1
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
2
|
Lillo Vizin RC, Armentano GM, Duarte GZ, Carrettiero DC, Almeida MC. Intermittent topical menthol treatment reduces white adipose tissue and leads to overweight loss in obese rats. J Therm Biol 2025; 127:104051. [PMID: 39808872 DOI: 10.1016/j.jtherbio.2025.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Obesity, recognized as a metabolic disease and a global epidemic, calls for novel pharmacological interventions. Menthol, an organic compound, has shown promise in increasing energy expenditure and has been proposed as a potential anti-obesity drug. While preclinical studies have demonstrated menthol's preventive effect on body mass gain, none have investigated its efficacy in treating obesity. In this study, we evaluated the therapeutic potential of menthol in obesity treatment. Obesity was induced in rats through a hypercaloric diet. Obese rats were subjected to intermittent topical treatment with 5% menthol, resulting in sustained hyperthermia indicative of increased thermogenesis and energy expenditure. Additionally, menthol led to a reduction in the area of white adipocytes as a result of weight loss in obese rats. Our findings suggest that menthol has the potential to enhance metabolism and may serve as a viable treatment option for obesity. These results highlight the physiological significance of menthol in modulating metabolic processes and its potential role in combating obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Robson Cristiano Lillo Vizin
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo Do Campo, SP, Brazil
| | - Giovana Marchini Armentano
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo Do Campo, SP, Brazil
| | - Guilherme Zussa Duarte
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo Do Campo, SP, Brazil
| | - Daniel Carneiro Carrettiero
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo Do Campo, SP, Brazil
| | - Maria Camila Almeida
- Center for Natural and Humanities Sciences, Federal University of ABC (UFABC), São Bernardo Do Campo, SP, Brazil.
| |
Collapse
|
3
|
Behrendt M. Implications of TRPM3 and TRPM8 for sensory neuron sensitisation. Biol Chem 2024; 405:583-599. [PMID: 39417661 DOI: 10.1515/hsz-2024-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sensory neurons serve to receive and transmit a wide range of information about the conditions of the world around us as well as the external and internal state of our body. Sensitisation of these nerve cells, i.e. becoming more sensitive to stimuli or the emergence or intensification of spontaneous activity, for example in the context of inflammation or nerve injury, can lead to chronic diseases such as neuropathic pain. For many of these disorders there are only very limited treatment options and in order to find and establish new therapeutic approaches, research into the exact causes of sensitisation with the elucidation of the underlying mechanisms and the identification of the molecular components is therefore essential. These components include plasma membrane receptors and ion channels that are involved in signal reception and transmission. Members of the transient receptor potential (TRP) channel family are also expressed in sensory neurons and some of them play a crucial role in temperature perception. This review article focuses on the heat-sensitive TRPM3 and the cold-sensitive TRPM8 (and TRPA1) channels and their importance in sensitisation of dorsal root ganglion sensory neurons is discussed based on studies related to inflammation and injury- as well as chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Marc Behrendt
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, MCTN, Tridomus, Building C, Ludolf-Krehl-Straße 13-17, D-68167 Mannheim, Germany
| |
Collapse
|
4
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Landen JG, Vandendoren M, Killmer S, Bedford NL, Nelson AC. Huddling substates in mice facilitate dynamic changes in body temperature and are modulated by Shank3b and Trpm8 mutation. Commun Biol 2024; 7:1186. [PMID: 39304735 PMCID: PMC11415358 DOI: 10.1038/s42003-024-06781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Social thermoregulation is a means of maintaining homeostatic body temperature. While adult mice are a model organism for studying both social behavior and energy regulation, the relationship between huddling and core body temperature (Tb) is poorly understood. Here, we develop a behavioral paradigm and computational tools to identify active-huddling and quiescent-huddling as distinct thermal substates. We find that huddling is an effective thermoregulatory strategy in female but not male groups. At 23 °C (room temperature), but not 30 °C (near thermoneutrality), huddling facilitates large reductions in Tb and Tb-variance. Notably, active-huddling is associated with bidirectional changes in Tb, depending on its proximity to bouts of quiescent-huddling. Further, group-housed animals lacking the synaptic scaffolding gene Shank3b have hyperthermic Tb and spend less time huddling. In contrast, individuals lacking the cold-sensing gene Trpm8 have hypothermic Tb - a deficit that is rescued by increased huddling time. These results reveal how huddling behavior facilitates acute adjustments of Tb in a state-dependent manner.
Collapse
Affiliation(s)
- Jason G Landen
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Morgane Vandendoren
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Samantha Killmer
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Nicole L Bedford
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C Nelson
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.
- University of Wyoming Sensory Biology Center, Laramie, WY, USA.
| |
Collapse
|
6
|
Jimenez JA, McCoy ES, Lee DF, Zylka MJ. The open field assay is influenced by room temperature and by drugs that affect core body temperature. F1000Res 2024; 12:234. [PMID: 38863500 PMCID: PMC11165296 DOI: 10.12688/f1000research.130474.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 06/13/2024] Open
Abstract
Background The open field assay is used to study anxiety-related traits and anxiolytic drugs in rodents. This assay entails measuring locomotor activity and time spent in the center of a chamber that is maintained at ambient room temperature. However, the ambient temperature in most laboratories varies daily and seasonally and can differ between buildings. We sought to evaluate how varying ambient temperature and core body temperature (CBT) affected open field locomotor activity and center time of male wild-type (WT, C57BL/6) and Transient Receptor Potential Subfamily M Member 8 ( Trpm8) knock-out ( Trpm8 -/- ) mice. TRPM8 is an ion channel that detects cool temperatures and is activated by icilin. Methods Mice were placed in the open field at 4°C and 23°C for 1 hour. Distance traveled and time spent in the center were measured. Mice were injected with icilin, M8-B, diazepam, or saline, and changes in activity level were recorded. Results The cooling agent icilin increased CBT and profoundly reduced distance traveled and center time of WT mice relative to controls. Likewise, cooling the ambient temperature to 4°C reduced distance traveled and center time of WT mice relative to Trpm8 -/- mice. Conversely, the TRPM8 antagonist (M8-B) reduced CBT and increased distance traveled and center time of WT mice when tested at 4°C. The TRPM8 antagonist (M8-B) had no effect on CBT or open field behavior of Trpm8 -/- mice. The anxiolytic diazepam reduced CBT in WT and Trpm8 -/- mice. When tested at 4°C, diazepam increased distance traveled and center time in WT mice but did not alter open field behavior of Trpm8 -/- mice. Conclusions Environmental temperature and drugs that affect CBT can influence locomotor behavior and center time in the open field assay, highlighting temperature (ambient and core) as sources of environmental and physiologic variability in this commonly used behavioral assay.
Collapse
Affiliation(s)
- Jessica A. Jimenez
- UNC Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eric S. McCoy
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David F. Lee
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark J. Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
Landen JG, Vandendoren M, Killmer S, Bedford NL, Nelson AC. Huddling substates in mice facilitate dynamic changes in body temperature and are modulated by Shank3b and Trpm8 mutation. RESEARCH SQUARE 2024:rs.3.rs-3904829. [PMID: 38978581 PMCID: PMC11230468 DOI: 10.21203/rs.3.rs-3904829/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Social thermoregulation is a means of maintaining homeostatic body temperature. While adult mice are a model organism for studying both social behavior and energy regulation, the relationship between huddling and core body temperature (Tb) is poorly understood. Here, we develop a behavioral paradigm and computational tools to identify active-huddling and quiescent-huddling as distinct thermal substates. We find that huddling is an effective thermoregulatory strategy in female but not male groups. At 23°C (room temperature), but not 30°C (near thermoneutrality), huddling facilitates large reductions in Tb and Tb-variance. Notably, active-huddling is associated with bidirectional changes in Tb, depending on its proximity to bouts of quiescent-huddling. Further, group-housed animals lacking the synaptic scaffolding gene Shank3b have hyperthermic Tb and spend less time huddling. In contrast, individuals lacking the cold-sensing gene Trpm8 have hypothermic Tb - a deficit that is rescued by increased huddling time. These results reveal how huddling behavior facilitates acute adjustments of Tb in a state-dependent manner.
Collapse
Affiliation(s)
- Jason G. Landen
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Morgane Vandendoren
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Samantha Killmer
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| | - Nicole L. Bedford
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C. Nelson
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- University of Wyoming Sensory Biology Center, Laramie, WY, USA
| |
Collapse
|
8
|
Shin J, Lee Y, Ju SH, Jung YJ, Sim D, Lee SJ. Unveiling the Potential of Natural Compounds: A Comprehensive Review on Adipose Thermogenesis Modulation. Int J Mol Sci 2024; 25:4915. [PMID: 38732127 PMCID: PMC11084502 DOI: 10.3390/ijms25094915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The process of adipocyte browning has recently emerged as a novel therapeutic target for combating obesity and obesity-related diseases. Non-shivering thermogenesis is the process of biological heat production in mammals and is primarily mediated via brown adipose tissue (BAT). The recruitment and activation of BAT can be induced through chemical drugs and nutrients, with subsequent beneficial health effects through the utilization of carbohydrates and fats to generate heat to maintain body temperature. However, since potent drugs may show adverse side effects, nutritional or natural substances could be safe and effective as potential adipocyte browning agents. This review aims to provide an extensive overview of the natural food compounds that have been shown to activate brown adipocytes in humans, animals, and in cultured cells. In addition, some key genetic and molecular targets and the mechanisms of action of these natural compounds reported to have therapeutic potential to combat obesity are discussed.
