1
|
Rayêe D, Hwang DW, Chang WK, Karp IN, Zhao Y, Bowman T, Lachke SA, Singer RH, Eliscovich C, Cvekl A. Identification and classification of abundant RNA-binding proteins in the mouse lens and interactions of Carhsp1, Igf2bp1/ZBP1, and Ybx1 with crystallin and β-actin mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632466. [PMID: 39829794 PMCID: PMC11741318 DOI: 10.1101/2025.01.10.632466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
RNA-binding proteins (RBPs) are critical regulators of mRNAs controlling all processes such as RNA transcription, transport, localization, translation, mRNA:ncRNA interactions, and decay. Cellular differentiation is driven by tissue-specific and/or tissue-preferred expression of proteins needed for the optimal function of mature cells, tissues and organs. Lens fiber cell differentiation is marked by high levels of expression of crystallin genes encoding critical proteins for lens transparency and light refraction. Herein we performed proteomic and transcriptomic analyses of RBPs in differentiating mouse lenses to identify the most abundant RBPs and establish dynamic changes of their expression in differentiating lens. Expression analyses include highly abundant RBPs, including Carhsp1, Igf2bp1/ZBP1, Ybx1, Pabpc1, Ddx39, and Rbm38. Binding sites of Carhsp1, Ybx1, and Igf2bp1/ZBP1 were predicted in various crystallin and β-actin mRNAs. Immunoprecipitations using antibodies against Carhsp1, Igf2bp1/ZBP1, and Ybx1 confirmed their interactions with αA-, αB-, and γA-crystallin mRNAs. A combination of single molecule RNA FISH (smFISH) and immunofluorescence was used to probe in vivo interactions of these RBPs with αA-, αB-crystallin, and β-actin mRNAs in cytoplasm and nucleoplasm of cultured mouse lens epithelial cells. Together, these results open new avenues to perform comprehensive genetic, cell, and molecular biology studies of individual RBPs in the lens.
Collapse
|
2
|
Fahim LE, Marcus JM, Powell ND, Ralston ZA, Walgamotte K, Perego E, Vicidomini G, Rossetta A, Lee JE. Fluorescence lifetime sorting reveals tunable enzyme interactions within cytoplasmic condensates. J Cell Biol 2025; 224:e202311105. [PMID: 39400294 PMCID: PMC11472878 DOI: 10.1083/jcb.202311105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Ribonucleoprotein (RNP) condensates partition RNA and protein into multiple liquid phases. The multiphasic feature of condensate-enriched components creates experimental challenges for distinguishing membraneless condensate functions from the surrounding dilute phase. We combined fluorescence lifetime imaging microscopy (FLIM) with phasor plot filtering and segmentation to resolve condensates from the dilute phase. Condensate-specific lifetimes were used to track protein-protein interactions by measuring FLIM-Förster resonance energy transfer (FRET). We used condensate FLIM-FRET to evaluate whether mRNA decapping complex subunits can form decapping-competent interactions within P-bodies. Condensate FLIM-FRET revealed the presence of core subunit interactions within P-bodies under basal conditions and the disruption of interactions between the decapping enzyme (Dcp2) and a critical cofactor (Dcp1A) during oxidative stress. Our results show a context-dependent plasticity of the P-body interaction network, which can be rewired within minutes in response to stimuli. Together, our FLIM-based approaches provide investigators with an automated and rigorous method to uncover and track essential protein-protein interaction dynamics within RNP condensates in live cells.
Collapse
Affiliation(s)
- Leyla E. Fahim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Joshua M. Marcus
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Noah D. Powell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zachary A. Ralston
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Katherine Walgamotte
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Eleonora Perego
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Jason E. Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Cheng S, Schuh M. Two mechanisms repress cyclin B1 translation to maintain prophase arrest in mouse oocytes. Nat Commun 2024; 15:10044. [PMID: 39567493 PMCID: PMC11579420 DOI: 10.1038/s41467-024-54161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
In mammals, oocytes are arrested in prophase of meiosis I for long periods of time. Prophase arrest is critical for reproduction because it allows oocytes to grow to their full size to support meiotic maturation and embryonic development. Prophase arrest requires the inhibitory phosphorylation of the mitotic kinase CDK1. Whether prophase arrest is also regulated at the translational level is unknown. Here, we show that prophase arrest is regulated by translational control of dormant cyclin B1 mRNAs. Using Trim-Away, we identify two mechanisms that maintain cyclin B1 dormancy and thus prophase arrest. First, a complex of the RNA-binding proteins DDX6, LSM14B and CPEB1 directly represses cyclin B1 translation through interacting with its 3'UTR. Second, cytoplasmic poly(A)-binding proteins (PABPCs) indirectly repress the translation of cyclin B1 and other poly(A)-tail-less or short-tailed mRNAs by sequestering the translation machinery on long-tailed mRNAs. Together, we demonstrate how RNA-binding proteins coordinately regulate prophase arrest, and reveal an unexpected role for PABPCs in controlling mRNA dormancy.
