1
|
Marshall AH, Boyle DJ, Hanson MA, Nagarajan D, Bibi N, Safa A, Johantges AC, Wester JC. Arid1b haploinsufficiency in cortical inhibitory interneurons causes cell-type-dependent changes in cellular and synaptic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597984. [PMID: 38895260 PMCID: PMC11185764 DOI: 10.1101/2024.06.07.597984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Autism spectrum disorder (ASD) presents with diverse cognitive and behavioral abnormalities beginning during early development. Although the neural circuit mechanisms remain unclear, recent work suggests pathology in cortical inhibitory interneurons (INs) plays a crucial role. However, we lack fundamental information regarding changes in the physiology of synapses to and from INs in ASD. Here, we used transgenic mice to conditionally knockout one copy of the high confidence ASD risk gene Arid1b from the progenitors of parvalbumin-expressing fast-spiking (PV-FS) INs and somatostatin-expressing non-fast-spiking (SST-NFS) INs. In brain slices, we performed paired whole-cell recordings between INs and excitatory projection neurons (PNs) to investigate changes in synaptic physiology. In neonates, we found reduced synaptic input to INs but not PNs, with a concomitant reduction in the frequency of spontaneous network events, which are driven by INs in immature circuits. In mature mice, we found a reduction in the number of PV-FS INs in cortical layers 2/3 and 5. However, changes in PV-FS IN synaptic physiology were cortical layer and PN cell-type dependent. In layer 5, synapses from PV-FS INs to subcortical-projecting PNs were weakened. In contrast, in layer 2/3, synapses to and from PV-FS INs and corticocortical-projecting PNs were strengthened, leading to enhanced feedforward inhibition of input from layer 4. Finally, we found a novel synaptic deficit among SST-NFS INs, in which excitatory synapses from layer 2/3 PNs failed to facilitate. Our data highlight that changes in unitary synaptic dynamics among INs in ASD depend on neuronal cell-type.
Collapse
|
2
|
Hilgen G. Connexin45 colocalization patterns in the plexiform layers of the developing mouse retina. J Anat 2023; 243:258-264. [PMID: 35315057 PMCID: PMC10335376 DOI: 10.1111/joa.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Chemical and electrical synapses (gap junctions) are widely prevalent in the nervous system. Gap junctions emerge long before chemical synapses, allowing communication between developing cells, and are thought to be involved in establishing neural circuits. Mounting evidence indicates that these two modalities of synaptic transmission closely interact during retinal development and that such interactions play a critical role in synaptogenesis and circuit formation during the perinatal period. In vertebrates, gap junctions consist of two connexins which in turn are made up of six connexins (Cx). To what extent Cx45 and Cx36, the most abundant connexins in the retina, are involved in synaptogenesis and retinal circuit formation is not known. The here presented immunohistochemical study used stainings of Cx45, Cx36 and Synaptophysin in the outer and inner (IPL) plexiform layers of postnatal day 8-16 mice retinas to shed light on the role of connexins during critical neuronal developmental processes. Cx45 and Cx36 expressions in both plexiform layers of the mouse retina increased till eye opening and dropped afterwards. The percentage of heterotypic Cx45/Cx36 gap junctions is also higher before the critical event of eye opening. Finally, Cx45 is closely located and/or colocalized with Synaptophysin also shortly before eye opening in the IPL of the mouse retina. All findings point towards a pivotal role for Cx45 during postnatal synaptogenesis in the mouse retina. However, a more functional study is needed to determine the role of Cx45 during synaptogenesis and circuit formation.
Collapse
Affiliation(s)
- Gerrit Hilgen
- Health & Life Sciences, Applied SciencesNorthumbria UniversityNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
3
|
Tahara M, Higurashi N, Hata J, Nishikawa M, Ito K, Hirose S, Kaneko T, Mashimo T, Sakuma T, Yamamoto T, Okano HJ. Developmental changes in brain activity of heterozygous Scn1a knockout rats. Front Neurol 2023; 14:1125089. [PMID: 36998780 PMCID: PMC10043303 DOI: 10.3389/fneur.2023.1125089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionDravet syndrome (DS) is an infantile-onset developmental and epileptic encephalopathy characterized by an age-dependent evolution of drug-resistant seizures and poor developmental outcomes. Functional impairment of gamma-aminobutyric acid (GABA)ergic interneurons due to loss-of-function mutation of SCN1A is currently considered the main pathogenesis. In this study, to better understand the age-dependent changes in the pathogenesis of DS, we characterized the activity of different brain regions in Scn1a knockout rats at each developmental stage.MethodsWe established an Scn1a knockout rat model and examined brain activity from postnatal day (P) 15 to 38 using a manganese-enhanced magnetic resonance imaging technique (MEMRI).ResultsScn1a heterozygous knockout (Scn1a+/−) rats showed a reduced expression of voltage-gated sodium channel alpha subunit 1 protein in the brain and heat-induced seizures. Neural activity was significantly higher in widespread brain regions of Scn1a+/− rats than in wild-type rats from P19 to P22, but this difference did not persist thereafter. Bumetanide, a Na+-K+-2Cl− cotransporter 1 inhibitor, mitigated hyperactivity to the wild-type level, although no change was observed in the fourth postnatal week. Bumetanide also increased heat-induced seizure thresholds of Scn1a+/− rats at P21.ConclusionsIn Scn1a+/− rats, neural activity in widespread brain regions increased during the third postnatal week, corresponding to approximately 6 months of age in humans, when seizures most commonly develop in DS. In addition to impairment of GABAergic interneurons, the effects of bumetanide suggest a possible contribution of immature type A gamma-aminobutyric acid receptor signaling to transient hyperactivity and seizure susceptibility during the early stage of DS. This hypothesis should be addressed in the future. MEMRI is a potential technique for visualizing changes in basal brain activity in developmental and epileptic encephalopathies.
Collapse
Affiliation(s)
- Mayu Tahara
- Department of Pediatrics, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Norimichi Higurashi
- Department of Pediatrics, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- *Correspondence: Norimichi Higurashi
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan
| | - Masako Nishikawa
- Clinical Research Support Center, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ken Ito
- Department of Pediatrics, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Shinichi Hirose
- General Medical Research Center, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takehito Kaneko
- Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University, Morioka, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Hirotaka James Okano
| |
Collapse
|
4
|
Ryner RF, Derera ID, Armbruster M, Kansara A, Sommer ME, Pirone A, Noubary F, Jacob M, Dulla CG. Cortical Parvalbumin-Positive Interneuron Development and Function Are Altered in the APC Conditional Knockout Mouse Model of Infantile and Epileptic Spasms Syndrome. J Neurosci 2023; 43:1422-1440. [PMID: 36717229 PMCID: PMC9987578 DOI: 10.1523/jneurosci.0572-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023] Open
Abstract
Infantile and epileptic spasms syndrome (IESS) is a childhood epilepsy syndrome characterized by infantile or late-onset spasms, abnormal neonatal EEG, and epilepsy. Few treatments exist for IESS, clinical outcomes are poor, and the molecular and circuit-level etiologies of IESS are not well understood. Multiple human IESS risk genes are linked to Wnt/β-catenin signaling, a pathway that controls developmental transcriptional programs and promotes glutamatergic excitation via β-catenin's role as a synaptic scaffold. We previously showed that deleting adenomatous polyposis coli (APC), a component of the β-catenin destruction complex, in excitatory neurons (APC cKO mice, APCfl/fl x CaMKIIαCre) increased β-catenin levels in developing glutamatergic neurons and led to infantile behavioral spasms, abnormal neonatal EEG, and adult epilepsy. Here, we tested the hypothesis that the development of GABAergic interneurons (INs) is disrupted in APC cKO male and female mice. IN dysfunction is implicated in human IESS, is a feature of other rodent models of IESS, and may contribute to the manifestation of spasms and seizures. We found that parvalbumin-positive INs (PV+ INs), an important source of cortical inhibition, were decreased in number, underwent disproportionate developmental apoptosis, and had altered dendrite morphology at P9, the peak of behavioral spasms. PV+ INs received excessive excitatory input, and their intrinsic ability to fire action potentials was reduced at all time points examined (P9, P14, P60). Subsequently, GABAergic transmission onto pyramidal neurons was uniquely altered in the somatosensory cortex of APC cKO mice at all ages, with both decreased IPSC input at P14 and enhanced IPSC input at P9 and P60. These results indicate that inhibitory circuit dysfunction occurs in APC cKOs and, along with known changes in excitation, may contribute to IESS-related phenotypes.SIGNIFICANCE STATEMENT Infantile and epileptic spasms syndrome (IESS) is a devastating epilepsy with limited treatment options and poor clinical outcomes. The molecular, cellular, and circuit disruptions that cause infantile spasms and seizures are largely unknown, but inhibitory GABAergic interneuron dysfunction has been implicated in rodent models of IESS and may contribute to human IESS. Here, we use a rodent model of IESS, the APC cKO mouse, in which β-catenin signaling is increased in excitatory neurons. This results in altered parvalbumin-positive GABAergic interneuron development and GABAergic synaptic dysfunction throughout life, showing that pathology arising in excitatory neurons can initiate long-term interneuron dysfunction. Our findings further implicate GABAergic dysfunction in IESS, even when pathology is initiated in other neuronal types.
Collapse
Affiliation(s)
- Rachael F Ryner
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Cell, Molecular, and Developmental Biology Graduate Program, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Isabel D Derera
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Anar Kansara
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Mary E Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Antonella Pirone
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Michele Jacob
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
5
|
Developmental Inhibitory Changes in the Primary Somatosensory Cortex of the Stargazer Mouse Model of Absence Epilepsy. Biomolecules 2023; 13:biom13010186. [PMID: 36671571 PMCID: PMC9856073 DOI: 10.3390/biom13010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Childhood absence epilepsy seizures arise in the cortico-thalamocortical network due to multiple cellular and molecular mechanisms, which are still under investigation. Understanding the precise mechanisms is imperative given that treatment fails in ~30% of patients while adverse neurological sequelae remain common. Impaired GABAergic neurotransmission is commonly reported in research models investigating these mechanisms. Recently, we reported a region-specific reduction in the whole-tissue and synaptic GABAA receptor (GABAAR) α1 subunit and an increase in whole-tissue GAD65 in the primary somatosensory cortex (SoCx) of the adult epileptic stargazer mouse compared with its non-epileptic (NE) littermate. The current study investigated whether these changes occurred prior to the onset of seizures on postnatal days (PN) 17-18, suggesting a causative role. Synaptic and cytosolic fractions were biochemically isolated from primary SoCx lysates followed by semiquantitative Western blot analyses for GABAAR α1 and GAD65. We found no significant changes in synaptic GABAAR α1 and cytosolic GAD65 in the primary SoCx of the stargazer mice at the critical developmental stages of PN 7-9, 13-15, and 17-18. This indicates that altered levels of GABAAR α1 and GAD65 in adult mice do not directly contribute to the initial onset of absence seizures but are a later consequence of seizure activity.