Collapse
Affiliation(s)
- Jaeeun Shin
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Yeonho Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Seong Hun Ju
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Young Jae Jung
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Daehyeon Sim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul 02846, Republic of Korea
| |
Collapse
|
9
|
Toussaint B, Heinzle J, Stephan KE. A computationally informed distinction of interoception and exteroception. Neurosci Biobehav Rev 2024; 159:105608. [PMID: 38432449 DOI: 10.1016/j.neubiorev.2024.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
While interoception is of major neuroscientific interest, its precise definition and delineation from exteroception continue to be debated. Here, we propose a functional distinction between interoception and exteroception based on computational concepts of sensor-effector loops. Under this view, the classification of sensory inputs as serving interoception or exteroception depends on the sensor-effector loop they feed into, for the control of either bodily (physiological and biochemical) or environmental states. We explain the utility of this perspective by examining the perception of skin temperature, one of the most challenging cases for distinguishing between interoception and exteroception. Specifically, we propose conceptualising thermoception as inference about the thermal state of the body (including the skin), which is directly coupled to thermoregulatory processes. This functional view emphasises the coupling to regulation (control) as a defining property of perception (inference) and connects the definition of interoception to contemporary computational theories of brain-body interactions.
Collapse
Affiliation(s)
- Birte Toussaint
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| | - Jakob Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland; Max Planck Institute for Metabolism Research, Cologne, Germany
| |
Collapse
|
10
|
Mota CMD, Madden CJ. Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands. Nat Rev Neurosci 2024; 25:143-158. [PMID: 38316956 DOI: 10.1038/s41583-023-00785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/07/2024]
Abstract
The mammalian brain controls heat generation and heat loss mechanisms that regulate body temperature and energy metabolism. Thermoeffectors include brown adipose tissue, cutaneous blood flow and skeletal muscle, and metabolic energy sources include white adipose tissue. Neural and metabolic pathways modulating the activity and functional plasticity of these mechanisms contribute not only to the optimization of function during acute challenges, such as ambient temperature changes, infection and stress, but also to longitudinal adaptations to environmental and internal changes. Exposure of humans to repeated and seasonal cold ambient conditions leads to adaptations in thermoeffectors such as habituation of cutaneous vasoconstriction and shivering. In animals that undergo hibernation and torpor, neurally regulated metabolic and thermoregulatory adaptations enable survival during periods of significant reduction in metabolic rate. In addition, changes in diet can activate accessory neural pathways that alter thermoeffector activity. This knowledge may be harnessed for therapeutic purposes, including treatments for obesity and improved means of therapeutic hypothermia.
Collapse
Affiliation(s)
- Clarissa M D Mota
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
11
|
Riera CE. Wiring the Brain for Wellness: Sensory Integration in Feeding and Thermogenesis: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2024; 73:338-347. [PMID: 38377445 PMCID: PMC10882152 DOI: 10.2337/db23-0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 02/22/2024]
Abstract
The recognition of sensory signals from within the body (interoceptive) and from the external environment (exteroceptive), along with the integration of these cues by the central nervous system, plays a crucial role in maintaining metabolic balance. This orchestration is vital for regulating processes related to both food intake and energy expenditure. Animal model studies indicate that manipulating specific populations of neurons in the central nervous system which influence these processes can effectively modify energy balance. This body of work presents an opportunity for the development of innovative weight loss therapies for the treatment of obesity and type 2 diabetes. In this overview, we delve into the sensory cues and the neuronal populations responsible for their integration, exploring their potential in the development of weight loss treatments for obesity and type 2 diabetes. This article is the first in a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Céline E. Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
12
|
Villegas-Serna T, Wilson LJ, Curtis C. Topical application of L-Menthol - Physiological and genetic considerations to assist in developing female athlete research: A narrative review. J Therm Biol 2024; 119:103758. [PMID: 38070272 DOI: 10.1016/j.jtherbio.2023.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 02/25/2024]
Abstract
L-menthol is a cyclic monoterpene derived from aromatic plants, which gives a cooling sensation upon application. With this in mind, L-menthol is beginning to be considered as a potential ergogenic aid for exercise and sporting competitions, particularly in hot environments, however female-specific research is lacking. The aim of this narrative review is to summarize available literature relating to topical application of L-menthol and provide commentary on avenues of consideration relating to future research developments of topical L-menthol in female athletes. From available studies in male participants, L-menthol topical application results in no endurance exercise performance improvements, however decreases in thermal sensation are observed. Mixed results are observed within strength performance parameters. Several genetic variations and single nucleotide polymorphisms have been identified in relation to sweat production, fluid loss and body mass changes - factors which may influence topical application of L-menthol. More specifically to female athletes, genetic variations relating to sweat responses and skin thickness, phases of the menstrual cycle, and body composition indices may affect the ergogenic effects of L-menthol topical application, via alterations in thermogenic responses, along with differing tissue distribution compared to their male counterparts. This narrative review concludes that further development of female athlete research and protocols for topical application of L-menthol is warranted due to physiological and genetic variations. Such developments would benefit research and practitioners alike with further personalized sport science strategies around phases of the menstrual cycle and body composition indices, with a view to optimize ergogenic effects of L-menthol.
Collapse
Affiliation(s)
- Tatiana Villegas-Serna
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain; University of Navarra, Pamplona, Spain
| | - Laura J Wilson
- London Sport Institute, Middlesex University, London, NW4 4BT, United Kingdom
| | - Christopher Curtis
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain; University of Navarra, Pamplona, Spain.
| |
Collapse
|
13
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
14
|
Carrasco RA, Breen KM. Allostasis in Neuroendocrine Systems Controlling Reproduction. Endocrinology 2023; 164:bqad125. [PMID: 37586095 PMCID: PMC10461221 DOI: 10.1210/endocr/bqad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Allostasis provides a supporting role to the homeostatic control of biological variables in mammalian species. While the concept of homeostasis is related to the control of variables within a set point or range that are essential to life, allostasis refers to systems that facilitate adaptation to challenges that the organism faces and the new requirements for survival. Essential for such adaptation is the role played by the brain in eliciting neural and neuroendocrine responses. Reproductive function is fundamental for the survival of species but is costly in energetic terms and requires a synchrony with an ever-changing environment. Thus, in many species reproductive function is blocked or delayed over immediate challenges. This review will cover the physiological systems and neuroendocrine pathways that supply allostatic control over reproductive neuroendocrine systems. Light, hypoxia, temperature, nutrition, psychosocial, and immune mediators influence the neuroendocrine control of reproductive functions through pathways that are confluent at the paraventricular nucleus; however, understanding of the integrative responses to these stimuli has not been clarified. Likely, the ultimate consequence of these allostatic mechanisms is the modification of kisspeptin and gonadotropin-releasing hormone neuronal activity, thus compromising reproduction function in the short term, while preserving species survivability.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0674, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0674, USA
| |
Collapse
|
15
|
Pertusa M, Solorza J, Madrid R. Molecular determinants of TRPM8 function: key clues for a cool modulation. Front Pharmacol 2023; 14:1213337. [PMID: 37388453 PMCID: PMC10301734 DOI: 10.3389/fphar.2023.1213337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Cold thermoreceptor neurons detect temperature drops with highly sensitive molecular machinery concentrated in their peripheral free nerve endings. The main molecular entity responsible for cold transduction in these neurons is the thermo-TRP channel TRPM8. Cold, cooling compounds such as menthol, voltage, and osmolality rises activate this polymodal ion channel. Dysregulation of TRPM8 activity underlies several physiopathological conditions, including painful cold hypersensitivity in response to axonal damage, migraine, dry-eye disease, overactive bladder, and several forms of cancer. Although TRPM8 could be an attractive target for treating these highly prevalent diseases, there is still a need for potent and specific modulators potentially suitable for future clinical trials. This goal requires a complete understanding of the molecular determinants underlying TRPM8 activation by chemical and physical agonists, inhibition by antagonists, and the modulatory mechanisms behind its function to guide future and more successful treatment strategies. This review recapitulates information obtained from different mutagenesis approaches that have allowed the identification of specific amino acids in the cavity comprised of the S1-S4 and TRP domains that determine modulation by chemical ligands. In addition, we summarize different studies revealing specific regions within the N- and C-terminus and the transmembrane domain that contribute to cold-dependent TRPM8 gating. We also highlight the latest milestone in the field: cryo-electron microscopy structures of TRPM8, which have provided a better comprehension of the 21 years of extensive research in this ion channel, shedding light on the molecular bases underlying its modulation, and promoting the future rational design of novel drugs to selectively regulate abnormal TRPM8 activity under pathophysiological conditions.
