1
|
Szalay MF, Majchrzycka B, Jerković I, Cavalli G, Ibrahim DM. Evolution and function of chromatin domains across the tree of life. Nat Struct Mol Biol 2024; 31:1824-1837. [PMID: 39592879 DOI: 10.1038/s41594-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The genome of all organisms is spatially organized to function efficiently. The advent of genome-wide chromatin conformation capture (Hi-C) methods has revolutionized our ability to probe the three-dimensional (3D) organization of genomes across diverse species. In this Review, we compare 3D chromatin folding from bacteria and archaea to that in mammals and plants, focusing on topology at the level of gene regulatory domains. In doing so, we consider systematic similarities and differences that hint at the origin and evolution of spatial chromatin folding and its relation to gene activity. We discuss the universality of spatial chromatin domains in all kingdoms, each encompassing one to several genes. We also highlight differences between organisms and suggest that similar features in Hi-C matrices do not necessarily reflect the same biological process or function. Furthermore, we discuss the evolution of domain boundaries and boundary-forming proteins, which indicates that structural maintenance of chromosome (SMC) proteins and the transcription machinery are the ancestral sculptors of the genome. Architectural proteins such as CTCF serve as clade-specific determinants of genome organization. Finally, studies in many non-model organisms show that, despite the ancient origin of 3D chromatin folding and its intricate link to gene activity, evolution tolerates substantial changes in genome organization.
Collapse
Affiliation(s)
| | - Blanka Majchrzycka
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ivana Jerković
- Institute of Human Genetics, CNRS and Univ. Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and Univ. Montpellier, Montpellier, France.
| | - Daniel M Ibrahim
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
2
|
Yuan T, Yan H, Li KC, Surovtsev I, King MC, Mochrie SGJ. Cohesin distribution alone predicts chromatin organization in yeast via conserved-current loop extrusion. Genome Biol 2024; 25:293. [PMID: 39543681 PMCID: PMC11566905 DOI: 10.1186/s13059-024-03432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Inhomogeneous patterns of chromatin-chromatin contacts within 10-100-kb-sized regions of the genome are a generic feature of chromatin spatial organization. These features, termed topologically associating domains (TADs), have led to the loop extrusion factor (LEF) model. Currently, our ability to model TADs relies on the observation that in vertebrates TAD boundaries are correlated with DNA sequences that bind CTCF, which therefore is inferred to block loop extrusion. However, although TADs feature prominently in their Hi-C maps, non-vertebrate eukaryotes either do not express CTCF or show few TAD boundaries that correlate with CTCF sites. In all of these organisms, the counterparts of CTCF remain unknown, frustrating comparisons between Hi-C data and simulations. RESULTS To extend the LEF model across the tree of life, here, we propose the conserved-current loop extrusion (CCLE) model that interprets loop-extruding cohesin as a nearly conserved probability current. From cohesin ChIP-seq data alone, we derive a position-dependent loop extrusion rate, allowing for a modified paradigm for loop extrusion, that goes beyond solely localized barriers to also include loop extrusion rates that vary continuously. We show that CCLE accurately predicts the TAD-scale Hi-C maps of interphase Schizosaccharomyces pombe, as well as those of meiotic and mitotic Saccharomyces cerevisiae, demonstrating its utility in organisms lacking CTCF. CONCLUSIONS The success of CCLE in yeasts suggests that loop extrusion by cohesin is indeed the primary mechanism underlying TADs in these systems. CCLE allows us to obtain loop extrusion parameters such as the LEF density and processivity, which compare well to independent estimates.
Collapse
Affiliation(s)
- Tianyu Yuan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA
| | - Hao Yan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA
| | - Kevin C Li
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Megan C King
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA.
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, Connecticut, 06511, USA.
| | - Simon G J Mochrie
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut, 06520, USA.
- Department of Physics, Yale University, New Haven, Connecticut, 06520, USA.
- Department of Applied Physics, Yale University, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
3
|
Easo George J, Basak R, Yadav I, Tan CJ, van Kan JA, Wien F, Arluison V, van der Maarel JRC. Effect of base methylation on binding and mobility of bacterial protein Hfq on double-stranded DNA. LAB ON A CHIP 2024; 24:5137-5144. [PMID: 39363842 DOI: 10.1039/d4lc00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Regulation of protein mobility is a fundamental aspect of cellular processes. In this study, we examined the impact of DNA methylation on the diffusion of nucleoid associated protein Hfq. This protein is one of the most abundant proteins that shapes the bacterial chromosome and is involved in several aspects of nucleic acid metabolism. Fluorescence microscopy was employed to monitor the movement of Hfq along double-stranded DNA, which was stretched due to confinement within a nanofluidic channel. The mobility of Hfq is significantly influenced by DNA methylation. Our results underscore the importance of bacterial epigenetic modifications in governing the movement of nucleoid associated proteins such as Hfq. Increased levels of methylation result in enhanced binding affinity, which in turn slows down the diffusion of Hfq on DNA. The reported control of protein mobility by DNA methylation has potential implications for the mechanisms involved in target DNA search processes and dynamic modelling of the bacterial chromosome.
Collapse
Affiliation(s)
- Jijo Easo George
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Rajib Basak
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Indresh Yadav
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Chuan Jie Tan
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Frank Wien
- Synchrotron SOLEIL, F-91192 Gif-sur-Yvette, France
| | - Véronique Arluison
- Laboratoire Léon Brillouin, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France
- UFR Sciences du vivant, Université Paris Cité, 75006 Paris, France
| | | |
Collapse
|
4
|
Singh G, Skibbens RV. Fdo1, Fkh1, Fkh2, and the Swi6-Mbp1 MBF complex regulate Mcd1 levels to impact eco1 rad61 cell growth in Saccharomyces cerevisiae. Genetics 2024; 228:iyae128. [PMID: 39110836 PMCID: PMC11457938 DOI: 10.1093/genetics/iyae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 10/09/2024] Open
Abstract
Cohesins promote proper chromosome segregation, gene transcription, genomic architecture, DNA condensation, and DNA damage repair. Mutations in either cohesin subunits or regulatory genes can give rise to severe developmental abnormalities (such as Robert Syndrome and Cornelia de Lange Syndrome) and also are highly correlated with cancer. Despite this, little is known about cohesin regulation. Eco1 (ESCO2/EFO2 in humans) and Rad61 (WAPL in humans) represent two such regulators but perform opposing roles. Eco1 acetylation of cohesin during S phase, for instance, stabilizes cohesin-DNA binding to promote sister chromatid cohesion. On the other hand, Rad61 promotes the dissociation of cohesin from DNA. While Eco1 is essential, ECO1 and RAD61 co-deletion results in yeast cell viability, but only within a limited temperature range. Here, we report that eco1rad61 cell lethality is due to reduced levels of the cohesin subunit Mcd1. Results from a suppressor screen further reveals that FDO1 deletion rescues the temperature-sensitive (ts) growth defects exhibited by eco1rad61 double mutant cells by increasing Mcd1 levels. Regulation of MCD1 expression, however, appears more complex. Elevated expression of MBP1, which encodes a subunit of the MBF transcription complex, also rescues eco1rad61 cell growth defects. Elevated expression of SWI6, however, which encodes the Mbp1-binding partner of MBF, exacerbates eco1rad61 cell growth and also abrogates the Mpb1-dependent rescue. Finally, we identify two additional transcription factors, Fkh1 and Fkh2, that impact MCD1 expression. In combination, these findings provide new insights into the nuanced and multi-faceted transcriptional pathways that impact MCD1 expression.
Collapse
Affiliation(s)
- Gurvir Singh
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
5
|
Guérin TM, Barrington C, Pobegalov G, Molodtsov MI, Uhlmann F. An extrinsic motor directs chromatin loop formation by cohesin. EMBO J 2024; 43:4173-4196. [PMID: 39160275 PMCID: PMC11445435 DOI: 10.1038/s44318-024-00202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
The ring-shaped cohesin complex topologically entraps two DNA molecules to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape with wide-ranging implications for gene regulation, and cohesin is thought to achieve this by actively extruding DNA loops without topologically entrapping DNA. The 'loop extrusion' hypothesis finds motivation from in vitro observations-whether this process underlies in vivo chromatin loop formation remains untested. Here, using the budding yeast S. cerevisiae, we generate cohesin variants that have lost their ability to extrude DNA loops but retain their ability to topologically entrap DNA. Analysis of these variants suggests that in vivo chromatin loops form independently of loop extrusion. Instead, we find that transcription promotes loop formation, and acts as an extrinsic motor that expands these loops and defines their ultimate positions. Our results necessitate a re-evaluation of the loop extrusion hypothesis. We propose that cohesin, akin to sister chromatid cohesion establishment at replication forks, forms chromatin loops by DNA-DNA capture at places of transcription, thus unifying cohesin's two roles in chromosome segregation and interphase genome organisation.