Collapse
|
6
|
Quast KB, Reh RK, Caiati MD, Kopell N, McCarthy MM, Hensch TK. Rapid synaptic and gamma rhythm signature of mouse critical period plasticity. Proc Natl Acad Sci U S A 2023; 120:e2123182120. [PMID: 36598942 PMCID: PMC9926253 DOI: 10.1073/pnas.2123182120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 11/29/2022] [Indexed: 01/05/2023] Open
Abstract
Early-life experience enduringly sculpts thalamocortical (TC) axons and sensory processing. Here, we identify the very first synaptic targets that initiate critical period plasticity, heralded by altered cortical oscillations. Monocular deprivation (MD) acutely induced a transient (<3 h) peak in EEG γ-power (~40 Hz) specifically within the visual cortex, but only when the critical period was open (juvenile mice or adults after dark-rearing, Lynx1-deletion, or diazepam-rescued GAD65-deficiency). Rapid TC input loss onto parvalbumin-expressing (PV) inhibitory interneurons (but not onto nearby pyramidal cells) was observed within hours of MD in a TC slice preserving the visual pathway - again once critical periods opened. Computational TC modeling of the emergent γ-rhythm in response to MD delineated a cortical interneuronal gamma (ING) rhythm in networks of PV-cells bearing gap junctions at the start of the critical period. The ING rhythm effectively dissociated thalamic input from cortical spiking, leading to rapid loss of previously strong TC-to-PV connections through standard spike-timing-dependent plasticity rules. As a consequence, previously silent TC-to-PV connections could strengthen on a slower timescale, capturing the gradually increasing γ-frequency and eventual fade-out over time. Thus, ING enables cortical dynamics to transition from being dominated by the strongest TC input to one that senses the statistics of population TC input after MD. Taken together, our findings reveal the initial synaptic events underlying critical period plasticity and suggest that the fleeting ING accompanying a brief sensory perturbation may serve as a robust readout of TC network state with which to probe developmental trajectories.
Collapse
Affiliation(s)
- Kathleen B. Quast
- Department of Molecular Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA02138
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Rebecca K. Reh
- Department of Molecular Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA02138
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Maddalena D. Caiati
- Department of Molecular Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Nancy Kopell
- Department of Mathematics, Boston University, Boston, MA02215
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Bunkyo-ku, Tokyo113, Japan
| | - Michelle M. McCarthy
- Department of Mathematics, Boston University, Boston, MA02215
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Bunkyo-ku, Tokyo113, Japan
| | - Takao K. Hensch
- Department of Molecular Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA02138
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
- International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study, Bunkyo-ku, Tokyo113, Japan
| |
Collapse
|
7
|
Kirmse K, Zhang C. Principles of GABAergic signaling in developing cortical network dynamics. Cell Rep 2022; 38:110568. [PMID: 35354036 DOI: 10.1016/j.celrep.2022.110568] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
GABAergic signaling provides inhibitory stabilization and spatiotemporally coordinates the firing of recurrently connected excitatory neurons in mature cortical circuits. Inhibition thus enables self-generated neuronal activity patterns that underlie various aspects of sensation and cognition. In this review, we aim to provide a conceptual framework describing how and when GABA-releasing interneurons acquire their network functions during development. Focusing on the developing visual neocortex and hippocampus in mice and rats in vivo, we hypothesize that at the onset of patterned activity, glutamatergic neurons are stable by themselves and inhibitory stabilization is not yet functional. We review important milestones in the development of GABAergic signaling and illustrate how the cell-type-specific strengthening of synaptic inhibition toward eye opening shapes cortical network dynamics and allows the developing cortex to progressively disengage from extra-cortical synaptic drive. We translate this framework to human cortical development and discuss clinical implications for the treatment of neonatal seizures.
Collapse
Affiliation(s)
- Knut Kirmse
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.
| | - Chuanqiang Zhang
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
8
|
Warm D, Schroer J, Sinning A. Gabaergic Interneurons in Early Brain Development: Conducting and Orchestrated by Cortical Network Activity. Front Mol Neurosci 2022; 14:807969. [PMID: 35046773 PMCID: PMC8763242 DOI: 10.3389/fnmol.2021.807969] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/22/2023] Open
Abstract
Throughout early phases of brain development, the two main neural signaling mechanisms—excitation and inhibition—are dynamically sculpted in the neocortex to establish primary functions. Despite its relatively late formation and persistent developmental changes, the GABAergic system promotes the ordered shaping of neuronal circuits at the structural and functional levels. Within this frame, interneurons participate first in spontaneous and later in sensory-evoked activity patterns that precede cortical functions of the mature brain. Upon their subcortical generation, interneurons in the embryonic brain must first orderly migrate to and settle in respective target layers before they can actively engage in cortical network activity. During this process, changes at the molecular and synaptic level of interneurons allow not only their coordinated formation but also the pruning of connections as well as excitatory and inhibitory synapses. At the postsynaptic site, the shift of GABAergic signaling from an excitatory towards an inhibitory response is required to enable synchronization within cortical networks. Concomitantly, the progressive specification of different interneuron subtypes endows the neocortex with distinct local cortical circuits and region-specific modulation of neuronal firing. Finally, the apoptotic process further refines neuronal populations by constantly maintaining a controlled ratio of inhibitory and excitatory neurons. Interestingly, many of these fundamental and complex processes are influenced—if not directly controlled—by electrical activity. Interneurons on the subcellular, cellular, and network level are affected by high frequency patterns, such as spindle burst and gamma oscillations in rodents and delta brushes in humans. Conversely, the maturation of interneuron structure and function on each of these scales feeds back and contributes to the generation of cortical activity patterns that are essential for the proper peri- and postnatal development. Overall, a more precise description of the conducting role of interneurons in terms of how they contribute to specific activity patterns—as well as how specific activity patterns impinge on their maturation as orchestra members—will lead to a better understanding of the physiological and pathophysiological development and function of the nervous system.
Collapse
|
9
|
Postnatal Sox6 Regulates Synaptic Function of Cortical Parvalbumin-Expressing Neurons. J Neurosci 2021; 41:8876-8886. [PMID: 34503995 PMCID: PMC8549537 DOI: 10.1523/jneurosci.0021-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Cortical parvalbumin-expressing (Pvalb+) neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. This class of inhibitory neurons undergoes extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. While several transcription factors, such as Nkx2-1, Lhx6, and Sox6, are known to be necessary for the differentiation of progenitors into Pvalb+ neurons, which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons' innervation and synaptic function remains largely unknown. Because Sox6 is continuously expressed in Pvalb+ neurons until adulthood, we used conditional knock-out strategies to investigate its putative role in the postnatal maturation and synaptic function of cortical Pvalb+ neurons in mice of both sexes. We found that early postnatal loss of Sox6 in Pvalb+ neurons leads to failure of synaptic bouton growth, whereas later removal in mature Pvalb+ neurons in the adult causes shrinkage of already established synaptic boutons. Paired recordings between Pvalb+ neurons and pyramidal neurons revealed reduced release probability and increased failure rate of Pvalb+ neurons' synaptic output. Furthermore, Pvalb+ neurons lacking Sox6 display reduced expression of full-length tropomyosin-receptor kinase B (TrkB), a key modulator of GABAergic transmission. Once re-expressed in neurons lacking Sox6, TrkB was sufficient to rescue the morphologic synaptic phenotype. Finally, we showed that Sox6 mRNA levels were increased by motor training. Our data thus suggest a constitutive role for Sox6 in the maintenance of synaptic output from Pvalb+ neurons into adulthood. SIGNIFICANCE STATEMENT Cortical parvalbumin-expressing (Pvalb+) inhibitory neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. These inhibitory neurons undergo extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. However, it remains largely unknown which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons. Here, we show that the transcription factor Sox6 cell-autonomously regulates the synaptic maintenance and output of Pvalb+ neurons until adulthood, leaving unaffected other maturational features of this neuronal population.
Collapse
|
10
|
Development, Diversity, and Death of MGE-Derived Cortical Interneurons. Int J Mol Sci 2021; 22:ijms22179297. [PMID: 34502208 PMCID: PMC8430628 DOI: 10.3390/ijms22179297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
In the mammalian brain, cortical interneurons (INs) are a highly diverse group of cells. A key neurophysiological question concerns how each class of INs contributes to cortical circuit function and whether specific roles can be attributed to a selective cell type. To address this question, researchers are integrating knowledge derived from transcriptomic, histological, electrophysiological, developmental, and functional experiments to extensively characterise the different classes of INs. Our hope is that such knowledge permits the selective targeting of cell types for therapeutic endeavours. This review will focus on two of the main types of INs, namely the parvalbumin (PV+) or somatostatin (SOM+)-containing cells, and summarise the research to date on these classes.
Collapse
|
11
|
Crodelle J, McLaughlin DW. Modeling the role of gap junctions between excitatory neurons in the developing visual cortex. PLoS Comput Biol 2021; 17:e1007915. [PMID: 34228707 PMCID: PMC8284639 DOI: 10.1371/journal.pcbi.1007915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
Recent experiments in the developing mammalian visual cortex have revealed that gap junctions couple excitatory cells and potentially influence the formation of chemical synapses. In particular, cells that were coupled by a gap junction during development tend to share an orientation preference and are preferentially coupled by a chemical synapse in the adult cortex, a property that is diminished when gap junctions are blocked. In this work, we construct a simplified model of the developing mouse visual cortex including spike-timing-dependent plasticity of both the feedforward synaptic inputs and recurrent cortical synapses. We use this model to show that synchrony among gap-junction-coupled cells underlies their preference to form strong recurrent synapses and develop similar orientation preference; this effect decreases with an increase in coupling density. Additionally, we demonstrate that gap-junction coupling works, together with the relative timing of synaptic development of the feedforward and recurrent synapses, to determine the resulting cortical map of orientation preference. Gap junctions, or sites of direct electrical connections between neurons, have a significant presence in the cortex, both during development and in adulthood. Their primary function during either of these periods, however, is still poorly understood. In the adult cortex, gap junctions between local, inhibitory neurons have been shown to promote synchronous firing, a network characteristic thought to be important for learning, attention, and memory. During development, gap junctions between excitatory, pyramidal cells, have been conjectured to play a role in synaptic plasticity and the formation of cortical circuits. In the visual cortex, where neurons exhibit tuned responses to properties of visual input such as orientation and direction, recent experiments show that excitatory cells are coupled by gap junctions during the first postnatal week and are replaced by chemical synapses during the second week. In this work, we explore the possible contribution of gap-junction coupling during development to the formation of chemical synapses between the visual cortex from the thalamus and between cortical cells within the visual cortex. Specifically, using a mathematical model of the visual cortex during development, we identify the response properties of gap-junction-coupled cells and their influence on the formation of the cortical map of orientation preference.