Collapse
Affiliation(s)
- María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Jocelyn Solorza
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
16
|
Greenfield AM, Alba BK, Giersch GEW, Seeley AD. Sex differences in thermal sensitivity and perception: Implications for behavioral and autonomic thermoregulation. Physiol Behav 2023; 263:114126. [PMID: 36787810 DOI: 10.1016/j.physbeh.2023.114126] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Temperature sensitive receptors in the skin and deep body enable the detection of the external and internal environment, including the perception of thermal stimuli. Changes in heat balance require autonomic (e.g., sweating) and behavioral (e.g., seeking shade) thermoeffector initiation to maintain thermal homeostasis. Sex differences in body morphology can largely, but not entirely, account for divergent responses in thermoeffector and perceptual responses to environmental stress between men and women. Thus, it has been suggested that innate differences in thermosensation may exist between men and women. Our goal in this review is to summarize the existing literature that investigates localized and whole-body cold and heat exposure pertaining to sex differences in thermal sensitivity and perception, and the interplay between autonomic and behavioral thermoeffector responses. Overall, it appears that local differences in thermal sensitivity and perception are minimized, yet still apparent, when morphological characteristics are well-controlled. Sex differences in the early vasomotor response to environmental stress and subsequent changes in blood flow likely contribute to the heightened thermal awareness observed in women. However, the contribution of thermoreceptors to observed sex differences in thermal perception and thermoeffector function is unclear, as human studies investigating these questions have not been performed.
Collapse
Affiliation(s)
- Andrew M Greenfield
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America; Oak Ridge Institute for Science and Education, Belcamp, MD, United States of America.
| | - Billie K Alba
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Afton D Seeley
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| |
Collapse
|
17
|
Vizin RC, Almeida MC, Soriano RN, Romanovsky AA. Selection of preferred thermal environment and cold-avoidance responses in rats rely on signals transduced by the dorsal portion of the lateral funiculus of the spinal cord. Temperature (Austin) 2023; 10:121-135. [PMID: 37187830 PMCID: PMC10177698 DOI: 10.1080/23328940.2023.2191378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Thermoregulatory behaviors are powerful effectors for core body temperature (Tc) regulation. We evaluated the involvement of afferent fibers ascending through the dorsal portion of the lateral funiculus (DLF) of the spinal cord in "spontaneous" thermal preference and thermoregulatory behaviors induced by thermal and pharmacological stimuli in a thermogradient apparatus. In adult Wistar rats, the DLF was surgically severed at the first cervical vertebra bilaterally. The functional effectiveness of funiculotomy was verified by the increased latency of tail-flick responses to noxious cold (-18°C) and heat (50°C). In the thermogradient apparatus, funiculotomized rats showed a higher variability of their preferred ambient temperature (Tpr) and, consequently, increased Tc fluctuations, as compared to sham-operated rats. The cold-avoidance (warmth-seeking) response to moderate cold (whole-body exposure to ~17°C) or epidermal menthol (an agonist of the cold-sensitive TRPM8 channel) was attenuated in funiculotomized rats, as compared to sham-operated rats, and so was the Tc (hyperthermic) response to menthol. In contrast, the warmth-avoidance (cold-seeking) and Tc responses of funiculotomized rats to mild heat (exposure to ~28°C) or intravenous RN-1747 (an agonist of the warmth-sensitive TRPV4; 100 μg/kg) were unaffected. We conclude that DLF-mediated signals contribute to driving spontaneous thermal preference, and that attenuation of these signals is associated with decreased precision of Tc regulation. We further conclude that thermally and pharmacologically induced changes in thermal preference rely on neural, presumably afferent, signals that travel in the spinal cord within the DLF. Signals conveyed by the DLF are important for cold-avoidance behaviors but make little contribution to heat-avoidance responses.
Collapse
Affiliation(s)
- Robson C.L. Vizin
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Maria C. Almeida
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Renato N. Soriano
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA
- Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG, Brazil
| | - Andrej A. Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA
- School of Molecular Sciences, University of Arizona, Tempe, AZ, USA
- Zharko Pharma, Inc, Olympia, WA, USA
| |
Collapse
|
18
|
Garami A, Steiner AA, Pakai E, Wanner SP, Almeida MC, Keringer P, Oliveira DL, Nakamura K, Morrison SF, Romanovsky AA. The neural pathway of the hyperthermic response to antagonists of the transient receptor potential vanilloid-1 channel. Temperature (Austin) 2023; 10:136-154. [PMID: 37187834 PMCID: PMC10177699 DOI: 10.1080/23328940.2023.2171671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
We identified the neural pathway of the hyperthermic response to TRPV1 antagonists. We showed that hyperthermia induced by i.v. AMG0347, AMG 517, or AMG8163 did not occur in rats with abdominal sensory nerves desensitized by pretreatment with a low i.p. dose of resiniferatoxin (RTX, TRPV1 agonist). However, neither bilateral vagotomy nor bilateral transection of the greater splanchnic nerve attenuated AMG0347-induced hyperthermia. Yet, this hyperthermia was attenuated by bilateral high cervical transection of the spinal dorsolateral funiculus (DLF). To explain the extra-splanchnic, spinal mediation of TRPV1 antagonist-induced hyperthermia, we proposed that abdominal signals that drive this hyperthermia originate in skeletal muscles - not viscera. If so, in order to prevent TRPV1 antagonist-induced hyperthermia, the desensitization caused by i.p. RTX should spread into the abdominal-wall muscles. Indeed, we found that the local hypoperfusion response to capsaicin (TRPV1 agonist) in the abdominal-wall muscles was absent in i.p. RTX-desensitized rats. We then showed that the most upstream (lateral parabrachial, LPB) and the most downstream (rostral raphe pallidus) nuclei of the intrabrain pathway that controls autonomic cold defenses are also required for the hyperthermic response to i.v. AMG0347. Injection of muscimol (inhibitor of neuronal activity) into the LPB or injection of glycine (inhibitory neurotransmitter) into the raphe blocked the hyperthermic response to i.v. AMG0347, whereas i.v. AMG0347 increased the number of c-Fos cells in the raphe. We conclude that the neural pathway of TRPV1 antagonist-induced hyperthermia involves TRPV1-expressing sensory nerves in trunk muscles, the DLF, and the same LPB-raphe pathway that controls autonomic cold defenses.
Collapse
Affiliation(s)
- Andras Garami
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Alexandre A. Steiner
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Eszter Pakai
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Samuel P. Wanner
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - M. Camila Almeida
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Daniela L. Oliveira
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shaun F. Morrison
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Andrej A. Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- School of Molecular Sciences, University of Arizona, Tempe, AZ, USA
- Zharko Pharma, Inc., Olympia, WA, USA
| |
Collapse
|
19
|
Fernández-Peña C, Reimúndez A, Viana F, Arce VM, Señarís R. Sex differences in thermoregulation in mammals: Implications for energy homeostasis. Front Endocrinol (Lausanne) 2023; 14:1093376. [PMID: 36967809 PMCID: PMC10030879 DOI: 10.3389/fendo.2023.1093376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023] Open
Abstract
Thermal homeostasis is a fundamental process in mammals, which allows the maintenance of a constant internal body temperature to ensure an efficient function of cells despite changes in ambient temperature. Increasing evidence has revealed the great impact of thermoregulation on energy homeostasis. Homeothermy requires a fine regulation of food intake, heat production, conservation and dissipation and energy expenditure. A great interest on this field of research has re-emerged following the discovery of thermogenic brown adipose tissue and browning of white fat in adult humans, with a potential clinical relevance on obesity and metabolic comorbidities. However, most of our knowledge comes from male animal models or men, which introduces unwanted biases on the findings. In this review, we discuss how differences in sex-dependent characteristics (anthropometry, body composition, hormonal regulation, and other sexual factors) influence numerous aspects of thermal regulation, which impact on energy homeostasis. Individuals of both sexes should be used in the experimental paradigms, considering the ovarian cycles and sexual hormonal regulation as influential factors in these studies. Only by collecting data in both sexes on molecular, functional, and clinical aspects, we will be able to establish in a rigorous way the real impact of thermoregulation on energy homeostasis, opening new avenues in the understanding and treatment of obesity and metabolic associated diseases.
Collapse
Affiliation(s)
| | - Alfonso Reimúndez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Félix Viana
- Institute of Neuroscience, University Miguel Hernández (UMH)-CSIC, Alicante, Spain
| | - Victor M. Arce
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Rosa Señarís, ; Victor M. Arce,
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Rosa Señarís, ; Victor M. Arce,
| |
Collapse
|
20
|
Lei X, Liu Q, Qin W, Tong Q, Li Z, Xu W, Liu G, Fu J, Zhang J, Kuang T, Shao Y, Liu C, Fang Y, Cao Z, Yan L, Liu Z, Liu S, Yamamoto H, Mori M, Liang XM, Xu X. TRPM8 contributes to liver regeneration via mitochondrial energy metabolism mediated by PGC1α. Cell Death Dis 2022; 13:1050. [PMID: 36526620 PMCID: PMC9758188 DOI: 10.1038/s41419-022-05475-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Impairment of liver regeneration leads to severe morbidity in acute and chronic severe liver disease. Transient receptor potential melastain 8 (TRPM8) is involved in a variety of processes, including temperature sensing, ion homeostasis, and cell proliferation. However, whether TRPM8 contributes to liver regeneration is still unclear. We assessed the effect and mechanism of TRPM8 in liver regeneration and hepatocyte proliferation in vivo and in vitro. In this study, we found that TRPM8 deficiency impairs liver regeneration in mice. Mechanistically, the results revealed that mitochondrial energy metabolism was attenuated in livers from TRPM8 knockout (KO) mice. Furthermore, we found that TRPM8 contributes to the proliferation of hepatocytes via PGC1α. Taken together, this study shows that TRPM8 contributes to liver regeneration in mice after hepatectomy. Genetic approaches and pharmacological approaches to regulate TRPM8 activity may be beneficial to the promotion of liver regeneration.
