overeating and obesity. Although HF-driven changes in microbiota composition are sufficient to alter vagal signaling, it is unknown if restoring normal microbiota in obesity can improve gut-brain signaling and metabolic outcomes. In this study, we evaluated the effect of lean gut microbiota transfer in obese, vagally compromised, rats on gut-brain communication, food intake, and body weight. Male Sprague-Dawley rats were maintained on regular chow, or 45% HF diet for nine weeks followed by three weeks of microbiota depletion using an antibiotic cocktail. The animals were then divided into four groups (n=10 each): LF - control group on regular chow, LF-LF - chow fed animals that received antibiotics and microbiota from chow fed animals, HF-LF - HF fed animals that received microbiota from chow fed animals, and HF-HF - HF fed animals that received microbiota from HF fed animals. Animals were gavaged with donor microbiota for three consecutive days on week one and once a week thereafter for three more weeks. HF-LF animals received inulin as a prebiotic to aid the establishment of the lean microbiome. Results We found that transferring a LF microbiota to HF fed animals (HF-LF) reduced caloric intake during the light phase when compared with HF-HF rats and prevented additional excessive weight gain. We did not observe significant changes in the density of vagal afferents terminating in the brainstem among the groups, however, HF-LF animals displayed an increase in postprandial activation of both primary sensory neurons innervating the GI tract and brainstem secondary neurons. Conclusions We concluded from these data that normalizing microbiota composition in obese rats improves gut-brain communication and restores normal feeding patterns which was associated with a reduction in weight gain.
Collapse
Affiliation(s)
- Dulce M. Minaya
- Department of Nutritional Science, University of Georgia, Athens, GA
| | | | - Rebecca Kirkland
- Department of Nutritional Science, University of Georgia, Athens, GA
| | - Jillian Allen
- Department of Nutritional Science, University of Georgia, Athens, GA
| | - Sitara Cullinan
- Department of Nutritional Science, University of Georgia, Athens, GA
| | - Neil Maclang
- Department of Nutritional Science, University of Georgia, Athens, GA
| | | | | |
Collapse
|
3
|
Kukucka T, Ferencova N, Visnovcova Z, Ondrejka I, Hrtanek I, Kovacova V, Macejova A, Mlyncekova Z, Tonhajzerova I. Mechanisms Involved in the Link between Depression, Antidepressant Treatment, and Associated Weight Change. Int J Mol Sci 2024; 25:4511. [PMID: 38674096 PMCID: PMC11050075 DOI: 10.3390/ijms25084511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Major depressive disorder is a severe mood disorder associated with a marked decrease in quality of life and social functioning, accompanied by a risk of suicidal behavior. Therefore, seeking out and adhering to effective treatment is of great personal and society-wide importance. Weight changes associated with antidepressant therapy are often cited as the reason for treatment withdrawal and thus are an important topic of interest. There indeed exists a significant mechanistic overlap between depression, antidepressant treatment, and the regulation of appetite and body weight. The suggested pathomechanisms include the abnormal functioning of the homeostatic (mostly humoral) and hedonic (mostly dopaminergic) circuits of appetite regulation, as well as causing neuromorphological and neurophysiological changes underlying the development of depressive disorder. However, this issue is still extensively discussed. This review aims to summarize mechanisms linked to depression and antidepressant therapy in the context of weight change.
Collapse
Affiliation(s)
- Tomas Kukucka
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (T.K.); (I.O.); (I.H.); (V.K.); (A.M.); (Z.M.)
| | - Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (N.F.); (Z.V.)
| | - Zuzana Visnovcova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (N.F.); (Z.V.)
| | - Igor Ondrejka
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (T.K.); (I.O.); (I.H.); (V.K.); (A.M.); (Z.M.)
| | - Igor Hrtanek
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (T.K.); (I.O.); (I.H.); (V.K.); (A.M.); (Z.M.)
| | - Veronika Kovacova
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (T.K.); (I.O.); (I.H.); (V.K.); (A.M.); (Z.M.)
| | - Andrea Macejova
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (T.K.); (I.O.); (I.H.); (V.K.); (A.M.); (Z.M.)
| | - Zuzana Mlyncekova
- Clinic of Psychiatry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03659 Martin, Slovakia; (T.K.); (I.O.); (I.H.); (V.K.); (A.M.); (Z.M.)
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
4
|
Minaya DM, Kim JS, Kirkland R, Allen J, Cullinan S, Maclang N, de Lartigue G, de La Serre C. Transfer of microbiota from lean donors in combination with prebiotics prevents excessive weight gain and improves gut-brain vagal signaling in obese rats. Gut Microbes 2024; 16:2421581. [PMID: 39485288 DOI: 10.1080/19490976.2024.2421581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
Gastrointestinal (GI) microbiota plays an active role in regulating the host's immune system and metabolism, as well as certain pathophysiological processes. Diet is the main factor modulating GI microbiota composition and studies have shown that high fat (HF) diets induce detrimental changes (dysbiosis) in the GI bacterial makeup. HF diet induced dysbiosis has been associated with structural and functional changes in gut-brain vagally mediated signaling system, associated with overeating and obesity. Although HF-driven changes in microbiota composition are sufficient to alter vagal signaling, it is unknown if improving microbiota composition after diet-induced obesity has been established can ameliorate gut-brain signaling and metabolic outcomes. In this study, we evaluated the effect of lean gut microbiota transfer in obese, vagally compromised, rats on gut-brain communication, food intake, and body weight. Male rats were maintained on regular chow or 45% HF diet for nine weeks followed by three weeks of microbiota depletion using antibiotics. The animals were then divided into four groups (n = 10 each): LF - control fed regular chow, LF-LF - chow fed animals that received microbiota from chow fed donors, HF-LF - HF fed animals that received microbiota from chow fed donors, and HF-HF - HF fed animals that received microbiota from HF fed donors. HF-LF animals received inulin as a prebiotic to aid the establishment of the lean microbiome. We found that transferring a LF microbiota to HF fed animals (HF-LF) reduced caloric intake during the light phase when compared with HF-HF rats and prevented additional excessive weight gain. HF-LF animals displayed an increase in postprandial activation of both primary sensory neurons innervating the GI tract and brainstem secondary neurons. We concluded from these data that improving microbiota composition in obese rats is sufficient to ameliorate gut-brain communication and restore normal feeding patterns which was associated with a reduction in weight gain.
Collapse
Affiliation(s)
- Dulce M Minaya
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | - Jiyoung S Kim
- Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca Kirkland
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | - Jillian Allen
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | - Sitara Cullinan
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | - Neil Maclang
- Department of Nutritional Science, University of Georgia, Athens, GA, USA
| | | | - Claire de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
6
|
Perelló M, Cornejo MP, De Francesco PN, Fernandez G, Gautron L, Valdivia LS. The controversial role of the vagus nerve in mediating ghrelin´s actions: gut feelings and beyond. IBRO Neurosci Rep 2022; 12:228-239. [PMID: 35746965 PMCID: PMC9210457 DOI: 10.1016/j.ibneur.2022.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022] Open
Abstract
Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla. Many anatomical studies have mapped GHSR expression in vagal sensory or motor neurons. Also, numerous functional studies investigated the role of the vagus nerve mediating specific actions of ghrelin. Here, we critically review the topic and discuss the available evidence supporting, or not, a role for the vagus nerve mediating some specific actions of ghrelin. We conclude that studies using rats have provided the most congruent evidence indicating that the vagus nerve mediates some actions of ghrelin on the digestive and cardiovascular systems, whereas studies in mice resulted in conflicting observations. Even considering exclusively studies performed in rats, the putative role of the vagus nerve in mediating the orexigenic and growth hormone (GH) secretagogue properties of ghrelin remains debated. In humans, studies are still insufficient to draw definitive conclusions regarding the role of the vagus nerve mediating most of the actions of ghrelin. Thus, the extent to which the vagus nerve mediates ghrelin actions, particularly in humans, is still uncertain and likely one of the most intriguing unsolved aspects of the field.
Collapse
|
7
|
Wierup N, Abels M, Shcherbina L, Lindqvist A. The role of CART in islet biology. Peptides 2022; 149:170708. [PMID: 34896575 DOI: 10.1016/j.peptides.2021.170708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is mostly known for its appetite regulating effects in the central nervous system. However, CART is also highly expressed in the peripheral nervous system as well as in certain endocrine cells. Our group has dedicated more than 20 years to understand the role of CART in the pancreatic islets and in this review we summarize what is known to date about CART expression and function in the islets. CART is expressed in both islet cells and nerve fibers innervating the islets. Large species differences are at hand and CART expression is highly dynamic and increased during development, as well as in Type 2 Diabetes and certain endocrine tumors. In the human islets CART is expressed in alpha cells and beta cells and the expression is increased in T2D patients. CART increases insulin secretion, reduces glucagon secretion, and protects against beta cell death by reducing apoptosis and increasing proliferation. It is still not fully understood how CART mediates its effects or which receptors that are involved. Nevertheless, CART is endowed with several properties that are beneficial in a T2D perspective. Many of the described effects of CART resemble those of GLP-1, and interestingly CART has been found to potentiate some of the effects of GLP-1, paving the way for CART-based treatments in combination with GLP-1-based drugs.