Collapse
Affiliation(s)
- Jennifer Crodelle
- Middlebury College, Middlebury, Vermont, United States of America
- Courant Institute of Mathematical Sciences, NYU, New York, New York, United States of America
- * E-mail:
| | - David W. McLaughlin
- Courant Institute of Mathematical Sciences, NYU, New York, New York, United States of America
- Center for Neural Science, NYU, New York, New York, United States of America
- Neuroscience Institute of NYU Langone Health, New York, New York, United States of America
- New York University Shanghai, Shanghai, China
| |
Collapse
|
12
|
Mendez OA, Flores Machado E, Lu J, Koshy AA. Injection with Toxoplasma gondii protein affects neuron health and survival. eLife 2021; 10:e67681. [PMID: 34106047 PMCID: PMC8270641 DOI: 10.7554/elife.67681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/09/2021] [Indexed: 01/22/2023] Open
Abstract
Toxoplasma gondii is an intracellular parasite that causes a long-term latent infection of neurons. Using a custom MATLAB-based mapping program in combination with a mouse model that allows us to permanently mark neurons injected with parasite proteins, we found that Toxoplasma-injected neurons (TINs) are heterogeneously distributed in the brain, primarily localizing to the cortex followed by the striatum. In addition, we determined that cortical TINs are commonly (>50%) excitatory neurons (FoxP2+) and that striatal TINs are often (>65%) medium spiny neurons (MSNs) (FoxP2+). By performing single neuron patch clamping on striatal TINs and neighboring uninfected MSNs, we discovered that TINs have highly aberrant electrophysiology. As approximately 90% of TINs will die by 8 weeks post-infection, this abnormal physiology suggests that injection with Toxoplasma protein-either directly or indirectly-affects neuronal health and survival. Collectively, these data offer the first insights into which neurons interact with Toxoplasma and how these interactions alter neuron physiology in vivo.
Collapse
Affiliation(s)
- Oscar A Mendez
- Graduate Interdisciplinary Program in Neuroscience, University of ArizonaTucsonUnited States
| | | | - Jing Lu
- College of Nursing, University of ArizonaTucsonUnited States
| | - Anita A Koshy
- BIO5 Institute, University of ArizonaTucsonUnited States
- Department of Immunobiology, University of ArizonaTucsonUnited States
- Department of Neurology, University of ArizonaTucsonUnited States
| |
Collapse
|
13
|
Zhang Z, Collins DC, Maier JX. Network Dynamics in the Developing Piriform Cortex of Unanesthetized Rats. Cereb Cortex 2021; 31:1334-1346. [PMID: 33063095 DOI: 10.1093/cercor/bhaa300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/02/2023] Open
Abstract
The time course of changes in functional cortical activity during early development has been extensively studied in the rodent visual system. A key period in this process is the time of eye opening, which marks the onset of patterned visual input and active vision. However, vision differs from other systems in that it receives limited patterned sensory input before eye opening, and it remains unclear how findings from vision relate to other systems. Here, we focus on the development of cortical network activity in the olfactory system-which is crucial for survival at birth-by recording field potential and spiking activity from piriform cortex of unanesthetized rat pups from birth (P0) to P21. Our results demonstrate that odors evoke stable 10-15 Hz oscillations in piriform cortex from birth to P15, after which cortical responses undergo rapid changes. This transition is coincident with the emergence of gamma oscillations and fast sniffing behavior and preceded by an increase in spontaneous activity. Neonatal network oscillations and their developmental dynamics exhibit striking similarities with those previously observed in the visual, auditory, and somatosensory systems, providing insight into the network-level mechanisms underlying the development of sensory cortex in general and olfactory processing in particular.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald Chad Collins
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joost X Maier
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
14
|
Gour A, Boergens KM, Heike N, Hua Y, Laserstein P, Song K, Helmstaedter M. Postnatal connectomic development of inhibition in mouse barrel cortex. Science 2020; 371:science.abb4534. [PMID: 33273061 DOI: 10.1126/science.abb4534] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Brain circuits in the neocortex develop from diverse types of neurons that migrate and form synapses. Here we quantify the circuit patterns of synaptogenesis for inhibitory interneurons in the developing mouse somatosensory cortex. We studied synaptic innervation of cell bodies, apical dendrites, and axon initial segments using three-dimensional electron microscopy focusing on the first 4 weeks postnatally (postnatal days P5 to P28). We found that innervation of apical dendrites occurs early and specifically: Target preference is already almost at adult levels at P5. Axons innervating cell bodies, on the other hand, gradually acquire specificity from P5 to P9, likely via synaptic overabundance followed by antispecific synapse removal. Chandelier axons show first target preference by P14 but develop full target specificity almost completely by P28, which is consistent with a combination of axon outgrowth and off-target synapse removal. This connectomic developmental profile reveals how inhibitory axons in the mouse cortex establish brain circuitry during development.
Collapse
Affiliation(s)
- Anjali Gour
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kevin M Boergens
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Natalie Heike
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Yunfeng Hua
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Philip Laserstein
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kun Song
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Moritz Helmstaedter
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
15
|
The γ-Protocadherins Regulate the Survival of GABAergic Interneurons during Developmental Cell Death. J Neurosci 2020; 40:8652-8668. [PMID: 33060174 DOI: 10.1523/jneurosci.1636-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins (Pcdhgs) from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of Pcdhgs from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in Pcdhg mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain.SIGNIFICANCE STATEMENT A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the Pcdhgs in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.
Collapse
|
16
|
Mysore SP, Kothari NB. Mechanisms of competitive selection: A canonical neural circuit framework. eLife 2020; 9:e51473. [PMID: 32431293 PMCID: PMC7239658 DOI: 10.7554/elife.51473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/02/2020] [Indexed: 01/25/2023] Open
Abstract
Competitive selection, the transformation of multiple competing sensory inputs and internal states into a unitary choice, is a fundamental component of animal behavior. Selection behaviors have been studied under several intersecting umbrellas including decision-making, action selection, perceptual categorization, and attentional selection. Neural correlates of these behaviors and computational models have been investigated extensively. However, specific, identifiable neural circuit mechanisms underlying the implementation of selection remain elusive. Here, we employ a first principles approach to map competitive selection explicitly onto neural circuit elements. We decompose selection into six computational primitives, identify demands that their execution places on neural circuit design, and propose a canonical neural circuit framework. The resulting framework has several links to neural literature, indicating its biological feasibility, and has several common elements with prominent computational models, suggesting its generality. We propose that this framework can help catalyze experimental discovery of the neural circuit underpinnings of competitive selection.
Collapse
Affiliation(s)
- Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins UniversityBaltimoreUnited States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Ninad B Kothari
- Department of Psychological and Brain Sciences, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
17
|
Valeeva G, Janackova S, Nasretdinov A, Rychkova V, Makarov R, Holmes GL, Khazipov R, Lenck-Santini PP. Emergence of Coordinated Activity in the Developing Entorhinal-Hippocampal Network. Cereb Cortex 2020; 29:906-920. [PMID: 30535003 PMCID: PMC6319314 DOI: 10.1093/cercor/bhy309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022] Open
Abstract
Correlated activity in the entorhinal–hippocampal neuronal networks, supported by oscillatory and intermittent population activity patterns is critical for learning and memory. However, when and how correlated activity emerges in these networks during development remains largely unknown. Here, we found that during the first postnatal week in non-anaesthetized head-restrained rats, activity in the superficial layers of the medial entorhinal cortex (MEC) and hippocampus was highly correlated, with intermittent population bursts in the MEC followed by early sharp waves (eSPWs) in the hippocampus. Neurons in the superficial MEC layers fired before neurons in the dentate gyrus, CA3 and CA1. eSPW current-source density profiles indicated that perforant/temporoammonic entorhinal inputs and intrinsic hippocampal connections are co-activated during entorhinal–hippocampal activity bursts. Finally, a majority of the entorhinal–hippocampal bursts were triggered by spontaneous myoclonic body movements, characteristic of the neonatal period. Thus, during the neonatal period, activity in the entorhinal cortex (EC) and hippocampus is highly synchronous, with the EC leading hippocampal activation. We propose that such correlated activity is embedded into a large-scale bottom-up circuit that processes somatosensory feedback resulting from neonatal movements, and that it is likely to instruct the development of connections between neocortex and hippocampus.
Collapse
Affiliation(s)
- Guzel Valeeva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Sona Janackova
- INMED, Aix-Marseille University, INSERM, Marseille, France
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Roman Makarov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Gregory L Holmes
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED, Aix-Marseille University, INSERM, Marseille, France
| | - Pierre-Pascal Lenck-Santini
- INMED, Aix-Marseille University, INSERM, Marseille, France.,Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
18
|
Riva M, Genescu I, Habermacher C, Orduz D, Ledonne F, Rijli FM, López-Bendito G, Coppola E, Garel S, Angulo MC, Pierani A. Activity-dependent death of transient Cajal-Retzius neurons is required for functional cortical wiring. eLife 2019; 8:50503. [PMID: 31891351 PMCID: PMC6938399 DOI: 10.7554/elife.50503] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death and early activity contribute to the emergence of functional cortical circuits. While most neuronal populations are scaled-down by death, some subpopulations are entirely eliminated, raising the question of the importance of such demise for cortical wiring. Here, we addressed this issue by focusing on Cajal-Retzius neurons (CRs), key players in cortical development that are eliminated in postnatal mice in part via Bax-dependent apoptosis. Using Bax-conditional mutants and CR hyperpolarization, we show that the survival of electrically active subsets of CRs triggers an increase in both dendrite complexity and spine density of upper layer pyramidal neurons, leading to an excitation/inhibition imbalance. The survival of these CRs is induced by hyperpolarization, highlighting an interplay between early activity and neuronal elimination. Taken together, our study reveals a novel activity-dependent programmed cell death process required for the removal of transient immature neurons and the proper wiring of functional cortical circuits.
Collapse
Affiliation(s)
- Martina Riva
- Institut Imagine, Université de Paris, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Ioana Genescu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Chloé Habermacher
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,INSERM U1128, Paris, France
| | | | - Fanny Ledonne
- Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris, France
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Eva Coppola
- Institut Imagine, Université de Paris, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Maria Cecilia Angulo
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,INSERM U1128, Paris, France
| | - Alessandra Pierani
- Institut Imagine, Université de Paris, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| |
Collapse
|
19
|
Zaqout S, Blaesius K, Wu YJ, Ott S, Kraemer N, Becker LL, Rosário M, Rosenmund C, Strauss U, Kaindl AM. Altered inhibition and excitation in neocortical circuits in congenital microcephaly. Neurobiol Dis 2019; 129:130-143. [PMID: 31102767 DOI: 10.1016/j.nbd.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/15/2019] [Accepted: 05/11/2019] [Indexed: 02/06/2023] Open
Abstract
Congenital microcephaly is highly associated with intellectual disability. Features of autosomal recessive primary microcephaly subtype 3 (MCPH3) also include hyperactivity and seizures. The disease is caused by biallelic mutations in the Cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the mouse, Cdk5rap2 mutations similar to the human condition result in reduced brain size and a strikingly thin neocortex already at early stages of neurogenesis that persists through adulthood. The microcephaly phenotype in MCPH arises from a neural stem cell proliferation defect. Here, we report a novel role for Cdk5rap2 in the regulation of dendritic development and synaptogenesis of neocortical layer 2/3 pyramidal neurons. Cdk5rap2-deficient murine neurons show poorly branched dendritic arbors and an increased density of immature thin spines and glutamatergic synapses in vivo. Moreover, the excitatory drive is enhanced in ex vivo brain slice preparations of Cdk5rap2 mutant mice. Concurrently, we show that pyramidal neurons receive fewer inhibitory inputs. Together, these findings point towards a shift in the excitation - inhibition balance towards excitation in Cdk5rap2 mutant mice. Thus, MCPH3 is associated not only with a neural progenitor proliferation defect but also with altered function of postmitotic neurons and hence with altered connectivity.