Collapse
Affiliation(s)
- Xiaohua Lei
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- The First Affiliated Hospital, Department of Hepato-Biliary-Pancreatic Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Qiang Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Qin
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qing Tong
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhenghao Li
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wendi Xu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Guoxing Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jie Fu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ju Zhang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Tao Kuang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yaoli Shao
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chun Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu Fang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhenyu Cao
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Likun Yan
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhiqiang Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Siyuan Liu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Xin M Liang
- Wellman Center for Photomedicine, Division of Hematology and Oncology, Division of Endocrinology, Massachusetts General Hospital, VA Boston Healthcare System, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xundi Xu
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Department of general surgery. Southern China Hospital, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.
| |
Collapse
|
21
|
Liu Q, Lei X, Cao Z, Zhang J, Yan L, Fu J, Tong Q, Qin W, Shao Y, Liu C, Liu Z, Wang Z, Chu Y, Xu G, Liu S, Wen X, Yamamoto H, Mori M, Liang XM, Xu X. TRPM8 deficiency attenuates liver fibrosis through S100A9-HNF4α signaling. Cell Biosci 2022; 12:58. [PMID: 35525986 PMCID: PMC9080211 DOI: 10.1186/s13578-022-00789-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Abstract
Background Liver fibrosis represent a major global health care burden. Data emerging from recent advances suggest TRPM8, a member of the transient receptor potential (TRP) family of ion channels, plays an essential role in various chronic inflammatory diseases. However, its role in liver fibrosis remains unknown. Herein, we assessed the potential effect of TRPM8 in liver fibrosis. Methods The effect of TRPM8 was evaluated using specimens obtained from classic murine models of liver fibrosis, namely wild-type (WT) and TRPM8−/− (KO) fibrotic mice after carbon tetrachloride (CCl4) or bile duct ligation (BDL) treatment. The role of TRPM8 was systematically evaluated using specimens obtained from the aforementioned animal models after various in vivo and in vitro experiments. Results Clinicopathological analysis showed that TRPM8 expression was upregulated in tissue samples from cirrhosis patients and fibrotic mice. TRPM8 deficiency not only attenuated inflammation and fibrosis progression in mice but also helped to alleviate symptoms of cholangiopathies. Moreover, reduction in S100A9 and increase in HNF4α expressions were observed in liver of CCl4- and BDL- treated TRPM8−/− mice. A strong regulatory linkage between S100A9 and HNF4α was also noticed in L02 cells that underwent siRNA-mediated S100A9 knockdown and S100A9 overexpressing plasmid transfection. Lastly, the alleviative effect of a selective TRPM8 antagonist was confirmed in vivo. Conclusions These findings suggest TRPM8 deficiency may exert protective effects against inflammation, cholangiopathies, and fibrosis through S100A9-HNF4α signaling. M8-B might be a promising therapeutic candidate for liver fibrosis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00789-4.
Collapse
|
22
|
Andersson KE. Emerging drugs for the treatment of bladder storage dysfunction. Expert Opin Emerg Drugs 2022; 27:277-287. [PMID: 35975727 DOI: 10.1080/14728214.2022.2113057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Current drug treatment of lower urinary tract disorders, for example, overactive bladder syndrome and lower urinary tract symptoms associated with benign prostatic hyperplasia, is moderately effective, has a low treatment persistence and some short- and long-term adverse events. Even if combination therapy with approved drugs may offer advantages in some patients, there is still a need for new agents. AREAS COVERED New b3-adrenoceptor agonists, antimuscarinics, the naked Maxi-K channel gene, a novel 5HT/NA reuptake inhibitor and soluble guanylate cyclase activators are discussed. Focus is given to P2X3 receptor antagonists, small molecule blockers of TRP channels, the roles of cannabis on incontinence in patients with multiple sclerosis, and of drugs acting directly on CB1 and CB2 receptor or indirectly via endocannabinoids by inhibition of fatty acid aminohydrolase. EXPERT OPINION New potential alternatives to currently used drugs/drug principles are emerging, but further clinical testing is required before they can be evaluated as therapeutic alternatives. It seems that for the near future individualized treatment with approved drugs and their combinations will be the prevailing therapeutic approach.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston Salem, NC, USA.,Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Cristina-Silva C, Amaral-Silva L, Santos KM, Correa GM, da Silva WC, Fernandes MHMR, da Silva GSF, Gargaglioni LH, Almeida MC, Bicego KC. Cutaneous TRPV4 Channels Activate Warmth-Defense Responses in Young and Adult Birds. Front Physiol 2022; 13:892828. [PMID: 35910562 PMCID: PMC9337882 DOI: 10.3389/fphys.2022.892828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels are sensitive to warm ambient temperatures (Tas), triggering heat loss responses in adult rats in a Tas range of ∼26–30°C. In birds, however, the thermoregulatory role of TRPV4 has never been shown. Here, we hypothesized that stimulation of TRPV4 induces thermolytic responses for body temperature (Tb) maintenance in birds, and that this function is already present in early life, when the Ta range for TRPV4 activation does not represent a warm condition for these animals. We first demonstrated the presence of TRPV4 in the dorsal and ventral skin of chickens (Gallus gallus domesticus) by immunohistochemistry. Then, we evaluated the effects of the TRPV4 agonist, RN1747, and the TRPV4 antagonists, HC067047 and GSK2193874, on Tb and thermoeffectors at different Tas in 5-day-old chicks and 60-day-old adult chickens. For the chicks, RN1747 transiently reduced Tb both in thermoneutrality (31°C) and in a cold Ta for this phase (26°C), which relied on huddling behavior inhibition. The TRPV4 antagonists alone did not affect Tb or thermoeffectors but blocked the Tb decrease and huddling inhibition promoted by RN1747. For the adults, TRPV4 antagonism increased Tb when animals were exposed to 28°C (suprathermoneutral condition for adults), but not to 19°C. In contrast, RN1747 decreased Tb by reducing metabolic rate and activating thermal tachypnea at 19°C, a Ta below the activation range of TRPV4. Our results indicate that peripheral TRPV4 receptors are functional in early life, but may be inhibited at that time when the range of activation (∼26–30°C) represents cold Ta for chicks, and become physiologically relevant for Tb maintenance when the activation Ta range for TRPV4 becomes suprathermoneutral for adult chickens.
Collapse
Affiliation(s)
- Caroline Cristina-Silva
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, Brazil
| | - Lara Amaral-Silva
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, Brazil
| | - Kassia Moreira Santos
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, Brazil
| | - Gabriela Monteiro Correa
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, Brazil
| | - Welex Candido da Silva
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, Brazil
| | - Marcia H. M. R. Fernandes
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, Brazil
| | - Glauber S. F. da Silva
- Institute of Biological Sciences, Department of Physiology and Biophysics, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, Brazil
| | - Luciane H. Gargaglioni
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, Brazil
| | - Maria C. Almeida
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Kenia C. Bicego
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, Brazil
- *Correspondence: Kenia C. Bicego, ,
| |
Collapse
|
24
|
James CM, Olejniczak SH, Repasky EA. How murine models of human disease and immunity are influenced by housing temperature and mild thermal stress. Temperature (Austin) 2022; 10:166-178. [PMID: 37332306 PMCID: PMC10274546 DOI: 10.1080/23328940.2022.2093561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022] Open
Abstract
At the direction of The Guide and Use of Laboratory Animals, rodents in laboratory facilities are housed at ambient temperatures between 20°C and 26°C, which fall below their thermoneutral zone (TNZ). TNZ is identified as a range of ambient temperatures that allow an organism to regulate body temperature without employing additional thermoregulatory processes (e.g. metabolic heat production driven by norepinephrine), thus leading to mild, chronic cold stress. For mice, this chronic cold stress leads to increased serum levels of the catecholamine norepinephrine, which has direct effects on various immune cells and several aspects of immunity and inflammation. Here, we review several studies that have revealed that ambient temperature significantly impacts outcomes in various murine models of human diseases, particularly those in which the immune system plays a major role in its pathogenesis. The impact of ambient temperature on experimental outcomes raises questions regarding the clinical relevance of some murine models of human disease, since studies examining rodents housed within thermoneutral ambient temperatures revealed that rodent disease pathology more closely resembled that of humans. Unlike laboratory rodents, humans can modify their surroundings accordingly - by adjusting their clothing, the thermostat, or their physical activity - to live within the appropriate TNZ, offering a possible explanation for why many studies using murine models of human disease conducted at thermoneutrality better represent patient outcomes. Thus, it is strongly recommended that ambient housing temperature in such studies be consistently and accurately reported and recognized as an important experimental variable.