Collapse
Affiliation(s)
- Thomas M Guérin
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
- Université Paris Cité and Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Christopher Barrington
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Georgii Pobegalov
- Mechanobiology and Biophysics Laboratory, The Francis Crick Institute, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Maxim I Molodtsov
- Mechanobiology and Biophysics Laboratory, The Francis Crick Institute, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Munshi R. How Transcription Factor Clusters Shape the Transcriptional Landscape. Biomolecules 2024; 14:875. [PMID: 39062589 PMCID: PMC11274464 DOI: 10.3390/biom14070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
In eukaryotic cells, gene transcription typically occurs in discrete periods of promoter activity, interspersed with intervals of inactivity. This pattern deviates from simple stochastic events and warrants a closer examination of the molecular interactions that activate the promoter. Recent studies have identified transcription factor (TF) clusters as key precursors to transcriptional bursting. Often, these TF clusters form at chromatin segments that are physically distant from the promoter, making changes in chromatin conformation crucial for promoter-TF cluster interactions. In this review, I explore the formation and constituents of TF clusters, examining how the dynamic interplay between chromatin architecture and TF clustering influences transcriptional bursting. Additionally, I discuss techniques for visualizing TF clusters and provide an outlook on understanding the remaining gaps in this field.
Collapse
Affiliation(s)
- Rahul Munshi
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Huber J, Tanasie NL, Zernia S, Stigler J. Single-molecule imaging reveals a direct role of CTCF's zinc fingers in SA interaction and cluster-dependent RNA recruitment. Nucleic Acids Res 2024; 52:6490-6506. [PMID: 38742641 PMCID: PMC11194110 DOI: 10.1093/nar/gkae391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
CTCF is a zinc finger protein associated with transcription regulation that also acts as a barrier factor for topologically associated domains (TADs) generated by cohesin via loop extrusion. These processes require different properties of CTCF-DNA interaction, and it is still unclear how CTCF's structural features may modulate its diverse roles. Here, we employ single-molecule imaging to study both full-length CTCF and truncation mutants. We show that CTCF enriches at CTCF binding sites (CBSs), displaying a longer lifetime than observed previously. We demonstrate that the zinc finger domains mediate CTCF clustering and that clustering enables RNA recruitment, possibly creating a scaffold for interaction with RNA-binding proteins like cohesin's subunit SA. We further reveal a direct recruitment and an increase of SA residence time by CTCF bound at CBSs, suggesting that CTCF-SA interactions are crucial for cohesin stability on chromatin at TAD borders. Furthermore, we establish a single-molecule T7 transcription assay and show that although a transcribing polymerase can remove CTCF from CBSs, transcription is impaired. Our study shows that context-dependent nucleic acid binding determines the multifaceted CTCF roles in genome organization and transcription regulation.
Collapse
Affiliation(s)
- Jonas Huber
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Sarah Zernia
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
8
|
Patel R, Pham K, Chandrashekar H, Phillips-Cremins JE. FISHnet: Detecting chromatin domains in single-cell sequential Oligopaints imaging data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599627. [PMID: 38948824 PMCID: PMC11212945 DOI: 10.1101/2024.06.18.599627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Sequential Oligopaints DNA FISH is an imaging technique that measures higher-order genome folding at single-allele resolution via multiplexed, probe-based tracing. Currently there is a paucity of algorithms to identify 3D genome features in sequential Oligopaints data. Here, we present FISHnet, a graph theory method based on optimization of network modularity to detect chromatin domains and boundaries in pairwise distance matrices. FISHnet uncovers cell type-specific domain-like folding patterns on single alleles, thus enabling future studies aiming to elucidate the role for single-cell folding variation on genome function.
Collapse
Affiliation(s)
- Rohan Patel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Kenneth Pham
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Harshini Chandrashekar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
9
|
Chen H, Yan G, Wen MH, Brooks KN, Zhang Y, Huang PS, Chen TY. Advancements and Practical Considerations for Biophysical Research: Navigating the Challenges and Future of Super-resolution Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:331-344. [PMID: 38817319 PMCID: PMC11134610 DOI: 10.1021/cbmi.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The introduction of super-resolution microscopy (SRM) has significantly advanced our understanding of cellular and molecular dynamics, offering a detailed view previously beyond our reach. Implementing SRM in biophysical research, however, presents numerous challenges. This review addresses the crucial aspects of utilizing SRM effectively, from selecting appropriate fluorophores and preparing samples to analyzing complex data sets. We explore recent technological advancements and methodological improvements that enhance the capabilities of SRM. Emphasizing the integration of SRM with other analytical methods, we aim to overcome inherent limitations and expand the scope of biological insights achievable. By providing a comprehensive guide for choosing the most suitable SRM methods based on specific research objectives, we aim to empower researchers to explore complex biological processes with enhanced precision and clarity, thereby advancing the frontiers of biophysical research.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Guangjie Yan
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Kameron N. Brooks
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Yuteng Zhang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
10
|
Kant A, Guo Z, Vinayak V, Neguembor MV, Li WS, Agrawal V, Pujadas E, Almassalha L, Backman V, Lakadamyali M, Cosma MP, Shenoy VB. Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization. Nat Commun 2024; 15:4338. [PMID: 38773126 PMCID: PMC11109243 DOI: 10.1038/s41467-024-48698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
In interphase nuclei, chromatin forms dense domains of characteristic sizes, but the influence of transcription and histone modifications on domain size is not understood. We present a theoretical model exploring this relationship, considering chromatin-chromatin interactions, histone modifications, and chromatin extrusion. We predict that the size of heterochromatic domains is governed by a balance among the diffusive flux of methylated histones sustaining them and the acetylation reactions in the domains and the process of loop extrusion via supercoiling by RNAPII at their periphery, which contributes to size reduction. Super-resolution and nano-imaging of five distinct cell lines confirm the predictions indicating that the absence of transcription leads to larger heterochromatin domains. Furthermore, the model accurately reproduces the findings regarding how transcription-mediated supercoiling loss can mitigate the impacts of excessive cohesin loading. Our findings shed light on the role of transcription in genome organization, offering insights into chromatin dynamics and potential therapeutic targets.
Collapse
Affiliation(s)
- Aayush Kant
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zixian Guo
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vinayak Vinayak
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Wing Shun Li
- Department of Applied Physics, Northwestern University, Evanston, IL, 60208, USA
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
| | - Vasundhara Agrawal
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Emily Pujadas
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
| | - Luay Almassalha
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Vadim Backman
- Center for Physical Genomics and Engineering, Northwestern University, Evanston, IL, 60202, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Melike Lakadamyali
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- ICREA, Barcelona, 08010, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Cameron G, Gruszka D, Xie S, Kaya Ç, Nasmyth KA, Srinivasan M, Yardimci H. Sister chromatid cohesion establishment during DNA replication termination. Science 2024; 384:119-124. [PMID: 38484038 PMCID: PMC7615807 DOI: 10.1126/science.adf0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
Newly copied sister chromatids are tethered together by the cohesin complex, but how sister chromatid cohesion coordinates with DNA replication is poorly understood. Prevailing models suggest that cohesin complexes, bound to DNA before replication, remain behind the advancing replication fork to keep sister chromatids together. By visualizing single replication forks colliding with preloaded cohesin complexes, we find that the replisome instead pushes cohesin to where a converging replisome is met. Whereas the converging replisomes are removed during DNA replication termination, cohesin remains on nascent DNA and provides cohesion. Additionally, we show that CMG (CDC45-MCM2-7-GINS) helicase disassembly during replication termination is vital for proper cohesion in budding yeast. Together, our results support a model wherein sister chromatid cohesion is established during DNA replication termination.
Collapse
Affiliation(s)
| | | | - Sherry Xie
- The Francis Crick Institute; London, United Kingdom
| | - Çağla Kaya
- The Francis Crick Institute; London, United Kingdom
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford; Oxford, United Kingdom
| | | | | |
Collapse
|
12
|
Golov AK, Gavrilov AA. Cohesin-Dependent Loop Extrusion: Molecular Mechanics and Role in Cell Physiology. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:601-625. [PMID: 38831499 DOI: 10.1134/s0006297924040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/29/2023] [Accepted: 02/15/2024] [Indexed: 06/05/2024]
Abstract
The most prominent representatives of multisubunit SMC complexes, cohesin and condensin, are best known as structural components of mitotic chromosomes. It turned out that these complexes, as well as their bacterial homologues, are molecular motors, the ATP-dependent movement of these complexes along DNA threads leads to the formation of DNA loops. In recent years, we have witnessed an avalanche-like accumulation of data on the process of SMC dependent DNA looping, also known as loop extrusion. This review briefly summarizes the current understanding of the place and role of cohesin-dependent extrusion in cell physiology and presents a number of models describing the potential molecular mechanism of extrusion in a most compelling way. We conclude the review with a discussion of how the capacity of cohesin to extrude DNA loops may be mechanistically linked to its involvement in sister chromatid cohesion.
Collapse
Affiliation(s)
- Arkadiy K Golov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Technion - Israel Institute of Technology, Haifa, 3525433, Israel
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
13
|
Golov AK, Gavrilov AA. Cohesin Complex: Structure and Principles of Interaction with DNA. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:585-600. [PMID: 38831498 DOI: 10.1134/s0006297924040011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 06/05/2024]
Abstract
Accurate duplication and separation of long linear genomic DNA molecules is associated with a number of purely mechanical problems. SMC complexes are key components of the cellular machinery that ensures decatenation of sister chromosomes and compaction of genomic DNA during division. Cohesin, one of the essential eukaryotic SMC complexes, has a typical ring structure with intersubunit pore through which DNA molecules can be threaded. Capacity of cohesin for such topological entrapment of DNA is crucial for the phenomenon of post-replicative association of sister chromatids better known as cohesion. Recently, it became apparent that cohesin and other SMC complexes are, in fact, motor proteins with a very peculiar movement pattern leading to formation of DNA loops. This specific process has been called loop extrusion. Extrusion underlies multiple functions of cohesin beyond cohesion, but molecular mechanism of the process remains a mystery. In this review, we summarized the data on molecular architecture of cohesin, effect of ATP hydrolysis cycle on this architecture, and known modes of cohesin-DNA interactions. Many of the seemingly disparate facts presented here will probably be incorporated in a unified mechanistic model of loop extrusion in the not-so-distant future.