Collapse
Affiliation(s)
- Sami Zaqout
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany
| | - Kathrin Blaesius
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany
| | - Yuan-Ju Wu
- Charité - Universitätsmedizin Berlin, NeuroCure, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie Ott
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Nadine Kraemer
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lena-Luise Becker
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marta Rosário
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Rosenmund
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany; Charité - Universitätsmedizin Berlin, NeuroCure, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulf Strauss
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Angela M Kaindl
- Charité - Universitätsmedizin Berlin, Institute of Cell- and Neurobiology, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Augustenburger Platz 1, 13353 Berlin, Germany; Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178 Berlin, Germany.
| |
Collapse
|
20
|
Ortolani D, Manot-Saillet B, Orduz D, Ortiz FC, Angulo MC. In vivo Optogenetic Approach to Study Neuron-Oligodendroglia Interactions in Mouse Pups. Front Cell Neurosci 2018; 12:477. [PMID: 30574070 PMCID: PMC6291523 DOI: 10.3389/fncel.2018.00477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/22/2018] [Indexed: 11/24/2022] Open
Abstract
Optogenetic and pharmacogenetic techniques have been effective to analyze the role of neuronal activity in controlling oligodendroglia lineage cells in behaving juvenile and adult mice. This kind of studies is also of high interest during early postnatal (PN) development since important changes in oligodendroglia dynamics occur during the first two PN weeks. Yet, neuronal manipulation is difficult to implement at an early age because high-level, specific protein expression is less reliable in neonatal mice. Here, we describe a protocol allowing for an optogenetic stimulation of neurons in awake mouse pups with the purpose of investigating the effect of neuronal activity on oligodendroglia dynamics during early PN stages. Since GABAergic interneurons contact oligodendrocyte precursor cells (OPCs) through bona fide synapses and maintain a close relationship with these progenitors during cortical development, we used this relevant example of neuron-oligodendroglia interaction to implement a proof-of-principle optogenetic approach. First, we tested Nkx2.1-Cre and Parvalbumin (PV)-Cre lines to drive the expression of the photosensitive ion channel channelrhodopsin-2 (ChR2) in subpopulations of interneurons at different developmental stages. By using patch-clamp recordings and photostimulation of ChR2-positive interneurons in acute somatosensory cortical slices, we analyzed the level of functional expression of ChR2 in these neurons. We found that ChR2 expression was insufficient in PV-Cre mouse at PN day 10 (PN10) and that this channel needs to be expressed from embryonic stages (as in the Nkx2.1-Cre line) to allow for a reliable photoactivation in mouse pups. Then, we implemented a stereotaxic surgery to place a mini-optic fiber at the cortical surface in order to photostimulate ChR2-positive interneurons at PN10. In vivo field potentials were recorded in Layer V to verify that photostimulation reaches deep cortical layers. Finally, we analyzed the effect of the photostimulation on the layer V oligodendroglia population by conventional immunostainings. Neither the total density nor a proliferative fraction of OPCs were affected by increasing interneuron activity in vivo, complementing previous findings showing the lack of effect of GABAergic synaptic activity on OPC proliferation. The methodology described here should provide a framework for future investigation of the role of early cellular interactions during PN brain maturation.
Collapse
Affiliation(s)
- Domiziana Ortolani
- INSERM U894, Institute of Psychiatry and Neuroscience of Paris, Paris, France.,INSERM U1128, Paris, France
| | - Blandine Manot-Saillet
- INSERM U894, Institute of Psychiatry and Neuroscience of Paris, Paris, France.,INSERM U1128, Paris, France
| | | | - Fernando C Ortiz
- INSERM U1128, Paris, France.,mechanisms of Myelin Formation and Repair Lab, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Maria Cecilia Angulo
- INSERM U894, Institute of Psychiatry and Neuroscience of Paris, Paris, France.,INSERM U1128, Paris, France
| |
Collapse
|
21
|
Cardin JA. Inhibitory Interneurons Regulate Temporal Precision and Correlations in Cortical Circuits. Trends Neurosci 2018; 41:689-700. [PMID: 30274604 PMCID: PMC6173199 DOI: 10.1016/j.tins.2018.07.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 01/16/2023]
Abstract
GABAergic interneurons, which are highly diverse, have long been thought to contribute to the timing of neural activity as well as to the generation and shaping of brain rhythms. GABAergic activity is crucial not only for entrainment of oscillatory activity across a neural population, but also for precise regulation of the timing of action potentials and the suppression of slow-timescale correlations. The diversity of inhibition provides the potential for flexible regulation of patterned activity, but also poses a challenge to identifying the elements of excitatory-inhibitory interactions underlying network engagement. This review highlights the key roles of inhibitory interneurons in spike correlations and brain rhythms, describes several scales on which GABAergic inhibition regulates timing in neural networks, and identifies potential consequences of inhibitory dysfunction.
Collapse
Affiliation(s)
- Jessica A Cardin
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
A Transient Developmental Window of Fast-Spiking Interneuron Dysfunction in a Mouse Model of Dravet Syndrome. J Neurosci 2018; 38:7912-7927. [PMID: 30104343 DOI: 10.1523/jneurosci.0193-18.2018] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 01/06/2023] Open
Abstract
Dravet syndrome is a severe, childhood-onset epilepsy largely due to heterozygous loss-of-function mutation of the gene SCN1A, which encodes the type 1 neuronal voltage-gated sodium (Na+) channel α subunit Nav1.1. Prior studies in mouse models of Dravet syndrome (Scn1a+/- mice) indicate that, in cerebral cortex, Nav1.1 is predominantly expressed in GABAergic interneurons, in particular in parvalbumin-positive fast-spiking basket cell interneurons (PVINs). This has led to a model of Dravet syndrome pathogenesis in which Nav1.1 mutation leads to preferential dysfunction of interneurons, decreased synaptic inhibition, hyperexcitability, and epilepsy. However, such studies have been implemented at early developmental time points. Here, we performed electrophysiological recordings in acute brain slices prepared from male and female Scn1a+/- mice as well as age-matched wild-type littermate controls and found that, later in development, the excitability of PVINs had normalized. Analysis of action potential waveforms indirectly suggests a reorganization of axonal Na+ channels in PVINs from Scn1a+/- mice, a finding supported by immunohistochemical data showing elongation of the axon initial segment. Our results imply that transient impairment of action potential generation by PVINs may contribute to the initial appearance of epilepsy, but is not the mechanism of ongoing, chronic epilepsy in Dravet syndrome.SIGNIFICANCE STATEMENT Dravet syndrome is characterized by normal early development, temperature-sensitive seizures in infancy, progression to treatment-resistant epilepsy, developmental delay, autism, and sudden unexplained death due to mutation in SCN1A encoding the Na+ channel subunit Nav1.1. Prior work has revealed a preferential impact of Nav1.1 loss on the function of GABAergic inhibitory interneurons. However, such data derive exclusively from recordings of neurons in young Scn1a+/- mice. Here, we show that impaired action potential generation observed in parvalbumin-positive fast-spiking interneurons (PVINs) in Scn1a+/- mice during early development has normalized by postnatal day 35. This work suggests that a transient impairment of PVINs contributes to epilepsy onset, but is not the mechanism of ongoing, chronic epilepsy in Dravet syndrome.
Collapse
|
23
|
Guan W, Cao JW, Liu LY, Zhao ZH, Fu Y, Yu YC. Eye opening differentially modulates inhibitory synaptic transmission in the developing visual cortex. eLife 2017; 6:32337. [PMID: 29227249 PMCID: PMC5746341 DOI: 10.7554/elife.32337] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022] Open
Abstract
Eye opening, a natural and timed event during animal development, influences cortical circuit assembly and maturation; yet, little is known about its precise effect on inhibitory synaptic connections. Here, we show that coinciding with eye opening, the strength of unitary inhibitory postsynaptic currents (uIPSCs) from somatostatin-expressing interneurons (Sst-INs) to nearby excitatory neurons, but not interneurons, sharply decreases in layer 2/3 of the mouse visual cortex. In contrast, the strength of uIPSCs from fast-spiking interneurons (FS-INs) to excitatory neurons significantly increases during eye opening. More importantly, these developmental changes can be prevented by dark rearing or binocular lid suture, and reproduced by the artificial opening of sutured lids. Mechanistically, this differential maturation of synaptic transmission is accompanied by a significant change in the postsynaptic quantal size. Together, our study reveals a differential regulation in GABAergic circuits in the cortex driven by eye opening may be crucial for cortical maturation and function.
Collapse
Affiliation(s)
- Wuqiang Guan
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Jun-Wei Cao
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lin-Yun Liu
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhi-Hao Zhao
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yinghui Fu
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yong-Chun Yu
- Jing'an District Center Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 495] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
25
|
Contribution of Innate Cortical Mechanisms to the Maturation of Orientation Selectivity in Parvalbumin Interneurons. J Neurosci 2017; 37:820-829. [PMID: 28123018 DOI: 10.1523/jneurosci.2386-16.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023] Open
Abstract
The maturation of cortical parvalbumin-positive (PV) interneurons depends on the interaction of innate and experience-dependent factors. Dark-rearing experiments suggest that visual experience determines when broad orientation selectivity emerges in visual cortical PV interneurons. Here, using neural transplantation and in vivo calcium imaging of mouse visual cortex, we investigated whether innate mechanisms contribute to the maturation of orientation selectivity in PV interneurons. First, we confirmed earlier findings showing that broad orientation selectivity emerges in PV interneurons by 2 weeks after vision onset, ∼35 d after these cells are born. Next, we assessed the functional development of transplanted PV (tPV) interneurons. Surprisingly, 25 d after transplantation (DAT) and >2 weeks after vision onset, we found that tPV interneurons have not developed broad orientation selectivity. By 35 DAT, however, broad orientation selectivity emerges in tPV interneurons. Transplantation does not alter orientation selectivity in host interneurons, suggesting that the maturation of tPV interneurons occurs independently from their endogenous counterparts. Together, these results challenge the notion that the onset of vision solely determines when PV interneurons become broadly tuned. Our results reveal that an innate cortical mechanism contributes to the emergence of broad orientation selectivity in PV interneurons. SIGNIFICANCE STATEMENT Early visual experience and innate developmental programs interact to shape cortical circuits. Visual-deprivation experiments have suggested that the onset of visual experience determines when interneurons mature in the visual cortex. Here we used neuronal transplantation and cellular imaging of visual responses to investigate the maturation of parvalbumin-positive (PV) interneurons. Our results suggest that the emergence of broad orientation selectivity in PV interneurons is innately timed.