Collapse
Affiliation(s)
- Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, 430072, Wuhan, China
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Vidya E, Jami-Alahmadi Y, Mayank AK, Rizwan J, Xu JMS, Cheng T, Leventis R, Sonenberg N, Wohlschlegel JA, Vera M, Duchaine TF. EDC-3 and EDC-4 regulate embryonic mRNA clearance and biomolecular condensate specialization. Cell Rep 2024; 43:114781. [PMID: 39331503 DOI: 10.1016/j.celrep.2024.114781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Animal development is dictated by the selective and timely decay of mRNAs in developmental transitions, but the impact of mRNA decapping scaffold proteins in development is unclear. This study unveils the roles and interactions of the DCAP-2 decapping scaffolds EDC-3 and EDC-4 in the embryonic development of C. elegans. EDC-3 facilitates the timely removal of specific embryonic mRNAs, including cgh-1, car-1, and ifet-1 by reducing their expression and preventing excessive accumulation of DCAP-2 condensates in somatic cells. We further uncover a role for EDC-3 in defining the boundaries between P bodies, germ granules, and stress granules. Finally, we show that EDC-4 counteracts EDC-3 and engenders the assembly of DCAP-2 with the GID (CTLH) complex, a ubiquitin ligase involved in maternal-to-zygotic transition (MZT). Our findings support a model where multiple RNA decay mechanisms temporally clear maternal and zygotic mRNAs throughout embryonic development.
Collapse
Affiliation(s)
- Elva Vidya
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adarsh K Mayank
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javeria Rizwan
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Jia Ming Stella Xu
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Tianhao Cheng
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Rania Leventis
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada
| | - Thomas F Duchaine
- Department of Biochemistry, McGill University, Montréal QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Institute, Montréal QC H3G 1Y6, Canada.
| |
Collapse
|
5
|
Kodali S, Proietti L, Valcarcel G, López-Rubio AV, Pessina P, Eder T, Shi J, Jen A, Lupión-Garcia N, Starner AC, Bartels MD, Cui Y, Sands CM, Planas-Riverola A, Martínez A, Velasco-Hernandez T, Tomás-Daza L, Alber B, Manhart G, Mayer IM, Kollmann K, Fatica A, Menendez P, Shishkova E, Rau RE, Javierre BM, Coon J, Chen Q, Van Nostrand EL, Sardina JL, Grebien F, Di Stefano B. RNA sequestration in P-bodies sustains myeloid leukaemia. Nat Cell Biol 2024; 26:1745-1758. [PMID: 39169219 DOI: 10.1038/s41556-024-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Post-transcriptional mechanisms are fundamental safeguards of progenitor cell identity and are often dysregulated in cancer. Here, we identified regulators of P-bodies as crucial vulnerabilities in acute myeloid leukaemia (AML) through genome-wide CRISPR screens in normal and malignant haematopoietic progenitors. We found that leukaemia cells harbour aberrantly elevated numbers of P-bodies and show that P-body assembly is crucial for initiation and maintenance of AML. Notably, P-body loss had little effect upon homoeostatic haematopoiesis but impacted regenerative haematopoiesis. Molecular characterization of P-bodies purified from human AML cells unveiled their critical role in sequestering messenger RNAs encoding potent tumour suppressors from the translational machinery. P-body dissolution promoted translation of these mRNAs, which in turn rewired gene expression and chromatin architecture in leukaemia cells. Collectively, our findings highlight the contrasting and unique roles of RNA sequestration in P-bodies during tissue homoeostasis and oncogenesis. These insights open potential avenues for understanding myeloid leukaemia and future therapeutic interventions.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Animals
- Hematopoiesis/genetics
- Cell Line, Tumor
- Mice
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ludovica Proietti
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gemma Valcarcel
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Patrizia Pessina
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Eder
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Núria Lupión-Garcia
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne C Starner
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mason D Bartels
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Yingzhi Cui
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline M Sands
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alba Martínez
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | | | - Bernhard Alber
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabriele Manhart
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Isabella Maria Mayer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Pablo Menendez
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Rachel E Rau
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | | | - Joshua Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Qi Chen
- Molecular Medicine Program, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric L Van Nostrand
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Jose L Sardina
- Josep Carreras Leukaemia Research Institute, Badalona, Spain.