Collapse
Affiliation(s)
- Arkadiy K Golov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Technion - Israel Institute of Technology, Haifa, 3525433, Israel
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
14
|
Richeldi M, Pobegalov G, Higashi TL, Gmurczyk K, Uhlmann F, Molodtsov MI. Mechanical disengagement of the cohesin ring. Nat Struct Mol Biol 2024; 31:23-31. [PMID: 37872232 PMCID: PMC11377297 DOI: 10.1038/s41594-023-01122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/11/2023] [Indexed: 10/25/2023]
Abstract
Cohesin forms a proteinaceous ring that is thought to link sister chromatids by entrapping DNA and counteracting the forces generated by the mitotic spindle. Whether individual cohesins encircle both sister DNAs and how cohesin opposes spindle-generated forces remains unknown. Here we perform force measurements on individual yeast cohesin complexes either bound to DNA or holding together two DNAs. By covalently closing the hinge and Smc3Psm3-kleisin interfaces we find that the mechanical stability of the cohesin ring entrapping DNA is determined by the hinge domain. Forces of ~20 pN disengage cohesin at the hinge and release DNA, indicating that ~40 cohesin molecules are sufficient to counteract known spindle forces. Our findings provide a mechanical framework for understanding how cohesin interacts with sister chromatids and opposes the spindle-generated tension during mitosis, with implications for other force-generating chromosomal processes including transcription and DNA replication.
Collapse
Affiliation(s)
- Martina Richeldi
- Biophysics and Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Georgii Pobegalov
- Biophysics and Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Kamakura City, Japan
| | - Karolina Gmurczyk
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| | - Maxim I Molodtsov
- Biophysics and Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics and Astronomy, University College London, London, UK.
| |
Collapse
|
15
|
Jessberger G, Várnai C, Stocsits RR, Tang W, Stary G, Peters JM. Cohesin and CTCF do not assemble TADs in Xenopus sperm and male pronuclei. Genome Res 2023; 33:2094-2107. [PMID: 38129077 PMCID: PMC10760524 DOI: 10.1101/gr.277865.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Paternal genomes are compacted during spermiogenesis and decompacted following fertilization. These processes are fundamental for inheritance but incompletely understood. We analyzed these processes in the frog Xenopus laevis, whose sperm can be assembled into functional pronuclei in egg extracts in vitro. In such extracts, cohesin extrudes DNA into loops, but in vivo cohesin only assembles topologically associating domains (TADs) at the mid-blastula transition (MBT). Why cohesin assembles TADs only at this stage is unknown. We first analyzed genome architecture in frog sperm and compared it to human and mouse. Our results indicate that sperm genome organization is conserved between frogs and humans and occurs without formation of TADs. TADs can be detected in mouse sperm samples, as reported, but these structures might originate from somatic chromatin contaminations. We therefore discuss the possibility that the absence of TADs might be a general feature of vertebrate sperm. To analyze sperm genome remodeling upon fertilization, we reconstituted male pronuclei in Xenopus egg extracts. In pronuclei, chromatin compartmentalization increases, but cohesin does not accumulate at CTCF sites and assemble TADs. However, if pronuclei are formed in the presence of exogenous CTCF, CTCF binds to its consensus sites, and cohesin accumulates at these and forms short-range chromatin loops, which are preferentially anchored at CTCF's N terminus. These results indicate that TADs are only assembled at MBT because before this stage CTCF sites are not occupied and cohesin only forms short-range chromatin loops.
Collapse
Affiliation(s)
- Gregor Jessberger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Csilla Várnai
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, United Kingdom
| | - Roman R Stocsits
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
16
|
Alonso-Gil D, Losada A. NIPBL and cohesin: new take on a classic tale. Trends Cell Biol 2023; 33:860-871. [PMID: 37062615 DOI: 10.1016/j.tcb.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023]
Abstract
Cohesin folds the genome in dynamic chromatin loops and holds the sister chromatids together. NIPBLScc2 is currently considered the cohesin loader, a role that may need reevaluation. NIPBL activates the cohesin ATPase, which is required for topological entrapment of sister DNAs and to fuel DNA loop extrusion, but is not required for chromatin association. Mechanistic dissection of these processes suggests that both NIPBL and the cohesin STAG subunit bind DNA. NIPBL also regulates conformational switches of the complex. Interactions of NIPBL with chromatin factors, including remodelers, replication proteins, and the transcriptional machinery, affect cohesin loading and distribution. Here, we discuss recent research addressing how NIPBL modulates cohesin activities and how its mutation causes a developmental disorder, Cornelia de Lange Syndrome (CdLS).
Collapse
Affiliation(s)
- Dácil Alonso-Gil
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
17
|
Agarwal A, Korsak S, Choudhury A, Plewczynski D. The dynamic role of cohesin in maintaining human genome architecture. Bioessays 2023; 45:e2200240. [PMID: 37603403 DOI: 10.1002/bies.202200240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Recent advances in genomic and imaging techniques have revealed the complex manner of organizing billions of base pairs of DNA necessary for maintaining their functionality and ensuring the proper expression of genetic information. The SMC proteins and cohesin complex primarily contribute to forming higher-order chromatin structures, such as chromosomal territories, compartments, topologically associating domains (TADs) and chromatin loops anchored by CCCTC-binding factor (CTCF) protein or other genome organizers. Cohesin plays a fundamental role in chromatin organization, gene expression and regulation. This review aims to describe the current understanding of the dynamic nature of the cohesin-DNA complex and its dependence on cohesin for genome maintenance. We discuss the current 3C technique and numerous bioinformatics pipelines used to comprehend structural genomics and epigenetics focusing on the analysis of Cohesin-centred interactions. We also incorporate our present comprehension of Loop Extrusion (LE) and insights from stochastic modelling.
Collapse
Affiliation(s)
- Abhishek Agarwal
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Sevastianos Korsak
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | | | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
18
|
Yabushita T, Chinen T, Nishiyama A, Asada S, Shimura R, Isobe T, Yamamoto K, Sato N, Enomoto Y, Tanaka Y, Fukuyama T, Satoh H, Kato K, Saitoh K, Ishikawa T, Soga T, Nannya Y, Fukagawa T, Nakanishi M, Kitagawa D, Kitamura T, Goyama S. Mitotic perturbation is a key mechanism of action of decitabine in myeloid tumor treatment. Cell Rep 2023; 42:113098. [PMID: 37714156 DOI: 10.1016/j.celrep.2023.113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
Decitabine (DAC) is clinically used to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Our genome-wide CRISPR-dCas9 activation screen using MDS-derived AML cells indicates that mitotic regulation is critical for DAC resistance. DAC strongly induces abnormal mitosis (abscission failure or tripolar mitosis) in human myeloid tumors at clinical concentrations, especially in those with TP53 mutations or antecedent hematological disorders. This DAC-induced mitotic disruption and apoptosis are significantly attenuated in DNMT1-depleted cells. In contrast, overexpression of Dnmt1, but not the catalytically inactive mutant, enhances DAC-induced mitotic defects in myeloid tumors. We also demonstrate that DAC-induced mitotic disruption is enhanced by pharmacological inhibition of the ATR-CLSPN-CHK1 pathway. These data challenge the current assumption that DAC inhibits leukemogenesis through DNMT1 inhibition and subsequent DNA hypomethylation and highlight the potent activity of DAC to disrupt mitosis through aberrant DNMT1-DNA covalent bonds.
Collapse
Affiliation(s)
- Tomohiro Yabushita
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Ruka Shimura
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoya Isobe
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Naru Sato
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka Enomoto
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Hematology, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Hitoshi Satoh
- Division of Medical Genome Sciences, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Kato
- Infinity Lab, INC, Yamagata, Japan; Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Kaori Saitoh
- Infinity Lab, INC, Yamagata, Japan; Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Takamasa Ishikawa
- Infinity Lab, INC, Yamagata, Japan; Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
19
|
Nagasaka K, Davidson IF, Stocsits RR, Tang W, Wutz G, Batty P, Panarotto M, Litos G, Schleiffer A, Gerlich DW, Peters JM. Cohesin mediates DNA loop extrusion and sister chromatid cohesion by distinct mechanisms. Mol Cell 2023; 83:3049-3063.e6. [PMID: 37591243 DOI: 10.1016/j.molcel.2023.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/28/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Cohesin connects CTCF-binding sites and other genomic loci in cis to form chromatin loops and replicated DNA molecules in trans to mediate sister chromatid cohesion. Whether cohesin uses distinct or related mechanisms to perform these functions is unknown. Here, we describe a cohesin hinge mutant that can extrude DNA into loops but is unable to mediate cohesion in human cells. Our results suggest that the latter defect arises during cohesion establishment. The observation that cohesin's cohesion and loop extrusion activities can be partially separated indicates that cohesin uses distinct mechanisms to perform these two functions. Unexpectedly, the same hinge mutant can also not be stopped by CTCF boundaries as well as wild-type cohesin. This suggests that cohesion establishment and cohesin's interaction with CTCF boundaries depend on related mechanisms and raises the possibility that both require transient hinge opening to entrap DNA inside the cohesin ring.