Collapse
Affiliation(s)
- Nils Wierup
- Lund University Diabetes Centre, Malmö, Sweden.
| | - Mia Abels
- Lund University Diabetes Centre, Malmö, Sweden
| | | | | |
Collapse
|
8
|
Liang SL, Tong YS, Hwang LL, Huang YZ, Chen CY. CART Peptides Differently Regulate Firing Rates and GABAergic Synaptic Inputs of DMV Neurons Innervating the Stomach Antrum and Cecum of Adult Male Rats. Neuroendocrinology 2022; 112:555-570. [PMID: 34348334 DOI: 10.1159/000518690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/23/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Central administration of cocaine- and amphetamine-regulated transcript peptides (CARTp) alters gastrointestinal motility and reduces food intake in rats. Since neurons in the dorsal motor nucleus of the vagus (DMV) receive GABAergic and glutamatergic inputs and innervate the smooth muscle of gastrointestinal organs, we hypothesized that CARTp acts on the DMV or presynaptic neurons. METHODS We used 3,3'-dioctadecyloxa-carbocyanine perchlorate (DiO) retrograde tracing with electrophysiological methods to record DMV neurons innervating the stomach antrum or cecum in brainstem slices from adult rats. RESULTS DiO application did not change the electrophysiological properties of DMV neurons. CART55-102 had no effect on the basal firing rates of neurons in either the stomach antrum-labeled group (SLG) or cecum-labeled group (CLG). When presynaptic inputs were blocked, CART55-102 further increased the firing rates of the SLG, suggesting a direct excitatory effect. Spontaneous inhibitory postsynaptic currents (sIPSCs) occurred at a higher frequency in SLG neurons than in CLG neurons. CART55-102 reduced the amplitude and the frequency of sIPSCs in SLG neurons dose-dependently, with higher doses also reducing spontaneous excitatory postsynaptic currents (sEPSCs). Higher doses of CART55-102 reduced sIPSC and sEPSC amplitudes in CLG neurons, suggesting a postsynaptic effect. In response to incremental current injections, the SLG neurons exhibited less increases in firing activity. Simultaneous applications of current injections and CART55-102 decreased the firing activity of the CLG. Therefore, stomach antrum-projecting DMV neurons possess a higher gating ability to stabilize firing activity. CONCLUSION The mechanism by which CARTp mediates anorectic actions may be through a direct reduction in cecum-projecting DMV neuron excitability and, to a lesser extent, that of antrum-projecting DMV neurons, by acting on receptors of these neurons.
Collapse
Affiliation(s)
- Shu-Ling Liang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yong-Sheng Tong
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ling-Ling Hwang
- Department of Physiology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yen Chen
- Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Faculty of Medicine, Institute of Emergency and Critical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Singh A, de Araujo AM, Krieger JP, Vergara M, Ip CK, de Lartigue G. Demystifying functional role of cocaine- and amphetamine-related transcript (CART) peptide in control of energy homeostasis: A twenty-five year expedition. Peptides 2021; 140:170534. [PMID: 33757831 PMCID: PMC8369463 DOI: 10.1016/j.peptides.2021.170534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Cocaine- and amphetamine-related transcript (CART) is a neuropeptide first discovered in the striatum of the rat brain. Later, the genetic sequence and function of CART peptide (CARTp) was found to be conserved among multiple mammalian species. Over the 25 years, since its discovery, CART mRNA (Cartpt) expression has been reported widely throughout the central and peripheral nervous systems underscoring its role in diverse physiological functions. Here, we review the localization and function of CARTp as it relates to energy homeostasis. We summarize the expression changes of central and peripheral Cartpt in response to metabolic states and make use of available large data sets to gain additional insights into the anatomy of the Cartpt expressing vagal neurons and their expression patterns in the gut. Furthermore, we provide an overview of the role of CARTp as an anorexigenic signal and its effect on energy expenditure and body weight control with insights from both pharmacological and transgenic animal studies. Subsequently, we discuss the role of CARTp in the pathophysiology of obesity and review important new developments towards identifying a candidate receptor for CARTp signalling. Altogether, the field of CARTp research has made rapid and substantial progress recently, and we review the case for considering CARTp as a potential therapeutic target for stemming the obesity epidemic.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Alan Moreira de Araujo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Jean-Philippe Krieger
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Macarena Vergara
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Cawthon CR, de La Serre CB. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 2021; 138:170492. [PMID: 33422646 DOI: 10.1016/j.peptides.2020.170492] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
In 1973, Gibbs, Young, and Smith showed that exogenous cholecystokinin (CCK) administration reduces food intake in rats. This initial report has led to thousands of studies investigating the physiological role of CCK in regulating feeding behavior. CCK is released from enteroendocrine I cells present along the gastrointestinal (GI) tract. CCK binding to its receptor CCK1R leads to vagal afferent activation providing post-ingestive feedback to the hindbrain. Vagal afferent neurons' (VAN) sensitivity to CCK is modulated by energy status while CCK signaling regulates gene expression of other feeding related signals and receptors expressed by VAN. In addition to its satiation effects, CCK acts all along the GI tract to optimize digestion and nutrient absorption. Diet-induced obesity (DIO) is characterized by reduced sensitivity to CCK and every part of the CCK system is negatively affected by chronic intake of energy-dense foods. EEC have recently been shown to adapt to diet, CCK1R is affected by dietary fats consumption, and the VAN phenotypic flexibility is lost in DIO. Altered endocannabinoid tone, changes in gut microbiota composition, and chronic inflammation are currently being explored as potential mechanisms for diet driven loss in CCK signaling. This review discusses our current understanding of how CCK controls food intake in conditions of leanness and how control is lost in chronic energy excess and obesity, potentially perpetuating excessive intake.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
11
|
Yosten GLC, Haddock CJ, Harada CM, Almeida-Pereira G, Kolar GR, Stein LM, Hayes MR, Salvemini D, Samson WK. Past, present and future of cocaine- and amphetamine-regulated transcript peptide. Physiol Behav 2021; 235:113380. [PMID: 33705816 DOI: 10.1016/j.physbeh.2021.113380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023]
Abstract
The existence of the peptide encoded by the cocaine- and amphetamine-regulated transcript (Cartpt) has been recognized since 1981, but it was not until 1995, that the gene encoding CART peptide (CART) was identified. With the availability of the predicted protein sequence of CART investigators were able to identify sites of peptide localization, which then led to numerous approaches attempting to clarify CART's multiple pharmacologic effects and even provide evidence of potential physiologic relevance. Although not without controversy, a picture emerged of the importance of CART in ingestive behaviors, reward behaviors and even pain sensation. Despite the wealth of data hinting at the significance of CART, in the absence of an identified receptor, the full potential for this peptide or its analogs to be developed into therapeutic agents remained unrealized. There was evidence favoring the action of CART via a G protein-coupled receptor (GPCR), but despite multiple attempts the identity of that receptor eluded investigators until recently. Now with the identification of the previously orphaned GPCR, GPR160, as a receptor for CART, focus on this pluripotent neuropeptide will in all likelihood experience a renaissance and the potential for the development of pharmcotherapies targeting GPR160 seems within reach.
Collapse
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; Henry and Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Christopher J Haddock
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Caron M Harada
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; Henry and Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Gislaine Almeida-Pereira
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Grant R Kolar
- Henry and Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Lauren M Stein
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; Henry and Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; Henry and Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
12
|
Sapio MR, Vazquez FA, Loydpierson AJ, Maric D, Kim JJ, LaPaglia DM, Puhl HL, Lu VB, Ikeda SR, Mannes AJ, Iadarola MJ. Comparative Analysis of Dorsal Root, Nodose and Sympathetic Ganglia for the Development of New Analgesics. Front Neurosci 2021; 14:615362. [PMID: 33424545 PMCID: PMC7793666 DOI: 10.3389/fnins.2020.615362] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
Interoceptive and exteroceptive signals, and the corresponding coordinated control of internal organs and sensory functions, including pain, are received and orchestrated by multiple neurons within the peripheral, central and autonomic nervous systems. A central aim of the present report is to obtain a molecularly informed basis for analgesic drug development aimed at peripheral rather than central targets. We compare three key peripheral ganglia: nodose, sympathetic (superior cervical), and dorsal root ganglia in the rat, and focus on their molecular composition using next-gen RNA-Seq, as well as their neuroanatomy using immunocytochemistry and in situ hybridization. We obtained quantitative and anatomical assessments of transmitters, receptors, enzymes and signaling pathways mediating ganglion-specific functions. Distinct ganglionic patterns of expression were observed spanning ion channels, neurotransmitters, neuropeptides, G-protein coupled receptors (GPCRs), transporters, and biosynthetic enzymes. The relationship between ganglionic transcript levels and the corresponding protein was examined using immunohistochemistry for select, highly expressed, ganglion-specific genes. Transcriptomic analyses of spinal dorsal horn and intermediolateral cell column (IML), which form the termination of primary afferent neurons and the origin of preganglionic innervation to the SCG, respectively, disclosed pre- and post-ganglionic molecular-level circuits. These multimodal investigations provide insight into autonomic regulation, nodose transcripts related to pain and satiety, and DRG-spinal cord and IML-SCG communication. Multiple neurobiological and pharmacological contexts can be addressed, such as discriminating drug targets and predicting potential side effects, in analgesic drug development efforts directed at the peripheral nervous system.
