1
|
Yu SP, Choi E, Jiang MQ, Wei L. Acute and chronic excitotoxicity in ischemic stroke and late-onset Alzheimer's disease. Neural Regen Res 2025; 20:1981-1988. [PMID: 39101641 PMCID: PMC11691467 DOI: 10.4103/nrr.nrr-d-24-00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Stroke and Alzheimer's disease are common neurological disorders and often occur in the same individuals. The comorbidity of the two neurological disorders represents a grave health threat to older populations. This review presents a brief background of the development of novel concepts and their clinical potentials. The activity of glutamatergic N-methyl-D-aspartate receptors and N-methyl-D-aspartate receptor-mediated Ca 2+ influx is critical for neuronal function. An ischemic insult induces prompt and excessive glutamate release and drastic increases of intracellular Ca 2+ mainly via N-methyl-D-aspartate receptors, particularly of those at the extrasynaptic site. This Ca 2+ -evoked neuronal cell death in the ischemic core is dominated by necrosis within a few hours and days known as acute excitotoxicity. Furthermore, mild but sustained Ca 2+ increases under neurodegenerative conditions such as in the distant penumbra of the ischemic brain and early stages of Alzheimer's disease are not immediately toxic, but gradually set off deteriorating Ca 2+ -dependent signals and neuronal cell loss mostly because of activation of programmed cell death pathways. Based on the Ca 2+ hypothesis of Alzheimer's disease and recent advances, this Ca 2+ -activated "silent" degenerative excitotoxicity evolves from years to decades and is recognized as a unique slow and chronic neuropathogenesis. The N-methyl-D-aspartate receptor subunit GluN3A, primarily at the extrasynaptic site, serves as a gatekeeper for the N-methyl-D-aspartate receptor activity and is neuroprotective against both acute and chronic excitotoxicity. Ischemic stroke and Alzheimer's disease, therefore, share an N-methyl-D-aspartate receptor- and Ca 2+ -mediated mechanism, although with much different time courses. It is thus proposed that early interventions to control Ca 2+ homeostasis at the preclinical stage are pivotal for individuals who are susceptible to sporadic late-onset Alzheimer's disease and Alzheimer's disease-related dementia. This early treatment simultaneously serves as a preconditioning therapy against ischemic stroke that often attacks the same individuals during abnormal aging.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Emily Choi
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Q. Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Tavalin SJ. Familial Alzheimer's disease mutations in amyloid precursor protein impair calcineurin signaling to NMDA receptors. J Biol Chem 2025; 301:108147. [PMID: 39732167 PMCID: PMC11910330 DOI: 10.1016/j.jbc.2024.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024] Open
Abstract
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca2+ entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid-β peptides, is a hotspot for FAD mutations. This region bears similarity to a binding motif for calcineurin (CaN), a Ca2+/calmodulin-dependent phosphatase. Interaction assays confirm that APP associates with CaN in native tissue as well as in a heterologous expression system. This capacity to bind CaN extends to APP family members amyloid precursor-like protein 1 and amyloid precursor-like protein 2 (APLP1 and APLP2, respectively). Electrophysiological analysis demonstrates that APP and its family members limit NMDAR activity, in a manner consistent with CaN-dependent regulation of NMDAR desensitization. FAD mutations, in this region of APP, impair this regulation and consequently enhance NMDAR activity. Thus, by altering the landscape for CaN regulation of NMDA receptors, FAD mutations in APP may contribute to faulty information processing by modifying the dynamic range and temporal window of a critical signal for synaptic plasticity.
Collapse
Affiliation(s)
- Steven J Tavalin
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, USA.
| |
Collapse
|
3
|
Rahmati-Dehkordi F, Khanifar H, Najari N, Tamtaji Z, Talebi Taheri A, Aschner M, Shafiee Ardestani M, Mirzaei H, Dadgostar E, Nabavizadeh F, Tamtaji OR. Therapeutic Potential of Fingolimod on Psychological Symptoms and Cognitive Function in Neuropsychiatric and Neurological Disorders. Neurochem Res 2024; 49:2668-2681. [PMID: 38918332 DOI: 10.1007/s11064-024-04199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Neuropsychiatric and neurological disorders pose a significant global health burden, highlighting the need for innovative therapeutic approaches. Fingolimod (FTY720), a common drug to treat multiple sclerosis, has shown promising efficacy against various neuropsychiatric and neurological disorders. Fingolimod exerts its neuroprotective effects by targeting multiple cellular and molecular processes, such as apoptosis, oxidative stress, neuroinflammation, and autophagy. By modulating Sphingosine-1-Phosphate Receptor activity, a key regulator of immune cell trafficking and neuronal function, it also affects synaptic activity and strengthens memory formation. In the hippocampus, fingolimod decreases glutamate levels and increases GABA levels, suggesting a potential role in modulating synaptic transmission and neuronal excitability. Taken together, fingolimod has emerged as a promising neuroprotective agent for neuropsychiatric and neurological disorders. Its broad spectrum of cellular and molecular effects, including the modulation of apoptosis, oxidative stress, neuroinflammation, autophagy, and synaptic plasticity, provides a comprehensive therapeutic approach for these debilitating conditions. Further research is warranted to fully elucidate the mechanisms of action of fingolimod and optimize its use in the treatment of neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Khanifar
- Department of Internal Medicine, Shahre-kord University of Medical Sciences, Shahre-kord, Iran
| | - Nazanin Najari
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Mehdi Shafiee Ardestani
- Department of Radio Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Escamilla S, Sáez-Valero J, Cuchillo-Ibáñez I. NMDARs in Alzheimer's Disease: Between Synaptic and Extrasynaptic Membranes. Int J Mol Sci 2024; 25:10220. [PMID: 39337704 PMCID: PMC11431980 DOI: 10.3390/ijms251810220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors with key roles in synaptic communication and plasticity. The activation of synaptic NMDARs initiates plasticity and stimulates cell survival. In contrast, the activation of extrasynaptic NMDARs can promote cell death underlying a potential mechanism of neurodegeneration occurring in Alzheimer's disease (AD). The distribution of synaptic versus extrasynaptic NMDARs has emerged as an important parameter contributing to neuronal dysfunction in neurodegenerative diseases including AD. Here, we review the concept of extrasynaptic NMDARs, as this population is present in numerous neuronal cell membranes but also in the membranes of various non-neuronal cells. Previous evidence regarding the membranal distribution of synaptic versus extrasynaptic NMDRs in relation to AD mice models and in the brains of AD patients will also be reviewed.
Collapse
Affiliation(s)
- Sergio Escamilla
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Inmaculada Cuchillo-Ibáñez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), 03550 Sant Joan d’Alacant, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), 03550 Sant Joan d’Alacant, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
5
|
Raïch I, Lillo J, Rebassa JB, Capó T, Cordomí A, Reyes-Resina I, Pallàs M, Navarro G. Dual Role of NMDAR Containing NR2A and NR2B Subunits in Alzheimer's Disease. Int J Mol Sci 2024; 25:4757. [PMID: 38731978 PMCID: PMC11084423 DOI: 10.3390/ijms25094757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD) is the main cause of dementia worldwide. Given that learning and memory are impaired in this pathology, NMDA receptors (NMDARs) appear as key players in the onset and progression of the disease. NMDARs are glutamate receptors, mainly located at the post-synapse, which regulate voltage-dependent influx of calcium into the neurons. They are heterotetramers, and there are different subunits that can be part of the receptors, which are usually composed of two obligatory GluN1 subunits plus either two NR2A or two NR2B subunits. NR2A are mostly located at the synapse, and their activation is involved in the expression of pro-survival genes. Conversely, NR2B are mainly extrasynaptic, and their activation has been related to cell death and neurodegeneration. Thus, activation of NR2A and/or inactivation of NR2B-containing NMDARS has been proposed as a therapeutic strategy to treat AD. Here, we wanted to investigate the main differences between both subunits signalling in neuronal primary cultures of the cortex and hippocampus. It has been observed that Aβ induces a significant increase in calcium release and also in MAPK phosphorylation signalling in NR2B-containing NMDAR in cortical and hippocampal neurons. However, while NR2A-containing NMDAR decreases neuronal death and favours cell viability after Aβ treatment, NR2B-containing NMDAR shows higher levels of cytotoxicity and low levels of neuronal survival. Finally, it has been detected that NMDAR has no effect on pTau axonal transport. The present results demonstrate a different role between GluNA and GluNB subunits in neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
- Iu Raïch
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Jaume Lillo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Arnau Cordomí
- Bioinformatics, Escola Superior de Comerç Internacional-University Pompeu Fabra (ESCI-UPF), 08003 Barcelona, Spain;
| | - Irene Reyes-Resina
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Mercè Pallàs
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Av Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain; (I.R.); (J.L.); (J.B.R.); (I.R.-R.)
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
6
|
Ren Q, Wang S, Li J, Cao K, Zhuang M, Wu M, Geng J, Jia Z, Xie W, Liu A. Novel Social Stimulation Ameliorates Memory Deficit in Alzheimer's Disease Model through Activating α-Secretase. J Neurosci 2024; 44:e1689232024. [PMID: 38418221 PMCID: PMC10957211 DOI: 10.1523/jneurosci.1689-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
As the most common form of dementia in the world, Alzheimer's disease (AD) is a progressive neurological disorder marked by cognitive and behavioral impairment. According to previous researches, abundant social connections shield against dementia. However, it is still unclear how exactly social interactions benefit cognitive abilities in people with AD and how this process is used to increase their general cognitive performance. In this study, we found that single novel social (SNS) stimulation promoted c-Fos expression and increased the protein levels of mature ADAM10/17 and sAPPα in the ventral hippocampus (vHPC) of wild-type (WT) mice, which are hippocampal dorsal CA2 (dCA2) neuron activity and vHPC NMDAR dependent. Additionally, we discovered that SNS caused similar changes in an AD model, FAD4T mice, and these alterations could be reversed by α-secretase inhibitor. Furthermore, we also found that multiple novel social (MNS) stimulation improved synaptic plasticity and memory impairments in both male and female FAD4T mice, accompanied by α-secretase activation and Aβ reduction. These findings provide insight into the process underpinning how social interaction helps AD patients who are experiencing cognitive decline, and we also imply that novel social interaction and activation of the α-secretase may be preventative and therapeutic in the early stages of AD.