Collapse
Affiliation(s)
- Kota Nagasaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Roman R Stocsits
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Paul Batty
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna 1030, Austria
| | - Melanie Panarotto
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna 1030, Austria
| | - Gabriele Litos
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria.
| |
Collapse
|
20
|
Abstract
Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.
Collapse
Affiliation(s)
- Claire Hoencamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Zhang H, Shi Z, Banigan EJ, Kim Y, Yu H, Bai XC, Finkelstein IJ. CTCF and R-loops are boundaries of cohesin-mediated DNA looping. Mol Cell 2023; 83:2856-2871.e8. [PMID: 37536339 DOI: 10.1016/j.molcel.2023.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
Cohesin and CCCTC-binding factor (CTCF) are key regulatory proteins of three-dimensional (3D) genome organization. Cohesin extrudes DNA loops that are anchored by CTCF in a polar orientation. Here, we present direct evidence that CTCF binding polarity controls cohesin-mediated DNA looping. Using single-molecule imaging, we demonstrate that a critical N-terminal motif of CTCF blocks cohesin translocation and DNA looping. The cryo-EM structure of the cohesin-CTCF complex reveals that this CTCF motif ahead of zinc fingers can only reach its binding site on the STAG1 cohesin subunit when the N terminus of CTCF faces cohesin. Remarkably, a C-terminally oriented CTCF accelerates DNA compaction by cohesin. DNA-bound Cas9 and Cas12a ribonucleoproteins are also polar cohesin barriers, indicating that stalling may be intrinsic to cohesin itself. Finally, we show that RNA-DNA hybrids (R-loops) block cohesin-mediated DNA compaction in vitro and are enriched with cohesin subunits in vivo, likely forming TAD boundaries.
Collapse
Affiliation(s)
- Hongshan Zhang
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Zhubing Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Edward J Banigan
- Department of Physics, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yoori Kim
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Hongtao Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ilya J Finkelstein
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
22
|
Irvin EM, Wang H. Single-molecule imaging of genome maintenance proteins encountering specific DNA sequences and structures. DNA Repair (Amst) 2023; 128:103528. [PMID: 37392578 PMCID: PMC10989508 DOI: 10.1016/j.dnarep.2023.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
DNA repair pathways are tightly regulated processes that recognize specific hallmarks of DNA damage and coordinate lesion repair through discrete mechanisms, all within the context of a three-dimensional chromatin landscape. Dysregulation or malfunction of any one of the protein constituents in these pathways can contribute to aging and a variety of diseases. While the collective action of these many proteins is what drives DNA repair on the organismal scale, it is the interactions between individual proteins and DNA that facilitate each step of these pathways. In much the same way that ensemble biochemical techniques have characterized the various steps of DNA repair pathways, single-molecule imaging (SMI) approaches zoom in further, characterizing the individual protein-DNA interactions that compose each pathway step. SMI techniques offer the high resolving power needed to characterize the molecular structure and functional dynamics of individual biological interactions on the nanoscale. In this review, we highlight how our lab has used SMI techniques - traditional atomic force microscopy (AFM) imaging in air, high-speed AFM (HS-AFM) in liquids, and the DNA tightrope assay - over the past decade to study protein-nucleic acid interactions involved in DNA repair, mitochondrial DNA replication, and telomere maintenance. We discuss how DNA substrates containing specific DNA sequences or structures that emulate DNA repair intermediates or telomeres were generated and validated. For each highlighted project, we discuss novel findings made possible by the spatial and temporal resolution offered by these SMI techniques and unique DNA substrates.
Collapse
Affiliation(s)
| | - Hong Wang
- Toxicology Program, North Carolina State University, Raleigh, NC, USA; Physics Department, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
23
|
Pobegalov G, Chu LY, Peters JM, Molodtsov MI. Single cohesin molecules generate force by two distinct mechanisms. Nat Commun 2023; 14:3946. [PMID: 37402740 DOI: 10.1038/s41467-023-39696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
Spatial organization of DNA is facilitated by cohesin protein complexes that move on DNA and extrude DNA loops. How cohesin works mechanistically as a molecular machine is poorly understood. Here, we measure mechanical forces generated by conformational changes in single cohesin molecules. We show that bending of SMC coiled coils is driven by random thermal fluctuations leading to a ~32 nm head-hinge displacement that resists forces up to 1 pN; ATPase head engagement occurs in a single step of ~10 nm and is driven by an ATP dependent head-head movement, resisting forces up to 15 pN. Our molecular dynamic simulations show that the energy of head engagement can be stored in a mechanically strained conformation of NIPBL and released during disengagement. These findings reveal how single cohesin molecules generate force by two distinct mechanisms. We present a model, which proposes how this ability may power different aspects of cohesin-DNA interaction.
Collapse
Affiliation(s)
- Georgii Pobegalov
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Lee-Ya Chu
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
| | - Maxim I Molodtsov
- The Francis Crick Institute, London, NW1 1AT, UK.
- Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria.
| |
Collapse
|
24
|
Pandupuspitasari NS, Khan FA, Huang C, Ali A, Yousaf MR, Shakeel F, Putri EM, Negara W, Muktiani A, Prasetiyono BWHE, Kustiawan L, Wahyuni DS. Recent advances in chromosome capture techniques unraveling 3D genome architecture in germ cells, health, and disease. Funct Integr Genomics 2023; 23:214. [PMID: 37386239 DOI: 10.1007/s10142-023-01146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
In eukaryotes, the genome does not emerge in a specific shape but rather as a hierarchial bundle within the nucleus. This multifaceted genome organization consists of multiresolution cellular structures, such as chromosome territories, compartments, and topologically associating domains, which are frequently defined by architecture, design proteins including CTCF and cohesin, and chromatin loops. This review briefly discusses the advances in understanding the basic rules of control, chromatin folding, and functional areas in early embryogenesis. With the use of chromosome capture techniques, the latest advancements in technologies for visualizing chromatin interactions come close to revealing 3D genome formation frameworks with incredible detail throughout all genomic levels, including at single-cell resolution. The possibility of detecting variations in chromatin architecture might open up new opportunities for disease diagnosis and prevention, infertility treatments, therapeutic approaches, desired exploration, and many other application scenarios.
Collapse
Affiliation(s)
- Nuruliarizki Shinta Pandupuspitasari
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia.
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Azhar Ali
- Laboratory of Molecular Biology and Genomics, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Rizwan Yousaf
- Laboratory of Molecular Biology and Genomics, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Farwa Shakeel
- Laboratory of Molecular Biology and Genomics, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| | - Anis Muktiani
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Bambang Waluyo Hadi Eko Prasetiyono
- Laboratory of Feed Technology, Animal Science Department, Faculty of Animal and Agricultural Sciences Universitas Diponegoro, Semarang, Indonesia
| | - Limbang Kustiawan
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Dimar Sari Wahyuni
- Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor, Indonesia
| |
Collapse
|
25
|
Harris HL, Gu H, Olshansky M, Wang A, Farabella I, Eliaz Y, Kalluchi A, Krishna A, Jacobs M, Cauer G, Pham M, Rao SSP, Dudchenko O, Omer A, Mohajeri K, Kim S, Nichols MH, Davis ES, Gkountaroulis D, Udupa D, Aiden AP, Corces VG, Phanstiel DH, Noble WS, Nir G, Di Pierro M, Seo JS, Talkowski ME, Aiden EL, Rowley MJ. Chromatin alternates between A and B compartments at kilobase scale for subgenic organization. Nat Commun 2023; 14:3303. [PMID: 37280210 PMCID: PMC10244318 DOI: 10.1038/s41467-023-38429-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 06/08/2023] Open
Abstract
Nuclear compartments are prominent features of 3D chromatin organization, but sequencing depth limitations have impeded investigation at ultra fine-scale. CTCF loops are generally studied at a finer scale, but the impact of looping on proximal interactions remains enigmatic. Here, we critically examine nuclear compartments and CTCF loop-proximal interactions using a combination of in situ Hi-C at unparalleled depth, algorithm development, and biophysical modeling. Producing a large Hi-C map with 33 billion contacts in conjunction with an algorithm for performing principal component analysis on sparse, super massive matrices (POSSUMM), we resolve compartments to 500 bp. Our results demonstrate that essentially all active promoters and distal enhancers localize in the A compartment, even when flanking sequences do not. Furthermore, we find that the TSS and TTS of paused genes are often segregated into separate compartments. We then identify diffuse interactions that radiate from CTCF loop anchors, which correlate with strong enhancer-promoter interactions and proximal transcription. We also find that these diffuse interactions depend on CTCF's RNA binding domains. In this work, we demonstrate features of fine-scale chromatin organization consistent with a revised model in which compartments are more precise than commonly thought while CTCF loops are more protracted.