Collapse
Affiliation(s)
- Matthew R Sapio
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Fernando A Vazquez
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Amelia J Loydpierson
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Jenny J Kim
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Danielle M LaPaglia
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Henry L Puhl
- Section on Neurotransmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Van B Lu
- Section on Neurotransmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Stephen R Ikeda
- Section on Neurotransmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Andrew J Mannes
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Michael J Iadarola
- Anesthesia Section, Department of Perioperative Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
13
|
Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2020; 229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The lateral hypothalamic area (LHA) is a heterogeneous brain structure extensively studied for its potent role in regulating energy balance. The anatomical and molecular diversity of the LHA permits the orchestration of responses to energy sensing cues from the brain and periphery. Two of the primary cell populations within the LHA associated with integration of this information are Orexin (ORX) and Melanin Concentrating Hormone (MCH). While both of these non-overlapping populations exhibit orexigenic properties, the activities of these two systems support feeding behavior through contrasting mechanisms. We describe the anatomical and functional properties as well as interaction with other neuropeptides and brain reward and hedonic systems. Specific outputs relating to arousal, food seeking, feeding, and metabolism are coordinated through these mechanisms. We then discuss how both the ORX and MCH systems harmonize in a divergent yet overall cooperative manner to orchestrate feeding behavior through transitions between various appetitive states, and thus offer novel insights into LHA allostatic control of appetite.
Collapse
Affiliation(s)
| | | | - Alexander W Johnson
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing.
| |
Collapse
|
14
|
Ong ZY, McNally GP. CART in energy balance and drug addiction: Current insights and mechanisms. Brain Res 2020; 1740:146852. [DOI: 10.1016/j.brainres.2020.146852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
|
15
|
Lee SJ, Krieger JP, Vergara M, Quinn D, McDougle M, de Araujo A, Darling R, Zollinger B, Anderson S, Pan A, Simonnet EJ, Pignalosa A, Arnold M, Singh A, Langhans W, Raybould HE, de Lartigue G. Blunted Vagal Cocaine- and Amphetamine-Regulated Transcript Promotes Hyperphagia and Weight Gain. Cell Rep 2020; 30:2028-2039.e4. [PMID: 32049029 PMCID: PMC7063787 DOI: 10.1016/j.celrep.2020.01.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/06/2019] [Accepted: 01/15/2020] [Indexed: 12/31/2022] Open
Abstract
The vagus nerve conveys gastrointestinal cues to the brain to control eating behavior. In obesity, vagally mediated gut-brain signaling is disrupted. Here, we show that the cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide synthesized proportional to the food consumed in vagal afferent neurons (VANs) of chow-fed rats. CART injection into the nucleus tractus solitarii (NTS), the site of vagal afferent central termination, reduces food intake. Conversely, blocking endogenous CART action in the NTS increases food intake in chow-fed rats, and this requires intact VANs. Viral-mediated Cartpt knockdown in VANs increases weight gain and daily food intake via larger meals and faster ingestion rate. In obese rats fed a high-fat, high-sugar diet, meal-induced CART synthesis in VANs is blunted and CART antibody fails to increase food intake. However, CART injection into the NTS retains its anorexigenic effect in obese rats. Restoring disrupted VAN CART signaling in obesity could be a promising therapeutic approach.
Collapse
Affiliation(s)
- Shin J Lee
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Jean-Philippe Krieger
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland; Department of Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Macarena Vergara
- Department of Pharmacodynamics, Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | | | - Molly McDougle
- Department of Pharmacodynamics, Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Alan de Araujo
- Department of Pharmacodynamics, Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA; The John B. Pierce Laboratory, New Haven, CT, USA; Yale University, New Haven, CT, USA
| | - Rebecca Darling
- Anatomy, Physiology and Cell Biology Department School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Benjamin Zollinger
- The John B. Pierce Laboratory, New Haven, CT, USA; Yale University, New Haven, CT, USA
| | - Seth Anderson
- The John B. Pierce Laboratory, New Haven, CT, USA; Yale University, New Haven, CT, USA
| | - Annabeth Pan
- The John B. Pierce Laboratory, New Haven, CT, USA; Yale University, New Haven, CT, USA
| | - Emilie J Simonnet
- Anatomy, Physiology and Cell Biology Department School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Angelica Pignalosa
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Arashdeep Singh
- Department of Pharmacodynamics, Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Helen E Raybould
- Anatomy, Physiology and Cell Biology Department School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA; The John B. Pierce Laboratory, New Haven, CT, USA; Yale University, New Haven, CT, USA.
| |
Collapse
|
16
|
Abstract
Despite decades of research, few medications have gained Food and Drug Administration (FDA) approval for the management of substance abuse disorder. The paucity of successful medications can be attributed, in part, to the lack of clearly identified neurobiological targets for addressing the core pathology of addictive behavior. Commonalities in the behavioral and brain processes involved in the rewarding effects of drugs and foods has prompted the evaluation of candidate medications that target neural pathways involved in both drug and eating disorders. Here, pharmacological strategies for the development of novel medications for drug addiction are presented in the context of potential overlapping neurobiological targets identified for eating disorders (e.g., obesity, overeating, binge-eating) and substance abuse. Mechanisms discussed in this chapter include modulators of the gut-brain axis (e.g., leptin, ghrelin, cholecystokinin, cocaine- and amphetamine-regulated transcript, and pancreatic peptides) and neurotransmitter systems (e.g., opioids, cannabinoids, dopamine, serotonin, and acetylcholine).
Collapse
|
17
|
Langhans W. Serendipity and spontaneity - Critical components in 40 years of academia. Physiol Behav 2019; 204:76-85. [PMID: 30753847 DOI: 10.1016/j.physbeh.2019.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
I was flattered and felt tremendously honored to receive the 2018 Distinguished Career Award (DCA) from SSIB, the society that I always considered my scientific home, my family. Preparing the award lecture, I reflected about defining features of my career. This paper summarizes this very personal retrospective. As you will read, serendipity and more or less spontaneous decisions; i.e., some luck to be in the right place at the right time, and spontaneity to grab an opportunity when it presented itself, played a major role, and not necessarily a thorough analysis of my life situation at various junctions of my career path. Luck also often had the name of a fantastic tutor or mentor, or came in the form of enlightening discussions with a friend. Science is teamwork, which emphasizes how important collaborators, post-docs, students and technicians are. Although deep thinking was not necessarily crucial for my career path, a thorough examination is of course necessary when analyzing data, which were often most important when they did not confirm my hypothesis. Science is also hard work considering how much time one spends, but it never seemed like work to me because I had always this desire to find out how things in the organism work, and I always felt privileged to be able to pursue my "hobby" and even get a decent pay for it. In short, being a scientist is probably one of the most rewarding professional activities that life can offer.
Collapse
Affiliation(s)
- Wolfgang Langhans
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schorenstr. 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
18
|
Ahmadian-Moghadam H, Sadat-Shirazi MS, Zarrindast MR. Cocaine- and amphetamine-regulated transcript (CART): A multifaceted neuropeptide. Peptides 2018; 110:56-77. [PMID: 30391426 DOI: 10.1016/j.peptides.2018.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Over the last 35 years, the continuous discovery of novel neuropeptides has been the key to the better understanding of how the central nervous system has integrated with neuronal signals and behavioral responses. Cocaine and amphetamine-regulated transcript (CART) was discovered in 1995 in the rat striatum but later was found to be highly expressed in the hypothalamus. The widespread distribution of CART peptide in the brain complicated the understanding of the role played by this neurotransmitter. The main objective of the current compact review is to piece together the fragments of available information about origin, expression, distribution, projection, and function of CART peptides. Accumulative evidence suggests CART as a neurotransmitter and neuroprotective agent that is mainly involved in regulation of feeding, addiction, stress, anxiety, innate fear, neurological disease, neuropathic pain, depression, osteoporosis, insulin secretion, learning, memory, reproduction, vision, sleep, thirst and body temperature. In spite of the vast number of studies about the CART, the overall pictures about the CART functions are sketchy. First, there is a lack of information about cloned receptor, specific agonist and antagonist. Second, CART peptides are detected in discrete sets of neurons that can modulate countless activities and third; CART peptides exist in several fragments due to post-translational processing. For these reasons the overall picture about the CART peptides are sketchy and confounding.
Collapse
Affiliation(s)
- Hamid Ahmadian-Moghadam
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
19
|
Johnston JR, Freeman KG, Edwards GL. Activity in nodose ganglia neurons after treatment with CP 55,940 and cholecystokinin. Physiol Rep 2018; 6:e13927. [PMID: 30512249 PMCID: PMC6278814 DOI: 10.14814/phy2.13927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022] Open
Abstract
Previous work has shown that cannabinoids increase feeding, while cholecystokinin (CCK) has an anorexigenic effect on food intake. Receptors for these hormones are located on cell bodies of vagal afferent nerves in the nodose ganglia. An interaction between CCK and endocannabinoid receptors has been suggested. The purpose of these studies is to explore the effect of pretreatment with a cannabinoid agonist, CP 55,940, on nodose neuron activation by CCK. To determine the effect of CP 55,940 and CCK on neuron activation, rats were anesthetized and nodose ganglia were excised. The neurons were dissociated and placed in culture on coverslips. The cells were treated with media; CP 55,940; CCK; CP 55,940 followed by CCK; or AM 251, a CB1 receptor antagonist, and CP 55,940 followed by CCK. Immunohistochemistry was performed to stain the cells for cFos as a measure of cell activation. Neurons were identified using neurofilament immunoreactivity. The neurons on each slip were counted using fluorescence imaging, and the number of neurons that were cFos positive was counted in order to calculate the percentage of activated neurons per coverslip. Pretreatment with CP 55,940 decreased the percentage of neurons expressing cFos-immunoreactivity in response to CCK. This observation suggests that cannabinoids inhibit CCK activation of nodose ganglion neurons.