Collapse
Affiliation(s)
- Qiaoyun Ren
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Susu Wang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Junru Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Kun Cao
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Mei Zhuang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Miao Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Junhua Geng
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
- Jiangsu Co-innovation Center of Neuroregeneration, Southeast University, Nanjing 210096, China
| | - An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Institute for Brain and Intelligence, Southeast University, Nanjing 210096, China
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Shenzhen Research Institute, Southeast University, Shenzhen 518063, China
| |
Collapse
|
7
|
Im E, Jiang Y, Stavrides PH, Darji S, Erdjument-Bromage H, Neubert TA, Choi JY, Wegiel J, Lee JH, Nixon RA. Lysosomal dysfunction in Down syndrome and Alzheimer mouse models is caused by v-ATPase inhibition by Tyr 682-phosphorylated APP βCTF. SCIENCE ADVANCES 2023; 9:eadg1925. [PMID: 37494443 PMCID: PMC10371027 DOI: 10.1126/sciadv.adg1925] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Lysosome dysfunction arises early and propels Alzheimer's disease (AD). Herein, we show that amyloid precursor protein (APP), linked to early-onset AD in Down syndrome (DS), acts directly via its β-C-terminal fragment (βCTF) to disrupt lysosomal vacuolar (H+)-adenosine triphosphatase (v-ATPase) and acidification. In human DS fibroblasts, the phosphorylated 682YENPTY internalization motif of APP-βCTF binds selectively within a pocket of the v-ATPase V0a1 subunit cytoplasmic domain and competitively inhibits association of the V1 subcomplex of v-ATPase, thereby reducing its activity. Lowering APP-βCTF Tyr682 phosphorylation restores v-ATPase and lysosome function in DS fibroblasts and in vivo in brains of DS model mice. Notably, lowering APP-βCTF Tyr682 phosphorylation below normal constitutive levels boosts v-ATPase assembly and activity, suggesting that v-ATPase may also be modulated tonically by phospho-APP-βCTF. Elevated APP-βCTF Tyr682 phosphorylation in two mouse AD models similarly disrupts v-ATPase function. These findings offer previously unknown insight into the pathogenic mechanism underlying faulty lysosomes in all forms of AD.
Collapse
Affiliation(s)
- Eunju Im
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Philip H. Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A. Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jun Yong Choi
- Department of Chemistry and Biochemistry, Queens College, Queens, NY 11367, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
8
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Haddow K, Kind PC, Hardingham GE. NMDA Receptor C-Terminal Domain Signalling in Development, Maturity, and Disease. Int J Mol Sci 2022; 23:ijms231911392. [PMID: 36232696 PMCID: PMC9570437 DOI: 10.3390/ijms231911392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
The NMDA receptor is a Ca2+-permeant glutamate receptor which plays key roles in health and disease. Canonical NMDARs contain two GluN2 subunits, of which 2A and 2B are predominant in the forebrain. Moreover, the relative contribution of 2A vs. 2B is controlled both developmentally and in an activity-dependent manner. The GluN2 subtype influences the biophysical properties of the receptor through difference in their N-terminal extracellular domain and transmembrane regions, but they also have large cytoplasmic Carboxyl (C)-terminal domains (CTDs) which have diverged substantially during evolution. While the CTD identity does not influence NMDAR subunit specific channel properties, it determines the nature of CTD-associated signalling molecules and has been implicated in mediating the control of subunit composition (2A vs. 2B) at the synapse. Historically, much of the research into the differential function of GluN2 CTDs has been conducted in vitro by over-expressing mutant subunits, but more recently, the generation of knock-in (KI) mouse models have allowed CTD function to be probed in vivo and in ex vivo systems without heterologous expression of GluN2 mutants. In some instances, findings involving KI mice have been in disagreement with models that were proposed based on earlier approaches. This review will examine the current research with the aim of addressing these controversies and how methodology may contribute to differences between studies. We will also discuss the outstanding questions regarding the role of GluN2 CTD sequences in regulating NMDAR subunit composition, as well as their relevance to neurodegenerative disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kirsty Haddow
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Peter C. Kind
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Correspondence:
| |
Collapse
|
11
|
Lopez Lloreda C, Chowdhury S, Ghura S, Alvarez-Periel E, Jordan-Sciutto K. HIV-Associated Insults Modulate ADAM10 and Its Regulator Sirtuin1 in an NMDA Receptor-Dependent Manner. Cells 2022; 11:cells11192962. [PMID: 36230925 PMCID: PMC9564041 DOI: 10.3390/cells11192962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Neurologic deficits associated with human immunodeficiency virus (HIV) infection impact about 50% of persons with HIV (PWH). These disorders, termed HIV-associated neurocognitive disorders (HAND), possess neuropathologic similarities to Alzheimer’s disease (AD), including intra- and extracellular amyloid-beta (Aβ) peptide aggregates. Aβ peptide is produced through cleavage of the amyloid precursor protein (APP) by the beta secretase BACE1. However, this is precluded by cleavage of APP by the non-amyloidogenic alpha secretase, ADAM10. Previous studies have found that BACE1 expression was increased in the CNS of PWH with HAND as well as animal models of HAND. Further, BACE1 contributed to neurotoxicity. Yet in in vitro models, the role of ADAM10 and its potential regulatory mechanisms had not been examined. To address this, primary rat cortical neurons were treated with supernatants from HIV-infected human macrophages (HIV/MDMs). We found that HIV/MDMs decreased levels of both ADAM10 and Sirtuin1 (SIRT1), a regulator of ADAM10 that is implicated in aging and in AD. Both decreases were blocked with NMDA receptor antagonists, and treatment with NMDA was sufficient to induce reduction in ADAM10 and SIRT1 protein levels. Furthermore, decreases in SIRT1 protein levels were observed at an earlier time point than the decreases in ADAM10 protein levels, and the reduction in SIRT1 was reversed by proteasome inhibitor MG132. This study indicates that HIV-associated insults, particularly excitotoxicity, contribute to changes of APP secretases by downregulating levels of ADAM10 and its regulator.
Collapse
Affiliation(s)
- Claudia Lopez Lloreda
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Chowdhury
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shivesh Ghura
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elena Alvarez-Periel
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelly Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
12
|
Greenwood EK, Angelova DM, Büchner HMI, Brown DR. The AICD fragment of APP initiates a FoxO3a mediated response via FANCD2. Mol Cell Neurosci 2022; 122:103760. [PMID: 35901928 DOI: 10.1016/j.mcn.2022.103760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022] Open
Abstract
The amyloid precursor protein (APP) is a cell surface protein of uncertain function that is notable for being the parent protein of beta-amyloid. Research around this protein has focussed heavily on the link to Alzheimer's disease and neurodegeneration. However, there is increasing evidence that APP may be linked to neuronal loss through mechanisms independent of beta-amyloid. FoxO3a is a transcription factor associated with neuronal longevity and apoptosis. In neurons, FoxO3a is associated with cell death through pathways that include BIM, a BCL-2 family member. In this study we have shown that APP overexpression increased the cellular levels and activity of FoxO3a. This increased expression and activity is not a result of decreased phosphorylation but is more likely a result of increased nuclear stability due to increased levels of FANCD2, a binding partner of FoxO3a. The changes caused by APP overexpression were shown to be due to the AICD fragment of APP possibly directly inducing transcription increase in FANCD2. These findings strengthen the link between APP metabolism and FoxO3a neuronal activity. This link may be crucial in better understanding the cellular role of APP and its link to neurodegeneration and aging.
Collapse
Affiliation(s)
| | | | | | - David R Brown
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
13
|
Ren W, Lou H, Ren X, Wen G, Wu X, Xia X, Wang S, Yu X, Yan L, Zhang G, Yao J, Lu Y, Wu X. Ketamine promotes the amyloidogenic pathway by regulating endosomal pH. Toxicology 2022; 471:153163. [PMID: 35378374 DOI: 10.1016/j.tox.2022.153163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Ketamine is an anesthetic and addictive drug that can cause cognitive dysfunction and neuroinflammation. Studies have shown that carboxy-terminal fragment derived from β-secretase (CTF-β) and amyloid beta (Aβ), the amyloidogenic products of amyloid precursor protein (APP), can also induce neuroinflammation and impair cognitive function. However, it remains unclear whether ketamine regulates the amyloidogenic pathway. In the endosome, APP is cleaved by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), whose activity is influenced by pH. Endosomal acidification is mainly regulated by sodium hydrogen exchanger 6 (NHE6), which leaks protons out of endosomes, and vacuolar proton translocating ATPases (V-ATPase), which pump protons into endosomes. Therefore, we hypothesized that ketamine lowers the endosomal pH by reducing the endosomal NHE6 protein level, and this hyperacidification promotes the amyloidogenic pathway. We set up C57BL/6 J mouse models using 10, 20, 40, 80, and 100 mg/kg ketamine administration and SH-SY5Y cell models using 1, 10, 100, and 1000 μM ketamine administration to investigate its effects on the amyloidogenic pathway at different doses. Western blotting results showed that 100 mg/kg ketamine treatment in vivo and 1000 μM ketamine treatment in vitro increased endosomal BACE1 and CTF-β protein levels and reduced endosomal NHE6 and APP protein levels. The endosomal accumulation of BACE1 caused by ketamine administration was also observed using confocal imaging. Moreover, flow cytometry indicated that ketamine treatment lowered the endosomal pH value of SH-SY5Y cells. Later, cells were pretreated with monensin to restore the endosomal pH. Monensin did not affect amyloidogenic-related proteins or NHE6 directly; therefore, ketamine-promoted endosomal amyloidogenic processing and BACE1 accumulation were depleted by restoring endosomal acidity through monensin pretreatment. Finally, knockdown of NHE6 promoted the amyloidogenic pathway similarly and prevented further enhancement by ketamine. These results indicated that the effects of ketamine on the amyloidogenic pathway were dependent on the reduction of NHE6 and endosomal pH.
Collapse
Affiliation(s)
- Weishu Ren
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Haoyang Lou
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xinghua Ren
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shuying Wang
- Department of Anesthesiology, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaojin Yu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lei Yan
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Guohua Zhang
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Yan Lu
- Key Laboratory of Health Ministry in Congenital Malformation, Affiliated Shengjing Hospital of China Medical University, Shenyang, China.
| | - Xu Wu
- School of Forensic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Eggert S, Kins S, Endres K, Brigadski T. Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease. Biol Chem 2022; 403:43-71. [PMID: 34619027 DOI: 10.1515/hsz-2021-0330] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important modulator for a variety of functions in the central nervous system (CNS). A wealth of evidence, such as reduced mRNA and protein level in the brain, cerebrospinal fluid (CSF), and blood samples of Alzheimer's disease (AD) patients implicates a crucial role of BDNF in the progression of this disease. Especially, processing and subcellular localization of BDNF and its receptors TrkB and p75 are critical determinants for survival and death in neuronal cells. Similarly, the amyloid precursor protein (APP), a key player in Alzheimer's disease, and its cleavage fragments sAPPα and Aβ are known for their respective roles in neuroprotection and neuronal death. Common features of APP- and BDNF-signaling indicate a causal relationship in their mode of action. However, the interconnections of APP- and BDNF-signaling are not well understood. Therefore, we here discuss dimerization properties, localization, processing by α- and γ-secretase, relevance of the common interaction partners TrkB, p75, sorLA, and sortilin as well as shared signaling pathways of BDNF and sAPPα.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| |
Collapse
|
15
|
Cuestas Torres DM, Cardenas FP. Synaptic plasticity in Alzheimer's disease and healthy aging. Rev Neurosci 2021; 31:245-268. [PMID: 32250284 DOI: 10.1515/revneuro-2019-0058] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
The strength and efficiency of synaptic connections are affected by the environment or the experience of the individual. This property, called synaptic plasticity, is directly related to memory and learning processes and has been modeled at the cellular level. These types of cellular memory and learning models include specific stimulation protocols that generate a long-term strengthening of the synapses, called long-term potentiation, or a weakening of the said long-term synapses, called long-term depression. Although, for decades, researchers have believed that the main cause of the cognitive deficit that characterizes Alzheimer's disease (AD) and aging was the loss of neurons, the hypothesis of an imbalance in the cellular and molecular mechanisms of synaptic plasticity underlying this deficit is currently widely accepted. An understanding of the molecular and cellular changes underlying the process of synaptic plasticity during the development of AD and aging will direct future studies to specific targets, resulting in the development of much more efficient and specific therapeutic strategies. In this review, we classify, discuss, and describe the main findings related to changes in the neurophysiological mechanisms of synaptic plasticity in excitatory synapses underlying AD and aging. In addition, we suggest possible mechanisms in which aging can become a high-risk factor for the development of AD and how its development could be prevented or slowed.