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Wang C, He Y, Fang X, Zhang D, Huang J, Zhao S, Li L, Li G. METTL1-modulated LSM14A facilitates proliferation and migration in glioblastoma via the stabilization of DDX5. iScience 2024; 27:110225. [PMID: 39040050 PMCID: PMC11261005 DOI: 10.1016/j.isci.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Glioblastoma (GBM) is characterized by aggressive growth, invasiveness, and poor prognosis. Elucidating the molecular mechanisms underlying GBM is crucial. This study explores the role of Sm-like protein 14 homolog A (LSM14A) in GBM. Bioinformatics and clinical tissue samples analysis demonstrated that overexpression of LSM14A in GBM correlates with poorer prognosis. CCK8, EdU, colony formation, and transwell assays revealed that LSM14A promotes proliferation, migration, and invasion in GBM in vitro. In vivo mouse xenograft models confirmed the results of the in vitro experiments. The mechanism of LSM14A modulating GBM cell proliferation was investigated using mass spectrometry, co-immunoprecipitation (coIP), protein half-life, and methylated RNA immunoprecipitation (MeRIP) analyses. The findings indicate that during the G1/S phase, LSM14A stabilizes DDX5 in the cytoplasm, regulating CDK4 and P21 levels. Furthermore, METTL1 modulates LSM14A expression via mRNA m7G methylation. Altogether, our work highlights the METTL1-LSM14A-DDX5 pathway as a potential therapeutic target in GBM.
Collapse
Affiliation(s)
- Changyu Wang
- Department of Neurosurgery, The First Hospital of China Medical University, NO. 155 Nanjing North Street, Heping District, Shenyang 110002, China
| | - Yan He
- Department of Laboratory Animal Science, China Medical University, 110122, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, P.R. China
| | - Xiang Fang
- Department of Neurosurgery, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan, Shandong, People’s Republic of China
| | - Danyang Zhang
- Department of Immunology, College of Basic Medical Sciences of China Medical University, 110122, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, P.R. China
| | - Jinhai Huang
- Department of Neurosurgery, The First Hospital of China Medical University, NO. 155 Nanjing North Street, Heping District, Shenyang 110002, China
| | - Shuxin Zhao
- The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lun Li
- Department of Neurosurgery, Anshan Hospital of the First Hospital of China Medical University, Anshan, China
| | - Guangyu Li
- Department of Neurosurgery, The First Hospital of China Medical University, NO. 155 Nanjing North Street, Heping District, Shenyang 110002, China
| |
Collapse
|
7
|
Weber R, Chang CT. Human DDX6 regulates translation and decay of inefficiently translated mRNAs. eLife 2024; 13:RP92426. [PMID: 38989862 PMCID: PMC11239181 DOI: 10.7554/elife.92426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.
Collapse
Affiliation(s)
- Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
- Institute for Regenerative Medicine (IREM), University of ZurichZurichSwitzerland
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| |
Collapse
|
8
|
Wang JY, Liu YJ, Zhang XL, Liu YH, Jiang LL, Hu HY. PolyQ-expanded ataxin-2 aggregation impairs cellular processing-body homeostasis via sequestering the RNA helicase DDX6. J Biol Chem 2024; 300:107413. [PMID: 38810698 PMCID: PMC11254730 DOI: 10.1016/j.jbc.2024.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 05/31/2024] Open
Abstract
Ataxin-2 (Atx2) is a polyglutamine (polyQ) tract-containing RNA-binding protein, while its polyQ expansion may cause protein aggregation that is implicated in the pathogenesis of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2). However, the molecular mechanism underlying how Atx2 aggregation contributes to the proteinopathies remains elusive. Here, we investigated the influence of Atx2 aggregation on the assembly and functionality of cellular processing bodies (P-bodies) by using biochemical and fluorescence imaging approaches. We have revealed that polyQ-expanded (PQE) Atx2 sequesters the DEAD-box RNA helicase (DDX6), an essential component of P-bodies, into aggregates or puncta via some RNA sequences. The N-terminal like-Sm (LSm) domain of Atx2 (residues 82-184) and the C-terminal helicase domain of DDX6 are responsible for the interaction and specific sequestration. Moreover, sequestration of DDX6 may aggravate pre-mRNA mis-splicing, and interfere with the assembly of cellular P-bodies, releasing the endoribonuclease MARF1 that promotes mRNA decay and translational repression. Rescuing the DDX6 protein level can recover the assembly and functionality of P-bodies, preventing targeted mRNA from degradation. This study provides a line of evidence for sequestration of the P-body components and impairment of the P-body homeostasis in dysregulating RNA metabolism, which is implicated in the disease pathologies and a potential therapeutic target.