Collapse
Affiliation(s)
- Juliane R. Johnston
- Department of Physiology and PharmacologyCollege of Veterinary MedicineThe University of GeorgiaAthensGeorgia
| | - Kimberly G. Freeman
- Department of Physiology and PharmacologyCollege of Veterinary MedicineThe University of GeorgiaAthensGeorgia
| | - Gaylen L. Edwards
- Department of Physiology and PharmacologyCollege of Veterinary MedicineThe University of GeorgiaAthensGeorgia
| |
Collapse
|
20
|
Cork SC. The role of the vagus nerve in appetite control: Implications for the pathogenesis of obesity. J Neuroendocrinol 2018; 30:e12643. [PMID: 30203877 DOI: 10.1111/jne.12643] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
The communication between the gut and the brain is important for the control of energy homeostasis. In response to food intake, enteroendocrine cells secrete gut hormones, which ultimately suppress appetite through centrally-mediated processes. Increasing evidence implicates the vagus nerve as an important conduit in transmitting these signals from the gastrointestinal tract to the brain. Studies have demonstrated that many of the gut hormones secreted from enteroendocrine cells signal through the vagus nerve, and the sensitivity of the vagus to these signals is regulated by feeding status. Furthermore, evidence suggests that a reduction in the ability of the vagus nerve to respond to the switch between a "fasted" and "fed" state, retaining sensitivity to orexigenic signals when fed or a reduced ability to respond to satiety hormones, may contribute to obesity. This review draws together the evidence that the vagus nerve is a crucial component of appetite regulation via the gut-brain axis, with a particular emphasis on experimental techniques and future developments.
Collapse
Affiliation(s)
- Simon C Cork
- Section of Endocrinology and Investigative Medicine, Division of Endocrinology, Diabetes and Metabolism, Imperial College London, London, UK
| |
Collapse
|
21
|
de Lartigue G, Xu C. Mechanisms of vagal plasticity influencing feeding behavior. Brain Res 2018; 1693:146-150. [PMID: 29903616 PMCID: PMC6996925 DOI: 10.1016/j.brainres.2018.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 12/18/2022]
Abstract
Sensory neurons of the vagus nerve receive many different peripheral signals that can change rapidly and frequently throughout the day. The ability of these neurons to convey the vast array of nuanced information to the brain requires neuronal adaptability. In this review we discuss evidence for neural plasticity in vagal afferent neurons as a mechanism for conveying nuanced information to the brain important for the control of feeding behavior. We provide evidence that synaptic plasticity, changes in membrane conductance, and neuropeptide specification are mechanisms that allow flexibility in response to metabolic cues that can be disrupted by chronic intake of energy dense diets.
Collapse
Affiliation(s)
| | - Chelsea Xu
- Department Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Guerville M, Hamilton MK, Ronveaux CC, Ellero-Simatos S, Raybould HE, Boudry G. Chronic refined low-fat diet consumption reduces cholecystokinin satiation in rats. Eur J Nutr 2018; 58:2497-2510. [PMID: 30069617 DOI: 10.1007/s00394-018-1802-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/30/2018] [Indexed: 01/03/2023]
Abstract
PURPOSE Reduced ability of cholecystokinin (CCK) to induce satiation contributes to hyperphagia and weight gain in high-fat/high-sucrose (HF/HS) diet-induced obesity, and has been linked to altered gut microbiota. Rodent models of obesity use chow or low-fat (LF) diets as control diets; the latter has been shown to alter gut microbiota and metabolome. We aimed to determine whether LF-diet consumption impacts CCK satiation in rats and if so, whether this is prevented by addition of inulin to LF diet. METHODS Rats (n = 40) were fed, for 8 weeks, a chow diet (chow) or low-fat (10%) or high-fat/high-sucrose (45 and 17%, respectively) refined diets with either 10% cellulose (LF and HF/HS) or 10% inulin (LF-I and HF/HS-I). Caecal metabolome was assessed by 1H-NMR-based metabolomics. CCK satiation was evaluated by measuring the suppression of food intake after intraperitoneal CCK injection (1 or 3 µg/kg). RESULTS LF-diet consumption altered the caecal metabolome, reduced caecal weight, and increased IAP activity, compared to chow. CCK-induced inhibition of food intake was abolished in LF diet-fed rats compared to chow-fed rats, while HF/HS diet-fed rats responded only to the highest CCK dose. Inulin substitution ameliorated caecal atrophy, reduced IAP activity, and modulated caecal metabolome, but did not improve CCK-induced satiety in either LF- or HF/HS-fed rats. CONCLUSIONS CCK signaling is impaired by LF-diet consumption, highlighting that caution must be taken when using LF diet until a more suitable refined control diet is identified.
Collapse
Affiliation(s)
- Mathilde Guerville
- Institut Numecan, INRA INSERM Univ Rennes 1, Domaine de la Prise, 35590, Saint-Gilles, France
| | - M Kristina Hamilton
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Charlotte C Ronveaux
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Helen E Raybould
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Gaëlle Boudry
- Institut Numecan, INRA INSERM Univ Rennes 1, Domaine de la Prise, 35590, Saint-Gilles, France.
| |
Collapse
|
23
|
Wu W, Sheng K, Xu X, Zhang H, Zhou G. Potential roles for glucagon-like peptide-1 7-36 amide and cholecystokinin in anorectic response to the trichothecene mycotoxin T-2 toxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:181-187. [PMID: 29433086 DOI: 10.1016/j.ecoenv.2018.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Anorexia is a hallmark of animal and human exposed to T-2 toxin, a most poisonous trichothecene mycotoxins contaminating various cereal grains including wheat, corn and barley. Although this adverse effect has been well characterized in several animal species, the underlying mechanisms are unclear. The goal for this study was to elucidate the roles of two gut satiety hormones, glucagon-like peptide-17-36 amide (GLP-1) and cholecystokinin (CCK) in T-2 toxin-evoked anorectic response using a mouse anorexia bioassay. Elevations of plasma GLP-1 and CCK significantly corresponded to anorexia induction by T-2 toxin. Direct administration of exogenous GLP-1 and CCK markedly evoked anorectic responses similar to T-2 toxin. The GLP-1 receptor (GLP-1R) antagonist Exendin9-39 dose-dependently cause attenuation of both GLP-1- and T-2 toxin-induced anorectic responses. Pretreatment with the CCK1 receptor (CCK1R) antagonist SR 27897 and CCK2 receptor (CCK2R) antagonist L-365,260 attenuated anorexia induction by both CCK- and T-2 toxin in a dose dependent manner. Taken together, our findings suggest that both GLP-1 and CCK play contributory roles in T-2 toxin-induced anorexia.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Meat Processing, Key Lab of Meat Processing and Quality Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kun Sheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Key Lab of Meat Processing and Quality Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haibin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Meat Processing, Key Lab of Meat Processing and Quality Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Key Lab of Meat Processing and Quality Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
24
|
Grabauskas G, Owyang C. Plasticity of vagal afferent signaling in the gut. MEDICINA-LITHUANIA 2017; 53:73-84. [PMID: 28454890 PMCID: PMC6318799 DOI: 10.1016/j.medici.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Vagal sensory neurons mediate the vago-vagal reflex which, in turn, regulates a wide array of gastrointestinal functions including esophageal motility, gastric accommodation and pancreatic enzyme secretion. These neurons also transmit sensory information from the gut to the central nervous system, which then mediates the sensations of nausea, fullness and satiety. Recent research indicates that vagal afferent neurons process non-uniform properties and a significant degree of plasticity. These properties are important to ensure that vagally regulated gastrointestinal functions respond rapidly and appropriately to various intrinsic and extrinsic factors. Similar plastic changes in the vagus also occur in pathophysiological conditions, such as obesity and diabetes, resulting in abnormal gastrointestinal functions. A clear understanding of the mechanisms which mediate these events may provide novel therapeutic targets for the treatment of gastrointestinal disorders due to vago-vagal pathway malfunctions.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, USA.
| | - Chung Owyang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48019, USA
| |
Collapse
|
25
|
Ndjim M, Poinsignon C, Parnet P, Le Dréan G. Loss of Vagal Sensitivity to Cholecystokinin in Rats Born with Intrauterine Growth Retardation and Consequence on Food Intake. Front Endocrinol (Lausanne) 2017; 8:65. [PMID: 28443064 PMCID: PMC5385335 DOI: 10.3389/fendo.2017.00065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023] Open
Abstract
Perinatal malnutrition is associated with low birth weight and an increased risk of developing metabolic syndrome in adulthood. Modification of food intake (FI) regulation was observed in adult rats born with intrauterine growth retardation induced by maternal dietary protein restriction during gestation and maintained restricted until weaning. Gastrointestinal peptides and particularly cholecystokinin (CCK) play a major role in short-term regulation of FI by relaying digestive signals to the hindbrain via the vagal afferent nerve (VAN). We hypothesized that vagal sensitivity to CCK could be affected in rats suffering from undernutrition [low protein (LP)] during fetal and postnatal life, leading to an altered gut-brain communication and impacting satiation. Our aim was to study short-term FI along with signals of appetite and satiation in adult LP rats compared to control rats. The dose-response to CCK injection was investigated on FI as well as the associated signaling pathways activated in nodose ganglia. We showed that LP rats have a reduced first-meal satiety ratio after a fasting period associated to a higher postprandial plasmatic CCK release, a reduced sensitivity to CCK when injected at low concentration and a reduced presence of CCK-1 receptor in nodose ganglia. Accordingly, the lower basal and CCK-induced phosphorylation of calcium/calmodulin-dependent protein kinase in nodose ganglia of LP rats could reflect an under-expressed vanilloid family of transient receptor potential cation channels on VAN. Altogether, the present data demonstrated a reduced vagal sensitivity to CCK in LP rats at adulthood, which could contribute to deregulation of FI reported in this model.