Collapse
Affiliation(s)
- Diana Marcela Cuestas Torres
- Departamento de Psicología and Departamento de Biología, Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Cra 1 N° 18A-12, CP 111711, Bogotá, Colombia
| | - Fernando P Cardenas
- Departamento de Psicología, Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Cra 1 N° 18A-12, CP 111711, Bogotá, Colombia
| |
Collapse
|
16
|
Saray H, Süer C, Koşar B, Tan B, Dursun N. Rho-associated kinases contribute to the regulation of tau phosphorylation and amyloid metabolism during neuronal plasticity. Pharmacol Rep 2021; 73:1303-1314. [PMID: 34060063 DOI: 10.1007/s43440-021-00279-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Neural plasticity under physiological condition develops together with normal tau phosphorylation and amyloid precursor protein (APP) processing. Since restoration of PI3-kinase signaling has therapeutic potential in Alzheimer's disease, we investigated plasticity-related changes in tau and APP metabolism by the selective Rho-kinase inhibitor fasudil. METHODS Field potentials composed of a field excitatory post-synaptic potential (fEPSP) and a population spike (PS) were recorded from a granule cell layer of the dentate gyrus. Plasticity of synaptic strength and neuronal function was induced by strong tetanic stimulation (HFS) and low-frequency stimulation (LFS) patterns. Infusions of saline or fasudil were given for 1 h starting from the application of the induction protocols. Total and phosphorylated tau levels and soluble APPα levels were measured in the hippocampus, which was removed after at least 1 h post-induction period. RESULTS Fasudil infusion resulted in attenuation of fEPSP slope and PS amplitude in response to both HFS and LFS. Fasudil reduced total tau and phosphorylated tau at residue Thr181 in the HFS-stimulated hippocampus, while Thr231 phosphorylation was reduced by fasudil treatment in the LFS-stimulated hippocampus. Ser416 phosphorylation was increased by fasudil treatment in both HFS- and LFS-stimulated hippocampus. Fasudil significantly increased soluble APPα in LFS-stimulated hippocampus, but not in HFS-stimulated hippocampus. CONCLUSION In light of our findings, we suggest that increased activity of Rho kinase could trigger a mechanism that goes awry during synaptic plasticity which is reversed by a Rho-kinase inhibitor. Thus, Rho-kinase inhibition might be a therapeutic target in cognitive disorders.
Collapse
Affiliation(s)
- Hatice Saray
- Physiology Department of the Medical Faculty, Erciyes University, 38039, Kayseri, Turkey
| | - Cem Süer
- Physiology Department of the Medical Faculty, Erciyes University, 38039, Kayseri, Turkey.
| | - Bilal Koşar
- Physiology Department of the Medical Faculty, Erciyes University, 38039, Kayseri, Turkey
| | - Burak Tan
- Physiology Department of the Medical Faculty, Erciyes University, 38039, Kayseri, Turkey
| | - Nurcan Dursun
- Physiology Department of the Medical Faculty, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
17
|
Tombini M, Assenza G, Ricci L, Lanzone J, Boscarino M, Vico C, Magliozzi A, Di Lazzaro V. Temporal Lobe Epilepsy and Alzheimer's Disease: From Preclinical to Clinical Evidence of a Strong Association. J Alzheimers Dis Rep 2021; 5:243-261. [PMID: 34113782 PMCID: PMC8150253 DOI: 10.3233/adr-200286] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increasing evidence coming from both experimental and humans' studies strongly suggest the existence of a link between epilepsy, in particular temporal lobe epilepsy (TLE), and Alzheimer's disease (AD). Patients with mild cognitive impairment and AD are more prone to have seizures, and seizures seem to facilitate amyloid-β and tau deposits, thus promoting neurodegenerative processes. Consistent with this view, long-lasting drug-resistant TLE and AD have been shown to share several pathological and neuroimaging features. Even if studies addressing prevalence of interictal and subclinical epileptiform activity in these patients are not yet conclusive, their findings raise the possibility that epileptiform activity might negatively impact memory and hasten cognitive decline, either directly or by association with unrecognized silent seizures. In addition, data about detrimental effect of network hyperexcitability in temporal regions in the premorbid and early stages ofADopen up newtherapeutic opportunities for antiseizure medications and/or antiepileptic strategies that might complement or enhance existing therapies, and potentially modify disease progression. Here we provide a review of evidence linking epileptiform activity, network hyperexcitability, and AD, and their role promoting and accelerating neurodegenerative process. Finally, the effects of antiseizure medications on cognition and their optimal administration in patients with AD are summarized.
Collapse
Affiliation(s)
- Mario Tombini
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Giovanni Assenza
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Lorenzo Ricci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Jacopo Lanzone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Marilisa Boscarino
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Carlo Vico
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Alessandro Magliozzi
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
18
|
Yuede CM, Wallace CE, Davis TA, Gardiner WD, Hettinger JC, Edwards HM, Hendrix RD, Doherty BM, Yuede KM, Burstein ES, Cirrito JR. Pimavanserin, a 5HT 2A receptor inverse agonist, rapidly suppresses Aβ production and related pathology in a mouse model of Alzheimer's disease. J Neurochem 2021; 156:658-673. [PMID: 33278025 DOI: 10.1111/jnc.15260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Amyloid-β (Aβ) peptide aggregation into soluble oligomers and insoluble plaques is a precipitating event in the pathogenesis of Alzheimer's disease (AD). Given that synaptic activity can regulate Aβ generation, we postulated that 5HT2A -Rs may regulate Aβ as well. We treated APP/PS1 transgenic mice with the selective 5HT2A inverse agonists M100907 or Pimavanserin systemically and measured brain interstitial fluid (ISF) Aβ levels in real-time using in vivo microdialysis. Both compounds reduced ISF Aβ levels by almost 50% within hours, but had no effect on Aβ levels in 5HT2A -R knock-out mice. The Aβ-lowering effects of Pimavanserin were blocked by extracellular-regulated kinase (ERK) and NMDA receptor inhibitors. Chronic administration of Pimavanserin by subcutaneous osmotic pump to aged APP/PS1 mice significantly reduced CSF Aβ levels and Aβ pathology and improved cognitive function in these mice. Pimavanserin is FDA-approved to treat Parkinson's disease psychosis, and also has been shown to reduce psychosis in a variety of other dementia subtypes including Alzheimer's disease. These data demonstrate that Pimavanserin may have disease-modifying benefits in addition to its efficacy against neuropsychiatric symptoms of Alzheimer's disease. Read the Editorial Highlight for this article on page 560.
Collapse
Affiliation(s)
- Carla M Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Clare E Wallace
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Todd A Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Woodrow D Gardiner
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jane C Hettinger
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Hannah M Edwards
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel D Hendrix
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Brookelyn M Doherty
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Kayla M Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | | | - John R Cirrito
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Orzylowski M, Fujiwara E, Mousseau DD, Baker GB. An Overview of the Involvement of D-Serine in Cognitive Impairment in Normal Aging and Dementia. Front Psychiatry 2021; 12:754032. [PMID: 34707525 PMCID: PMC8542907 DOI: 10.3389/fpsyt.2021.754032] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Dementia, of which Alzheimer's disease (AD) is the most common form, is characterized by progressive cognitive deterioration, including profound memory loss, which affects functioning in many aspects of life. Although cognitive deterioration is relatively common in aging and aging is a risk factor for AD, the condition is not necessarily a part of the aging process. The N-methyl-D-aspartate glutamate receptor (NMDAR) and its co-agonist D-serine are currently of great interest as potential important contributors to cognitive function in normal aging and dementia. D-Serine is necessary for activation of the NMDAR and in maintenance of long-term potentiation (LTP) and is involved in brain development, neuronal connectivity, synaptic plasticity and regulation of learning and memory. In this paper, we review evidence, from both preclinical and human studies, on the involvement of D-serine (and the enzymes involved in its metabolism) in regulation of cognition. Potential mechanisms of action of D-serine are discussed in the context of normal aging and in dementia, as is the potential for using D-serine as a potential biomarker and/or therapeutic agent in dementia. Although there is some controversy in the literature, it has been proposed that in normal aging there is decreased expression of serine racemase and decreased levels of D-serine and down-regulation of NMDARs, resulting in impaired synaptic plasticity and deficits in learning and memory. In contrast, in AD there appears to be activation of serine racemase, increased levels of D-serine and overstimulation of NMDARs, resulting in cytotoxicity, synaptic deficits, and dementia.
Collapse
Affiliation(s)
- Magdalena Orzylowski
- Villa Caritas Geriatric Psychiatry Hospital, Edmonton, AB, Canada.,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Esther Fujiwara
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Darrell D Mousseau
- Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Fuchsberger T, Yuste R, Martinez-Bellver S, Blanco-Gandia MC, Torres-Cuevas I, Blasco-Serra A, Arango R, Miñarro J, Rodríguez-Arias M, Teruel-Marti V, Lloret A, Viña J. Oral Monosodium Glutamate Administration Causes Early Onset of Alzheimer's Disease-Like Pathophysiology in APP/PS1 Mice. J Alzheimers Dis 2020; 72:957-975. [PMID: 31658055 DOI: 10.3233/jad-190274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glutamate excitotoxicity has long been related to Alzheimer's disease (AD) pathophysiology, and it has been shown to affect the major AD-related hallmarks, amyloid-β peptide (Aβ) accumulation and tau phosphorylation (p-tau). We investigated whether oral administration of monosodium glutamate (MSG) has effects in a murine model of AD, the double transgenic mice APP/PS1. We found that AD pathogenic factors appear earlier in APP/PS1 when supplemented with MSG, while wildtype mice were essentially not affected. Aβ and p-tau levels were increased in the hippocampus in young APP/PS1 animals upon MSG administration. This was correlated with increased Cdk5-p25 levels. Furthermore, in these mice, we observed a decrease in the AMPA receptor subunit GluA1 and they had impaired long-term potentiation. The Hebb-Williams Maze revealed that they had memory deficits. We show here for the first time that oral MSG supplementation can accelerate AD-like pathophysiology in a mouse model of AD.