Collapse
|
26
|
Zhang XJ, Li Z, Han Z, Sultan KT, Huang K, Shi SH. Precise inhibitory microcircuit assembly of developmentally related neocortical interneurons in clusters. Nat Commun 2017; 8:16091. [PMID: 28703129 PMCID: PMC5511369 DOI: 10.1038/ncomms16091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
GABA-ergic interneurons provide diverse inhibitions that are essential for the operation of neuronal circuits in the neocortex. However, the mechanisms that control the functional organization of neocortical interneurons remain largely unknown. Here we show that developmental origins influence fine-scale synapse formation and microcircuit assembly of neocortical interneurons. Spatially clustered neocortical interneurons originating from low-titre retrovirus-infected radial glial progenitors in the embryonic medial ganglionic eminence and preoptic area preferentially develop electrical, but not chemical, synapses with each other. This lineage-related electrical coupling forms predominantly between the same interneuron subtype over an extended postnatal period and across a range of distances, and promotes action potential generation and synchronous firing. Interestingly, this selective electrical coupling relates to a coordinated inhibitory chemical synapse formation between sparsely labelled interneurons in clusters and the same nearby excitatory neurons. These results suggest a link between the lineage relationship of neocortical interneurons and their precise functional organization. Developmental neuroscientists have long asked if clonally-related neurons retain functional relationships after maturation. The authors show that sparsely labelled neocortical interneurons in clusters with high possibility of clonal relation preferentially form electrical, but not chemical, synapses.
Collapse
Affiliation(s)
- Xin-Jun Zhang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Zhizhong Li
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Zhi Han
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA.,College of Software, Nankai University, Tianjin 300071, China
| | - Khadeejah T Sultan
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Song-Hai Shi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|
27
|
Butt SJ, Stacey JA, Teramoto Y, Vagnoni C. A role for GABAergic interneuron diversity in circuit development and plasticity of the neonatal cerebral cortex. Curr Opin Neurobiol 2017; 43:149-155. [PMID: 28399421 DOI: 10.1016/j.conb.2017.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022]
Abstract
GABAergic interneurons are a highly heterogeneous group of cells that are critical for the mature function and development of the neocortex. In terms of the latter, much attention has focused on the well-established role of parvalbumin (PV+)-expressing, fast spiking, basket cells in determining the critical period plasticity. However recent endeavours have started to shed the light on the contribution of other interneuron subtypes to early circuit formation and plasticity. Data suggests that there are significant interactions between PV+ cells and other interneuron subtypes that regulate circuit development in rodents in the first postnatal week. Moreover, a number of these early interactions are transient which points to an important, distinct role for interneuron diversity in setting up emergent neocortical processing.
Collapse
Affiliation(s)
- Simon Jb Butt
- Department of Physiology, Anatomy & Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Jacqueline A Stacey
- Department of Physiology, Anatomy & Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Yayoi Teramoto
- Department of Physiology, Anatomy & Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Cristiana Vagnoni
- Department of Physiology, Anatomy & Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| |
Collapse
|
28
|
MECP2 regulates cortical plasticity underlying a learned behaviour in adult female mice. Nat Commun 2017; 8:14077. [PMID: 28098153 PMCID: PMC5253927 DOI: 10.1038/ncomms14077] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
Neurodevelopmental disorders are marked by inappropriate synaptic connectivity early in life, but how disruption of experience-dependent plasticity contributes to cognitive and behavioural decline in adulthood is unclear. Here we show that pup gathering behaviour and associated auditory cortical plasticity are impaired in female Mecp2het mice, a model of Rett syndrome. In response to learned maternal experience, Mecp2het females exhibited transient changes to cortical inhibitory networks typically associated with limited plasticity. Averting these changes in Mecp2het through genetic or pharmacological manipulations targeting the GABAergic network restored gathering behaviour. We propose that pup gathering learning triggers a transient epoch of inhibitory plasticity in auditory cortex that is dysregulated in Mecp2het. In this window of heightened sensitivity to sensory and social cues, Mecp2 mutations suppress adult plasticity independently from their effects on early development. Rett syndrome is associated with impaired synaptic connectivity beginning in early development. Here the authors show in female mice heterozygous for Mecp2, a model of Rett syndrome, that during adulthood, auditory cortex plasticity associated with a learned maternal behaviour is also impaired.
Collapse
|
29
|
Leukemia inhibitory factor impairs structural and neurochemical development of rat visual cortex in vivo. Mol Cell Neurosci 2017; 79:81-92. [PMID: 28088609 DOI: 10.1016/j.mcn.2016.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/25/2016] [Accepted: 12/29/2016] [Indexed: 11/23/2022] Open
Abstract
Minipump infusions into visual cortex in vivo at the onset of the critical period have revealed that the proinflammatory cytokine leukemia inhibitory factor (LIF) delays the maturation of thalamocortical projection neurons of the lateral geniculate nucleus, and tecto-thalamic projection neurons of the superior colliculus, and cortical layer IV spiny stellates and layer VI pyramidal neurons. Here, we report that P12-20 LIF infusion inhibits somatic maturation of pyramidal neurons and of all interneuron types in vivo. Likewise, DIV 12-20 LIF treatment in organotypic cultures prevents somatic growth GABA-ergic neurons. Further, while NPY expression is increased in the LIF-infused hemispheres, the expression of parvalbumin mRNA and protein, Kv3.1 mRNA, calbindin D-28k protein, and GAD-65 mRNA, but not of GAD-67 mRNA or calretinin protein is substantially reduced. Also, LIF treatment decreases parvalbumin, Kv3.1, Kv3.2 and GAD-65, but not GAD-67 mRNA expression in OTC. Developing cortical neurons are known to depend on neurotrophins. Indeed, LIF alters neurotrophin mRNA expression, and prevents the growth promoting action of neurotophin-4 in GABA-ergic neurons. The results imply that LIF, by altering neurotrophin expression and/or signaling, could counteract neurotrophin-dependent growth and neurochemical differentiation of cortical neurons.
Collapse
|
30
|
Adolescent GBR12909 exposure induces oxidative stress, disrupts parvalbumin-positive interneurons, and leads to hyperactivity and impulsivity in adult mice. Neuroscience 2016; 345:166-175. [PMID: 27890827 DOI: 10.1016/j.neuroscience.2016.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 10/15/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
Abstract
The adolescent period in mammals is a critical period of brain maturation and thus represents a time of susceptibility to environmental insult, e.g. psychosocial stress and/or drugs of abuse, which may cause lasting impairments in brain function and behavior and even precipitate symptoms in at-risk individuals. One likely effect of these environmental insults is to increase oxidative stress in the developing adolescent brain. Indeed, there is increasing evidence that redox dysregulation plays an important role in the development of schizophrenia and other neuropsychiatric disorders and that GABA interneurons are particularly susceptible to alterations in oxidative stress. The current study sought to model this adolescent neurochemical "stress" by exposing mice to the dopamine transporter inhibitor GBR12909 (5mg/kg; IP) during adolescence (postnatal day 35-44) and measuring the resultant effect on locomotor behavior and probabilistic reversal learning as well as GABAergic interneurons and oxidative stress in adulthood. C57BL6/J mice exposed to GBR12909 showed increased activity in a novel environment and increased impulsivity as measured by premature responding in the probabilistic reversal learning task. Adolescent GBR12909-exposed mice also showed decreased parvalbumin (PV) immunoreactivity in the prefrontal cortex, which was accompanied by increased oxidative stress in PV+ neurons. These findings indicate that adolescent exposure to a dopamine transporter inhibitor results in loss of PV in GABAergic interneurons, elevations in markers of oxidative stress, and alterations in behavior in adulthood.
Collapse
|
31
|
Interneurons Differentially Contribute to Spontaneous Network Activity in the Developing Hippocampus Dependent on Their Embryonic Lineage. J Neurosci 2016; 36:2646-62. [PMID: 26937006 DOI: 10.1523/jneurosci.4000-15.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Spontaneously generated network activity is a hallmark of developing neural circuits, and plays an important role in the formation of synaptic connections. In the rodent hippocampus, this activity is observed in vitro as giant depolarizing potentials (GDPs) during the first postnatal week. Interneurons importantly contribute to GDPs, due to the depolarizing actions of GABA early in development. While they are highly diverse, cortical interneurons can be segregated into two distinct groups based on their embryonic lineage from either the medial or caudal ganglionic eminences (MGE and CGE). There is evidence suggesting CGE-derived interneurons are important for GDP generation; however, their contribution relative to those from the MGE has never been directly tested. Here, we optogenetically inhibited either MGE- or CGE-derived interneurons in a region-specific manner in mouse neonatal hippocampus in vitro. In CA1, where interneurons are the primary source of recurrent excitation, we found that those from the MGE strongly and preferentially contributed to GDP generation. Furthermore, in dual whole-cell patch recordings in neonatal CA1, MGE interneurons formed synaptic connections to and from neighboring pyramidal cells at a much higher rate than those from the CGE. These MGE interneurons were commonly perisomatic targeting, in contrast to those from the CGE, which were dendrite targeting. Finally, inhibiting MGE interneurons in CA1 suppressed GDPs in CA3 and vice versa; conversely, they could also trigger GDPs in CA1 that propagated to CA3 and vice versa. Our data demonstrate a key role for MGE-derived interneurons in both generating and coordinating GDPs across the hippocampus. SIGNIFICANCE STATEMENT During nervous system development, immature circuits internally generate rhythmic patterns of electrical activity that promote the establishment of synaptic connections. Immature interneurons are excitatory rather than inhibitory and actively contribute to the generation of these spontaneous network events, referred to as giant depolarizing potentials (GDPs) in the hippocampus. Interneurons can be generally separated into two distinct groups based on their origin in the embryo from the medial or caudal ganglionic eminences (MGE and CGE). Here we show that MGE interneurons play a dominant role in generating GDPs compared with their CGE counterparts. They accomplish this due to their high synaptic connectivity within the local circuitry. Finally, they can control network activity across large regions of the developing hippocampus.
Collapse
|
32
|
Yao XH, Wang M, He XN, He F, Zhang SQ, Lu W, Qiu ZL, Yu YC. Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex. Nat Commun 2016; 7:12229. [PMID: 27510304 PMCID: PMC4987578 DOI: 10.1038/ncomms12229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
The coexistence of electrical and chemical synapses among interneurons is essential for interneuron function in the neocortex. However, it remains largely unclear whether electrical coupling between interneurons influences chemical synapse formation and microcircuit assembly during development. Here, we show that electrical and GABAergic chemical connections robustly develop between interneurons in neocortical layer 1 over a similar time course. Electrical coupling promotes action potential generation and synchronous firing between layer 1 interneurons. Furthermore, electrically coupled interneurons exhibit strong GABA-A receptor-mediated synchronous synaptic activity. Disruption of electrical coupling leads to a loss of bidirectional, but not unidirectional, GABAergic connections. Moreover, a reduction in electrical coupling induces an increase in excitatory synaptic inputs to layer 1 interneurons. Together, these findings strongly suggest that electrical coupling between neocortical interneurons plays a critical role in regulating chemical synapse development and precise formation of circuits.