Collapse
Affiliation(s)
- Marième Ndjim
- UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France
| | - Camille Poinsignon
- UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France
| | - Patricia Parnet
- UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France
| | - Gwenola Le Dréan
- UMR 1280 PHAN, INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), Nantes, France
- *Correspondence: Gwenola Le Dréan,
| |
Collapse
|
26
|
Yalcin O, Iseri E, Bukan N, Ercin U. Effects of Long Acting Methylphenidate on Ghrelin Levels in Male Children with Attention Deficit Hyperactivity Disorder: An Open Label Trial. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20130708042604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ozhan Yalcin
- Bakirkoy Training and Research Hospital for Mental Disorders and Neurological Diseases, Istanbul - Turkey
| | - Elvan Iseri
- Gazi University School of Medicine, Department of Child and Adolescent Psychiatry, Ankara - Turkey
| | - Neslihan Bukan
- Gazi University School of Medicine, Department of Medical Biochemistry, Ankara - Turkey
| | - Ugur Ercin
- Gazi University School of Medicine, Department of Medical Biochemistry, Ankara - Turkey
| |
Collapse
|
27
|
Levels of Cocaine- and Amphetamine-Regulated Transcript in Vagal Afferents in the Mouse Are Unaltered in Response to Metabolic Challenges. eNeuro 2016; 3:eN-FTR-0174-16. [PMID: 27822503 PMCID: PMC5088776 DOI: 10.1523/eneuro.0174-16.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/21/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is one of the most abundant neuropeptides in vagal afferents, including those involved in regulating feeding. Recent observations indicate that metabolic challenges dramatically alter the neuropeptidergic profile of CART-producing vagal afferents. Here, using confocal microscopy, we reassessed the distribution and regulation of CART(55–102) immunoreactivity in vagal afferents of the male mouse in response to metabolic challenges, including fasting and high-fat-diet feeding. Importantly, the perikarya and axons of vagal C-fibers were labeled using mice expressing channelrodhopsin-2 (ChR2-YFP) in Nav1.8-Cre–expressing neurons. In these mice, approximately 82% of the nodose ganglion neurons were labeled with ChR2-YFP. Furthermore, ChR2-YFP–labeled axons could easily be identified in the dorsovagal complex. CART(55–102) immunoreactivity was observed in 55% of the ChR2-YFP–labeled neurons in the nodose ganglion and 22% of the ChR2-YFP–labeled varicosities within the area postrema of fed, fasted, and obese mice. The distribution of positive profiles was also identical across the full range of CART staining in fed, fasted, and obese mice. In contrast to previous studies, fasting did not induce melanin-concentrating hormone (MCH) immunoreactivity in vagal afferents. Moreover, prepro-MCH mRNA was undetectable in the nodose ganglion of fasted mice. In summary, this study showed that the perikarya and central terminals of vagal afferents are invariably enriched in CART and devoid of MCH.
Collapse
|
28
|
Fu Q, Zhou X, Dong Y, Huang Y, Yang J, Oh KW, Hu Z. Decreased Caffeine-Induced Locomotor Activity via Microinjection of CART Peptide into the Nucleus Accumbens Is Linked to Inhibition of the pCaMKIIa-D3R Interaction. PLoS One 2016; 11:e0159104. [PMID: 27404570 PMCID: PMC4942143 DOI: 10.1371/journal.pone.0159104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/27/2016] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to characterize the inhibitory modulation of cocaine- and amphetamine-regulated transcript (CART) peptides, particularly with respect to the function of the D3 dopamine receptor (D3R), which is activated by its interaction with phosphorylated CaMKIIα (pCaMKIIα) in the nucleus accumbens (NAc). After repeated oral administration of caffeine (30 mg/kg) for five days, microinjection of CART peptide (0.08 μM/0.5 μl/hemisphere) into the NAc affected locomotor behavior. The pCaMKIIα-D3R interaction, D3R phosphorylation and cAMP/PKA/phosphorylated CREB (pCREB) signaling pathway activity were measured in NAc tissues, and Ca2+ influx and pCaMKIIα levels were measured in cultured NAc neurons. We found that CART attenuated the caffeine-mediated enhancement of depolarization-induced Ca2+ influx and CaMKIIα phosphorylation in cultured NAc neurons. Repeated microinjection of CART peptides into the NAc decreased the caffeine-induced enhancement of Ca2+ channels activity, pCaMKIIα levels, the pCaMKIIα-D3R interaction, D3R phosphorylation, cAMP levels, PKA activity and pCREB levels in the NAc. Furthermore, behavioral sensitization was observed in rats that received five-day administration of caffeine following microinjection of saline but not in rats that were treated with caffeine following microinjection of CART peptide. These results suggest that caffeine-induced CREB phosphorylation in the NAc was ameliorated by CART peptide due to its inhibition of D3R phosphorylation. These effects of CART peptides may play a compensatory role by inhibiting locomotor behavior in rats.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Respiration, The Fourth Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Respiration, Department Two, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Xiaoyan Zhou
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yun Dong
- Department of Breast Surgery, Jiangxi Tumor Hospital, Nanchang, Jiangxi, China
| | - Yonghong Huang
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Ki-Wan Oh
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhenzhen Hu
- Department of Pathophysiology, College of Medicine, Nanchang University, Nanchang, Jiangxi, China
- * E-mail: ;
| |
Collapse
|
29
|
de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol 2016; 594:5791-5815. [PMID: 26959077 DOI: 10.1113/jp271538] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/26/2016] [Indexed: 12/21/2022] Open
Abstract
This review highlights evidence for a role of the vagus nerve in the development of obesity and how targeting the vagus nerve with neuromodulation or pharmacology can be used as a therapeutic treatment of obesity. The vagus nerve innervating the gut plays an important role in controlling metabolism. It communicates peripheral information about the volume and type of nutrients between the gut and the brain. Depending on the nutritional status, vagal afferent neurons express two different neurochemical phenotypes that can inhibit or stimulate food intake. Chronic ingestion of calorie-rich diets reduces sensitivity of vagal afferent neurons to peripheral signals and their constitutive expression of orexigenic receptors and neuropeptides. This disruption of vagal afferent signalling is sufficient to drive hyperphagia and obesity. Furthermore neuromodulation of the vagus nerve can be used in the treatment of obesity. Although the mechanisms are poorly understood, vagal nerve stimulation prevents weight gain in response to a high-fat diet. In small clinical studies, in patients with depression or epilepsy, vagal nerve stimulation has been demonstrated to promote weight loss. Vagal blockade, which inhibits the vagus nerve, results in significant weight loss. Vagal blockade is proposed to inhibit aberrant orexigenic signals arising in obesity as a putative mechanism of vagal blockade-induced weight loss. Approaches and molecular targets to develop future pharmacotherapy targeted to the vagus nerve for the treatment of obesity are proposed. In conclusion there is strong evidence that the vagus nerve is involved in the development of obesity and it is proving to be an attractive target for the treatment of obesity.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- The John B. Pierce Laboratory, New Haven, CT, USA. .,Dept Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
Bariatric Left Gastric Artery Embolization for the Treatment of Obesity: A Review of Gut Hormone Involvement in Energy Homeostasis. AJR Am J Roentgenol 2016; 206:202-10. [PMID: 26700353 DOI: 10.2214/ajr.15.14331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The global population is becoming more overweight and obese, leading to increases in associated morbidity and mortality rates. Advances in catheter-directed embolotherapy offer the potential for the interventional radiologist to make a contribution to weight loss. Left gastric artery embolization reduces the supply of blood to the gastric fundus and decreases serum levels of ghrelin. Early evidence suggests that this alteration in gut hormone balance leads to changes in energy homeostasis and weight reduction. The pathophysiologic findings and current evidence associated with the use of left gastric artery embolization are reviewed. CONCLUSION The prevalence of obesity continues to increase at an alarming rate, and, thus far, advances in medical management have been relatively ineffective in slowing this trend. Lifestyle modifications such as diet and exercise are effective initially, but most patients regain the weight in the long term. Bariatric surgery is the most effective strategy for achieving long-term weight loss; however, as with all surgical procedures, it has potential complications.
Collapse
|
31
|
Interacting Neural Processes of Feeding, Hyperactivity, Stress, Reward, and the Utility of the Activity-Based Anorexia Model of Anorexia Nervosa. Harv Rev Psychiatry 2016; 24:416-436. [PMID: 27824637 PMCID: PMC5485261 DOI: 10.1097/hrp.0000000000000111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anorexia nervosa (AN) is a psychiatric illness with minimal effective treatments and a very high rate of mortality. Understanding the neurobiological underpinnings of the disease is imperative for improving outcomes and can be aided by the study of animal models. The activity-based anorexia rodent model (ABA) is the current best parallel for the study of AN. This review describes the basic neurobiology of feeding and hyperactivity seen in both ABA and AN, and compiles the research on the role that stress-response and reward pathways play in modulating the homeostatic drive to eat and to expend energy, which become dysfunctional in ABA and AN.