Collapse
Affiliation(s)
- Hannah L Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Huiya Gu
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Moshe Olshansky
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ailun Wang
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
| | - Irene Farabella
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BISB), 17 08028, Barcelona, Spain
- Integrative Nuclear Architecture Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Yossi Eliaz
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Akshay Krishna
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mozes Jacobs
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Gesine Cauer
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Melanie Pham
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Suhas S P Rao
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Olga Dudchenko
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Arina Omer
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Michael H Nichols
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dimos Gkountaroulis
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Devika Udupa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aviva Presser Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Douglas H Phanstiel
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - William Stafford Noble
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Guy Nir
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Michele Di Pierro
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jeong-Sun Seo
- Macrogen Inc, Seoul, Republic of Korea
- Asian Genome Institute, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Michael E Talkowski
- Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Program in Medical Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erez Lieberman Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
26
|
Borrie MS, Kraycer PM, Gartenberg MR. Transcription-Driven Translocation of Cohesive and Non-Cohesive Cohesin In Vivo. Mol Cell Biol 2023; 43:254-268. [PMID: 37178128 PMCID: PMC10251789 DOI: 10.1080/10985549.2023.2199660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cohesin is a central architectural element of chromosomes that regulates numerous DNA-based events. The complex holds sister chromatids together until anaphase onset and organizes individual chromosomal DNAs into loops and self-associating domains. Purified cohesin diffuses along DNA in an ATP-independent manner but can be propelled by transcribing RNA polymerase. In conjunction with a cofactor, the complex also extrudes DNA loops in an ATP-dependent manner. In this study we examine transcription-driven translocation of cohesin under various conditions in yeast. To this end, obstacles of increasing size were tethered to DNA to act as roadblocks to complexes mobilized by an inducible gene. The obstacles were built from a GFP-lacI core fused to one or more mCherries. A chimera with four mCherries blocked cohesin passage in late G1. During M phase, the threshold barrier depended on the state of cohesion: non-cohesive complexes were also blocked by four mCherries whereas cohesive complexes were blocked by as few as three mCherries. Furthermore cohesive complexes that were stalled at obstacles, in turn, blocked the passage of non-cohesive complexes. That synthetic barriers capture mobilized cohesin demonstrates that transcription-driven complexes translocate processively in vivo. Together, this study reveals unexplored limitations to cohesin movement on chromosomes.
Collapse
Affiliation(s)
- Melinda S. Borrie
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Paul M. Kraycer
- Graduate Program in Cellular and Molecular Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marc R. Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Member of The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
27
|
Davidson IF, Barth R, Zaczek M, van der Torre J, Tang W, Nagasaka K, Janissen R, Kerssemakers J, Wutz G, Dekker C, Peters JM. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Nature 2023; 616:822-827. [PMID: 37076620 PMCID: PMC10132984 DOI: 10.1038/s41586-023-05961-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
In eukaryotes, genomic DNA is extruded into loops by cohesin1. By restraining this process, the DNA-binding protein CCCTC-binding factor (CTCF) generates topologically associating domains (TADs)2,3 that have important roles in gene regulation and recombination during development and disease1,4-7. How CTCF establishes TAD boundaries and to what extent these are permeable to cohesin is unclear8. Here, to address these questions, we visualize interactions of single CTCF and cohesin molecules on DNA in vitro. We show that CTCF is sufficient to block diffusing cohesin, possibly reflecting how cohesive cohesin accumulates at TAD boundaries, and is also sufficient to block loop-extruding cohesin, reflecting how CTCF establishes TAD boundaries. CTCF functions asymmetrically, as predicted; however, CTCF is dependent on DNA tension. Moreover, CTCF regulates cohesin's loop-extrusion activity by changing its direction and by inducing loop shrinkage. Our data indicate that CTCF is not, as previously assumed, simply a barrier to cohesin-mediated loop extrusion but is an active regulator of this process, whereby the permeability of TAD boundaries can be modulated by DNA tension. These results reveal mechanistic principles of how CTCF controls loop extrusion and genome architecture.
Collapse
Affiliation(s)
- Iain F Davidson
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Maciej Zaczek
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Wen Tang
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Kota Nagasaka
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
28
|
Banigan EJ, Tang W, van den Berg AA, Stocsits RR, Wutz G, Brandão HB, Busslinger GA, Peters JM, Mirny LA. Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc Natl Acad Sci U S A 2023; 120:e2210480120. [PMID: 36897969 PMCID: PMC10089175 DOI: 10.1073/pnas.2210480120] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/03/2022] [Indexed: 03/12/2023] Open
Abstract
Cohesin folds mammalian interphase chromosomes by extruding the chromatin fiber into numerous loops. "Loop extrusion" can be impeded by chromatin-bound factors, such as CTCF, which generates characteristic and functional chromatin organization patterns. It has been proposed that transcription relocalizes or interferes with cohesin and that active promoters are cohesin loading sites. However, the effects of transcription on cohesin have not been reconciled with observations of active extrusion by cohesin. To determine how transcription modulates extrusion, we studied mouse cells in which we could alter cohesin abundance, dynamics, and localization by genetic "knockouts" of the cohesin regulators CTCF and Wapl. Through Hi-C experiments, we discovered intricate, cohesin-dependent contact patterns near active genes. Chromatin organization around active genes exhibited hallmarks of interactions between transcribing RNA polymerases (RNAPs) and extruding cohesins. These observations could be reproduced by polymer simulations in which RNAPs were moving barriers to extrusion that obstructed, slowed, and pushed cohesins. The simulations predicted that preferential loading of cohesin at promoters is inconsistent with our experimental data. Additional ChIP-seq experiments showed that the putative cohesin loader Nipbl is not predominantly enriched at promoters. Therefore, we propose that cohesin is not preferentially loaded at promoters and that the barrier function of RNAP accounts for cohesin accumulation at active promoters. Altogether, we find that RNAP is an extrusion barrier that is not stationary, but rather, translocates and relocalizes cohesin. Loop extrusion and transcription might interact to dynamically generate and maintain gene interactions with regulatory elements and shape functional genomic organization.
Collapse
Affiliation(s)
- Edward J. Banigan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Wen Tang
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Aafke A. van den Berg
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Roman R. Stocsits
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Hugo B. Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA02138
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- The Broad Institute of MIT and Harvard, Cambridge, MA02142
| | - Georg A. Busslinger
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna1090, Austria
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna1090, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter1030Vienna, Austria
| | - Leonid A. Mirny
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
29
|
A de novo transcription-dependent TAD boundary underpins critical multiway interactions during antibody class switch recombination. Mol Cell 2023; 83:681-697.e7. [PMID: 36736317 DOI: 10.1016/j.molcel.2023.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Interactions between transcription and cohesin-mediated loop extrusion can influence 3D chromatin architecture. However, their relevance in biology is unclear. Here, we report a direct role for such interactions in the mechanism of antibody class switch recombination (CSR) at the murine immunoglobulin heavy chain locus (Igh). Using Tri-C to measure higher-order multiway interactions on single alleles, we find that the juxtaposition (synapsis) of transcriptionally active donor and acceptor Igh switch (S) sequences, an essential step in CSR, occurs via the interaction of loop extrusion complexes with a de novo topologically associating domain (TAD) boundary formed via transcriptional activity across S regions. Surprisingly, synapsis occurs predominantly in proximity to the 3' CTCF-binding element (3'CBE) rather than the Igh super-enhancer, suggesting a two-step mechanism whereby transcription of S regions is not topologically coupled to synapsis, as has been previously proposed. Altogether, these insights advance our understanding of how 3D chromatin architecture regulates CSR.
Collapse
|
30
|
Freitag M, Jaklin S, Padovani F, Radzichevici E, Zernia S, Schmoller KM, Stigler J. Single-molecule experiments reveal the elbow as an essential folding guide in SMC coiled-coil arms. Biophys J 2022; 121:4702-4713. [PMID: 36242515 PMCID: PMC9748247 DOI: 10.1016/j.bpj.2022.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/16/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022] Open
Abstract
Structural maintenance of chromosome (SMC) complexes form ring-like structures through exceptional elongated coiled-coils (CCs). Recent studies found that variable CC conformations, including open and collapsed forms, which might result from discontinuities in the CC, facilitate the diverse functions of SMCs in DNA organization. However, a detailed description of the SMC CC architecture is still missing. Here, we study the structural composition and mechanical properties of SMC proteins with optical tweezers unfolding experiments using the isolated Psm3 CC as a model system. We find a comparatively unstable protein with three unzipping intermediates, which we could directly assign to CC features by crosslinking experiments and state-of-the-art prediction software. Particularly, the CC elbow is shown to be a flexible, potentially non-structured feature, which divides the CC into sections, induces a pairing shift from one CC strand to the other and could facilitate large-scale conformational changes, most likely via thermal fluctuations of the flanking CC sections. A replacement of the elbow amino acids hinders folding of the consecutive CC region and frequently leads to non-native misalignments, revealing the elbow as a guide for proper folding. Additional in vivo manipulation of the elbow flexibility resulted in impaired cohesin complexes, which directly link the sensitive CC architecture to the biological function of cohesin.
Collapse
Affiliation(s)
- Marvin Freitag
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sigrun Jaklin
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Sarah Zernia
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
31
|
Stabilization of DNA fork junctions by Smc5/6 complexes revealed by single-molecule imaging. Cell Rep 2022; 41:111778. [PMID: 36476856 PMCID: PMC9756111 DOI: 10.1016/j.celrep.2022.111778] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
SMC complexes play key roles in genome maintenance, where they ensure efficient genome replication and segregation. The SMC complex Smc5/6 is a crucial player in DNA replication and repair, yet many molecular features that determine its roles are unclear. Here, we use single-molecule microscopy to investigate Smc5/6's interaction with DNA. We find that Smc5/6 forms oligomers that dynamically redistribute on dsDNA by 1D diffusion and statically bind to ssDNA. Using combined force manipulation and single-molecule microscopy, we generate ssDNA-dsDNA junctions that mimic structures present in DNA repair intermediates or replication forks. We show that Smc5/6 accumulates at these junction sites, stabilizes the fork, and promotes the retention of RPA. Our observations provide a model for the complex's enrichment at sites of replication stress and DNA lesions from where it coordinates the recruitment and activation of downstream repair proteins.