Collapse
Affiliation(s)
- Tanja Fuchsberger
- Department of Physiology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Raquel Yuste
- Department of Physiology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Sergio Martinez-Bellver
- Department of Anatomy and Human Embriology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | | | | | - Arantxa Blasco-Serra
- Department of Anatomy and Human Embriology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Román Arango
- Department of Anatomy and Human Embriology, Faculty of Medicine, Universitat de València, Valencia, Spain.,Department of Computer Science, School of Engineering ETSE, Universitat de València, Burjassot, Spain
| | - Jose Miñarro
- Department of Psychobiology, Faculty of Psycology, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psycology, Universitat de València, Valencia, Spain
| | - Vicent Teruel-Marti
- Department of Anatomy and Human Embriology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Jose Viña
- Department of Physiology, Faculty of Medicine, Universitat de València, Valencia, Spain
| |
Collapse
|
21
|
Cirrito JR, Wallace CE, Yan P, Davis TA, Gardiner WD, Doherty BM, King D, Yuede CM, Lee JM, Sheline YI. Effect of escitalopram on Aβ levels and plaque load in an Alzheimer mouse model. Neurology 2020; 95:e2666-e2674. [PMID: 32913022 PMCID: PMC7713734 DOI: 10.1212/wnl.0000000000010733] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/12/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Several neurotransmitter receptors activate signaling pathways that alter processing of the amyloid precursor protein (APP) into β-amyloid (Aβ). Serotonin signaling through a subset of serotonin receptors suppresses Aβ generation. We proposed that escitalopram, the most specific selective serotonin reuptake inhibitor (SSRI) that inhibits the serotonin transporter SERT, would suppress Aβ levels in mice. OBJECTIVES We hypothesized that acute treatment with escitalopram would reduce Aβ generation, which would be reflected chronically with a significant reduction in Aβ plaque load. METHODS We performed in vivo microdialysis and in vivo 2-photon imaging to assess changes in brain interstitial fluid (ISF) Aβ and Aβ plaque size over time, respectively, in the APP/presenilin 1 mouse model of Alzheimer disease treated with vehicle or escitalopram. We also chronically treated mice with escitalopram to determine the effect on plaques histologically. RESULTS Escitalopram acutely reduced ISF Aβ by 25% by increasing α-secretase cleavage of APP. Chronic administration of escitalopram significantly reduced plaque load by 28% and 34% at 2.5 and 5 mg/d, respectively. Escitalopram at 5 mg/kg did not remove existing plaques, but completely arrested individual plaque growth over time. CONCLUSIONS Escitalopram significantly reduced Aβ in mice, similar to previous findings in humans treated with acute dosing of an SSRI.
Collapse
Affiliation(s)
- John R Cirrito
- From the Department of Neurology (J.R.C., T.A.D., W.D.G., B.M.D., D.K., C.M.Y., J.-M.L.), The Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO; Center for Neuromodulation in Depression and Stress, Department of Psychiatry (C.E.W., P.Y., Y.I.S.), and Departments of Psychiatry, Radiology, and Neurology (Y.I.S.), University of Pennsylvania, Philadelphia.
| | - Clare E Wallace
- From the Department of Neurology (J.R.C., T.A.D., W.D.G., B.M.D., D.K., C.M.Y., J.-M.L.), The Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO; Center for Neuromodulation in Depression and Stress, Department of Psychiatry (C.E.W., P.Y., Y.I.S.), and Departments of Psychiatry, Radiology, and Neurology (Y.I.S.), University of Pennsylvania, Philadelphia
| | - Ping Yan
- From the Department of Neurology (J.R.C., T.A.D., W.D.G., B.M.D., D.K., C.M.Y., J.-M.L.), The Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO; Center for Neuromodulation in Depression and Stress, Department of Psychiatry (C.E.W., P.Y., Y.I.S.), and Departments of Psychiatry, Radiology, and Neurology (Y.I.S.), University of Pennsylvania, Philadelphia
| | - Todd A Davis
- From the Department of Neurology (J.R.C., T.A.D., W.D.G., B.M.D., D.K., C.M.Y., J.-M.L.), The Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO; Center for Neuromodulation in Depression and Stress, Department of Psychiatry (C.E.W., P.Y., Y.I.S.), and Departments of Psychiatry, Radiology, and Neurology (Y.I.S.), University of Pennsylvania, Philadelphia
| | - Woodrow D Gardiner
- From the Department of Neurology (J.R.C., T.A.D., W.D.G., B.M.D., D.K., C.M.Y., J.-M.L.), The Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO; Center for Neuromodulation in Depression and Stress, Department of Psychiatry (C.E.W., P.Y., Y.I.S.), and Departments of Psychiatry, Radiology, and Neurology (Y.I.S.), University of Pennsylvania, Philadelphia
| | - Brookelyn M Doherty
- From the Department of Neurology (J.R.C., T.A.D., W.D.G., B.M.D., D.K., C.M.Y., J.-M.L.), The Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO; Center for Neuromodulation in Depression and Stress, Department of Psychiatry (C.E.W., P.Y., Y.I.S.), and Departments of Psychiatry, Radiology, and Neurology (Y.I.S.), University of Pennsylvania, Philadelphia
| | - Diana King
- From the Department of Neurology (J.R.C., T.A.D., W.D.G., B.M.D., D.K., C.M.Y., J.-M.L.), The Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO; Center for Neuromodulation in Depression and Stress, Department of Psychiatry (C.E.W., P.Y., Y.I.S.), and Departments of Psychiatry, Radiology, and Neurology (Y.I.S.), University of Pennsylvania, Philadelphia
| | - Carla M Yuede
- From the Department of Neurology (J.R.C., T.A.D., W.D.G., B.M.D., D.K., C.M.Y., J.-M.L.), The Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO; Center for Neuromodulation in Depression and Stress, Department of Psychiatry (C.E.W., P.Y., Y.I.S.), and Departments of Psychiatry, Radiology, and Neurology (Y.I.S.), University of Pennsylvania, Philadelphia
| | - Jin-Moo Lee
- From the Department of Neurology (J.R.C., T.A.D., W.D.G., B.M.D., D.K., C.M.Y., J.-M.L.), The Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO; Center for Neuromodulation in Depression and Stress, Department of Psychiatry (C.E.W., P.Y., Y.I.S.), and Departments of Psychiatry, Radiology, and Neurology (Y.I.S.), University of Pennsylvania, Philadelphia
| | - Yvette I Sheline
- From the Department of Neurology (J.R.C., T.A.D., W.D.G., B.M.D., D.K., C.M.Y., J.-M.L.), The Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO; Center for Neuromodulation in Depression and Stress, Department of Psychiatry (C.E.W., P.Y., Y.I.S.), and Departments of Psychiatry, Radiology, and Neurology (Y.I.S.), University of Pennsylvania, Philadelphia
| |
Collapse
|
22
|
Ugbode C, Garnham N, Fort-Aznar L, Evans GJO, Chawla S, Sweeney ST. JNK signalling regulates antioxidant responses in neurons. Redox Biol 2020; 37:101712. [PMID: 32949970 PMCID: PMC7502373 DOI: 10.1016/j.redox.2020.101712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) are generated during physiological bouts of synaptic activity and as a consequence of pathological conditions in the central nervous system. How neurons respond to and distinguish between ROS in these different contexts is currently unknown. In Drosophila mutants with enhanced JNK activity, lower levels of ROS are observed and these animals are resistant to both changes in ROS and changes in synapse morphology induced by oxidative stress. In wild type flies, disrupting JNK-AP-1 signalling perturbs redox homeostasis suggesting JNK activity positively regulates neuronal antioxidant defense. We validated this hypothesis in mammalian neurons, finding that JNK activity regulates the expression of the antioxidant gene Srxn-1, in a c-Jun dependent manner. We describe a conserved ‘adaptive’ role for neuronal JNK in the maintenance of redox homeostasis that is relevant to several neurodegenerative diseases.
Collapse
Affiliation(s)
- Chris Ugbode
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Nathan Garnham
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Laura Fort-Aznar
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Gareth J O Evans
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| | - Sean T Sweeney
- Department of Biology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| |
Collapse
|
23
|
Effect of Aβ Oligomers on Neuronal APP Triggers a Vicious Cycle Leading to the Propagation of Synaptic Plasticity Alterations to Healthy Neurons. J Neurosci 2020; 40:5161-5176. [PMID: 32444385 DOI: 10.1523/jneurosci.2501-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/04/2020] [Accepted: 04/03/2020] [Indexed: 01/04/2023] Open
Abstract
Alterations of excitatory synaptic function are the strongest correlate to the pathologic disturbance of cognitive ability observed in the early stages of Alzheimer's disease (AD). This pathologic feature is driven by amyloid-β oligomers (Aβos) and propagates from neuron to neuron. Here, we investigated the mechanism by which Aβos affect the function of synapses and how these alterations propagate to surrounding healthy neurons. We used complementary techniques ranging from electrophysiological recordings and molecular biology to confocal microscopy in primary cortical cultures, and from acute hippocampal and cortical slices from male wild-type and amyloid precursor protein (APP) knock-out (KO) mice to assess the effects of Aβos on glutamatergic transmission, synaptic plasticity, and dendritic spine structure. We showed that extracellular application of Aβos reduced glutamatergic synaptic transmission and long-term potentiation. These alterations were not observed in APP KO neurons, suggesting that APP expression is required. We demonstrated that Aβos/APP interaction increases the amyloidogenic processing of APP leading to intracellular accumulation of newly produced Aβos. Intracellular Aβos participate in synaptic dysfunctions as shown by pharmacological inhibition of APP processing or by intraneuronal infusion of an antibody raised against Aβos. Furthermore, we provide evidence that following APP processing, extracellular release of Aβos mediates the propagation of the synaptic pathology characterized by a decreased spine density of neighboring healthy neurons in an APP-dependent manner. Together, our data unveil a complementary role for Aβos in AD, while intracellular Aβos alter synaptic function, extracellular Aβos promote a vicious cycle that propagates synaptic pathology from diseased to healthy neurons.SIGNIFICANCE STATEMENT Here we provide the proof that a vicious cycle between extracellular and intracellular pools of Aβ oligomers (Aβos) is required for the spreading of Alzheimer's disease (AD) pathology. We showed that extracellular Aβos propagate excitatory synaptic alterations by promoting amyloid precursor protein (APP) processing. Our results also suggest that subsequent to APP cleavage two pools of Aβos are produced. One pool accumulates inside the cytosol, inducing the loss of synaptic plasticity potential. The other pool is released into the extracellular space and contributes to the propagation of the pathology from diseased to healthy neurons. Pharmacological strategies targeting the proteolytic cleavage of APP disrupt the relationship between extracellular and intracellular Aβ, providing a therapeutic approach for the disease.
Collapse
|
24
|
Abstract
The NMDA subtype of ionotropic glutamate receptor is a sophisticated integrator and transducer of information. NMDAR-mediated signals control diverse processes across the life course, including synaptogenesis and synaptic plasticity, as well as contribute to excitotoxic processes in neurological disorders. At the basic biophysical level, the NMDAR is a coincidence detector, requiring the co-presence of agonist, co-agonist, and membrane depolarization in order to open. However, the NMDAR is not merely a conduit for ions to flow through; it is linked on the cytoplasmic side to a large network of signaling and scaffolding proteins, primarily via the C-terminal domain of NMDAR GluN2 subunits. These physical interactions help to organize the signaling cascades downstream of NMDAR activation. Notably, the NMDAR does not come in a single form: the subunit composition of the NMDAR, particularly the GluN2 subunit subtype (GluN2A-D), influences the biophysical properties of the channel. Moreover, a growing number of studies have illuminated the extent to which GluN2 C-terminal interactions vary according to GluN2 subtype and how this impacts on the processes that NMDAR activity controls. We will review recent advances, controversies, and outstanding questions in this active area of research.