Collapse
|
32
|
Krieger JP, Langhans W, Lee SJ. Vagal mediation of GLP-1's effects on food intake and glycemia. Physiol Behav 2015; 152:372-80. [DOI: 10.1016/j.physbeh.2015.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022]
|
33
|
Yuan D, Wei R, Wang T, Wu Y, Lin F, Chen H, Liu J, Gao Y, Zhou C, Chen D, Li Z. Appetite regulation in Schizothorax prenanti by three CART genes. Gen Comp Endocrinol 2015; 224:194-204. [PMID: 26316039 DOI: 10.1016/j.ygcen.2015.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 01/29/2023]
Abstract
In recent years, cocaine- and amphetamine-regulated transcript (CART) has received much attention as mediators of appetite regulation in mammals. However, the involvement of CART in the feeding behavior of teleosts has not been well understood. In this study, three distinct CARTs were cloned from the Schizothorax prenanti (S. prenanti). Real-time quantitative PCR were applied to characterize the tissue distribution and appetite regulatory effects of CARTs in S. prenanti. The S. prenanti CART-1, CART-2 and CART-3 full-length cDNA sequences were 597 bp, 694 bp and 749 bp in length, encoding the peptides of 125, 120 and 104 amino acid residues, respectively. All the S. prenanti CARTs consisted of three exons and two introns. Tissue distribution analysis showed that the high mRNA levels of S. prenanti CART-1 were observed in the telencephalon and eye, followed by the hypothalamus, myelencephalon, and mesencephalon. The S. prenanti CART-2 mRNA was mainly found in the mesencephalon, hypothalamus, telencephalon and myelencephalon. The S. prenanti CART-3 mRNA was widely distributed among the tissues, with the high levels in the hypothalamus and foregut. In the periprandial experiment, all three CARTs mRNA expressions in the hypothalamus were highly elevated after a meal, suggesting that CARTs are postprandial satiety signals. In the fasting experiment, all three CARTs mRNA expressions decreased after fasting and increased after refeeding, suggesting that CARTs might be involved in regulation of appetite in the S. prenanti.
Collapse
Affiliation(s)
- Dengyue Yuan
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China; Department of Aquaculture, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan 641000, China
| | - Rongbin Wei
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China; Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Fangjun Lin
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Ju Liu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Yundi Gao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Chaowei Zhou
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China.
| |
Collapse
|
34
|
Troy AE, Simmonds SS, Stocker SD, Browning KN. High fat diet attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat gastric vagal afferents. J Physiol 2015; 594:99-114. [PMID: 26456775 DOI: 10.1113/jp271558] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/04/2015] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Glucose regulates the density and function of 5-HT3 receptors on gastric vagal afferent neurones. Diet-induced obesity compromises the excitability and responsiveness of vagal afferents. In this study, we assessed whether exposure to a high fat diet (HFD) compromises the glucose-dependent modulation of 5-HT responses in gastric vagal afferents prior to the development of obesity. We show that HFD does not alter the response of gastric vagal afferent nerves and neurones to 5-HT but attenuates the ability of glucose to amplify 5-HT3-induced responses. These results suggest that glucose-dependent vagal afferent signalling is compromised by relatively short periods of exposure to HFD well in advance of the development of obesity or glycaemic dysregulation. Glucose regulates the density and function of 5-HT3 receptors on gastric vagal afferent neurones. Since diet-induced obesity attenuates the responsiveness of gastric vagal afferents to several neurohormones, the aim of the present study was to determine whether high fat diet (HFD) compromises the glucose-dependent modulation of 5-HT responses in gastric vagal afferents prior to the development of obesity. Rats were fed control or HFD (14% or 60% kilocalories from fat, respectively) for up to 8 weeks. Neurophysiological recordings assessed the ability of 5-HT to increase anterior gastric vagal afferent nerve (VAN) activity in vivo before and after acute hyperglycaemia, while electrophysiological recordings from gastric-projecting nodose neurones assessed the ability of glucose to modulate the 5-HT response in vitro. Immunocytochemical studies determined alterations in the neuronal distribution of 5-HT3 receptors. 5-HT and cholecystokinin (CCK) induced dose-dependent increases in VAN activity in all rats; HFD attenuated the response to CCK, but not 5-HT. The 5-HT-induced response was amplified by acute hyperglycaemia in control, but not HFD, rats. Similarly, although 5-HT induced an inward current in both control and HFD gastric nodose neurones in vitro, the 5-HT response and receptor distribution was amplified by acute hyperglycaemia only in control rats. These data suggest that, while HFD does not affect the response of gastric-projecting vagal afferents to 5-HT, it attenuates the ability of glucose to amplify 5-HT effects. This suggests that glucose-dependent vagal afferent signalling is compromised by short periods of exposure to HFD well in advance of obesity or glycaemic dysregulation.
Collapse
Affiliation(s)
- Amanda E Troy
- Department of Neural and Behavioural Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Sarah S Simmonds
- Department of Cellular and Integrative Physiology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Sean D Stocker
- Department of Neural and Behavioural Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA.,Department of Cellular and Integrative Physiology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioural Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
35
|
Clark ES, Flannery BM, Pestka JJ. Murine Anorectic Response to Deoxynivalenol (Vomitoxin) Is Sex-Dependent. Toxins (Basel) 2015; 7:2845-59. [PMID: 26230710 PMCID: PMC4549728 DOI: 10.3390/toxins7082845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 11/16/2022] Open
Abstract
Deoxynivalenol (DON, vomitoxin), a common trichothecene mycotoxin found in cereal foods, dysregulates immune function and maintenance of energy balance. The purpose of this study was to determine if sex differences are similarly evident in DON's anorectic responses in mice. A bioassay for feed refusal, previously developed by our lab, was used to compare acute i.p. exposures of 1 and 5 mg/kg bw DON in C57BL6 mice. Greater anorectic responses were seen in male than female mice. Male mice had higher organ and plasma concentrations of DON upon acute exposure than their female counterparts. A significant increase in IL-6 plasma levels was also observed in males while cholecystokinin response was higher in females. When effects of sex on food intake and body weight changes were compared after subchronic dietary exposure to 1, 2.5, and 10 ppm DON, males were found again to be more sensitive. Demonstration of male predilection to DON-induced changes in food intake and weight gain might an important consideration in future risk assessment of DON and other trichothecenes.
Collapse
Affiliation(s)
- Erica S Clark
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Brenna M Flannery
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
36
|
Boxwell AJ, Chen Z, Mathes CM, Spector AC, Le Roux CW, Travers SP, Travers JB. Effects of high-fat diet and gastric bypass on neurons in the caudal solitary nucleus. Physiol Behav 2015. [PMID: 26216080 DOI: 10.1016/j.physbeh.2015.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bariatric surgery is an effective treatment for obesity that involves both peripheral and central mechanisms. To elucidate central pathways by which oral and visceral signals are influenced by high-fat diet (HFD) and Roux-en-Y gastric bypass (RYGB) surgery, we recorded from neurons in the caudal visceral nucleus of the solitary tract (cNST, N=287) and rostral gustatory NST (rNST,N=106) in rats maintained on a HFD and lab chow (CHOW) or CHOW alone, and subjected to either RYGB or sham surgery. Animals on the HFD weighed significantly more than CHOW rats and RYGB reversed and then blunted weight gain regardless of diet. Using whole-cell patch clamp recording in a brainstem slice, we determined the membrane properties of cNST and rNST neurons associated with diet and surgery. We could not detect differences in rNST neurons associated with these manipulations. In cNST neurons, neither the threshold for solitary tract stimulation nor the amplitude of evoked EPSCs at threshold varied by condition; however suprathreshold EPSCs were larger in HFD compared to chow-fed animals. In addition, a transient outward current, most likely an IA current, was increased with HFD and RYGB reduced this current as well as a sustained outward current. Interestingly, hypothalamic projecting cNST neurons preferentially express IA and modulate transmission of afferent signals (Bailey, '07). Thus, diet and RYGB have multiple effects on the cellular properties of neurons in the visceral regions of NST, with potential to influence inputs to forebrain feeding circuits.
Collapse
Affiliation(s)
- A J Boxwell
- Ohio State Univ., Columbus, OH, United States
| | - Z Chen
- Ohio State Univ., Columbus, OH, United States
| | - C M Mathes
- Florida State Univ., Tallahassee, FL, United States
| | - A C Spector
- Florida State Univ., Tallahassee, FL, United States
| | | | - S P Travers
- Ohio State Univ., Columbus, OH, United States
| | - J B Travers
- Ohio State Univ., Columbus, OH, United States.
| |
Collapse
|
37
|
Asarian L, Bächler T. Neuroendocrine control of satiation. Horm Mol Biol Clin Investig 2015; 19:163-92. [PMID: 25390024 DOI: 10.1515/hmbci-2014-0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/17/2014] [Indexed: 01/13/2023]
Abstract
Abstract Eating is a simple behavior with complex functions. The unconscious neuroendocrine process that stops eating and brings a meal to its end is called satiation. Energy homeostasis is mediated accomplished through the control of meal size via satiation. It involves neural integrations of phasic negative-feedback signals related to ingested food and tonic signals, such as those related to adipose tissue mass. Energy homeostasis is accomplished through adjustments in meal size brought about by changes in these satiation signals. The best understood meal-derived satiation signals arise from gastrointestinal nutrient sensing. Gastrointestinal hormones secreted during the meal, including cholecystokinin, glucagon-like peptide 1, and PYY, mediate most of these. Other physiological signals arise from activation of metabolic-sensing neurons, mainly in the hypothalamus and caudal brainstem. We review both classes of satiation signal and their integration in the brain, including their processing by melanocortin, neuropeptide Y/agouti-related peptide, serotonin, noradrenaline, and oxytocin neurons. Our review is not comprehensive; rather, we discuss only what we consider the best-understood mechanisms of satiation, with a special focus on normally operating physiological mechanisms.