Collapse
|
32
|
Morao AK, Kim J, Obaji D, Sun S, Ercan S. Topoisomerases I and II facilitate condensin DC translocation to organize and repress X chromosomes in C. elegans. Mol Cell 2022; 82:4202-4217.e5. [PMID: 36302374 PMCID: PMC9837612 DOI: 10.1016/j.molcel.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/24/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Condensins are evolutionarily conserved molecular motors that translocate along DNA and form loops. To address how DNA topology affects condensin translocation, we applied auxin-inducible degradation of topoisomerases I and II and analyzed the binding and function of an interphase condensin that mediates X chromosome dosage compensation in C. elegans. TOP-2 depletion reduced long-range spreading of condensin-DC (dosage compensation) from its recruitment sites and shortened 3D DNA contacts measured by Hi-C. TOP-1 depletion did not affect long-range spreading but resulted in condensin-DC accumulation within expressed gene bodies. Both TOP-1 and TOP-2 depletion resulted in X chromosome derepression, indicating that condensin-DC translocation at both scales is required for its function. Together, the distinct effects of TOP-1 and TOP-2 suggest two distinct modes of condensin-DC association with chromatin: long-range DNA loop extrusion that requires decatenation/unknotting of DNA and short-range translocation across genes that requires resolution of transcription-induced supercoiling.
Collapse
Affiliation(s)
- Ana Karina Morao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| | - Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Daniel Obaji
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Siyu Sun
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
33
|
Reed KSM, Davis ES, Bond ML, Cabrera A, Thulson E, Quiroga IY, Cassel S, Woolery KT, Hilton I, Won H, Love MI, Phanstiel DH. Temporal analysis suggests a reciprocal relationship between 3D chromatin structure and transcription. Cell Rep 2022; 41:111567. [PMID: 36323252 PMCID: PMC9707392 DOI: 10.1016/j.celrep.2022.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
To infer potential causal relationships between 3D chromatin structure, enhancers, and gene transcription, we mapped each feature in a genome-wide fashion across eight narrowly spaced time points of macrophage activation. Enhancers and genes connected by loops exhibit stronger correlations between histone H3K27 acetylation and expression than can be explained by genomic distance or physical proximity alone. At these looped enhancer-promoter pairs, changes in acetylation at distal enhancers precede changes in gene expression. Changes in gene expression exhibit a directional bias at differential loop anchors; gained loops are associated with increased expression of genes oriented away from the center of the loop, and lost loops are often accompanied by high levels of transcription within the loop boundaries themselves. These results are consistent with a reciprocal relationship where loops can facilitate increased transcription by connecting promoters to distal enhancers, whereas high levels of transcription can impede loop formation.
Collapse
Affiliation(s)
- Kathleen S M Reed
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Marielle L Bond
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alan Cabrera
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Eliza Thulson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ivana Yoseli Quiroga
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shannon Cassel
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kamisha T Woolery
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Isaac Hilton
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Hyejung Won
- Department of Genetics and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Douglas H Phanstiel
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
34
|
Pradhan B, Barth R, Kim E, Davidson IF, Bauer B, van Laar T, Yang W, Ryu JK, van der Torre J, Peters JM, Dekker C. SMC complexes can traverse physical roadblocks bigger than their ring size. Cell Rep 2022; 41:111491. [PMID: 36261017 DOI: 10.1101/2021.07.15.452501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 05/17/2023] Open
Abstract
Ring-shaped structural maintenance of chromosomes (SMC) complexes like condensin and cohesin extrude loops of DNA. It remains, however, unclear how they can extrude DNA loops in chromatin that is bound with proteins. Here, we use in vitro single-molecule visualization to show that nucleosomes, RNA polymerase, and dCas9 pose virtually no barrier to loop extrusion by yeast condensin. We find that even DNA-bound nanoparticles as large as 200 nm, much bigger than the SMC ring size, also translocate into DNA loops during extrusion by condensin and cohesin. This even occurs for a single-chain version of cohesin in which the ring-forming subunits are covalently linked and cannot open to entrap DNA. The data show that SMC-driven loop extrusion has surprisingly little difficulty in accommodating large roadblocks into the loop. The findings also show that the extruded DNA does not pass through the SMC ring (pseudo)topologically, hence pointing to a nontopological mechanism for DNA loop extrusion.
Collapse
Affiliation(s)
- Biswajit Pradhan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Eugene Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Benedikt Bauer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Theo van Laar
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands; Nynke Dekker Lab, Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Wayne Yang
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Je-Kyung Ryu
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
35
|
SMC complexes can traverse physical roadblocks bigger than their ring size. Cell Rep 2022; 41:111491. [DOI: 10.1016/j.celrep.2022.111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
|
36
|
Zhou M. DNA sliding and loop formation by E. coli SMC complex: MukBEF. Biochem Biophys Rep 2022; 31:101297. [PMID: 35770038 PMCID: PMC9234588 DOI: 10.1016/j.bbrep.2022.101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
SMC (structural maintenance of chromosomes) complexes share conserved architectures and function in chromosome maintenance via an unknown mechanism. Here we have used single-molecule techniques to study MukBEF, the SMC complex in Escherichia coli. Real-time movies show MukB alone can compact DNA and ATP inhibits DNA compaction by MukB. We observed that DNA unidirectionally slides through MukB, potentially by a ratchet mechanism, and the sliding speed depends on the elastic energy stored in the DNA. MukE, MukF and ATP binding stabilize MukB and DNA interaction, and ATP hydrolysis regulates the loading/unloading of MukBEF from DNA. Our data suggests a new model for how MukBEF organizes the bacterial chromosome in vivo; and this model will be relevant for other SMC proteins.
Collapse
Affiliation(s)
- Man Zhou
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
37
|
Buskirk S, Skibbens RV. G1-Cyclin2 (Cln2) promotes chromosome hypercondensation in eco1/ctf7 rad61 null cells during hyperthermic stress in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:6613937. [PMID: 35736360 PMCID: PMC9339302 DOI: 10.1093/g3journal/jkac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress.
Collapse
Affiliation(s)
- Sean Buskirk
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
38
|
Warrier T, El Farran C, Zeng Y, Ho B, Bao Q, Zheng Z, Bi X, Ng HH, Ong D, Chu J, Sanyal A, Fullwood MJ, Collins J, Li H, Xu J, Loh YH. SETDB1 acts as a topological accessory to Cohesin via an H3K9me3-independent, genomic shunt for regulating cell fates. Nucleic Acids Res 2022; 50:7326-7349. [PMID: 35776115 PMCID: PMC9303280 DOI: 10.1093/nar/gkac531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
SETDB1 is a key regulator of lineage-specific genes and endogenous retroviral elements (ERVs) through its deposition of repressive H3K9me3 mark. Apart from its H3K9me3 regulatory role, SETDB1 has seldom been studied in terms of its other potential regulatory roles. To investigate this, a genomic survey of SETDB1 binding in mouse embryonic stem cells across multiple libraries was conducted, leading to the unexpected discovery of regions bereft of common repressive histone marks (H3K9me3, H3K27me3). These regions were enriched with the CTCF motif that is often associated with the topological regulator Cohesin. Further profiling of these non-H3K9me3 regions led to the discovery of a cluster of non-repeat loci that were co-bound by SETDB1 and Cohesin. These regions, which we named DiSCs (domains involving SETDB1 and Cohesin) were seen to be proximal to the gene promoters involved in embryonic stem cell pluripotency and lineage development. Importantly, it was found that SETDB1-Cohesin co-regulate target gene expression and genome topology at these DiSCs. Depletion of SETDB1 led to localized dysregulation of Cohesin binding thereby locally disrupting topological structures. Dysregulated gene expression trends revealed the importance of this cluster in ES cell maintenance as well as at gene 'islands' that drive differentiation to other lineages. The 'unearthing' of the DiSCs thus unravels a unique topological and transcriptional axis of control regulated chiefly by SETDB1.
Collapse
Affiliation(s)
- Tushar Warrier
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chadi El Farran
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| | - Benedict Shao Quan Ho
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Qiuye Bao
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Zi Hao Zheng
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Xuezhi Bi
- Proteomics Group, Bioprocessing Technology Institute, A*STAR, Singapore 138668, Singapore
| | - Huck Hui Ng
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore 117597, Singapore
| | - Amartya Sanyal
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
| | - Melissa Jane Fullwood
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - James J Collins
- Howard Hughes Medical Institute, Boston, MA 02114, USA
- Institute for Medical Engineering and Science Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Xu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Department of Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, A*STAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 MedicalDrive, Singapore 117456, Singapore
| |
Collapse
|
39
|
Haws SA, Simandi Z, Barnett RJ, Phillips-Cremins JE. 3D genome, on repeat: Higher-order folding principles of the heterochromatinized repetitive genome. Cell 2022; 185:2690-2707. [PMID: 35868274 DOI: 10.1016/j.cell.2022.06.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/16/2022]
Abstract
Nearly half of the human genome is comprised of diverse repetitive sequences ranging from satellite repeats to retrotransposable elements. Such sequences are susceptible to stepwise expansions, duplications, inversions, and recombination events which can compromise genome function. In this review, we discuss the higher-order folding mechanisms of compartmentalization and loop extrusion and how they shape, and are shaped by, heterochromatin. Using primarily mammalian model systems, we contrast mechanisms governing H3K9me3-mediated heterochromatinization of the repetitive genome and highlight emerging links between repetitive elements and chromatin folding.