Collapse
Affiliation(s)
- Xing-Hua Yao
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Min Wang
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xiang-Nan He
- Centre for Computational Systems Biology and the School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Fei He
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Shu-Qing Zhang
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Wenlian Lu
- Centre for Computational Systems Biology and the School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Zi-Long Qiu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and University of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yong-Chun Yu
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
33
|
Miao Q, Yao L, Rasch MJ, Ye Q, Li X, Zhang X. Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset. Cell Rep 2016; 16:1677-1689. [PMID: 27477277 DOI: 10.1016/j.celrep.2016.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/10/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022] Open
Abstract
Although the developmental maturation of cortical inhibitory synapses is known to be a critical factor in gating the onset of critical period (CP) for experience-dependent cortical plasticity, how synaptic transmission dynamics of other cortical synapses are regulated during the transition to CP remains unknown. Here, by systematically examining various intracortical synapses within layer 4 of the mouse visual cortex, we demonstrate that synaptic temporal dynamics of intracortical excitatory synapses on principal cells (PCs) and inhibitory parvalbumin- or somatostatin-expressing cells are selectively regulated before the CP onset, whereas those of intracortical inhibitory synapses and long-range thalamocortical excitatory synapses remain unchanged. This selective maturation of synaptic dynamics results from a ubiquitous reduction of presynaptic release and is dependent on visual experience. These findings provide an additional essential circuit mechanism for regulating CP timing in the developing visual cortex.
Collapse
Affiliation(s)
- Qinglong Miao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Institute of Neuroscience, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Malte J Rasch
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qian Ye
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiang Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
34
|
Marques-Smith A, Lyngholm D, Kaufmann AK, Stacey JA, Hoerder-Suabedissen A, Becker EBE, Wilson MC, Molnár Z, Butt SJB. A Transient Translaminar GABAergic Interneuron Circuit Connects Thalamocortical Recipient Layers in Neonatal Somatosensory Cortex. Neuron 2016; 89:536-49. [PMID: 26844833 PMCID: PMC4742537 DOI: 10.1016/j.neuron.2016.01.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/28/2015] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
GABAergic activity is thought to influence developing neocortical sensory circuits. Yet the late postnatal maturation of local layer (L)4 circuits suggests alternate sources of GABAergic control in nascent thalamocortical networks. We show that a population of L5b, somatostatin (SST)-positive interneuron receives early thalamic synaptic input and, using laser-scanning photostimulation, identify an early transient circuit between these cells and L4 spiny stellates (SSNs) that disappears by the end of the L4 critical period. Sensory perturbation disrupts the transition to a local GABAergic circuit, suggesting a link between translaminar and local control of SSNs. Conditional silencing of SST+ interneurons or conversely biasing the circuit toward local inhibition by overexpression of neuregulin-1 type 1 results in an absence of early L5b GABAergic input in mutants and delayed thalamic innervation of SSNs. These data identify a role for L5b SST+ interneurons in the control of SSNs in the early postnatal neocortex. Early postnatal thalamic synaptic input onto L5b somatostatin interneurons Transient reciprocal connectivity between L5b INs and L4 spiny stellate cells Sensory activity is required for the transition to a local L4 GABAergic circuit Molecular bias toward early local IN synapses delays thalamic innervation of SSNs
Collapse
Affiliation(s)
- Andre Marques-Smith
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Daniel Lyngholm
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Anna-Kristin Kaufmann
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Jacqueline A Stacey
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | | | - Esther B E Becker
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Michael C Wilson
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Simon J B Butt
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK.
| |
Collapse
|
35
|
Tuncdemir SN, Wamsley B, Stam FJ, Osakada F, Goulding M, Callaway EM, Rudy B, Fishell G. Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits. Neuron 2016; 89:521-35. [PMID: 26844832 DOI: 10.1016/j.neuron.2015.11.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 08/21/2015] [Accepted: 10/28/2015] [Indexed: 01/13/2023]
Abstract
The precise connectivity of somatostatin and parvalbumin cortical interneurons is generated during development. An understanding of how these interneuron classes incorporate into cortical circuitry is incomplete but essential to elucidate the roles they play during maturation. Here, we report that somatostatin interneurons in infragranular layers receive dense but transient innervation from thalamocortical afferents during the first postnatal week. During this period, parvalbumin interneurons and pyramidal neurons within the same layers receive weaker thalamocortical inputs, yet are strongly innervated by somatostatin interneurons. Further, upon disruption of the early (but not late) somatostatin interneuron network, the synaptic maturation of thalamocortical inputs onto parvalbumin interneurons is perturbed. These results suggest that infragranular somatostatin interneurons exhibit a transient early synaptic connectivity that is essential for the establishment of thalamic feedforward inhibition mediated by parvalbumin interneurons.
Collapse
Affiliation(s)
- Sebnem N Tuncdemir
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Brie Wamsley
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Floor J Stam
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fumitaka Osakada
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Bernardo Rudy
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Gord Fishell
- NYU Neuroscience Institute and the Department of Neuroscience and Physiology, Smilow Research Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
36
|
GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat Commun 2016; 7:10584. [PMID: 26843463 PMCID: PMC4743032 DOI: 10.1038/ncomms10584] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/30/2015] [Indexed: 01/30/2023] Open
Abstract
GABAergic interneurons play key roles in cortical circuits, yet little is known about their early connectivity. Here we use glutamate uncaging and a novel optogenetic strategy to track changes in the afferent and efferent synaptic connections of developing neocortical interneuron subtypes. We find that Nkx2-1-derived interneurons possess functional synaptic connections before emerging pyramidal cell networks. Subsequent interneuron circuit maturation is both subtype and layer dependent. Glutamatergic input onto fast spiking (FS), but not somatostatin-positive, non-FS interneurons increases over development. Interneurons of both subtype located in layers (L) 4 and 5b engage in transient circuits that disappear after the somatosensory critical period. These include a pathway mediated by L5b somatostatin-positive interneurons that specifically targets L4 during the first postnatal week. The innervation patterns of immature cortical interneuron circuits are thus neither static nor progressively strengthened but follow a layer-specific choreography of transient connections that differ from those of the adult brain. GABAergic interneurons are key components of cortical circuits, yet their early connectivity is unknown. Here the authors show that during early postnatal development, Nkx2-1-derived interneurons engage in layer-specific and dynamic circuits, which are distinct from those in the mature neocortex.
Collapse
|
37
|
Rigas P, Adamos DA, Sigalas C, Tsakanikas P, Laskaris NA, Skaliora I. Spontaneous Up states in vitro: a single-metric index of the functional maturation and regional differentiation of the cerebral cortex. Front Neural Circuits 2015; 9:59. [PMID: 26528142 PMCID: PMC4603250 DOI: 10.3389/fncir.2015.00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding the development and differentiation of the neocortex remains a central focus of neuroscience. While previous studies have examined isolated aspects of cellular and synaptic organization, an integrated functional index of the cortical microcircuit is still lacking. Here we aimed to provide such an index, in the form of spontaneously recurring periods of persistent network activity -or Up states- recorded in mouse cortical slices. These coordinated network dynamics emerge through the orchestrated regulation of multiple cellular and synaptic elements and represent the default activity of the cortical microcircuit. To explore whether spontaneous Up states can capture developmental changes in intracortical networks we obtained local field potential recordings throughout the mouse lifespan. Two independent and complementary methodologies revealed that Up state activity is systematically modified by age, with the largest changes occurring during early development and adolescence. To explore possible regional heterogeneities we also compared the development of Up states in two distinct cortical areas and show that primary somatosensory cortex develops at a faster pace than primary motor cortex. Our findings suggest that in vitro Up states can serve as a functional index of cortical development and differentiation and can provide a baseline for comparing experimental and/or genetic mouse models.
Collapse
Affiliation(s)
- Pavlos Rigas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of AthensAthens, Greece
| | - Dimitrios A. Adamos
- Neuroinformatics Group, Aristotle University of ThessalonikiThessaloniki, Greece
- School of Music Studies, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Charalambos Sigalas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of AthensAthens, Greece
| | - Panagiotis Tsakanikas
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of AthensAthens, Greece
| | - Nikolaos A. Laskaris
- Neuroinformatics Group, Aristotle University of ThessalonikiThessaloniki, Greece
- AIIA Lab, Department of Informatics, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Irini Skaliora
- Neurophysiology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of AthensAthens, Greece
| |
Collapse
|
38
|
Lai JKY, Doering LC, Foster JA. Developmental expression of the neuroligins and neurexins in fragile X mice. J Comp Neurol 2015; 524:807-28. [PMID: 26235839 DOI: 10.1002/cne.23868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 11/08/2022]
Abstract
Neuroligins and neurexins are transsynaptic proteins involved in the maturation of glutamatergic and GABAergic synapses. Research has identified synaptic proteins and function as primary contributors to the development of fragile X syndrome. Fragile X mental retardation protein (FMRP), the protein that is lacking in fragile X syndrome, binds neuroligin-1 and -3 mRNA. Using in situ hybridization, we examined temporal and spatial expression patterns of neuroligin (NLGN) and neurexin (NRXN) mRNAs in the somatosensory (S1) cortex and hippocampus in wild-type (WT) and fragile X knockout (FMR1-KO) mice during the first 5 weeks of postnatal life. Genotype-based differences in expression included increased NLGN1 mRNA in CA1 and S1 cortex, decreased NLGN2 mRNA in CA1 and dentate gyrus (DG) regions of the hippocampus, and increased NRXN3 mRNA in CA1, DG, and S1 cortex between female WT and FMR1-KO mice. In male mice, decreased expression of NRXN3 mRNA was observed in CA1 and DG regions of FMR1-KO mice. Sex differences in hippocampal expression of NLGN2, NRXN1, NRXN2, and NRXN3 mRNAs and in S1 cortex expression of NRXN3 mRNAs were observed WT mice, whereas sex differences in NLGN3, NRXN1, NRXN2, and NRXN3 mRNA expression in the hippocampus and in NLGN1, NRXN2 and NRXN3 mRNA expression in S1 cortex were detected in FMR1-KO mice. These results provide a neuroanatomical map of NLGN and NRXN expression patterns over postnatal development in WT and FMR1-KO mice. The differences in developmental trajectory of these synaptic proteins could contribute to long-term differences in CNS wiring and synaptic function.