Collapse
|
38
|
Ronveaux CC, Tomé D, Raybould HE. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. J Nutr 2015; 145:672-80. [PMID: 25833771 PMCID: PMC4381768 DOI: 10.3945/jn.114.206029] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/16/2015] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments.
Collapse
Affiliation(s)
- Charlotte C Ronveaux
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA; and,Department of Nutrition and Physiology and Ingestive Behavior, AgroParisTech, Paris, France
| | - Daniel Tomé
- Department of Nutrition and Physiology and Ingestive Behavior, AgroParisTech, Paris, France
| | - Helen E Raybould
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA; and
| |
Collapse
|
39
|
Gan L, Xie L, Zuo F, Xiang Z, He N. Transcriptomic analysis of Rongchang pig brains and livers. Gene 2015; 560:96-106. [PMID: 25637719 DOI: 10.1016/j.gene.2015.01.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/31/2014] [Accepted: 01/26/2015] [Indexed: 01/01/2023]
Abstract
Recent developments in high-throughput RNA sequencing (RNA-seq) technology have led to a dramatic impact on our understanding of the structure and expression profiles of the mammalian transcriptome. To gain insights into the usefulness of swine production and biomedical model, the transcriptome profiling of Rongchang pig brains and livers was characterized using RNA-seq technology to uncover functional candidate molecules. In the study, total RNAs from brains and livers of Rongchang pig were sequenced and 8.6Gb sequencing data was obtained. This analysis revealed tissue specificity through the identification of 5575 and 4600 differentially expressed genes (DEGs) in brains and livers, respectively and the functional analysis of DEGs. Furthermore, 83 neuropeptide gene transcripts, 69 neuropeptide receptor gene transcripts, 10 pro-neuropeptide convertase gene transcripts and many other neuropeptide related protein gene transcripts were identified. Totally, the major characteristics of the transcriptional profiles of Rongchang pig brains and livers were present.
Collapse
Affiliation(s)
- Ling Gan
- The Department of Veterinary Medicine, Rongchang Campus, Southwest University, Rongchang, Chongqing 402460, China.
| | - Liwei Xie
- Center of Molecular Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Fuyuan Zuo
- The Department of Animal Husbandry, Rongchang Campus, Southwest University, Rongchang, Chongqing 402460, China.
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
40
|
de La Serre CB, de Lartigue G, Raybould HE. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiol Behav 2014; 139:188-94. [PMID: 25446227 DOI: 10.1016/j.physbeh.2014.10.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/19/2023]
Abstract
Bacterially derived factors are implicated in the causation and persistence of obesity. Ingestion of a high fat diet in rodents and obesity in human subjects is associated with chronic elevation of low plasma levels of lipopolysaccharide (LPS), a breakdown product of Gram-negative bacteria. The terminals of vagal afferent neurons are positioned within the gut mucosa to convey information from the gut to the brain to regulate food intake and are responsive to LPS. We hypothesized that chronic elevation of LPS could alter vagal afferent signaling. We surgically implanted osmotic mini-pumps that delivered a constant, low-dose of LPS into the intraperitoneal cavity of rats (12.5 μg/kg/hr for 6 weeks). LPS-treated rats developed hyperphagia and showed marked changes in vagal afferent neuron function. Chronic LPS treatment reduced vagal afferent leptin signaling, characterized by a decrease in leptin-induced STAT3 phosphorylation. In addition, LPS treatment decreased cholecystokinin-induced satiety. There was no alteration in leptin signaling in the hypothalamus. These findings offer a mechanism by which a change in gut microflora can promote hyperphagia, possibly leading to obesity.
Collapse
Affiliation(s)
- Claire B de La Serre
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Guillaume de Lartigue
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA.
| |
Collapse
|
41
|
Lau J, Herzog H. CART in the regulation of appetite and energy homeostasis. Front Neurosci 2014; 8:313. [PMID: 25352770 PMCID: PMC4195273 DOI: 10.3389/fnins.2014.00313] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022] Open
Abstract
The cocaine- and amphetamine-regulated transcript (CART) has been the subject of significant interest for over a decade. Work to decipher the detailed mechanism of CART function has been hampered by the lack of specific pharmacological tools like antagonists and the absence of a specific CART receptor(s). However, extensive research has been devoted to elucidate the role of the CART peptide and it is now evident that CART is a key neurotransmitter and hormone involved in the regulation of diverse biological processes, including food intake, maintenance of body weight, reward and addiction, stress response, psychostimulant effects and endocrine functions (Rogge et al., 2008; Subhedar et al., 2014). In this review, we focus on knowledge gained on CART's role in controlling appetite and energy homeostasis, and also address certain species differences between rodents and humans.
Collapse
Affiliation(s)
- Jackie Lau
- Neuroscience Division, Garvan Institute of Medical Research Sydney, NSW, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research Sydney, NSW, Australia
| |
Collapse
|
42
|
de Lartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol Metab 2014; 3:595-607. [PMID: 25161883 PMCID: PMC4142400 DOI: 10.1016/j.molmet.2014.06.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 12/15/2022] Open
Abstract
The vagal afferent pathway senses hormones released from the gut in response to nutritional cues and relays these signals to the brain. We tested the hypothesis that leptin resistance in vagal afferent neurons (VAN) is responsible for the onset of hyperphagia by developing a novel conditional knockout mouse to delete leptin receptor selectively in sensory neurons (Nav1.8/LepR (fl/fl) mice). Chow fed Nav1.8/LepR (fl/fl) mice weighed significantly more and had increased adiposity compared with wildtype mice. Cumulative food intake, meal size, and meal duration in the dark phase were increased in Nav1.8/LepR (fl/fl) mice; energy expenditure was unaltered. Reduced satiation in Nav1.8/LepR (fl/fl) mice is in part due to reduced sensitivity of VAN to CCK and the subsequent loss of VAN plasticity. Crucially Nav1.8/LepR (l/fl) mice did not gain further weight in response to a high fat diet. We conclude that disruption of leptin signaling in VAN is sufficient and necessary to promote hyperphagia and obesity.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, 1 Shields Ave, Davis, CA 95616, USA
| | - Charlotte C Ronveaux
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, 1 Shields Ave, Davis, CA 95616, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
43
|
Chabot F, Caron A, Laplante M, St-Pierre DH. Interrelationships between ghrelin, insulin and glucose homeostasis: Physiological relevance. World J Diabetes 2014; 5:328-341. [PMID: 24936254 PMCID: PMC4058737 DOI: 10.4239/wjd.v5.i3.328] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/08/2014] [Indexed: 02/05/2023] Open
Abstract
Ghrelin is a 28 amino acid peptide mainly derived from the oxyntic gland of the stomach. Both acylated (AG) and unacylated (UAG) forms of ghrelin are found in the circulation. Initially, AG was considered as the only bioactive form of ghrelin. However, recent advances indicate that both AG and UAG exert distinct and common effects in organisms. Soon after its discovery, ghrelin was shown to promote appetite and adiposity in animal and human models. In response to these anabolic effects, an impressive number of elements have suggested the influence of ghrelin on the regulation of metabolic functions and the development of obesity-related disorders. However, due to the complexity of its biochemical nature and the physiological processes it governs, some of the effects of ghrelin are still debated in the literature. Evidence suggests that ghrelin influences glucose homeostasis through the modulation of insulin secretion and insulin receptor signaling. On the other hand, insulin was also shown to influence circulating levels of ghrelin. Here, we review the relationship between ghrelin and insulin and we describe the impact of this interaction on the modulation of glucose homeostasis.
Collapse
|
44
|
Subhedar NK, Nakhate KT, Upadhya MA, Kokare DM. CART in the brain of vertebrates: circuits, functions and evolution. Peptides 2014; 54:108-30. [PMID: 24468550 DOI: 10.1016/j.peptides.2014.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CART) with its wide distribution in the brain of mammals has been the focus of considerable research in recent years. Last two decades have witnessed a steady rise in the information on the genes that encode this neuropeptide and regulation of its transcription and translation. CART is highly enriched in the hypothalamic nuclei and its relevance to energy homeostasis and neuroendocrine control has been understood in great details. However, the occurrence of this peptide in a range of diverse circuitries for sensory, motor, vegetative, limbic and higher cortical areas has been confounding. Evidence that CART peptide may have role in addiction, pain, reward, learning and memory, cognition, sleep, reproduction and development, modulation of behavior and regulation of autonomic nervous system are accumulating, but an integration has been missing. A steady stream of papers has been pointing at the therapeutic potentials of CART. The current review is an attempt at piecing together the fragments of available information, and seeks meaning out of the CART elements in their anatomical niche. We try to put together the CART containing neuronal circuitries that have been conclusively demonstrated as well as those which have been proposed, but need confirmation. With a view to finding out the evolutionary antecedents, we visit the CART systems in sub-mammalian vertebrates and seek the answer why the system is shaped the way it is. We enquire into the conservation of the CART system and appreciate its functional diversity across the phyla.
Collapse
Affiliation(s)
- Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Sai Trinity Building, Sutarwadi, Pashan, Pune 411 021, Maharashtra, India.
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Rungta Educational Campus, Kohka-Kurud Road, Bhilai 490 024, Chhattisgarh, India
| | - Manoj A Upadhya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| |
Collapse
|
45
|
de Lartigue G. Putative roles of neuropeptides in vagal afferent signaling. Physiol Behav 2014; 136:155-69. [PMID: 24650553 DOI: 10.1016/j.physbeh.2014.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/23/2014] [Accepted: 03/10/2014] [Indexed: 02/06/2023]
Abstract
The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding.