Collapse
Affiliation(s)
- Giles Hardingham
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.,Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
25
|
Marcantoni A, Cerullo MS, Buxeda P, Tomagra G, Giustetto M, Chiantia G, Carabelli V, Carbone E. Amyloid Beta42 oligomers up-regulate the excitatory synapses by potentiating presynaptic release while impairing postsynaptic NMDA receptors. J Physiol 2020; 598:2183-2197. [PMID: 32246769 DOI: 10.1113/jp279345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/26/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS NMDA receptors (NMDARs) are key molecules for controlling neuronal plasticity, learning and memory processes. Their function is impaired during Alzheimer's disease (AD) but the exact consequence on synaptic function is not yet fully identified. An important hallmark of AD onset is represented by the neuronal accumulation of Amyloid Beta42 oligomers (Abeta42) that we have recently shown to be responsible for the increased intracellular Ca2+ concentration through ryanodine receptors (RyRs). Here we characterized the effects of Abeta42 on NMDA synapses showing specific pre- and post-synaptic functional changes that lead to a potentiation of basal and synchronous NMDA synaptic transmission. These overall effects can be abolished by decreasing Ca2+ release from RyRs with specific inhibitors that we propose as new pharmacological tools for AD treatment. ABSTRACT We have recently shown that Amyloid Beta42 oligomers (Abeta42) cause calcium dysregulation in hippocampal neurons by stimulating Ca2+ release from ryanodine receptors (RyRs) and inhibiting Ca2+ entry through NMDA receptors (NMDARs). Here, we found that Abeta42 decrease the average NMDA-activated inward current and that Ca2+ entry through NMDARs is accompanied by Ca2+ release from the stores. The overall amount of intraellular Ca2+ concentration([Ca2+ ]i ) increase during NMDA application is 50% associated with RyR opening and 50% with NMDARs activation. Addition of Abeta42 does not change this proportion. We estimated the number of NMDARs expressed in hippocampal neurons and their unitary current. We found that Abeta42 decrease the number of NMDARs without altering their unitary current. Paradoxically, the oligomer increases the size of electrically evoked eEPSCs induced by NMDARs activation. We found that this is the consequence of the increased release probability (p) of glutamate and the number of release sites (N) of NMDA synapses, while the quantal size (q) is significantly decreased as expected from the decreased number of NMDARs. An increased number of release sites induced by Abeta42 is also supported by the increased size of the ready releasable pool (RRPsyn) and by the enhanced percentage of paired pulse depression (PPD). Interestingly, the RyRs inhibitor dantrolene prevents the increase of PPD induced by Abeta42 oligomers. In conclusion, Abeta42 up-regulates NMDA synaptic responses with a mechanism involving RyRs that occurs during the early stages of Alzheimer's disease (AD) onset. This suggests that new selective modulators of RyRs may be useful for designing effective therapies to treat AD patients.
Collapse
Affiliation(s)
| | | | - Pol Buxeda
- Department of Drug Science and Technology, Torino University, Italy
| | - Giulia Tomagra
- Department of Drug Science and Technology, Torino University, Italy
| | - Maurizio Giustetto
- Department of Neurosciences / National Institute of Neuroscience, Torino University, Italy.,National Institute of Neuroscience-Italy, Turin, Italy
| | | | | | - Emilio Carbone
- Department of Drug Science and Technology, Torino University, Italy
| |
Collapse
|
26
|
Findley CA, Bartke A, Hascup KN, Hascup ER. Amyloid Beta-Related Alterations to Glutamate Signaling Dynamics During Alzheimer's Disease Progression. ASN Neuro 2020; 11:1759091419855541. [PMID: 31213067 PMCID: PMC6582288 DOI: 10.1177/1759091419855541] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) ranks sixth on the Centers for Disease Control and Prevention Top 10 Leading Causes of Death list for 2016, and the Alzheimer’s Association attributes 60% to 80% of dementia cases as AD related. AD pathology hallmarks include accumulation of senile plaques and neurofibrillary tangles; however, evidence supports that soluble amyloid beta (Aβ), rather than insoluble plaques, may instigate synaptic failure. Soluble Aβ accumulation results in depression of long-term potentiation leading to cognitive deficits commonly characterized in AD. The mechanisms through which Aβ incites cognitive decline have been extensively explored, with a growing body of evidence pointing to modulation of the glutamatergic system. The period of glutamatergic hypoactivation observed alongside long-term potentiation depression and cognitive deficits in later disease stages may be the consequence of a preceding period of increased glutamatergic activity. This review will explore the Aβ-related changes to the tripartite glutamate synapse resulting in altered cell signaling throughout disease progression, ultimately culminating in oxidative stress, synaptic dysfunction, and neuronal loss.
Collapse
Affiliation(s)
- Caleigh A Findley
- 1 Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.,2 Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Andrzej Bartke
- 3 Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N Hascup
- 1 Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.,2 Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.,4 Department of Molecular Biology, Microbiology & Biochemistry, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R Hascup
- 1 Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, USA.,2 Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
27
|
Wang H, Peng G, Wang B, Yin H, Fang X, He F, Zhao D, Liu Q, Shi L. IL-1R -/- alleviates cognitive deficits through microglial M2 polarization in AD mice. Brain Res Bull 2020; 157:10-17. [PMID: 32004659 DOI: 10.1016/j.brainresbull.2019.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023]
Abstract
The neuroinflammatory response is considered a crucial event in the pathology of Alzheimer's disease (AD). Neurotoxic amyloid β (Aβ) oligomers activate neuronal glial cells, leading to the elevated generation of a large variety of inflammatory factors. Therefore, the regulation of interleukin-1 receptor (IL-1R) activity is believed to be a potential target for AD therapy. However, previous evidence of the role of IL-1R in AD-related neuroinflammation is ambiguous. To reveal the exact role of IL-1R in AD and related inflammatory reactions, we generated IL-1R-/- AD mice. Based on the Morris water maze results, 4-month-old IL-1R-/- AD mice showed better learning and memory ability than that of AD mice. However, IL-1R-/- had little influence on amyloid precursor protein proteolysis, while IL-1R-/- increased ADAM17 expression level. Surprisingly, IL-1R-/- even enhanced glial activation. IL-1R-/- indeed attenuated inflammatory cytokine secretion, especially that of cytokins associated with M1 polarization, while it led to increased levels of some cytokins associated with M2 polarization. Finally, we found that IL-1R-/- reduced the phagocytic ability of microglia. Taken together, these results suggest that IL-1R deficiency may alleviate cognitive deficits in AD mice in a manner that is partially dependent on ADAM17 regulation and microglia M2 repolarization.
Collapse
Affiliation(s)
- Huanhuan Wang
- School of Medicine; Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.
| | - Guoping Peng
- Department of Neurology, The 1stAffiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Wang
- College of Life Science, Hangzhou Normal University, Hangzhou, China; Department of Clinical Laboratory, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hongping Yin
- School of Medicine; Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xingyue Fang
- The 1stAffiliated Hospital, Hainan Medical School, Haikou, China
| | - Fangping He
- Department of Neurology, The 1stAffiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dongjiu Zhao
- School of Medicine; Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qibing Liu
- College of Science, Hainan Medical School, Haikou, China
| | - Liyun Shi
- Department of Immunology, Nanjing University of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|
28
|
Mórotz GM, Glennon EB, Greig J, Lau DHW, Bhembre N, Mattedi F, Muschalik N, Noble W, Vagnoni A, Miller CCJ. Kinesin light chain-1 serine-460 phosphorylation is altered in Alzheimer's disease and regulates axonal transport and processing of the amyloid precursor protein. Acta Neuropathol Commun 2019; 7:200. [PMID: 31806024 PMCID: PMC6896704 DOI: 10.1186/s40478-019-0857-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Damage to axonal transport is an early pathogenic event in Alzheimer’s disease. The amyloid precursor protein (APP) is a key axonal transport cargo since disruption to APP transport promotes amyloidogenic processing of APP. Moreover, altered APP processing itself disrupts axonal transport. The mechanisms that regulate axonal transport of APP are therefore directly relevant to Alzheimer’s disease pathogenesis. APP is transported anterogradely through axons on kinesin-1 motors and one route for this transport involves calsyntenin-1, a type-1 membrane spanning protein that acts as a direct ligand for kinesin-1 light chains (KLCs). Thus, loss of calsyntenin-1 disrupts APP axonal transport and promotes amyloidogenic processing of APP. Phosphorylation of KLC1 on serine-460 has been shown to reduce anterograde axonal transport of calsyntenin-1 by inhibiting the KLC1-calsyntenin-1 interaction. Here we demonstrate that in Alzheimer’s disease frontal cortex, KLC1 levels are reduced and the relative levels of KLC1 serine-460 phosphorylation are increased; these changes occur relatively early in the disease process. We also show that a KLC1 serine-460 phosphomimetic mutant inhibits axonal transport of APP in both mammalian neurons in culture and in Drosophila neurons in vivo. Finally, we demonstrate that expression of the KLC1 serine-460 phosphomimetic mutant promotes amyloidogenic processing of APP. Together, these results suggest that increased KLC1 serine-460 phosphorylation contributes to Alzheimer’s disease.
Collapse
|
29
|
Abstract
The Amyloid Precursor Protein (APP) is infamous for its proposed pivotal role in the pathogenesis of Alzheimer’s disease (AD). Much research on APP focusses on potential contributions to neurodegeneration, mostly based on mouse models with altered expression or mutated forms of APP. However, cumulative evidence from recent years indicates the indispensability of APP and its metabolites for normal brain physiology. APP contributes to the regulation of synaptic transmission, plasticity, and calcium homeostasis. It plays an important role during development and it exerts neuroprotective effects. Of particular importance is the soluble secreted fragment APPsα which mediates many of its physiological actions, often counteracting the effects of the small APP-derived peptide Aβ. Understanding the contribution of APP for normal functions of the nervous system is of high importance, both from a basic science perspective and also as a basis for generating new pathophysiological concepts and therapeutic approaches in AD. In this article, we review the physiological functions of APP and its metabolites, focusing on synaptic transmission, plasticity, calcium signaling, and neuronal network activity.
Collapse
Affiliation(s)
- Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Susann Ludewig
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martin Korte
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
30
|
Abstract
The NMDA subtype of ionotropic glutamate receptor is a sophisticated integrator and transducer of information. NMDAR-mediated signals control diverse processes across the life course, including synaptogenesis and synaptic plasticity, as well as contribute to excitotoxic processes in neurological disorders. At the basic biophysical level, the NMDAR is a coincidence detector, requiring the co-presence of agonist, co-agonist, and membrane depolarization in order to open. However, the NMDAR is not merely a conduit for ions to flow through; it is linked on the cytoplasmic side to a large network of signaling and scaffolding proteins, primarily via the C-terminal domain of NMDAR GluN2 subunits. These physical interactions help to organize the signaling cascades downstream of NMDAR activation. Notably, the NMDAR does not come in a single form: the subunit composition of the NMDAR, particularly the GluN2 subunit subtype (GluN2A–D), influences the biophysical properties of the channel. Moreover, a growing number of studies have illuminated the extent to which GluN2 C-terminal interactions vary according to GluN2 subtype and how this impacts on the processes that NMDAR activity controls. We will review recent advances, controversies, and outstanding questions in this active area of research.