Collapse
Affiliation(s)
- Jonathan K Y Lai
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, L8N 4L8, Canada.,Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, L8N 4A6, Canada
| | - Laurie C Doering
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8N 4L8, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, Ontario, L8N 4L8, Canada.,Brain-Body Institute, St. Joseph's Healthcare, Hamilton, Ontario, L8N 4A6, Canada
| |
Collapse
|
39
|
He S, Li Z, Ge S, Yu YC, Shi SH. Inside-Out Radial Migration Facilitates Lineage-Dependent Neocortical Microcircuit Assembly. Neuron 2015; 86:1159-66. [PMID: 26050035 DOI: 10.1016/j.neuron.2015.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/21/2015] [Accepted: 04/27/2015] [Indexed: 01/24/2023]
Abstract
Neocortical excitatory neurons migrate radially along the glial fibers of mother radial glial progenitors (RGPs) in a birth-date-dependent inside-out manner. However, the precise functional significance of this well-established orderly neuronal migration remains largely unclear. Here, we show that strong electrical synapses selectively form between RGPs and their newborn progeny and between sister excitatory neurons in ontogenetic radial clones at the embryonic stage. Interestingly, the preferential electrical coupling between sister excitatory neurons, but not that between RGP and newborn progeny, is eliminated in mice lacking REELIN or upon clonal depletion of DISABLED-1, which compromises the inside-out radial neuronal migration pattern in the developing neocortex. Moreover, increased levels of Ephrin-A ligand or receptor that laterally disperse sister excitatory neurons also disrupt preferential electrical coupling between radially aligned sister excitatory neurons. These results suggest that RGP-guided inside-out radial neuronal migration facilitates the initial assembly of lineage-dependent precise columnar microcircuits in the neocortex.
Collapse
Affiliation(s)
- Shuijin He
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Zhizhong Li
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Yong-Chun Yu
- Institute of Neurobiology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, P.R. China
| | - Song-Hai Shi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
40
|
MeCP2 regulates the timing of critical period plasticity that shapes functional connectivity in primary visual cortex. Proc Natl Acad Sci U S A 2015; 112:E4782-91. [PMID: 26261347 DOI: 10.1073/pnas.1506499112] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome, an autism spectrum-associated disorder with a host of neurological and sensory symptoms, but the pathogenic mechanisms remain elusive. Neuronal circuits are shaped by experience during critical periods of heightened plasticity. The maturation of cortical GABA inhibitory circuitry, the parvalbumin(+) (PV(+)) fast-spiking interneurons in particular, is a key component that regulates the initiation and termination of the critical period. Using MeCP2-null mice, we examined experience-dependent development of neural circuits in the primary visual cortex. The functional maturation of parvalbumin interneurons was accelerated upon vision onset, as indicated by elevated GABA synthetic enzymes, vesicular GABA transporter, perineuronal nets, and enhanced GABA transmission among PV interneurons. These changes correlated with a precocious onset and closure of critical period and deficient binocular visual function in mature animals. Reduction of GAD67 expression rescued the precocious opening of the critical period, suggesting its major role in MECP2-mediated regulation of experience-driven circuit development. Our results identify molecular changes in a defined cortical cell type and link aberrant developmental trajectory to functional deficits in a model of neuropsychiatric disorder.
Collapse
|
41
|
Tsintsadze V, Minlebaev M, Suchkov D, Cunningham MO, Khazipov R. Ontogeny of kainate-induced gamma oscillations in the rat CA3 hippocampus in vitro. Front Cell Neurosci 2015; 9:195. [PMID: 26041996 PMCID: PMC4438719 DOI: 10.3389/fncel.2015.00195] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
GABAergic inhibition, which is instrumental in the generation of hippocampal gamma oscillations, undergoes significant changes during development. However, the development of hippocampal gamma oscillations remains largely unknown. Here, we explored the developmental features of kainate-induced oscillations (KA-Os) in CA3 region of rat hippocampal slices. Up to postnatal day P5, the bath application of kainate failed to evoke any detectable oscillations. KA-Os emerged by the end of the first postnatal week; these were initially weak, slow (20-25 Hz, beta range) and were poorly synchronized with CA3 units and synaptic currents. Local field potential (LFP) power, synchronization of units and frequency of KA-Os increased during the second postnatal week to attain gamma (30-40 Hz) frequency by P15-21. Both beta and gamma KA-Os are characterized by alternating sinks and sources in the pyramidal cell layer, likely generated by summation of the action potential-associated currents and GABAergic synaptic currents, respectively. Blockade of GABA(A) receptors with gabazine completely suppressed KA-Os at all ages indicating that GABAergic mechanisms are instrumental in their generation. Bumetanide, a NKCC1 chloride co-transporter antagonist which renders GABAergic responses inhibitory in the immature hippocampal neurons, failed to induce KA-Os at P2-4 indicating that the absence of KA-Os in neonates is not due to depolarizing actions of GABA. The linear developmental profile, electrographic features and pharmacological properties indicate that CA3 hippocampal beta and gamma KA-Os are fundamentally similar in their generative mechanisms and their delayed onset and developmental changes likely reflect the development of perisomatic GABAergic inhibition.
Collapse
Affiliation(s)
- Vera Tsintsadze
- INMED, INSERM U-901 Marseille, France ; Aix-Marseille University Marseille, France
| | - Marat Minlebaev
- INMED, INSERM U-901 Marseille, France ; Aix-Marseille University Marseille, France ; Laboratory of Neurobiology, Kazan Federal University Kazan, Russia
| | - Dimitry Suchkov
- Laboratory of Neurobiology, Kazan Federal University Kazan, Russia
| | - Mark O Cunningham
- Institute of Neuroscience, The Medical School, Newcastle University Newcastle upon Tyne, UK
| | - Roustem Khazipov
- INMED, INSERM U-901 Marseille, France ; Aix-Marseille University Marseille, France ; Laboratory of Neurobiology, Kazan Federal University Kazan, Russia
| |
Collapse
|
42
|
Hu H, Agmon A. Properties of precise firing synchrony between synaptically coupled cortical interneurons depend on their mode of coupling. J Neurophysiol 2015; 114:624-37. [PMID: 25972585 DOI: 10.1152/jn.00304.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/11/2015] [Indexed: 01/22/2023] Open
Abstract
Precise spike synchrony has been widely reported in the central nervous system, but its functional role in encoding, processing, and transmitting information is yet unresolved. Of particular interest is firing synchrony between inhibitory cortical interneurons, thought to drive various cortical rhythms such as gamma oscillations, the hallmark of cognitive states. Precise synchrony can arise between two interneurons connected electrically, through gap junctions, chemically, through fast inhibitory synapses, or dually, through both types of connections, but the properties of synchrony generated by these different modes of connectivity have never been compared in the same data set. In the present study we recorded in vitro from 152 homotypic pairs of two major subtypes of mouse neocortical interneurons: parvalbumin-containing, fast-spiking (FS) interneurons and somatostatin-containing (SOM) interneurons. We tested firing synchrony when the two neurons were driven to fire by long, depolarizing current steps and used a novel synchrony index to quantify the strength of synchrony, its temporal precision, and its dependence on firing rate. We found that SOM-SOM synchrony, driven solely by electrical coupling, was less precise than FS-FS synchrony, driven by inhibitory or dual coupling. Unlike SOM-SOM synchrony, FS-FS synchrony was strongly firing rate dependent and was not evident at the prototypical 40-Hz gamma frequency. Computer simulations reproduced these differences in synchrony without assuming any differences in intrinsic properties, suggesting that the mode of coupling is more important than the interneuron subtype. Our results provide novel insights into the mechanisms and properties of interneuron synchrony and point out important caveats in current models of cortical oscillations.
Collapse
Affiliation(s)
- Hang Hu
- Department of Neurobiology and Anatomy and the Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia
| | - Ariel Agmon
- Department of Neurobiology and Anatomy and the Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
43
|
Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity. PLoS Comput Biol 2015; 11:e1004240. [PMID: 25954930 PMCID: PMC4425518 DOI: 10.1371/journal.pcbi.1004240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/15/2015] [Indexed: 11/19/2022] Open
Abstract
Gap junctions between fine unmyelinated axons can electrically couple groups of brain neurons to synchronise firing and contribute to rhythmic activity. To explore the distribution and significance of electrical coupling, we modelled a well analysed, small population of brainstem neurons which drive swimming in young frog tadpoles. A passive network of 30 multicompartmental neurons with unmyelinated axons was used to infer that: axon-axon gap junctions close to the soma gave the best match to experimentally measured coupling coefficients; axon diameter had a strong influence on coupling; most neurons were coupled indirectly via the axons of other neurons. When active channels were added, gap junctions could make action potential propagation along the thin axons unreliable. Increased sodium and decreased potassium channel densities in the initial axon segment improved action potential propagation. Modelling suggested that the single spike firing to step current injection observed in whole-cell recordings is not a cellular property but a dynamic consequence of shunting resulting from electrical coupling. Without electrical coupling, firing of the population during depolarising current was unsynchronised; with coupling, the population showed synchronous recruitment and rhythmic firing. When activated instead by increasing levels of modelled sensory pathway input, the population without electrical coupling was recruited incrementally to unpatterned activity. However, when coupled, the population was recruited all-or-none at threshold into a rhythmic swimming pattern: the tadpole “decided” to swim. Modelling emphasises uncertainties about fine unmyelinated axon physiology but, when informed by biological data, makes general predictions about gap junctions: locations close to the soma; relatively small numbers; many indirect connections between neurons; cause of action potential propagation failure in fine axons; misleading alteration of intrinsic firing properties. Modelling also indicates that electrical coupling within a population can synchronize recruitment of neurons and their pacemaker firing during rhythmic activity. Some groups of nerve cells in the brain are connected to each other electrically where their processes make contact and form specialized “gap” junctions. The simplest function of electrical connections is to make activity propagate faster by avoiding the delays resulting from chemical messengers at synaptic connections. In other cases, especially in higher brain regions where more spread out nerve cells may be connected by their axons, the function of electrical coupling is less clear. To understand this type of electrical connection better we have built computer models of a group of electrically coupled nerve cells in the brain which control swimming in very young frog tadpoles. We show that the coupling can be indirect, via other members of the group, and can profoundly influence the properties of the nerve cells which would be recorded during real experiments. The main role of the coupling is to synchronise the firing of the group so they are all recruited together when the tadpole is stimulated and then fire in a rhythm suitable to drive swimming movements. The results from this simple animal raise issues which will help to understand coupling in more complex brains.