Collapse
Affiliation(s)
- Spencer A Haws
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Simandi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Jordan Barnett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
van Ruiten MS, van Gent D, Sedeño Cacciatore Á, Fauster A, Willems L, Hekkelman ML, Hoekman L, Altelaar M, Haarhuis JHI, Brummelkamp TR, de Wit E, Rowland BD. The cohesin acetylation cycle controls chromatin loop length through a PDS5A brake mechanism. Nat Struct Mol Biol 2022; 29:586-591. [PMID: 35710836 PMCID: PMC9205776 DOI: 10.1038/s41594-022-00773-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/05/2022] [Indexed: 12/16/2022]
Abstract
Cohesin structures the genome through the formation of chromatin loops and by holding together the sister chromatids. The acetylation of cohesin's SMC3 subunit is a dynamic process that involves the acetyltransferase ESCO1 and deacetylase HDAC8. Here we show that this cohesin acetylation cycle controls the three-dimensional genome in human cells. ESCO1 restricts the length of chromatin loops, and of architectural stripes emanating from CTCF sites. HDAC8 conversely promotes the extension of such loops and stripes. This role in controlling loop length turns out to be distinct from the canonical role of cohesin acetylation that protects against WAPL-mediated DNA release. We reveal that acetylation controls the interaction of cohesin with PDS5A to restrict chromatin loop length. Our data support a model in which this PDS5A-bound state acts as a brake that enables the pausing and restart of loop enlargement. The cohesin acetylation cycle hereby provides punctuation in the process of genome folding.
Collapse
Affiliation(s)
- Marjon S van Ruiten
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Démi van Gent
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Astrid Fauster
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laureen Willems
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maarten L Hekkelman
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Judith H I Haarhuis
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thijn R Brummelkamp
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
41
|
Dequeker BJH, Scherr MJ, Brandão HB, Gassler J, Powell S, Gaspar I, Flyamer IM, Lalic A, Tang W, Stocsits R, Davidson IF, Peters JM, Duderstadt KE, Mirny LA, Tachibana K. MCM complexes are barriers that restrict cohesin-mediated loop extrusion. Nature 2022; 606:197-203. [PMID: 35585235 PMCID: PMC9159944 DOI: 10.1038/s41586-022-04730-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/06/2022] [Indexed: 12/23/2022]
Abstract
Eukaryotic genomes are compacted into loops and topologically associating domains (TADs)1-3, which contribute to transcription, recombination and genomic stability4,5. Cohesin extrudes DNA into loops that are thought to lengthen until CTCF boundaries are encountered6-12. Little is known about whether loop extrusion is impeded by DNA-bound machines. Here we show that the minichromosome maintenance (MCM) complex is a barrier that restricts loop extrusion in G1 phase. Single-nucleus Hi-C (high-resolution chromosome conformation capture) of mouse zygotes reveals that MCM loading reduces CTCF-anchored loops and decreases TAD boundary insulation, which suggests that loop extrusion is impeded before reaching CTCF. This effect extends to HCT116 cells, in which MCMs affect the number of CTCF-anchored loops and gene expression. Simulations suggest that MCMs are abundant, randomly positioned and partially permeable barriers. Single-molecule imaging shows that MCMs are physical barriers that frequently constrain cohesin translocation in vitro. Notably, chimeric yeast MCMs that contain a cohesin-interaction motif from human MCM3 induce cohesin pausing, indicating that MCMs are 'active' barriers with binding sites. These findings raise the possibility that cohesin can arrive by loop extrusion at MCMs, which determine the genomic sites at which sister chromatid cohesion is established. On the basis of in vivo, in silico and in vitro data, we conclude that distinct loop extrusion barriers shape the three-dimensional genome.
Collapse
Affiliation(s)
- Bart J H Dequeker
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry (MPIB), Martinsried, Germany
| | - Hugo B Brandão
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, USA
- Illumina Inc., San Diego, CA, USA
| | - Johanna Gassler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Martinsried, Germany
| | - Sean Powell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Imre Gaspar
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Martinsried, Germany
| | - Ilya M Flyamer
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Edinburgh, UK
| | - Aleksandar Lalic
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Martinsried, Germany
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Roman Stocsits
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry (MPIB), Martinsried, Germany.
- Department of Physics, Technical University of Munich, Garching, Germany.
| | - Leonid A Mirny
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| | - Kikuë Tachibana
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Martinsried, Germany.
| |
Collapse
|
42
|
Emerson DJ, Zhao PA, Cook AL, Barnett RJ, Klein KN, Saulebekova D, Ge C, Zhou L, Simandi Z, Minsk MK, Titus KR, Wang W, Gong W, Zhang D, Yang L, Venev SV, Gibcus JH, Yang H, Sasaki T, Kanemaki MT, Yue F, Dekker J, Chen CL, Gilbert DM, Phillips-Cremins JE. Cohesin-mediated loop anchors confine the locations of human replication origins. Nature 2022; 606:812-819. [PMID: 35676475 PMCID: PMC9217744 DOI: 10.1038/s41586-022-04803-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/26/2022] [Indexed: 12/18/2022]
Abstract
DNA replication occurs through an intricately regulated series of molecular events and is fundamental for genome stability1,2. At present, it is unknown how the locations of replication origins are determined in the human genome. Here we dissect the role of topologically associating domains (TADs)3-6, subTADs7 and loops8 in the positioning of replication initiation zones (IZs). We stratify TADs and subTADs by the presence of corner-dots indicative of loops and the orientation of CTCF motifs. We find that high-efficiency, early replicating IZs localize to boundaries between adjacent corner-dot TADs anchored by high-density arrays of divergently and convergently oriented CTCF motifs. By contrast, low-efficiency IZs localize to weaker dotless boundaries. Following ablation of cohesin-mediated loop extrusion during G1, high-efficiency IZs become diffuse and delocalized at boundaries with complex CTCF motif orientations. Moreover, G1 knockdown of the cohesin unloading factor WAPL results in gained long-range loops and narrowed localization of IZs at the same boundaries. Finally, targeted deletion or insertion of specific boundaries causes local replication timing shifts consistent with IZ loss or gain, respectively. Our data support a model in which cohesin-mediated loop extrusion and stalling at a subset of genetically encoded TAD and subTAD boundaries is an essential determinant of the locations of replication origins in human S phase.
Collapse
Affiliation(s)
- Daniel J Emerson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peiyao A Zhao
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Ashley L Cook
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Jordan Barnett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle N Klein
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Dalila Saulebekova
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France
| | - Chunmin Ge
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Linda Zhou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Simandi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miriam K Minsk
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katelyn R Titus
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Weitao Wang
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France
| | - Wanfeng Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Di Zhang
- Children's Hospital of Pennsylvania, Philadelphia, PA, USA
| | - Liyan Yang
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sergey V Venev
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Johan H Gibcus
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies (Sokendai), Mishima, Japan
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Job Dekker
- University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, Paris, France
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- New York Stem Cell Foundation Robertson Investigator, New York, NY, USA.
| |
Collapse
|
43
|
A walk through the SMC cycle: From catching DNAs to shaping the genome. Mol Cell 2022; 82:1616-1630. [PMID: 35477004 DOI: 10.1016/j.molcel.2022.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
SMC protein complexes are molecular machines that provide structure to chromosomes. These complexes bridge DNA elements and by doing so build DNA loops in cis and hold together the sister chromatids in trans. We discuss how drastic conformational changes allow SMC complexes to build such intricate DNA structures. The tight regulation of these complexes controls fundamental chromosomal processes such as transcription, recombination, repair, and mitosis.
Collapse
|
44
|
Intersubunit and intrasubunit interactions driving the MukBEF ATPase. J Biol Chem 2022; 298:101964. [PMID: 35452680 PMCID: PMC9127220 DOI: 10.1016/j.jbc.2022.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/23/2022] Open
Abstract
MukBEF, a structural maintenance of chromosome-like protein complex consisting of an ATPase, MukB, and two interacting subunits, MukE and MukF, functions as the bacterial condensin. It is likely that MukBEF compacts DNA via an ATP hydrolysis-dependent DNA loop-extrusion reaction similar to that demonstrated for the yeast structural maintenance of chromosome proteins condensin and cohesin. MukB also interacts with the ParC subunit of the cellular chromosomal decatenase topoisomerase IV, an interaction that is required for proper chromosome condensation and segregation in Escherichia coli, although it suppresses the MukB ATPase activity. Other structural determinants and interactions that regulate the ATPase activity of MukBEF are not clear. Here, we have investigated the MukBEF ATPase activity, identifying intersubunit and intrasubunit interactions by protein-protein crosslinking and site-specific mutagenesis. We show that interactions between the hinge of MukB and its neck region are essential for the ATPase activity, that the ParC subunit of topoisomerase IV inhibits the MukB ATPase by preventing this interaction, that MukE interaction with DNA is likely essential for viability, and that interactions between MukF and the MukB neck region are necessary for ATPase activity and viability.