Collapse
Affiliation(s)
- Caitlin M. James
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | |
Collapse
|
25
|
Xu M, Li C, Yang J, Ye A, Yan L, Yeoh BS, Shi L, Kim YS, Kang J, Vijay-Kumar M, Xiong N. Activation of CD81 + skin ILC2s by cold-sensing TRPM8 + neuron-derived signals maintains cutaneous thermal homeostasis. Sci Immunol 2022; 7:eabe0584. [PMID: 35714201 PMCID: PMC9327500 DOI: 10.1126/sciimmunol.abe0584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As the outermost barrier tissue of the body, the skin harbors a large number of innate lymphoid cells (ILCs) that help maintain local homeostasis in the face of changing environments. How skin-resident ILCs are regulated and function in local homeostatic maintenance is poorly understood. We here report the discovery of a cold-sensing neuron-initiated pathway that activates skin group 2 ILCs (ILC2s) to help maintain thermal homeostasis. In stearoyl-CoA desaturase 1 (SCD1) knockout mice whose skin is defective in heat maintenance, chronic cold stress induced excessive activation of CCR10-CD81+ST2+ skin ILC2s and associated inflammation. Mechanistically, stimulation of the cold-sensing receptor TRPM8 expressed in sensory neurons of the skin led to increased production of IL-18, which, in turn, activated skin ILC2s to promote thermogenesis. Our findings reveal a neuroimmune link that regulates activation of skin ILC2s to support thermal homeostasis and promotes skin inflammation after hyperactivation.
Collapse
Affiliation(s)
- Ming Xu
- Department of Veterinary and Biomedical Sciences, Centre
for Molecular Immunology and Infectious Disease, The Pennsylvania State University,
University Park, PA 16802, USA,Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA
| | - Chao Li
- Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA,Division of Pneumoconiosis, School of Public Health, China
Medical University, Shenyang 110122, China
| | - Jie Yang
- Department of Veterinary and Biomedical Sciences, Centre
for Molecular Immunology and Infectious Disease, The Pennsylvania State University,
University Park, PA 16802, USA
| | - Amy Ye
- Department of Veterinary and Biomedical Sciences, Centre
for Molecular Immunology and Infectious Disease, The Pennsylvania State University,
University Park, PA 16802, USA,Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA
| | - Liping Yan
- Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of
Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Lai Shi
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802, USA
| | - Yu Shin Kim
- Department of Oral & Maxillofacial surgery, University
of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio,
TX 78229
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts
Medical School, Albert Sherman Center Worcester, MA 01605
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of
Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA,Department of Medicine-Division of Dermatology and
Cutaneous Surgery University of Texas Health Science Center San Antonio, San
Antonio, TX 78229, USA,Correspondence to N.X.
| |
Collapse
|
26
|
Aizawa N, Fujita T. The TRPM8 channel as a potential therapeutic target for bladder hypersensitive disorders. J Smooth Muscle Res 2022; 58:11-21. [PMID: 35354708 PMCID: PMC8961290 DOI: 10.1540/jsmr.58.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the lower urinary tract, transient receptor potential (TRP) channels are primarily involved in physiological function, especially in cellular sensors responding to chemical and physical stimuli. Among TRP channels, TRP melastatin 8 (TRPM8) channels, responding to cold temperature and/or chemical agents, such as menthol or icilin, are mainly expressed in the nerve endings of the primary afferent neurons and in the cell bodies of dorsal root ganglia innervating the urinary bladder (via Aδ- and C-fibers); this suggests that TRPM8 channels primarily contribute to bladder sensory (afferent) function. Storage symptoms of overactive bladder, benign prostatic hyperplasia, and interstitial cystitis are commonly related to sensory function (bladder hypersensitivity); thus, TRPM8 channels may also contribute to the pathophysiology of bladder hypersensitivity. Indeed, it has been reported in a pharmacological investigation using rodents that TRPM8 channels contribute to the pathophysiological bladder afferent hypersensitivity of mechanosensitive C-fibers. Similar findings have also been reported in humans. Therefore, a TRPM8 antagonist would be a promising therapeutic target for bladder hypersensitive disorders, including urinary urgency or nociceptive pain. In this review article, the functional role of the TRPM8 channel in the lower urinary tract and the potential of its antagonist for the treatment of bladder disorders was described.
Collapse
Affiliation(s)
- Naoki Aizawa
- Department of Pharmacology and Toxicology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Tomoe Fujita
- Department of Pharmacology and Toxicology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
27
|
Hornsby E, King HW, Peiris M, Buccafusca R, Lee WYJ, Wing ES, Blackshaw LA, Lindsay JO, Stagg AJ. The cation channel TRPM8 influences the differentiation and function of human monocytes. J Leukoc Biol 2022; 112:365-381. [PMID: 35233801 PMCID: PMC9543907 DOI: 10.1002/jlb.1hi0421-181r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Monocytes are mononuclear phagocytes that can differentiate to a variety of cell fates under the influence of their microenvironment and hardwired commitment. We found that inhibition of TRPM8 in human blood CD14+ monocytes during a critical 3‐h window at the beginning of their differentiation into macrophages led to enhanced survival and LPS‐driven TNFα production after 24 h. TRPM8 antagonism also promoted LPS‐driven TNFα production in CD14+ monocytes derived from the intestinal mucosa. Macrophages that had been derived for 6 days under blockade of TRPM8 had impaired phagocytic capacity and were transcriptionally distinct. Most of the affected genes were altered in a way that opposed normal monocyte to macrophage differentiation indicating that TRPM8 activity promotes aspects of this differentiation programme. Thus, we reveal a novel role for TRPM8 in regulating human CD14+ monocyte fate and function.
Collapse
Affiliation(s)
- Eve Hornsby
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Hamish W King
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Roberto Buccafusca
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Wing-Yiu Jason Lee
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Elinor S Wing
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - L Ashley Blackshaw
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - James O Lindsay
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Department of Gastroenterology, Barts Health NHS Trust, The Royal London Hospital, Whitechapel, London, UK
| | - Andrew J Stagg
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
28
|
Role of TRPM8 in cold avoidance behaviors and brain activation during innocuous and nocuous cold stimuli. Physiol Behav 2022; 248:113729. [DOI: 10.1016/j.physbeh.2022.113729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
|
29
|
Thapa D, Barrett B, Argunhan F, Brain SD. Influence of Cold-TRP Receptors on Cold-Influenced Behaviour. Pharmaceuticals (Basel) 2021; 15:ph15010042. [PMID: 35056099 PMCID: PMC8781072 DOI: 10.3390/ph15010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential (TRP) channels, TRPA1 and TRPM8, are thermo-receptors that detect cold and cool temperatures and play pivotal roles in mediating the cold-induced vascular response. In this study, we investigated the role of TRPA1 and TRPM8 in the thermoregulatory behavioural responses to environmental cold exposure by measuring core body temperature and locomotor activity using a telemetry device that was surgically implanted in mice. The core body temperature of mice that were cooled at 4 °C over 3 h was increased and this was accompanied by an increase in UCP-1 and TRPM8 level as detected by Western blot. We then established an effective route, by which the TRP antagonists could be administered orally with palatable food. This avoids the physical restraint of mice, which is crucial as that could influence the behavioural results. Using selective pharmacological antagonists A967079 and AMTB for TRPA1 and TRPM8 receptors, respectively, we show that TRPM8, but not TRPA1, plays a direct role in thermoregulation response to whole body cold exposure in the mouse. Additionally, we provide evidence of increased TRPM8 levels after cold exposure which could be a protective response to increase core body temperature to counter cold.
Collapse
|
30
|
Thapa D, Valente JDS, Barrett B, Smith MJ, Argunhan F, Lee SY, Nikitochkina S, Kodji X, Brain SD. Dysfunctional TRPM8 signalling in the vascular response to environmental cold in ageing. eLife 2021; 10:70153. [PMID: 34726597 PMCID: PMC8592571 DOI: 10.7554/elife.70153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Ageing is associated with increased vulnerability to environmental cold exposure. Previously, we identified the role of the cold-sensitive transient receptor potential (TRP) A1, M8 receptors as vascular cold sensors in mouse skin. We hypothesised that this dynamic cold-sensor system may become dysfunctional in ageing. We show that behavioural and vascular responses to skin local environmental cooling are impaired with even moderate ageing, with reduced TRPM8 gene/protein expression especially. Pharmacological blockade of the residual TRPA1/TRPM8 component substantially diminished the response in aged, compared with young mice. This implies the reliance of the already reduced cold-induced vascular response in ageing mice on remaining TRP receptor activity. Moreover, sympathetic-induced vasoconstriction was reduced with downregulation of the α2c adrenoceptor expression in ageing. The cold-induced vascular response is important for sensing cold and retaining body heat and health. These findings reveal that cold sensors, essential for this neurovascular pathway, decline as ageing onsets.