Collapse
Affiliation(s)
- Giles Hardingham
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.,Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
31
|
Chau DDL, Yung KWY, Chan WWL, An Y, Hao Y, Chan HYE, Ngo JCK, Lau KF. Attenuation of amyloid-β generation by atypical protein kinase C-mediated phosphorylation of engulfment adaptor PTB domain containing 1 threonine 35. FASEB J 2019; 33:12019-12035. [PMID: 31373844 DOI: 10.1096/fj.201802825rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloid-β (Aβ) is derived from the proteolytic processing of amyloid precursor protein (APP), and the deposition of extracellular Aβ to form amyloid plaques is a pathologic hallmark of Alzheimer's disease (AD). Although reducing Aβ generation and accumulation has been proposed as a means of treating the disease, adverse side effects and unsatisfactory efficacy have been reported in several clinical trials that sought to lower Aβ levels. Engulfment adaptor phosphotyrosine-binding (PTB) domain containing 1 (GULP1) is a molecular adaptor that has been shown to interact with APP to alter Aβ production. Therefore, the modulation of the GULP1-APP interaction may be an alternative approach to reducing Aβ. However, the mechanisms that regulate GULP1-APP binding remain elusive. As GULP1 is a phosphoprotein, and because phosphorylation is a common mechanism that regulates protein interaction, we anticipated that GULP1 phosphorylation would influence GULP1-APP interaction and thereby Aβ production. We show here that the phosphorylation of GULP1 threonine 35 (T35) reduces GULP1-APP interaction and suppresses the stimulatory effect of GULP1 on APP processing. The residue is phosphorylated by an isoform of atypical PKC (PKCζ). Overexpression of PKCζ reduces both GULP1-APP interaction and GULP1-mediated Aβ generation. Moreover, the activation of PKCζ via insulin suppresses APP processing. In contrast, GULP1-mediated APP processing is enhanced in PKCζ knockout cells. Similarly, PKC ι, another member of atypical PKC, also decreases GULP1-mediated APP processing. Intriguingly, our X-ray crystal structure of GULP1 PTB-APP intracellular domain (AICD) peptide reveals that GULP1 T35 is not located at the GULP1-AICD binding interface; rather, it immediately precedes the β1-α2 loop that forms a portion of the binding groove for the APP helix αC. Phosphorylating the residue may induce an allosteric effect on the conformation of the binding groove. Our results indicate that GULP1 T35 phosphorylation is a mechanism for the regulation of GULP1-APP interaction and thereby APP processing. Moreover, the activation of atypical PKC, such as by insulin, may confer a beneficial effect on AD by lowering GULP1-mediated Aβ production.-Chau, D. D.-L., Yung, K. W.-Y., Chan, W. W.-L., An, Y., Hao, Y., Chan, H.-Y. E., Ngo, J. C.-K., Lau, K.-F. Attenuation of amyloid-β generation by atypical protein kinase C-mediated phosphorylation of engulfment adaptor PTB domain containing 1 threonine 35.
Collapse
Affiliation(s)
- Dennis Dik-Long Chau
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kristen Wing-Yu Yung
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - William Wai-Lun Chan
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying An
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Hao
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho-Yin Edwin Chan
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jacky Chi-Ki Ngo
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok-Fai Lau
- Faculty of Science, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Ganglioside GQ1b ameliorates cognitive impairments in an Alzheimer's disease mouse model, and causes reduction of amyloid precursor protein. Sci Rep 2019; 9:8512. [PMID: 31186474 PMCID: PMC6560179 DOI: 10.1038/s41598-019-44739-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays crucial roles in memory impairments including Alzheimer’s disease (AD). Previous studies have reported that tetrasialoganglioside GQ1b is involved in long-term potentiation and cognitive functions as well as BDNF expression. However, in vitro and in vivo functions of GQ1b against AD has not investigated yet. Consequently, treatment of oligomeric Aβ followed by GQ1b significantly restores Aβ1–42-induced cell death through BDNF up-regulation in primary cortical neurons. Bilateral infusion of GQ1b into the hippocampus ameliorates cognitive deficits in the triple-transgenic AD mouse model (3xTg-AD). GQ1b-infused 3xTg-AD mice had substantially increased BDNF levels compared with artificial cerebrospinal fluid (aCSF)-treated 3xTg-AD mice. Interestingly, we also found that GQ1b administration into hippocampus of 3xTg-AD mice reduces Aβ plaque deposition and tau phosphorylation, which correlate with APP protein reduction and phospho-GSK3β level increase, respectively. These findings demonstrate that the tetrasialoganglioside GQ1b may contribute to a potential strategy of AD treatment.
Collapse
|
33
|
Abstract
Cerebral organoids are an emerging cutting-edge technology to model human brain
development and neurodevelopmental disorders, for which mouse models exhibit significant
limitations. In the human brain, synaptic connections define neural circuits, and synaptic
deficits account for various neurodevelopmental disorders. Thus, harnessing the full power
of cerebral organoids for human brain modeling requires the ability to visualize and
analyze synapses in cerebral organoids. Previously, we devised an optimized method to
generate human cerebral organoids, and showed that optimal organoids express mature-neuron
markers, including synaptic proteins and neurotransmitter receptors and transporters.
Here, we give evidence for synaptogenesis in cerebral organoids, via microscopical
visualization of synapses. We also describe multiple approaches to quantitatively analyze
synapses in cerebral organoids. Collectively, our work provides sufficient evidence for
the possibility of modeling synaptogenesis and synaptic disorders in cerebral organoids,
and may help advance the use of cerebral organoids in molecular neuroscience and studies
of neurodevelopmental disorders such as autism.
Collapse
Affiliation(s)
- Abraam M Yakoub
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Sadek
- Department of Pharmaceutical Biotechnology, University of Illinois College of Pharmacy, Chicago, IL, USA.,Department of Research and Development, Akorn Pharmaceuticals, Vernon Hills, IL, USA
| |
Collapse
|
34
|
Toffa DH, Magnerou MA, Kassab A, Hassane Djibo F, Sow AD. Can magnesium reduce central neurodegeneration in Alzheimer's disease? Basic evidences and research needs. Neurochem Int 2019; 126:195-202. [PMID: 30905744 DOI: 10.1016/j.neuint.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/15/2019] [Accepted: 03/18/2019] [Indexed: 12/26/2022]
Abstract
Magnesium (Mg) is a crucial divalent cation with more than 300 cellular functions. This ion shows therapeutic properties in several neurological diseases. Although there are numerous basic evidences showing that Mg can inhibit pathological processes involved in neuroglial degeneration, this low-cost option is not well-considered in clinical research and practice for now. Nevertheless, none of the expensive drugs currently recommended by the classic guidelines (in addition to physiological rehabilitation) had shown exceptional effectiveness. Herein, focusing on Alzheimer's disease (AD), we analyze the therapeutic pathways that support the use of Mg for neurogenesis and neuroprotection. According to experimental findings reviewed, Mg shows interesting abilities to facilitate toxin clearance, reduce neuroinflammation, inhibit the pathologic processing of amyloid protein precursor (APP) as well as the abnormal tau protein phosphorylation, and to reverse the deregulation of N-methyl-D-aspartate receptors. Currently, some crucial details of the mechanisms involved in these proved effects remain elusive and clinical background is poor. Therefore, further studies are required to enable a better overview on pharmacodynamic targets of Mg and thus, to find optimal pharmacologic strategies for clinical use of this ion.
Collapse
Affiliation(s)
- Dènahin Hinnoutondji Toffa
- Epilepsy Lab, CRCHUM, Université de Montréal, Montreal, Canada; Neurology Division, CHUM, Université de Montréal, Montreal, Canada.
| | | | - Ali Kassab
- Epilepsy Lab, CRCHUM, Université de Montréal, Montreal, Canada
| | | | | |
Collapse
|
35
|
Pituitary Adenylate Cyclase-Activating Polypeptide Modulates Dendritic Spine Maturation and Morphogenesis via MicroRNA-132 Upregulation. J Neurosci 2019; 39:4208-4220. [PMID: 30886013 DOI: 10.1523/jneurosci.2468-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Alterations in pituitary adenylate cyclase-activating polypeptide (PACAP), a multifunctional neuropeptide, and its receptors have been identified as risk factors for certain psychiatric disorders, including schizophrenia. Increasing evidence from human genetic and animal model studies suggest an association between various psychiatric disorders and altered dendritic spine morphology. In the present study, we investigated the role of exogenous and endogenous PACAP in spine formation and maturation. PACAP modified the density and morphology of PSD-95-positive spines in primary cultured hippocampal neurons. Notably, PACAP increased the levels of microRNA (miR)-132 and decreased expression of corresponding miR-132 target genes and protein expression of p250GAP, a miR-132 effector known to be involved in spine morphology regulation. In corroboration, PSD-95-positive spines were reduced in PACAP-deficient (PACAP -/-) mice versus WT mice. Golgi staining of hippocampal CA1 neurons revealed a reduced spine densities and atypical morphologies in the male PACAP -/- mice. Furthermore, viral miR-132 overexpression reversed the reduction in hippocampal spinal density in the male PACAP -/- mice. These results indicate that PACAP signaling plays a critical role in spine morphogenesis possibly via miR-132. We suggest that dysfunction of PACAP signaling may contribute to the pathogenesis of neuropsychiatric disorders, at least partly through its effects on spine formation.SIGNIFICANCE STATEMENT Pituitary adenylate cyclase-activating polypeptide (PACAP) signaling dysfunction and dendritic spine morphology alterations have recently been suggested as important pathophysiological mechanisms underlying several psychiatric and neurological disorders. In this study, we investigated whether PACAP regulates dendritic spine morphogenesis. In a combination of pharmacological and viral gain- and loss-of-function approaches in vitro and in vivo experiments, we found PACAP to increase the size and density of dendritic spines via miR-132 upregulation. Together, our data suggest that a dysfunction of PACAP signaling may contribute to the pathogenesis of neuropsychiatric disorders, at least partly through abnormal spine formation.
Collapse
|
36
|
Jarosz-Griffiths HH, Corbett NJ, Rowland HA, Fisher K, Jones AC, Baron J, Howell GJ, Cowley SA, Chintawar S, Cader MZ, Kellett KAB, Hooper NM. Proteolytic shedding of the prion protein via activation of metallopeptidase ADAM10 reduces cellular binding and toxicity of amyloid-β oligomers. J Biol Chem 2019; 294:7085-7097. [PMID: 30872401 PMCID: PMC6497954 DOI: 10.1074/jbc.ra118.005364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/01/2019] [Indexed: 01/25/2023] Open
Abstract
The cellular prion protein (PrPC) is a key neuronal receptor for β-amyloid oligomers (AβO), mediating their neurotoxicity, which contributes to the neurodegeneration in Alzheimer's disease (AD). Similarly to the amyloid precursor protein (APP), PrPC is proteolytically cleaved from the cell surface by a disintegrin and metalloprotease, ADAM10. We hypothesized that ADAM10-modulated PrPC shedding would alter the cellular binding and cytotoxicity of AβO. Here, we found that in human neuroblastoma cells, activation of ADAM10 with the muscarinic agonist carbachol promotes PrPC shedding and reduces the binding of AβO to the cell surface, which could be blocked with an ADAM10 inhibitor. Conversely, siRNA-mediated ADAM10 knockdown reduced PrPC shedding and increased AβO binding, which was blocked by the PrPC-specific antibody 6D11. The retinoic acid receptor analog acitretin, which up-regulates ADAM10, also promoted PrPC shedding and decreased AβO binding in the neuroblastoma cells and in human induced pluripotent stem cell (iPSC)-derived cortical neurons. Pretreatment with acitretin abolished activation of Fyn kinase and prevented an increase in reactive oxygen species caused by AβO binding to PrPC Besides blocking AβO binding and toxicity, acitretin also increased the nonamyloidogenic processing of APP. However, in the iPSC-derived neurons, Aβ and other amyloidogenic processing products did not exhibit a reciprocal decrease upon acitretin treatment. These results indicate that by promoting the shedding of PrPC in human neurons, ADAM10 activation prevents the binding and cytotoxicity of AβO, revealing a potential therapeutic benefit of ADAM10 activation in AD.