Collapse
|
45
|
Cummings CT, Rowley MJ. Implications of Dosage Deficiencies in CTCF and Cohesin on Genome Organization, Gene Expression, and Human Neurodevelopment. Genes (Basel) 2022; 13:583. [PMID: 35456389 PMCID: PMC9030571 DOI: 10.3390/genes13040583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Properly organizing DNA within the nucleus is critical to ensure normal downstream nuclear functions. CTCF and cohesin act as major architectural proteins, working in concert to generate thousands of high-intensity chromatin loops. Due to their central role in loop formation, a massive research effort has been dedicated to investigating the mechanism by which CTCF and cohesin create these loops. Recent results lead to questioning the direct impact of CTCF loops on gene expression. Additionally, results of controlled depletion experiments in cell lines has indicated that genome architecture may be somewhat resistant to incomplete deficiencies in CTCF or cohesin. However, heterozygous human genetic deficiencies in CTCF and cohesin have illustrated the importance of their dosage in genome architecture, cellular processes, animal behavior, and disease phenotypes. Thus, the importance of considering CTCF or cohesin levels is especially made clear by these heterozygous germline variants that characterize genetic syndromes, which are increasingly recognized in clinical practice. Defined primarily by developmental delay and intellectual disability, the phenotypes of CTCF and cohesin deficiency illustrate the importance of architectural proteins particularly in neurodevelopment. We discuss the distinct roles of CTCF and cohesin in forming chromatin loops, highlight the major role that dosage of each protein plays in the amplitude of observed effects on gene expression, and contrast these results to heterozygous mutation phenotypes in murine models and clinical patients. Insights highlighted by this comparison have implications for future research into these newly emerging genetic syndromes.
Collapse
Affiliation(s)
- Christopher T. Cummings
- Munroe-Meyer Institute, Department of Genetic Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - M. Jordan Rowley
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
46
|
Scherr MJ, Wahab SA, Remus D, Duderstadt KE. Mobile origin-licensing factors confer resistance to conflicts with RNA polymerase. Cell Rep 2022; 38:110531. [PMID: 35320708 PMCID: PMC8961423 DOI: 10.1016/j.celrep.2022.110531] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Fundamental to our understanding of chromosome duplication is the idea that replication origins function both as sites where MCM helicases are loaded during the G1 phase and where synthesis begins in S phase. However, the temporal delay between phases exposes the replisome assembly pathway to potential disruption prior to replication. Using multicolor, single-molecule imaging, we systematically study the consequences of encounters between actively transcribing RNA polymerases (RNAPs) and replication initiation intermediates in the context of chromatin. We demonstrate that RNAP can push multiple licensed MCM helicases over long distances with nucleosomes ejected or displaced. Unexpectedly, we observe that MCM helicase loading intermediates also can be repositioned by RNAP and continue origin licensing after encounters with RNAP, providing a web of alternative origin specification pathways. Taken together, our observations reveal a surprising mobility in origin-licensing factors that confers resistance to the complex challenges posed by diverse obstacles encountered on chromosomes.
Collapse
Affiliation(s)
- Matthias J Scherr
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Syafiq Abd Wahab
- Memorial Sloan Kettering Cancer Center, Molecular Biology Program, 1275 York Avenue, New York, NY 10065, USA
| | - Dirk Remus
- Memorial Sloan Kettering Cancer Center, Molecular Biology Program, 1275 York Avenue, New York, NY 10065, USA
| | - Karl E Duderstadt
- Structure and Dynamics of Molecular Machines, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Physik Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
47
|
Kaczmarczyk LS, Levi N, Segal T, Salmon-Divon M, Gerlitz G. CTCF supports preferentially short lamina-associated domains. Chromosome Res 2022; 30:123-136. [PMID: 35239049 DOI: 10.1007/s10577-022-09686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023]
Abstract
More than one third of the mammalian genome is in a close association with the nuclear lamina, thus these genomic regions were termed lamina-associated domains (LADs). This association is fundamental for many aspects of chromatin biology including transcription, replication, and DNA damage repair. LADs association with the nuclear envelope is thought to be dependent on two major mechanisms: The first mechanism is the interaction between nuclear membrane proteins such as LBR with heterochromatin modifications that are enriched in LADs chromatin. The second mechanism is based on proteins that bind the borders of the LADs and support the association of the LADs with the nuclear envelope. Two factors were suggested to support the second mechanism: CCCTC-binding factor (CTCF) and YY1 based on their enriched binding to LADs borders. However, this mechanism has not been proven yet at a whole genome level. Here, to test if CTCF supports the LADs landscape, we generated melanoma cells with a partial loss of function (pLoF) of CTCF by the CRISPR-Cas9 system and determined the LADs landscape by lamin B ChIP-seq analysis. We found that under regular growth conditions, CTCF pLoF led to modest changes in the LADs landscape that included an increase in the signal of 2% of the LADs and a decrease in the signal of 8% of the LADs. However, CTCF importance for the LADs landscape was much higher upon induction of a chromatin stress. We induced chromatin stress by inhibiting RNA polymerase II, an intervention that is known to alter chromatin compaction and supercoiling. Notably, only in CTCF pLoF cells, the chromatin stress led to the dissociation of 7% of the LADs from the lamina. The CTCF-dependent LADs had almost three times shorter median length than the non-affected LADs, were enriched in CTCF binding at their borders, and were higher in their facultative-status (cell-type specific). Thus, it appears that CTCF is a key factor in facilitating the association of short facultative LADs with the nuclear lamina upon chromatin stress.
Collapse
Affiliation(s)
- Lukasz Stanislaw Kaczmarczyk
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Nehora Levi
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Tamar Segal
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel.
- Adelson School of Medicine, Ariel University, 40700, Ariel, Israel.
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences and Ariel Center for Applied Cancer Research, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
48
|
Tan CJ, Basak R, Yadav I, van Kan JA, Arluison V, van der Maarel JRC. Mobility of Bacterial Protein Hfq on dsDNA: Role of C-Terminus-Mediated Transient Binding. J Phys Chem B 2022; 126:1477-1482. [PMID: 35166115 DOI: 10.1021/acs.jpcb.1c10234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mobility of protein is fundamental in the machinery of life. Here, we have investigated the effect of DNA binding in conjunction with DNA segmental fluctuation (internal motion) of the bacterial Hfq master regulator devoid of its amyloid C-terminus domain. Hfq is one of the most abundant nucleoid associated proteins that shape the bacterial chromosome and is involved in several aspects of nucleic acid metabolism. Fluorescence microscopy has been used to track a C-terminus domain lacking mutant form of Hfq on double-stranded DNA, which is stretched by confinement to a rectangular nanofluidic channel. The mobility of the mutant is strongly accelerated with respect to the wild-type variant. Furthermore, it shows a reverse dependence on the internal motion of DNA, in that slower motion results in slower protein diffusion. The results demonstrate the subtle role of DNA internal motion in controlling the mobility of a nucleoid associated protein, and, in particular, the importance of transient binding and moving DNA strands out of the way.
Collapse
Affiliation(s)
- Chuan Jie Tan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Rajib Basak
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Indresh Yadav
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Véronique Arluison
- Université de Paris, UFR SDV, Paris 75006, France.,Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette 91191, France
| | | |
Collapse
|
49
|
Higashi TL, Uhlmann F. SMC complexes: Lifting the lid on loop extrusion. Curr Opin Cell Biol 2022; 74:13-22. [PMID: 35016058 PMCID: PMC9089308 DOI: 10.1016/j.ceb.2021.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023]
Abstract
Loop extrusion has emerged as a prominent hypothesis for how SMC complexes shape chromosomes - single molecule in vitro observations have yielded fascinating images of this process. When not extruding loops, SMC complexes are known to topologically entrap one or more DNAs. Here, we review how structural insight into the SMC complex cohesin has led to a molecular framework for both activities: a Brownian ratchet motion, associated with topological DNA entry, might repeat itself to elicit loop extrusion. After contrasting alternative loop extrusion models, we explore whether topological loading or loop extrusion is more adept at explaining in vivo SMC complex function. SMC variants that experimentally separate topological loading from loop extrusion will in the future probe their respective contributions to chromosome biology.
Collapse
Affiliation(s)
- Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Department of Cellular Biochemistry, Kyushu University, Fukuoka, 812-8582, Japan
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
50
|
Bonato A, Michieletto D. Three-dimensional loop extrusion. Biophys J 2021; 120:5544-5552. [PMID: 34793758 PMCID: PMC8715238 DOI: 10.1016/j.bpj.2021.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Loop extrusion convincingly describes how certain structural maintenance of chromosome (SMC) proteins mediate the formation of large DNA loops. Yet most of the existing computational models cannot reconcile recent in vitro observations showing that condensins can traverse each other, bypass large roadblocks, and perform steps longer than their own size. To fill this gap, we propose a three-dimensional (3D) "trans-grabbing" model for loop extrusion, which not only reproduces the experimental features of loop extrusion by one SMC complex but also predicts the formation of so-called Z-loops via the interaction of two or more SMCs extruding along the same DNA substrate. By performing molecular dynamics simulations of this model, we discover that the experimentally observed asymmetry in the different types of Z-loops is a natural consequence of the DNA tethering in vitro. Intriguingly, our model predicts this bias to disappear in the absence of tethering and a third type of Z-loop, which has not yet been identified in experiments, to appear. Our model naturally explains roadblock bypassing and the appearance of steps larger than the SMC size as a consequence of non-contiguous DNA grabbing. Finally, this study is the first, to our knowledge, to address how Z-loops and bypassing might occur in a way that is broadly consistent with existing cis-only 1D loop extrusion models.
Collapse
Affiliation(s)
- Andrea Bonato
- University of Edinburgh, SUPA, School of Physics and Astronomy, Peter Guthrie Road, Edinburgh, UK
| | - Davide Michieletto
- University of Edinburgh, SUPA, School of Physics and Astronomy, Peter Guthrie Road, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|