Collapse
Affiliation(s)
- Dibesh Thapa
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Joäo de Sousa Valente
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Brentton Barrett
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Matthew John Smith
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Fulye Argunhan
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Sheng Y Lee
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom.,Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sofya Nikitochkina
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Xenia Kodji
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom.,Skin Research Institute, Agency of Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Susan D Brain
- Section of Vascular Biology and Inflammation, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Aierken A, Xie Y, Dong W, Apaer A, Lin J, Zhao Z, Yang S, Xu Z, Yang F. Rational Design of a Modality-Specific Inhibitor of TRPM8 Channel against Oxaliplatin-Induced Cold Allodynia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101717. [PMID: 34658162 PMCID: PMC8596132 DOI: 10.1002/advs.202101717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Platinum-based compounds in chemotherapy such as oxaliplatin often induce peripheral neuropathy and neuropathic pain such as cold allodynia in patients. Transient Receptor Potential Melastatin 8 (TRPM8) ion channel is a nociceptor critically involved in such pathological processes. Direct blockade of TRPM8 exhibits significant analgesic effects but also incurs severe side effects such as hypothermia. To selectively target TRPM8 channels against cold allodynia, a cyclic peptide DeC-1.2 is de novo designed with the optimized hot-spot centric approach. DeC-1.2 modality specifically inhibited the ligand activation of TRPM8 but not the cold activation as measured in single-channel patch clamp recordings. It is further demonstrated that DeC-1.2 abolishes cold allodynia in oxaliplatin treated mice without altering body temperature, indicating DeC-1.2 has the potential for further development as a novel analgesic against oxaliplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Aerziguli Aierken
- Department of BiophysicsKidney Disease Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang Province310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Research and Brain–Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| | - Ya‐Kai Xie
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Research and Brain–Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
- Department of Neurobiology and Department of Anesthesiology of First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Wenqi Dong
- College of Wildlife and Protected AreaNortheast Forestry UniversityHarbin150040China
| | - Abuliken Apaer
- Department of BiophysicsKidney Disease Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang Province310058China
| | - Jia‐Jia Lin
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Research and Brain–Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
- Department of Neurobiology and Department of Anesthesiology of First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Zihan Zhao
- College of Wildlife and Protected AreaNortheast Forestry UniversityHarbin150040China
| | - Shilong Yang
- College of Wildlife and Protected AreaNortheast Forestry UniversityHarbin150040China
| | - Zhen‐Zhong Xu
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Research and Brain–Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
- Department of Neurobiology and Department of Anesthesiology of First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Fan Yang
- Department of BiophysicsKidney Disease Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang Province310058China
- NHC and CAMS Key Laboratory of Medical NeurobiologyMOE Frontier Science Center for Brain Research and Brain–Machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
32
|
Kaminaga K, Yanagihara H, Genjo T, Morioka T, Abe H, Shirakawa M, Ohshima T, Kakinuma S, Igarashi R. Non-contact measurement of internal body temperature using subcutaneously implanted diamond microparticles. Biomater Sci 2021; 9:7049-7053. [PMID: 34581326 DOI: 10.1039/d1bm01187a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We constructed a highly sensitive fluorescence wide-field imaging system with a microwave source, implanted fluorescent diamond microparticles ("microdiamonds") subcutaneously into the dorsal skin of a mouse after sacrifice, and demonstrated the feasibility of using optically detected magnetic resonance (ODMR) to measure internal body temperature in a mammal.
Collapse
Affiliation(s)
- Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan. .,National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hiromi Yanagihara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan. .,National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Takuya Genjo
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan. .,Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takamitsu Morioka
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan. .,National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hiroshi Abe
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan. .,Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, Gunma 370-1292, Japan
| | - Masahiro Shirakawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan. .,Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takeshi Ohshima
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan. .,Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, Gunma 370-1292, Japan
| | - Shizuko Kakinuma
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan. .,National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan. .,National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.,JST, PRESTO, Saitama 332-0012, Japan
| |
Collapse
|
33
|
Shiraki C, Horikawa R, Oe Y, Fujimoto M, Okamoto K, Kurganov E, Miyata S. Role of TRPM8 in switching between fever and hypothermia in adult mice during endotoxin-induced inflammation. Brain Behav Immun Health 2021; 16:100291. [PMID: 34589786 PMCID: PMC8474285 DOI: 10.1016/j.bbih.2021.100291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 01/11/2023] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) functions in the sensing of noxious and innocuous colds; however, its significance in pathogen-induced thermoregulation remains unclear. In the present study, we investigated the role of TRPM8 in the regulation of endotoxin-induced body temperature control. The peripheral administration of low-dose lipopolysaccharide (LPS) at 50 μg/kg generated fever in wild-type (WT) mice, whereas it caused hypothermia in TRPM8 knockout (KO) animals. LPS-induced sickness responses such as decrease in body weight, and food and water intake were not different between WT and TRPM8 KO mice. TRPM8 KO mice exhibited more severe hypothermia and lower locomotor activity following the peripheral administration of high-dose LPS at 5 mg/kg compared with WT ones. An intracerebroventricular (i.c.v.) injection of either LPS at 3.6 μg/kg or interleukin-1β at 400 ng/kg elicited hypothermia in TRPM8 KO mice, in contrast to fever in WT animals. The peripheral administration of zymosan at 3 mg/kg also induced hypothermia in contrast to fever in WT mice. An i.c.v. injection of prostaglandin E2 at 16 or 160 nmol/kg induced normal fever in both WT and TRPM8 KO mice. Infrared thermography showed significant decline of the interscapular skin temperature that estimates temperature of the brown adipose tissue, regardless of no alteration of its temperature in WT animals. Fos immunohistochemistry showed stronger Fos activation of hypothalamic thermoregulation-associated nuclei in TRPM8 KO mice compared with WT animals following the peripheral administration of low-dose LPS. Therefore, the present study indicates that TRPM8 is necessary for switching between fever and hypothermia during endotoxin-induced inflammation.
Collapse
Affiliation(s)
- Chinatsu Shiraki
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ririka Horikawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuzuki Oe
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Momoka Fujimoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kaho Okamoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Erkin Kurganov
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
34
|
Singh R, Adhya P, Sharma SS. Redox-sensitive TRP channels: a promising pharmacological target in chemotherapy-induced peripheral neuropathy. Expert Opin Ther Targets 2021; 25:529-545. [PMID: 34289785 DOI: 10.1080/14728222.2021.1956464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy (CIPN) and its related pain is a major side effect of certain chemotherapeutic agents used in cancer treatment. Available analgesics are mostly symptomatic, and on prolonged treatment, patients become refractive to them. Hence, the development of improved therapeutics that act on novel therapeutic targets is necessary. Potential targets include the redox-sensitive TRP channels [e.g. TRPA1, TRPC5, TRPC6, TRPM2, TRPM8, TRPV1, TRPV2, and TRPV4] which are activated under oxidative stress associated with CIPN. AREAS COVERED We have examined numerous neuropathy-inducing cancer chemotherapeutics and their pathophysiological mechanisms. Oxidative stress and its downstream targets, the redox-sensitive TRP channels, together with their potential pharmacological modulators, are discussed. Finally, we reflect upon the barriers to getting new therapeutic approaches into the clinic. The literature search was conducted in PubMed upto and including April 2021. EXPERT OPINION Redox-sensitive TRP channels are a promising target in CIPN. Pharmacological modulators of these channels have reduced pain in preclinical models and in clinical studies. Clinical scrutiny suggests that TRPA1, TRPM8, and TRPV1 are the most promising targets because of their pain-relieving potential. In addition to the analgesic effect, TRPV1 agonist-Capsaicin possesses a disease-modifying effect in CIPN through its restorative property in damaged sensory nerves.
Collapse
Affiliation(s)
- Ramandeep Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Pratik Adhya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| |
Collapse
|
35
|
Cerri M, Hitrec T, Luppi M, Amici R. Be cool to be far: Exploiting hibernation for space exploration. Neurosci Biobehav Rev 2021; 128:218-232. [PMID: 34144115 DOI: 10.1016/j.neubiorev.2021.03.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/08/2023]
Abstract
In mammals, torpor/hibernation is a state that is characterized by an active reduction in metabolic rate followed by a progressive decrease in body temperature. Torpor was successfully mimicked in non-hibernators by inhibiting the activity of neurons within the brainstem region of the Raphe Pallidus, or by activating the adenosine A1 receptors in the brain. This state, called synthetic torpor, may be exploited for many medical applications, and for space exploration, providing many benefits for biological adaptation to the space environment, among which an enhanced protection from cosmic rays. As regards the use of synthetic torpor in space, to fully evaluate the degree of physiological advantage provided by this state, it is strongly advisable to move from Earth-based experiments to 'in the field' tests, possibly on board the International Space Station.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Timna Hitrec
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum -University of Bologna, Piazza di Porta S.Donato, 2 40126, Bologna, Italy.
| |
Collapse
|
36
|
Korogod SM, Maksymchuk NV, Demianenko LE, Vlasov OO, Cymbalyuk GS. Adverse Modulation of the Firing Patterns of Cold Receptors by Volatile Anesthetics Affecting Activation of TRPM8 Channels: a Modeling Study. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Natural Bioactive Compounds as Potential Browning Agents in White Adipose Tissue. Pharm Res 2021; 38:549-567. [PMID: 33783666 PMCID: PMC8082541 DOI: 10.1007/s11095-021-03027-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of overweight and obesity underlies many common metabolic diseases. Approaches aimed to reduce energy intake and/or stimulate energy expenditure represent potential strategies to control weight gain. Adipose tissue is a major energy balancing organ. It can be classified as white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT stores excess metabolic energy, BAT dissipates it as heat via adaptive thermogenesis. WAT also participates in thermogenesis by providing thermogenic fuels and by directly generating heat after browning. Browned WAT resembles BAT morphologically and metabolically and is classified as beige fat. Like BAT, beige fat can produce heat. Human adults have BAT-like or beige fat. Recruitment and activation of this fat type have the potential to increase energy expenditure, thereby countering against obesity and its metabolic complications. Given this, agents capable of inducing WAT browning have recently attracted broad attention from biomedical, nutritional and pharmaceutical societies. In this review, we summarize natural bioactive compounds that have been shown to promote beige adipocyte recruitment and activation in animals and cultured cells. We also discuss potential molecular mechanisms for each compound to induce adipose browning and metabolic benefits.