Collapse
Affiliation(s)
- Heledd H Jarosz-Griffiths
- From the Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, AV Hill Building, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT
| | - Nicola J Corbett
- From the Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, AV Hill Building, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT
| | - Helen A Rowland
- From the Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, AV Hill Building, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT
| | - Kate Fisher
- From the Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, AV Hill Building, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT
| | - Alys C Jones
- From the Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, AV Hill Building, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT
| | - Jennifer Baron
- the Flow Cytometry Facility Laboratory, Faculty of Biology, Medicine, and Health, University of Manchester, CTF Building, Oxford Road, Manchester M13 9PT
| | - Gareth J Howell
- the Flow Cytometry Facility Laboratory, Faculty of Biology, Medicine, and Health, University of Manchester, CTF Building, Oxford Road, Manchester M13 9PT
| | - Sally A Cowley
- the Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE.,the Oxford Parkinson's Disease Centre, University of Oxford, South Parks Road, Oxford OX1 3QX
| | - Satyan Chintawar
- the Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, and.,the Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX1 3QX, United Kingdom
| | - M Zameel Cader
- the Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, and.,the Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX1 3QX, United Kingdom
| | - Katherine A B Kellett
- From the Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, AV Hill Building, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT
| | - Nigel M Hooper
- From the Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, AV Hill Building, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT,
| |
Collapse
|
37
|
Free d-aspartate triggers NMDA receptor-dependent cell death in primary cortical neurons and perturbs JNK activation, Tau phosphorylation, and protein SUMOylation in the cerebral cortex of mice lacking d-aspartate oxidase activity. Exp Neurol 2019; 317:51-65. [PMID: 30822420 DOI: 10.1016/j.expneurol.2019.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 11/23/2022]
Abstract
In mammals, free d-aspartate (D-Asp) is abundant in the embryonic brain, while levels remain very low during adulthood as a result of the postnatal expression and activity of the catabolizing enzyme d-aspartate oxidase (DDO). Previous studies have shown that long-lasting exposure to nonphysiological, higher D-Asp concentrations in Ddo knockout (Ddo-/-) mice elicits a precocious decay of synaptic plasticity and cognitive functions, along with a dramatic age-dependent expression of active caspase 3, associated with increased cell death in different brain regions, including hippocampus, prefrontal cortex, and substantia nigra pars compacta. Here, we investigate the yet unclear molecular and cellular events associated with the exposure of abnormally high D-Asp concentrations in cortical primary neurons and in the brain of Ddo-/- mice. For the first time, our in vitro findings document that D-Asp induces in a time-, dose-, and NMDA receptor-dependent manner alterations in JNK and Tau phosphorylation levels, associated with pronounced cell death in primary cortical neurons. Moreover, observations obtained in Ddo-/- animals confirmed that high in vivo levels of D-Asp altered cortical JNK signaling, Tau phosphorylation and enhanced protein SUMOylation, indicating a robust indirect role of DDO activity in regulating these biochemical NMDA receptor-related processes. Finally, no gross modifications in D-Asp concentrations and DDO mRNA expression were detected in the cortex of patients with Alzheimer's disease when compared to age-matched healthy controls.
Collapse
|
38
|
Methamphetamine regulates βAPP processing in human neuroblastoma cells. Neurosci Lett 2019; 701:20-25. [PMID: 30771376 DOI: 10.1016/j.neulet.2019.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Methamphetamine is a potent and highly addictive psychostimulant whose abuse has turned out to be a global health hazard. The multitudinous effects it exerts at the cellular level induces neurotoxic responses in the human brain, ultimately leading to neurocognitive disorders. Strikingly, brain changes, tissue damage and neuropsychological symptoms due to Meth exposure compels and necessitates to link the probability of risk of developing premature Alzheimer's disease, a progressive neurodegenerative disorder characterized by amyloid plaques composed of amyloid-β peptides and clinical dementia. These peptides are derived from sequential cleavages of the β-amyloid precursor protein by β- and γ-secretases. Previous studies reveals evidence for both positive and negative effects of Meth pertaining to cognitive functioning based on the dosage paradigm and duration of exposure revealing a beneficial psychotropic profile under some conditions and deleterious cognitive deficits under some others. In this context, we proposed to examine the effect of Meth on βAPP metabolism and βAPP-cleaving secretases in the human neuroblastoma SH-SY5Y cell line. Our results showed that Meth dose-dependently increases BACE1 expression and catalytic activity, while its effect on the α-cleavage of βAPP and on the expression and catalytic activity of the main α-secretase ADAM10 display a bell-curve shape. To our knowledge, the present study is the first to demonstrate that Meth can control βAPP-cleaving secretases. Moreover, we propose from these findings that the deleterious effect of Meth on cognitive decline might be an outcome of high dosage paradigm whereas acute and short-term drug use which stimulated sAPPα might produce improvements in cognition in disorders such as AD.
Collapse
|
39
|
Liu J, Chang L, Song Y, Li H, Wu Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019; 13:43. [PMID: 30800052 PMCID: PMC6375899 DOI: 10.3389/fnins.2019.00043] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
In Alzheimer’s disease (AD), early synaptic dysfunction is associated with the increased oligomeric amyloid-beta peptide, which causes NMDAR-dependent synaptic depression and spine elimination. Memantine, low-affinity NMDAR channel blocker, has been used in the treatment of moderate to severe AD. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between NMDARs dysfunction and AD. This review focuses on not only changes in expression of different NMDAR subunits, but also some unconventional modes of NMDAR action.
Collapse
Affiliation(s)
- Jinping Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, Ministry of Science and Technology Laboratory of Brain Disorders, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Law BM, Guest AL, Pullen MWJ, Perkinton MS, Williams RJ. Increased Foxo3a Nuclear Translocation and Activity is an Early Neuronal Response to βγ-Secretase-Mediated Processing of the Amyloid-β Protein Precursor: Utility of an AβPP-GAL4 Reporter Assay. J Alzheimers Dis 2019; 61:673-688. [PMID: 29254083 DOI: 10.3233/jad-170393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sequential cleavage of the amyloid-β protein precursor (AβPP) by BACE1 (β-secretase) followed by theγ-secretase complex, is strongly implicated in Alzheimer's disease (AD) but the initial cellular responses to these cleavage events are not fully defined. β-secretase-mediated AβPP processing yields an extracellular domain (sAβPPβ) and a C-terminal fragment of AβPP of 99 amino acids (C99). Subsequent cleavage by γ-secretase produces amyloid-β (Aβ) and an AβPP intracellular domain (AICD). A cellular screen based on the generation of AICD from an AβPP-Gal4 fusion protein was adapted by introducing familial AD (FAD) mutations into the AβPP sequence and linking the assay to Gal4-UAS driven luciferase and GFP expression, to identify responses immediately downstream of AβPP processing in neurons with a focus on the transcription factor Foxo3a which has been implicated in neurodegeneration. The K670N/M671L, E682K, E693G, and V717I FAD mutations and the A673T protective mutation, were introduced into the AβPP sequence by site directed mutagenesis. When expressed in mouse cortical neurons, AβPP-Gal4-UAS driven luciferase and GFP expression was substantially reduced by γ-secretase inhibitors, lowered by β-secretase inhibitors, and enhanced by α-secretase inhibitors suggesting that AICD is a product of the βγ-secretase pathway. AβPP-Gal4-UAS driven GFP expression was exploited to identify individual neurons undergoing amyloidogenic AβPP processing, revealing increased nuclear localization of Foxo3a and enhanced Foxo3a-mediated transcription downstream of AICD production. Foxo3a translocation was not driven by AICD directly but correlated with reduced Akt phosphorylation. Collectively this suggests that βγ-secretase-mediated AβPP processing couples to Foxo3a which could be an early neuronal signaling response in AD.
Collapse
Affiliation(s)
- Bernard M Law
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Amy L Guest
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | | | - Robert J Williams
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
41
|
Galvão F, Grokoski KC, da Silva BB, Lamers ML, Siqueira IR. The amyloid precursor protein (APP) processing as a biological link between Alzheimer's disease and cancer. Ageing Res Rev 2019; 49:83-91. [PMID: 30500566 DOI: 10.1016/j.arr.2018.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023]
Abstract
Aging is a risk factor for several illnesses, such as Alzheimer's Disease and various cancers. However, an inverse correlation between malignancies and Alzheimer's Disease has been suggested. This review addressed the potential role of non-amyloidogenic and amyloidogenic pathways of amyloid precursor protein processing as a relevant biochemical mechanism to clarify this association. Amyloidogenic and non-amyloidogenic pathways have been related to Alzheimer's Disease and certain malignancies, respectively. Several known molecules involved in APP processing, including its regulation and final products, were summarized. Among them some candidate mechanisms emerged, such as extracellular-regulated kinase (Erk) and protein kinase C (PKC). Therefore, the imbalance of APP processing may be involved with the negative correlation between cancer and Alzheimer Disease.