Collapse
|
44
|
Orduz D, Maldonado PP, Balia M, Vélez-Fort M, de Sars V, Yanagawa Y, Emiliani V, Angulo MC. Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex. eLife 2015; 4. [PMID: 25902404 PMCID: PMC4432226 DOI: 10.7554/elife.06953] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022] Open
Abstract
NG2 cells, oligodendrocyte progenitors, receive a major synaptic input from interneurons in the developing neocortex. It is presumed that these precursors integrate cortical networks where they act as sensors of neuronal activity. We show that NG2 cells of the developing somatosensory cortex form a transient and structured synaptic network with interneurons that follows its own rules of connectivity. Fast-spiking interneurons, highly connected to NG2 cells, target proximal subcellular domains containing GABAA receptors with γ2 subunits. Conversely, non-fast-spiking interneurons, poorly connected with these progenitors, target distal sites lacking this subunit. In the network, interneuron-NG2 cell connectivity maps exhibit a local spatial arrangement reflecting innervation only by the nearest interneurons. This microcircuit architecture shows a connectivity peak at PN10, coinciding with a switch to massive oligodendrocyte differentiation. Hence, GABAergic innervation of NG2 cells is temporally and spatially regulated from the subcellular to the network level in coordination with the onset of oligodendrogenesis. DOI:http://dx.doi.org/10.7554/eLife.06953.001 Neurons are outnumbered in the brain by cells called glial cells. The brain contains various types of glial cells that perform a range of different jobs, including the supply of nutrients and the removal of dead neurons. The role of glial cells called oligodendrocytes is to produce a material called myelin: this is an electrical insulator that, when wrapped around a neuron, increases the speed at which electrical impulses can travel through the nervous system. Neurons communicate with one another through specialized junctions called synapses, and at one time it was thought that only neurons could form synapses in the brain. However, this view had to be revised when researchers discovered synapses between neurons and glial cells called NG2 cells, which go on to become oligodendrocytes. These neuron-NG2 cell synapses have a lot in common with neuron–neuron synapses, but much less is known about them. Orduz, Maldonado et al. have now examined these synapses in unprecedented detail by analyzing individual synapses between a type of neuron called an interneuron and an NG2 cell in mice aged only a few weeks. Interneurons can be divided into two major classes based on how quickly they fire, and Orduz, Maldonado et al. show that both types of interneuron form synapses with NG2 cells. However, these two types of interneuron establish synapses on different parts of the NG2 cell, and these synapses involve different receptor proteins. Together, the synapses give rise to a local interneuron-NG2 cell network that reaches a peak of activity roughly two weeks after birth, after which the network is disassembled. This period of peak activity is accompanied by a sudden increase in the maturation of NG2 cells into oligodendrocytes. Further experiments are needed to test the possibility that activity in the interneuron-NG2 cell network acts as the trigger for the NG2 cells to turn into oligodendrocytes, which then supply myelin for the developing brain. DOI:http://dx.doi.org/10.7554/eLife.06953.002
Collapse
Affiliation(s)
| | | | | | | | - Vincent de Sars
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | |
Collapse
|
45
|
Jones KS, Corbin JG, Huntsman MM. Neonatal NMDA receptor blockade disrupts spike timing and glutamatergic synapses in fast spiking interneurons in a NMDA receptor hypofunction model of schizophrenia. PLoS One 2014; 9:e109303. [PMID: 25290690 PMCID: PMC4188593 DOI: 10.1371/journal.pone.0109303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/10/2014] [Indexed: 01/06/2023] Open
Abstract
The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI) is considered a primary contributor to the pathophysiology of schizophrenia (SZ), but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model.
Collapse
Affiliation(s)
- Kevin S. Jones
- Biology Department, Howard University, Washington, DC, United States of America
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Joshua G. Corbin
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Molly M. Huntsman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
46
|
Strack B, Jacobs KM, Cios KJ. Simulating vertical and horizontal inhibition with short-term dynamics in a multi-column multi-layer model of neocortex. Int J Neural Syst 2014; 24:1440002. [PMID: 24875787 PMCID: PMC9422346 DOI: 10.1142/s0129065714400024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The paper introduces a multi-layer multi-column model of the cortex that uses four different neuron types and short-term plasticity dynamics. It was designed with details of neuronal connectivity available in the literature and meets these conditions: (1) biologically accurate laminar and columnar flows of activity, (2) normal function of low-threshold spiking and fast spiking neurons, and (3) ability to generate different stages of epileptiform activity. With these characteristics the model allows for modeling lesioned or malformed cortex, i.e. examine properties of developmentally malformed cortex in which the balance between inhibitory neuron subtypes is disturbed.
Collapse
Affiliation(s)
- Beata Strack
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
47
|
Jin X, Jiang K, Prince DA. Excitatory and inhibitory synaptic connectivity to layer V fast-spiking interneurons in the freeze lesion model of cortical microgyria. J Neurophysiol 2014; 112:1703-13. [PMID: 24990567 DOI: 10.1152/jn.00854.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A variety of major developmental cortical malformations are closely associated with clinically intractable epilepsy. Pathophysiological aspects of one such disorder, human polymicrogyria, can be modeled by making neocortical freeze lesions (FL) in neonatal rodents, resulting in the formation of microgyri. Previous studies showed enhanced excitatory and inhibitory synaptic transmission and connectivity in cortical layer V pyramidal neurons in the paramicrogyral cortex. In young adult transgenic mice that express green fluorescent protein (GFP) specifically in parvalbumin positive fast-spiking (FS) interneurons, we used laser scanning photostimulation (LSPS) of caged glutamate to map excitatory and inhibitory synaptic connectivity onto FS interneurons in layer V of paramicrogyral cortex in control and FL groups. The proportion of uncaging sites from which excitatory postsynaptic currents (EPSCs) could be evoked (hotspot ratio) increased slightly but significantly in FS cells of the FL vs. control cortex, while the mean amplitude of LSPS-evoked EPSCs at hotspots did not change. In contrast, the hotspot ratio of inhibitory postsynaptic currents (IPSCs) was significantly decreased in FS neurons of the FL cortex. These alterations in synaptic inputs onto FS interneurons may result in an enhanced inhibitory output. We conclude that alterations in synaptic connectivity to cortical layer V FS interneurons do not contribute to hyperexcitability of the FL model. Instead, the enhanced inhibitory output from these neurons may partially offset an earlier demonstrated increase in synaptic excitation of pyramidal cells and thereby maintain a relative balance between excitation and inhibition in the affected cortical circuitry.
Collapse
Affiliation(s)
- Xiaoming Jin
- Stark Neurosciences Research Institute, Indiana Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana; Departments of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Kewen Jiang
- Stark Neurosciences Research Institute, Indiana Spinal Cord and Brain Injury Research Group, Indiana University School of Medicine, Indianapolis, Indiana; Department of Neurology, Children's Hospital of the Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; and
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
48
|
Zhou FW, Roper SN. Reduced chemical and electrical connections of fast-spiking interneurons in experimental cortical dysplasia. J Neurophysiol 2014; 112:1277-90. [PMID: 24944214 DOI: 10.1152/jn.00126.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aberrant neural connections are regarded as a principal factor contributing to epileptogenesis. This study examined chemical and electrical connections between fast-spiking (FS), parvalbumin (PV)-immunoreactive (FS-PV) interneurons and regular-spiking (RS) neurons (pyramidal neurons or spiny stellate neurons) in a rat model of prenatal irradiation-induced cortical dysplasia. Presynaptic action potentials were evoked by current injection and the elicited unitary inhibitory or excitatory postsynaptic potentials (uIPSPs or uEPSPs) were recorded in the postsynaptic cell. In dysplastic cortex, connection rates between presynaptic FS-PV interneurons and postsynaptic RS neurons and FS-PV interneurons, and uIPSP amplitudes were significantly smaller than controls, but both failure rates and coefficient of variation of uIPSP amplitudes were larger than controls. In contrast, connection rates from RS neurons to FS-PV interneurons and uEPSPs amplitude were similar in the two groups. Assessment of the paired pulse ratio showed a significant decrease in synaptic release probability at FS-PV interneuronal terminals, and the density of terminal boutons on axons of biocytin-filled FS-PV interneurons was also decreased, suggesting presynaptic dysfunction in chemical synapses formed by FS-PV interneurons. Electrical connections were observed between FS-PV interneurons, and the connection rates and coupling coefficients were smaller in dysplastic cortex than controls. In dysplastic cortex, we found a reduced synaptic efficiency for uIPSPs originating from FS-PV interneurons regardless of the type of target cell, and impaired electrical connections between FS-PV interneurons. This expands our understanding of the fundamental impairment of inhibition in this model and may have relevance for certain types of human cortical dysplasia.
Collapse
Affiliation(s)
- Fu-Wen Zhou
- Department of Neurosurgery and the McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Steven N Roper
- Department of Neurosurgery and the McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
49
|
Adult cortical plasticity following injury: Recapitulation of critical period mechanisms? Neuroscience 2014; 283:4-16. [PMID: 24791715 DOI: 10.1016/j.neuroscience.2014.04.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
A primary goal of research on developmental critical periods (CPs) is the recapitulation of a juvenile-like state of malleability in the adult brain that might enable recovery from injury. These ambitions are often framed in terms of the simple reinstatement of enhanced plasticity in the growth-restricted milieu of an injured adult brain. Here, we provide an analysis of the similarities and differences between deprivation-induced and injury-induced cortical plasticity, to provide for a nuanced comparison of these remarkably similar processes. As a first step, we review the factors that drive ocular dominance plasticity in the primary visual cortex of the uninjured brain during the CP and in adults, to highlight processes that might confer adaptive advantage. In addition, we directly compare deprivation-induced cortical plasticity during the CP and plasticity following acute injury or ischemia in mature brain. We find that these two processes display a biphasic response profile following deprivation or injury: an initial decrease in GABAergic inhibition and synapse loss transitions into a period of neurite expansion and synaptic gain. This biphasic response profile emphasizes the transition from a period of cortical healing to one of reconnection and recovery of function. Yet while injury-induced plasticity in adult shares several salient characteristics with deprivation-induced plasticity during the CP, the degree to which the adult injured brain is able to functionally rewire, and the time required to do so, present major limitations for recovery. Attempts to recapitulate a measure of CP plasticity in an adult injury context will need to carefully dissect the circuit alterations and plasticity mechanisms involved while measuring functional behavioral output to assess their ultimate success.
Collapse
|
50
|
Deprivation-induced strengthening of presynaptic and postsynaptic inhibitory transmission in layer 4 of visual cortex during the critical period. J Neurosci 2014; 34:2571-82. [PMID: 24523547 DOI: 10.1523/jneurosci.4600-13.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition from fast-spiking (FS) interneurons plays a crucial role in shaping cortical response properties and gating developmental periods of activity-dependent plasticity, yet the expression mechanisms underlying FS inhibitory plasticity remain largely unexplored. In layer 4 of visual cortex (V1), monocular deprivation (MD) induces either depression or potentiation of FS to star pyramidal neuron (FS→SP) synapses, depending on the age of onset (Maffei et al., 2004, 2006). This reversal in the sign (- to +) of plasticity occurs on the cusp of the canonical critical period (CP). To investigate the expression locus behind this switch in sign of inhibitory plasticity, mice underwent MD during the pre-CP [eye-opening to postnatal day (p)17] or CP (p22-p25), and FS→SP synaptic strength within layer 4 was assessed using confocal and immunoelectron microscopy, as well as optogenetic activation of FS cells to probe quantal amplitude at FS→SP synapses. Brief MD before p17 or p25 did not alter the density of FS→SP contacts. However, at the ultrastructural level, FS→SP synapses in deprived hemispheres during the CP, but not the pre-CP or in GAD65 knock-out mice, had larger synapses and increased docked vesicle density compared with synapses from the nondeprived control hemispheres. Moreover, FS→SP evoked miniature IPSCs increased in deprived hemispheres when MD was initiated during the CP, accompanied by an increase in the density of postsynaptic GABAA receptors at FS→SP synapses. These coordinated changes in FS→SP synaptic strength define an expression pathway modulating excitatory output during CP plasticity in visual cortex.
Collapse
|