Collapse
|
38
|
Sanders OD, Rajagopal JA, Rajagopal L. Menthol to Induce Non-shivering Thermogenesis via TRPM8/PKA Signaling for Treatment of Obesity. J Obes Metab Syndr 2021; 30:4-11. [PMID: 33071240 PMCID: PMC8017329 DOI: 10.7570/jomes20038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Increasing basal energy expenditure via uncoupling protein 1 (UCP1)-dependent non-shivering thermogenesis is an attractive therapeutic strategy for treatment of obesity. Transient receptor potential melastatin 8 (TRPM8) channel activation by cold and cold mimetics induces UCP1 transcription and prevents obesity in animals, but the clinical relevance of this relationship remains incompletely understood. A review of TRPM8 channel agonism for treatment of obesity focusing on menthol was undertaken. Adipocyte TRPM8 activation results in Ca2+ influx and protein kinase A (PKA) activation, which induces mitochondrial elongation, mitochondrial localization to lipid droplets, lipolysis, β-oxidation, and UCP1 expression. Ca2+-induced mitochondrial reactive oxygen species activate UCP1. In animals, TRPM8 agonism increases basal metabolic rate, non-shivering thermogenesis, oxygen consumption, exercise endurance, and fatty acid oxidation and decreases abdominal fat percentage. Menthol prevents high-fat diet-induced obesity, glucose intolerance, insulin resistance, and liver triacylglycerol accumulation. Hypothalamic TRPM8 activation releases glucagon, which activates PKA and promotes catabolism. TRPM8 polymorphisms are associated with obesity. In humans, oral menthol and other TRPM8 agonists have little effect. However, topical menthol appears to increase core body temperature and metabolic rate. A randomized clinical control trial of topical menthol in obese patients is warranted.
Collapse
Affiliation(s)
| | | | - Lekshmy Rajagopal
- Oto-Rhino-Laryngology, College of Physicians and Surgeons, Mumbai, India
| |
Collapse
|
39
|
Thermoregulatory Response to Cold at Various Levels of Activation of Peripheral TRPA1 Ion Channel. Bull Exp Biol Med 2021; 170:420-424. [PMID: 33713225 DOI: 10.1007/s10517-021-05079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 10/21/2022]
Abstract
The effect of TRPA1-ion channel on thermoregulatory responses depending on the level of its activity was studied in Wistar rats. To activate the TRPA1 ion channel localized in the skin, its agonist allyl isothiocyanate (AITC) was used in different concentrations (0.04, 0.4, 1, and 2.5%). Low concentration of AITC (0.04%) enhanced and high concentrations (1 and 2.5%), on the contrary, inhibited cold-defense responses (decreased their magnitude and led to their later initiation due to an increase in temperature thresholds). With an increase in TRPA1 activation, the increase in temperature thresholds (afferent link) was ahead of the decrease in the magnitude of responses (efferent link), which can attest to different sensitivity of these processes to TRPA1 activation.
Collapse
|
40
|
Wu J, Liu D, Li J, Sun J, Huang Y, Zhang S, Gao S, Mei W. Central Neural Circuits Orchestrating Thermogenesis, Sleep-Wakefulness States and General Anesthesia States. Curr Neuropharmacol 2021; 20:223-253. [PMID: 33632102 PMCID: PMC9199556 DOI: 10.2174/1570159x19666210225152728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022] Open
Abstract
Great progress has been made in specifically identifying the central neural circuits (CNCs) of the core body temperature (Tcore), sleep-wakefulness states (SWs), and general anesthesia states (GAs), mainly utilizing optogenetic or chemogenetic manipulations. We summarize the neuronal populations and neural pathways of these three CNCs, which gives evidence for the orchestration within these three CNCs, and the integrative regulation of these three CNCs by different environmental light signals. We also outline some transient receptor potential (TRP) channels that function in the CNCs-Tcore and are modulated by some general anesthetics, which makes TRP channels possible targets for addressing the general-anesthetics-induced-hypothermia (GAIH). We suggest this review will provide new orientations for further consummating these CNCs and elucidating the central mechanisms of GAIH.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Daiqiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Jiayan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Yujie Huang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Shuang Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Shaojie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave 1095, Wuhan 430030. China
| |
Collapse
|
41
|
The Role of Thermosensitive Ion Channels in Mammalian Thermoregulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:355-370. [DOI: 10.1007/978-981-16-4254-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2020; 96:642-672. [PMID: 33314677 DOI: 10.1111/brv.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.
Collapse
Affiliation(s)
- Zhe Shi
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li-Na Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shan-Guang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiao-Ping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xin-Min Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
43
|
Adiga D, Radhakrishnan R, Chakrabarty S, Kumar P, Kabekkodu SP. The Role of Calcium Signaling in Regulation of Epithelial-Mesenchymal Transition. Cells Tissues Organs 2020; 211:134-156. [PMID: 33316804 DOI: 10.1159/000512277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/13/2020] [Indexed: 11/19/2022] Open
Abstract
Despite substantial advances in the field of cancer therapeutics, metastasis is a significant challenge for a favorable clinical outcome. Epithelial to mesenchymal transition (EMT) is a process of acquiring increased motility, invasiveness, and therapeutic resistance by cancer cells for their sustained growth and survival. A plethora of intrinsic mechanisms and extrinsic microenvironmental factors drive the process of cancer metastasis. Calcium (Ca2+) signaling plays a critical role in dictating the adaptive metastatic cell behavior comprising of cell migration, invasion, angiogenesis, and intravasation. By modulating EMT, Ca2+ signaling can regulate the complexity and dynamics of events leading to metastasis. This review summarizes the role of Ca2+ signal remodeling in the regulation of EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.,Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India, .,Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, India,
| |
Collapse
|
44
|
Fakih D, Baudouin C, Réaux-Le Goazigo A, Mélik Parsadaniantz S. TRPM8: A Therapeutic Target for Neuroinflammatory Symptoms Induced by Severe Dry Eye Disease. Int J Mol Sci 2020; 21:E8756. [PMID: 33228217 PMCID: PMC7699525 DOI: 10.3390/ijms21228756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Dry eye disease (DED) is commonly associated with ocular surface inflammation and pain. In this study, we evaluated the effectiveness of repeated instillations of transient receptor potential melastatin 8 (TRPM8) ion channel antagonist M8-B on a mouse model of severe DED induced by the excision of extra-orbital lacrimal and Harderian glands. M8-B was topically administered twice a day from day 7 until day 21 after surgery. Cold and mechanical corneal sensitivities and spontaneous ocular pain were monitored at day 21. Ongoing and cold-evoked ciliary nerve activities were next evaluated by electrophysiological multi-unit extracellular recording. Corneal inflammation and expression of genes related to neuropathic pain and inflammation were assessed in the trigeminal ganglion. We found that DED mice developed a cold allodynia consistent with higher TRPM8 mRNA expression in the trigeminal ganglion (TG). Chronic M8-B instillations markedly reversed both the corneal mechanical allodynia and spontaneous ocular pain commonly associated with persistent DED. M8-B instillations also diminished the sustained spontaneous and cold-evoked ciliary nerve activities observed in DED mice as well as inflammation in the cornea and TG. Overall, our study provides new insight into the effectiveness of TRPM8 blockade for alleviating corneal pain syndrome associated with severe DED, opening a new avenue for ocular pain management.
Collapse
Affiliation(s)
- Darine Fakih
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
- R&D Department, Laboratoires Théa, 12 rue Louis Biérot, F-63000 Clermont-Ferrand, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 17 rue Moreau, F-75012 Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, 9 avenue Charles de Gaulle, F-92100 Boulogne-Billancourt, France
| | - Annabelle Réaux-Le Goazigo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
| | - Stéphane Mélik Parsadaniantz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France; (D.F.); (C.B.); (A.R.-L.G.)
| |
Collapse
|
45
|
Ruthenium red attenuates brown adipose tissue thermogenesis in rats. J Therm Biol 2020; 95:102779. [PMID: 33454027 DOI: 10.1016/j.jtherbio.2020.102779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022]
Abstract
Ruthenium red (RR) is a non-selective antagonist of the temperature-sensitive Transient Receptor Potential (TRP) channels and it is an important pharmacological tool in thermoregulatory research. However, the effect of RR on thermoeffector activity is not well established. Here we evaluated the effect of RR on cold-defense thermoeffectors induced by menthol, an agonist of the cold-sensitive TRPM8 channel. Adult male Wistar rats were used. Epidermal treatment with menthol raised deep body temperature due to an increase in oxygen consumption (an index of thermogenesis), a reduction in heat loss index (an index of cutaneous vasoconstriction), and an induction in warmth-seeking behavior in a two-temperature choice apparatus. Pretreatment with RR attenuated the menthol-induced increase in deep body temperature and oxygen consumption, but it did not affect heat loss index and warmth-seeking behavior. To stimulate brown adipose tissue thermogenesis, rats were treated with CL 316,243, a potent and selective β3-adrenoceptor agonist. CL 316,243 increased deep body temperature, which was attenuated by RR pretreatment. We conclude that RR reduces brown adipose tissue thermogenesis induced by menthol and CL 316,243, independent of effects at the thermal sensor level (i.e., TRPM8).