Collapse
Affiliation(s)
- Guillaume de Lartigue
- Dept Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA.
| |
Collapse
|
46
|
Abstract
The landmark discovery by Bayliss and Starling in 1902 of the first hormone, secretin, emerged from earlier observations that a response (pancreatic secretion) following a stimulus (intestinal acidification) occurred after section of the relevant afferent nerve pathway. Nearly 80 years elapsed before it became clear that visceral afferent neurons could themselves also be targets for gut and other hormones. The action of gut hormones on vagal afferent neurons is now recognised to be an early step in controlling nutrient delivery to the intestine by regulating food intake and gastric emptying. Interest in these mechanisms has grown rapidly in view of the alarming global increase in obesity. Several of the gut hormones (cholecystokinin (CCK); peptide YY3-36 (PYY3-36); glucagon-like peptide-1 (GLP-1)) excite vagal afferent neurons to activate an ascending pathway leading to inhibition of food intake. Conversely others, e.g. ghrelin, that are released in the inter-digestive period, inhibit vagal afferent neurons leading to increased food intake. Nutrient status determines the neurochemical phenotype of vagal afferent neurons by regulating a switch between states that promote orexigenic or anorexigenic signalling through mechanisms mediated, at least partly, by CCK. Gut-brain signalling is also influenced by leptin, by gut inflammation and by shifts in the gut microbiota including those that occur in obesity. Moreover, there is emerging evidence that diet-induced obesity locks the phenotype of vagal afferent neurons in a state similar to that normally occurring during fasting. Vagal afferent neurons are therefore early integrators of peripheral signals underling homeostatic mechanisms controlling nutrient intake. They may also provide new targets in developing treatments for obesity and feeding disorders.
Collapse
Affiliation(s)
- Graham J Dockray
- Department of Cell and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
| |
Collapse
|
47
|
Inhibitory modulation of CART peptides in accumbal neuron through decreasing interaction of CaMKIIα with dopamine D3 receptors. Brain Res 2014; 1557:101-10. [PMID: 24560901 DOI: 10.1016/j.brainres.2014.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/20/2014] [Accepted: 02/12/2014] [Indexed: 11/20/2022]
Abstract
Previous studies in rats have shown that microinjections of cocaine- and amphetamine-regulated transcript (CART) peptide into the nucleus accumbens (NAc; the area of the brain that mediates drug reward and reinforcement) attenuate the locomotor effects of psychostimulants. CART peptide has also been shown to induce decreased intracellular concentrations of calcium (Ca(2+)) in primary cultures of hippocampus neurons. The purpose of this study was to characterize the interaction of Ca(2+)/calmodulin-dependent kinases (CaMKIIα) with dopamine D3 (D3) receptors (R) in primary cultures of accumbal neurons. This interaction is involved in inhibitory modulation of CART peptides. In vitro, CART (55-102) peptide (0.1, 0.5 or 1μM) was found to dose-dependently inhibit K(+) depolarization-elicited Ca(2+) influx and CaMKIIα phosphorylation in accumbal neurons. Moreover, CART peptides were also found to block cocaine (1μM)-induced Ca(2+) influx, CaMKIIα phosphorylation, CaMKIIα-D3R interaction, and CREB phosphorylation. In vivo, repeated microinjections of CART (55-102) peptide (2μg/1μl/side) into the NAc over a 5-day period had no effect on behavioral activity but blocked cocaine-induced locomotor activity. These results indicate that D3R function in accumbal neurons is a target of CART (55-102) peptide and suggest that CART peptide by dephosphorylating limbic D3Rs may have potential as a treatment for cocaine abuse.
Collapse
|
48
|
Penney CC, Volkoff H. Peripheral injections of cholecystokinin, apelin, ghrelin and orexin in cavefish (Astyanax fasciatus mexicanus): effects on feeding and on the brain expression levels of tyrosine hydroxylase, mechanistic target of rapamycin and appetite-related hormones. Gen Comp Endocrinol 2014; 196:34-40. [PMID: 24287340 DOI: 10.1016/j.ygcen.2013.11.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/27/2022]
Abstract
The effects of intraperitoneal injections of cholecystokinin (CCK), apelin, ghrelin, and orexin on food intake were examined in the blind cavefish Astyanax fasciatus mexicanus. CCK (50ng/g) induced a decrease in food intake whereas apelin (100ng/g), orexin (100ng/g), and ghrelin (100ng/g) induced an increase in food intake as compared to saline-injected control fish. In order to better understand the central mechanism by which these hormones act, we examined the effects of injections on the brain mRNA expression of two metabolic enzymes, tyrosine hydroxylase (TH), and mechanistic target of rapamycin (mTOR), and of appetite-regulating peptides, CCK, orexin, apelin and cocaine and amphetamine regulated transcript (CART). CCK injections induced a decrease in brain apelin injections, apelin injections induced an increase in TH, mTOR, and orexin brain expressions, orexin treatment increased brain TH expression and ghrelin injections induced an increase in mTOR and orexin brain expressions. CART expression was not affected by any of the injection treatments. Our results suggest that the enzymes TH and mTOR and the hormones CCK, apelin, orexin, and ghrelin all regulate food intake in cavefish through a complex network of interactions.
Collapse
Affiliation(s)
- Carla C Penney
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
49
|
Wellman PJ, Clifford PS, Rodriguez JA. Ghrelin and ghrelin receptor modulation of psychostimulant action. Front Neurosci 2013; 7:171. [PMID: 24093007 PMCID: PMC3782693 DOI: 10.3389/fnins.2013.00171] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/02/2013] [Indexed: 12/03/2022] Open
Abstract
Ghrelin (GHR) is an orexigenic gut peptide that modulates multiple homeostatic functions including gastric emptying, anxiety, stress, memory, feeding, and reinforcement. GHR is known to bind and activate growth-hormone secretagogue receptors (termed GHR-Rs). Of interest to our laboratory has been the assessment of the impact of GHR modulation of the locomotor activation and reward/reinforcement properties of psychostimulants such as cocaine and nicotine. Systemic GHR infusions augment cocaine stimulated locomotion and conditioned place preference (CPP) in rats, as does food restriction (FR) which elevates plasma ghrelin levels. Ghrelin enhancement of psychostimulant function may occur owing to a direct action on mesolimbic dopamine function or may reflect an indirect action of ghrelin on glucocorticoid pathways. Genomic or pharmacological ablation of GHR-Rs attenuates the acute locomotor-enhancing effects of nicotine, cocaine, amphetamine and alcohol and blunts the CPP induced by food, alcohol, amphetamine and cocaine in mice. The stimulant nicotine can induce CPP and like amphetamine and cocaine, repeated administration of nicotine induces locomotor sensitization in rats. Inactivation of ghrelin circuit function in rats by injection of a ghrelin receptor antagonist (e.g., JMV 2959) diminishes the development of nicotine-induced locomotor sensitization. These results suggest a key permissive role for GHR-R activity for the induction of locomotor sensitization to nicotine. Our finding that GHR-R null rats exhibit diminished patterns of responding for intracranial self-stimulation complements an emerging literature implicating central GHR circuits in drug reward/reinforcement. Finally, antagonism of GHR-Rs may represent a smoking cessation modality that not only blocks nicotine-induced reward but that also may limit weight gain after smoking cessation.
Collapse
Affiliation(s)
- Paul J Wellman
- Behavioral Neuroscience Program, Department of Psychology, Texas A&M University College Station, TX, USA
| | | | | |
Collapse
|
50
|
Yoshimura M, Matsuura T, Ohkubo J, Ohno M, Maruyama T, Ishikura T, Hashimoto H, Kakuma T, Yoshimatsu H, Terawaki K, Uezono Y, Ueta Y. The gene expression of the hypothalamic feeding-regulating peptides in cisplatin-induced anorexic rats. Peptides 2013; 46:13-9. [PMID: 23684922 DOI: 10.1016/j.peptides.2013.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 12/24/2022]
Abstract
Cisplatin has been widely used; however, various disadvantageous side effects afflict patients. Rikkunshito (RKT), a traditional Japanese herbal medicine, has been widely prescribed in Japan to improve anorexia; but the mechanisms are unknown. Here we studied whether RKT could improve anorexia induced by cisplatin and changes in feeding-regulating peptides in the hypothalamus in rats. Adult male rats were divided into 4 groups: water+saline (WS), water+cisplatin (WC), RKT+saline (RS), and RKT+cisplatin (RC) groups. Water or RKT (1g/kg) was intragastrically administered for 4 days, from day -1 to day 2, and saline or cisplatin (6mg/kg) was intraperitoneally (i.p.) administered at day 0. After i.p. administration, cumulative food intake, water intake, urine volume and body weight were measured. The rats were then decapitated, followed by removal of the brain, and feeding-regulating peptides in the hypothalamus were measured by in situ hybridization histochemistry. In the three-day measurements, there were no significant changes in cumulative water intake and urine volume. The body weight and cumulative food intake in WC significantly decreased compared to WS, whereas these were not observed in RC. Pro-opiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART) in the arcuate nucleus (ARC) in WC significantly increased, and neuropeptide Y (NPY) in the ARC decreased compared to WS, whereas those in RS and RC were comparable to WS. These results suggest that RKT may have therapeutic potential for anorexia induced by cisplatin.
Collapse
Affiliation(s)
- Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|