Collapse
|
42
|
Chandran R, Kumar M, Kesavan L, Jacob RS, Gunasekaran S, Lakshmi S, Sadasivan C, Omkumar R. Cellular calcium signaling in the aging brain. J Chem Neuroanat 2019; 95:95-114. [DOI: 10.1016/j.jchemneu.2017.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/03/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
|
43
|
Angelova DM, Brown DR. Altered Processing of β-Amyloid in SH-SY5Y Cells Induced by Model Senescent Microglia. ACS Chem Neurosci 2018; 9:3137-3152. [PMID: 30052418 DOI: 10.1021/acschemneuro.8b00334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The single greatest risk factor for neurodegenerative diseases is aging. Aging of cells such as microglia in the nervous system has an impact not only on the ability of those cells to function but also on cells they interact with. We have developed a model microglia system that recapitulates the dystrophic/senescent phenotype, and we have combined this with the study of β-amyloid processing. The model is based on the observation that aged microglia have increased iron content. By overloading a human microglial cell line with iron, we were able to change the secretory profile of the microglia. When combining these senescent microglia with SH-SY5Y cells, we noted an increase in extracellular β-amyloid. The increased levels of β-amyloid were due to a decrease in the release of insulin-degrading enzyme by the model senescent microglia. Further analysis revealed that the senescent microglia showed both decreased autophagy and increased ER stress. These studies demonstrate the potential impact of an aging microglial population in terms of β-amyloid produced by neurons, which could play a causal role in diseases like Alzheimer's disease. Our results also further develop the potential utility of an in vitro model of senescent microglia for the study of brain aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Dafina M. Angelova
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - David R. Brown
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|
44
|
Ourdev D, Schmaus A, Kar S. Kainate Receptor Activation Enhances Amyloidogenic Processing of APP in Astrocytes. Mol Neurobiol 2018; 56:5095-5110. [PMID: 30484111 DOI: 10.1007/s12035-018-1427-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
Kainic acid (KA) is an analogue of the excitatory neurotransmitter glutamate that, when injected systemically into adult rats, can trigger seizures and progressive neuronal loss in a manner that mirrors the neuropathology of human mesial temporal lobe epilepsy. However, biomolecular mechanisms responsible for the neuronal loss that occurs as a consequence of this treatment remains elusive. We have recently reported that toxicity induced by KA can partly be mediated by astrocyte-derived amyloid β (Aβ) peptides, which are critical in the development of Alzheimer's disease (AD). Nonetheless, little is known how KA can influence amyloid precursor protein (APP) levels and processing in astrocytes. Thus, in the present study using human U-373 astrocytoma and rat primary astrocytes, we evaluated the role of KA on APP metabolism. Our results revealed that KA treatment increased the levels of APP and its cleaved products (α-/β-CTFs) in cultured U-373 astrocytoma and primary astrocytes, without altering the cell viability. The cellular and secretory levels of Aβ1-40/Aβ1-42 were markedly increased in KA-treated astrocytes. We also demonstrated that the steady-state levels of APP-secretases were not altered but the activity of γ-secretase is enhanced in KA-treated U-373 astrocytoma. Furthermore, using selective receptor antagonists, we showed that the effects of KA is mediated by activation of kainate receptors and not NMDA or AMPA receptors. These results suggest that KA can enhance amyloidogenic processing of APP by activating its own receptor leading to increased production/secretion of Aβ-related peptides from activated astrocytes which may contribute to the pathogenesis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- D Ourdev
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - A Schmaus
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Satyabrata Kar
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
45
|
AMP-activated Protein Kinase Controls Immediate Early Genes Expression Following Synaptic Activation Through the PKA/CREB Pathway. Int J Mol Sci 2018; 19:ijms19123716. [PMID: 30467274 PMCID: PMC6321501 DOI: 10.3390/ijms19123716] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 11/17/2022] Open
Abstract
Long-term memory formation depends on the expression of immediate early genes (IEGs). Their expression, which is induced by synaptic activation, is mainly regulated by the 3',5'-cyclic AMP (cAMP)-dependent protein kinase/cAMP response element binding protein (cAMP-dependent protein kinase (PKA)/ cAMP response element binding (CREB)) signaling pathway. Synaptic activation being highly energy demanding, neurons must maintain their energetic homeostasis in order to successfully induce long-term memory formation. In this context, we previously demonstrated that the expression of IEGs required the activation of AMP-activated protein kinase (AMPK) to sustain the energetic requirements linked to synaptic transmission. Here, we sought to determine the molecular mechanisms by which AMPK regulates the expression of IEGs. To this end, we assessed the involvement of AMPK in the regulation of pathways involved in the expression of IEGs upon synaptic activation in differentiated primary neurons. Our data demonstrated that AMPK regulated IEGs transcription via the PKA/CREB pathway, which relied on the activity of the soluble adenylyl cyclase. Our data highlight the interplay between AMPK and PKA/CREB signaling pathways that allows synaptic activation to be transduced into the expression of IEGs, thus exemplifying how learning and memory mechanisms are under metabolic control.
Collapse
|
46
|
Chen Y, Fu AKY, Ip NY. Synaptic dysfunction in Alzheimer's disease: Mechanisms and therapeutic strategies. Pharmacol Ther 2018; 195:186-198. [PMID: 30439458 DOI: 10.1016/j.pharmthera.2018.11.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease in the elderly population, is characterized by progressive cognitive decline and pathological hallmarks of amyloid plaques and neurofibrillary tangles. However, its pathophysiological mechanisms are poorly understood, and diagnostic tools and interventions are limited. Here, we review recent research on the amyloid hypothesis and beta-amyloid-induced dysfunction of neuronal synapses through distinct cell surface receptors. We also review how tau protein leads to synaptotoxicity through pathological modification, localization, and propagation. Finally, we discuss experimental therapeutics for AD and propose potential applications of disease-modifying strategies targeting synaptic failure for improved treatment of AD.
Collapse
Affiliation(s)
- Yu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China.
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
47
|
AMP-Activated Protein Kinase Is Essential for the Maintenance of Energy Levels during Synaptic Activation. iScience 2018; 9:1-13. [PMID: 30368077 PMCID: PMC6203244 DOI: 10.1016/j.isci.2018.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/01/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Although the brain accounts for only 2% of the total body mass, it consumes the most energy. Neuronal metabolism is tightly controlled, but it remains poorly understood how neurons meet their energy demands to sustain synaptic transmission. Here we provide evidence that AMP-activated protein kinase (AMPK) is pivotal to sustain neuronal energy levels upon synaptic activation by adapting the rate of glycolysis and mitochondrial respiration. Furthermore, this metabolic plasticity is required for the expression of immediate-early genes, synaptic plasticity, and memory formation. Important in this context, in neurodegenerative disorders such as Alzheimer disease, dysregulation of AMPK impairs the metabolic response to synaptic activation and processes that are central to neuronal plasticity. Altogether, our data provide proof of concept that AMPK is an essential player in the regulation of neuroenergetic metabolic plasticity induced in response to synaptic activation and that its deregulation might lead to cognitive impairments. AMPK is rapidly activated following synaptic activation AMPK stimulates neuronal glycolysis and oxidative respiration, i.e., metabolic plasticity Metabolic plasticity ensures the expression of IEGs and long-term memory formation AMPK deregulation, as in Alzheimer disease, prevents metabolic plasticity response
Collapse
|
48
|
Yu X, Guan PP, Zhu D, Liang YY, Wang T, Wang ZY, Wang P. Magnesium Ions Inhibit the Expression of Tumor Necrosis Factor α and the Activity of γ-Secretase in a β-Amyloid Protein-Dependent Mechanism in APP/PS1 Transgenic Mice. Front Mol Neurosci 2018; 11:172. [PMID: 29899688 PMCID: PMC5988891 DOI: 10.3389/fnmol.2018.00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by cognitive impairment. The neuropathological features of AD are the aggregation of extracellular amyloid β-protein (Aβ) and tau phosphorylation. Recently, AD was found to be associated with magnesium ion (Mg2+) deficit and tumor necrosis factor-alpha (TNF-α) elevation in the serum or brains of AD patients. To study the relationship between Mg2+ and TNF-α, we used human- or mouse-derived glial and neuronal cell lines or APP/PS1 transgenic (Tg) mice as in vitro and in vivo experimental models, respectively. Our data demonstrates that magnesium-L-threonate (MgT) can decrease the expression of TNF-α by restoring the levels of Mg2+ in glial cells. In addition, PI3-K/AKT and NF-κB signals play critical roles in mediating the effects of Mg2+ on suppressing the expression of TNF-α. In neurons, Mg2+ elevation showed similar suppressive effects on the expression of presenilin enhancer 2 (PEN2) and nicastrin (NCT) through a PI3-K/AKT and NF-κB-dependent mechanism. As the major components of γ-secretase, overexpression of presenilin 1 (PS1), PEN2 and NCT potentially promote the synthesis of Aβ, which in turn activates TNF-α in glial cells. Reciprocally, TNF-α stimulates the expression of PEN2 and NCT in neurons. The crosstalk between TNF-α and Aβ in glial cells and neurons could ultimately aggravate the development and progression of AD.
Collapse
Affiliation(s)
- Xin Yu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Di Zhu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yun-Yue Liang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
49
|
Batkulwar K, Godbole R, Banarjee R, Kassaar O, Williams RJ, Kulkarni MJ. Advanced Glycation End Products Modulate Amyloidogenic APP Processing and Tau Phosphorylation: A Mechanistic Link between Glycation and the Development of Alzheimer's Disease. ACS Chem Neurosci 2018; 9:988-1000. [PMID: 29384651 DOI: 10.1021/acschemneuro.7b00410] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Advanced glycation end products (AGEs) are implicated in the pathology of Alzheimer's disease (AD), as they induce neurodegeneration following interaction with the receptor for AGE (RAGE). This study aimed to establish a mechanistic link between AGE-RAGE signaling and AD pathology. AGE-induced changes in the neuro2a proteome were monitored by SWATH-MS. Western blotting and cell-based reporter assays were used to investigate AGE-RAGE regulated APP processing and tau phosphorylation in primary cortical neurons. Selected protein expression was validated in brain samples affected by AD. The AGE-RAGE axis altered proteome included increased expression of cathepsin B and asparagine endopeptidase (AEP), which mediated an increase in Aβ1-42 formation and tau phosphorylation, respectively. Elevated cathepsin B, AEP, RAGE, and pTau levels were found in human AD brain, coincident with enhanced AGEs. This study demonstrates that the AGE-RAGE axis regulates Aβ1-42 formation and tau phosphorylation via increased cathepsin B and AEP, providing a new molecular link between AGEs and AD pathology.
Collapse
Affiliation(s)
- Kedar Batkulwar
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune-411008, India
| | - Rashmi Godbole
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
| | - Reema Banarjee
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune-411008, India
| | - Omar Kassaar
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Robert J. Williams
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - Mahesh J. Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune-411008, India
| |
Collapse
|
50
|
Hettinger JC, Lee H, Bu G, Holtzman DM, Cirrito JR. AMPA-ergic regulation of amyloid-β levels in an Alzheimer's disease mouse model. Mol Neurodegener 2018; 13:22. [PMID: 29764453 PMCID: PMC5952376 DOI: 10.1186/s13024-018-0256-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extracellular aggregation of the amyloid-β (Aβ) peptide into toxic multimers is a key event in Alzheimer's disease (AD) pathogenesis. Aβ aggregation is concentration-dependent, with higher concentrations of Aβ much more likely to form toxic species. The processes that regulate extracellular levels of Aβ therefore stand to directly affect AD pathology onset. Studies from our lab and others have demonstrated that synaptic activity is a critical regulator of Aβ production through both presynaptic and postsynaptic mechanisms. AMPA receptors (AMPA-Rs), as the most abundant ionotropic glutamate receptors, have the potential to greatly impact Aβ levels. METHODS In order to study the role of AMPA-Rs in Aβ regulation, we used in vivo microdialysis in an APP/PS1 mouse model to simultaneously deliver AMPA and other treatments while collecting Aβ from the interstitial fluid (ISF). Changes in Aβ production and clearance along with inflammation were assessed using biochemical approaches. IL-6 deficient mice were utilized to test the role of IL-6 signaling in AMPA-R-mediated regulation of Aβ levels. RESULTS We found that AMPA-R activation decreases in ISF Aβ levels in a dose-dependent manner. Moreover, the effect of AMPA treatment involves three distinct pathways. Steady-state activity of AMPA-Rs normally promotes higher ISF Aβ. Evoked AMPA-R activity, however, decreases Aβ levels by both stimulating glutamatergic transmission and activating downstream NMDA receptor (NMDA-R) signaling and, with extended AMPA treatment, acting independently of NMDA-Rs. Surprisingly, we found this latter, direct AMPA pathway of Aβ regulation increases Aβ clearance, while Aβ production appears to be largely unaffected. Furthermore, the AMPA-dependent decrease is not observed in IL-6 deficient mice, indicating a role for IL-6 signaling in AMPA-R-mediated Aβ clearance. CONCLUSION Though basal levels of AMPA-R activity promote higher levels of ISF Aβ, evoked AMPA-R signaling decreases Aβ through both NMDA-R-dependent and -independent pathways. We find that evoked AMPA-R signaling increases clearance of extracellular Aβ, at least in part through enhanced IL-6 signaling. These data emphasize that Aβ regulation by synaptic activity involves a number of independent pathways that together determine extracellular Aβ levels. Understanding how these pathways maintain Aβ levels prior to AD pathology may provide insights into disease pathogenesis.
Collapse
Affiliation(s)
- Jane C Hettinger
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Hyo Lee
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - David M Holtzman
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - John R Cirrito
- Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|