Collapse
|
46
|
Kozyreva TV, Khramova GM. Effects of activation of skin ion channels TRPM8, TRPV1, and TRPA1 on the immune response. Comparison with effects of cold and heat exposure. J Therm Biol 2020; 93:102729. [PMID: 33077140 DOI: 10.1016/j.jtherbio.2020.102729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
The effects of pharmacological stimulation of skin ion channels TRPA1, TRPM8, TRPV1 on the immune response are presented. These effects are compared with the effects of different types of temperature exposures - skin cooling, deep cooling, and deep heating. This analysis allows us to clear the differences in the influence on the immune response of thermosensitive ion channels localized in the skin; (2) whether the changes in the immune response under temperature exposures are due to these thermosensitive ion channels. Experiments were performed on Wistar rats. For stimulation of TRPM8 ion channel, an application to the skin of 1% menthol was used, for TRPA1 - 0.04% allylisotiocianate, and for TRPV1 - capsaicin in a concentration of 0.001.The antigen binding in the spleen was two-times stimulated by activation of the cold-sensitive ion channel TRPM8 and much weaker by activation of warm-sensitive TRPV1 (by 15%), and another cold-sensitive ion channel TRPA1 (by 40%). Only the stimulation of TRPA1 significantly (by 140%) increased antibody formation in the spleen, while TRPM8 had practically no effect on this process, and activation of TRPV1 significantly (by 60%) inhibited antibody formation. Stimulation of the TRPM8 ion channel significantly (by 60%) reduced the level of IgG in the blood, which is believed to control of infectious diseases.The obtained results show that pharmacological activation of the skin TRPA1, TRPM8, TRPV1 ion channels can differently affect the immune system. At the epicenter of changes there were the antigen binding and antibody formation in the spleen, as well as the level of IgG in the blood. Exactly stimulation of the TRPM8 ion channel determines the changes in the immune response when only the skin is cooling, while at deep body heating, the changes in the immune response are mostly determined by the activation of the skin TRPV1 ion channel.
Collapse
Affiliation(s)
- T V Kozyreva
- Institute of Physiology and Basic Medicine, Timakov str. 4, Novosibirsk, 630117, Russia; Novosibirsk State University, Novosibirsk, Pirogov str. 2, Novosibirsk, 630090, Russia.
| | - G M Khramova
- Institute of Physiology and Basic Medicine, Timakov str. 4, Novosibirsk, 630117, Russia
| |
Collapse
|
47
|
Keringer P, Farkas N, Gede N, Hegyi P, Rumbus Z, Lohinai Z, Solymar M, Ruksakiet K, Varga G, Garami A. Menthol can be safely applied to improve thermal perception during physical exercise: a meta-analysis of randomized controlled trials. Sci Rep 2020; 10:13636. [PMID: 32788718 PMCID: PMC7423903 DOI: 10.1038/s41598-020-70499-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/27/2020] [Indexed: 02/03/2023] Open
Abstract
Menthol is often used as a cold-mimicking substance to allegedly enhance performance during physical activity, however menthol-induced activation of cold-defence responses during exercise can intensify heat accumulation in the body. This meta-analysis aimed at studying the effects of menthol on thermal perception and thermophysiological homeostasis during exercise. PubMed, EMBASE, Cochrane Library, and Google Scholar databases were searched until May 2020. Menthol caused cooler thermal sensation by weighted mean difference (WMD) of - 1.65 (95% CI, - 2.96 to - 0.33) and tended to improve thermal comfort (WMD = 1.42; 95% CI, - 0.13 to 2.96) during physical exercise. However, there was no meaningful difference in sweat production (WMD = - 24.10 ml; 95% CI, - 139.59 to 91.39 ml), deep body temperature (WMD = 0.02 °C; 95% CI, - 0.11 to 0.15 °C), and heart rate (WMD = 2.67 bpm; 95% CI - 0.74 to 6.09 bpm) between the treatment groups. Menthol improved the performance time in certain subgroups, which are discussed. Our findings suggest that different factors, viz., external application, warmer environment, and higher body mass index can improve menthol's effects on endurance performance, however menthol does not compromise warmth-defence responses during exercise, thus it can be safely applied by athletes from the thermoregulation point of view.
Collapse
Affiliation(s)
- Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Szentagothai Research Centre, Medical School, University of Pecs, 7624, Pecs, Hungary
- Institute of Bioanalysis, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Noemi Gede
- Institute for Translational Medicine, Szentagothai Research Centre, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Szentagothai Research Centre, Medical School, University of Pecs, 7624, Pecs, Hungary
- Department of Translational Medicine, First Department of Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Zsolt Lohinai
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, 1088, Budapest, Hungary
| | - Margit Solymar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Kasidid Ruksakiet
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, 1088, Budapest, Hungary
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, 1089, Budapest, Hungary
| | - Gabor Varga
- Department of Oral Biology, Faculty of Dentistry, Semmelweis University, 1089, Budapest, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary.
| |
Collapse
|
48
|
Ulrich M, Wissenbach U, Thiel G. The super-cooling compound icilin stimulates c-Fos and Egr-1 expression and activity involving TRPM8 channel activation, Ca2+ ion influx and activation of the ternary complex factor Elk-1. Biochem Pharmacol 2020; 177:113936. [DOI: 10.1016/j.bcp.2020.113936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
|
49
|
Silva H. Current Knowledge on the Vascular Effects of Menthol. Front Physiol 2020; 11:298. [PMID: 32317987 PMCID: PMC7154148 DOI: 10.3389/fphys.2020.00298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Menthol is a monoterpene alcohol, widely used in several food and healthcare products for its particular odor and flavor. For some decades, menthol has been known to act on the vasculature directly in the endothelium and vascular smooth muscle, with recent studies showing that it also evokes an indirect vascular response via sensory fibers. The mechanisms underlying menthol's vascular action are complex due to the diversity of cellular targets, to the interplay between signaling pathways and to the variability in terms of response. Menthol can evoke either a perfusion increase or decrease in vivo in different vascular territories, an observation that warrants a critical discussion. Menthol vascular actions in vivo seem to depend on whether the vascular territory under analysis has been directly provoked with menthol or is located deep/distant to the application site. Menthol increases perfusion of directly provoked skin regions due to a complex interplay of increased nitric oxide (NO), endothelium-derived hyperpolarization factors (EDHFs) and sensory nerve responses. In non-provoked vascular beds menthol decreases perfusion which might be attributed to heat-conservation sympathetically-mediated vasoconstriction, although an increase in tissue evaporative heat loss due the formulation ethanol may also play a role. There is increasing evidence that several of menthol's cellular targets are involved in cardiovascular diseases, such as hypertension. Thus menthol and pharmacologically-similar drugs can play important preventive and therapeutic roles, which merits further investigation.
Collapse
Affiliation(s)
- Henrique Silva
- CBIOS - Universidade Lusófona’s Research Center for Biosciences and Health Technologies, Lisboa, Portugal
- Pharmacol. Sc Depart - Universidade de Lisboa, Faculty of Pharmacy, Lisboa, Portugal
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
50
|
Mai TC, Delanaud S, Bach V, Braun A, Pelletier A, de Seze R. Effect of non-thermal radiofrequency on body temperature in mice. Sci Rep 2020; 10:5724. [PMID: 32235895 PMCID: PMC7109028 DOI: 10.1038/s41598-020-62789-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/28/2020] [Indexed: 11/09/2022] Open
Abstract
Communication technologies based on radiofrequency (RF) propagation bring great benefits to our daily life. However, their rapid expansion raises concerns about possible impacts on public health. At intensity levels below the threshold to produce thermal effects, RF exposure has also recently been reported to elicit biological effects, resembling reactions to cold. The objective of the present study was to investigate the effects of non-thermal RF on body temperature in mice and the related mechanisms. 3-months-old C57BL/6 J mice were exposed to a continuous RF signal at 900 MHz, 20 ± 5 V.m-1 for 7 consecutive days, twice per day during the light phase, for one hour each time. The SAR was 0.16 ± 0.10 W.kg-1. We showed that body temperature patterns in mice change synchronously with the RF exposure periods. Average body temperature in the light phase in the exposed group was higher than in the control group. The expression of the TRPM8 gene was not affected by RF in trigeminal ganglia. Furthermore, the injection of a TRPM8 antagonist did not induce a temperature decrease in exposed mice, as this was the case for sham-controls. These findings indicate that 900 MHz RF exposure at non-thermal level produce a physiological effect on body temperature in mice. However, the involvement of TRPM8 receptors in the mechanism by which RF induced changes in body temperature of mice which remains to be further explored. It must then be assessed if this effect is extrapolable to man, and if this could lead to consequences on health.
Collapse
Affiliation(s)
- Thi Cuc Mai
- INERIS, Experimental Toxicology Unit, National Institute of Industrial Environment and Risks, Parc technologique Alata, Verneuil-en-Halatte, France. .,PériTox Laboratory, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France.
| | - Stéphane Delanaud
- PériTox Laboratory, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Véronique Bach
- PériTox Laboratory, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Anne Braun
- INERIS, Experimental Toxicology Unit, National Institute of Industrial Environment and Risks, Parc technologique Alata, Verneuil-en-Halatte, France
| | - Amandine Pelletier
- PériTox Laboratory, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - René de Seze
- INERIS, Experimental Toxicology Unit, National Institute of Industrial Environment and Risks, Parc technologique Alata, Verneuil-en-Halatte, France
| |
Collapse
|