Collapse
Affiliation(s)
- Jian-Yang Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Ya-Jun Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiang-Le Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Yin-Hu Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, PR China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
9
|
Fang F, Chen D, Basharat AR, Poulos W, Wang Q, Cibelli JB, Liu X, Sun L. Quantitative proteomics reveals the dynamic proteome landscape of zebrafish embryos during the maternal-to-zygotic transition. iScience 2024; 27:109944. [PMID: 38784018 PMCID: PMC11111832 DOI: 10.1016/j.isci.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/23/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Maternal-to-zygotic transition (MZT) is central to early embryogenesis. However, its underlying molecular mechanisms are still not well described. Here, we revealed the expression dynamics of 5,000 proteins across four stages of zebrafish embryos during MZT, representing one of the most systematic surveys of proteome landscape of the zebrafish embryos during MZT. Nearly 700 proteins were differentially expressed and were divided into six clusters according to their expression patterns. The proteome expression profiles accurately reflect the main events that happen during the MZT, i.e., zygotic genome activation (ZGA), clearance of maternal mRNAs, and initiation of cellular differentiation and organogenesis. MZT is modulated by many proteins at multiple levels in a collaborative fashion, i.e., transcription factors, histones, histone-modifying enzymes, RNA helicases, and P-body proteins. Significant discrepancies were discovered between zebrafish proteome and transcriptome profiles during the MZT. The proteome dynamics database will be a valuable resource for bettering our understanding of MZT.
Collapse
Affiliation(s)
- Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Abdul Rehman Basharat
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - William Poulos
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Jose B. Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, 1441 Canal Street, New Orleans, LA 70112, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Ripin N, Macedo de Vasconcelos L, Ugay DA, Parker R. DDX6 modulates P-body and stress granule assembly, composition, and docking. J Cell Biol 2024; 223:e202306022. [PMID: 38536035 PMCID: PMC10978804 DOI: 10.1083/jcb.202306022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/20/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Stress granules and P-bodies are ribonucleoprotein (RNP) granules that accumulate during the stress response due to the condensation of untranslating mRNPs. Stress granules form in part by intermolecular RNA-RNA interactions and can be limited by components of the RNA chaperone network, which inhibits RNA-driven aggregation. Herein, we demonstrate that the DEAD-box helicase DDX6, a P-body component, can also limit the formation of stress granules, independent of the formation of P-bodies. In an ATPase, RNA-binding dependent manner, DDX6 limits the partitioning of itself and other RNPs into stress granules. When P-bodies are limited, proteins that normally partition between stress granules and P-bodies show increased accumulation within stress granules. Moreover, we show that loss of DDX6, 4E-T, and DCP1A increases P-body docking with stress granules, which depends on CNOT1 and PAT1B. Taken together, these observations identify a new role for DDX6 in limiting stress granules and demonstrate that P-body components can influence stress granule composition and docking with P-bodies.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Daniella A. Ugay
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
11
|
Petrauskas A, Fortunati DL, Kandi AR, Pothapragada SS, Agrawal K, Singh A, Huelsmeier J, Hillebrand J, Brown G, Chaturvedi D, Lee J, Lim C, Auburger G, VijayRaghavan K, Ramaswami M, Bakthavachalu B. Structured and disordered regions of Ataxin-2 contribute differently to the specificity and efficiency of mRNP granule formation. PLoS Genet 2024; 20:e1011251. [PMID: 38768217 PMCID: PMC11166328 DOI: 10.1371/journal.pgen.1011251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/11/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Ataxin-2 (ATXN2) is a gene implicated in spinocerebellar ataxia type II (SCA2), amyotrophic lateral sclerosis (ALS) and Parkinsonism. The encoded protein is a therapeutic target for ALS and related conditions. ATXN2 (or Atx2 in insects) can function in translational activation, translational repression, mRNA stability and in the assembly of mRNP-granules, a process mediated by intrinsically disordered regions (IDRs). Previous work has shown that the LSm (Like-Sm) domain of Atx2, which can help stimulate mRNA translation, antagonizes mRNP-granule assembly. Here we advance these findings through a series of experiments on Drosophila and human Ataxin-2 proteins. Results of Targets of RNA Binding Proteins Identified by Editing (TRIBE), co-localization and immunoprecipitation experiments indicate that a polyA-binding protein (PABP) interacting, PAM2 motif of Ataxin-2 may be a major determinant of the mRNA and protein content of Ataxin-2 mRNP granules. Experiments with transgenic Drosophila indicate that while the Atx2-LSm domain may protect against neurodegeneration, structured PAM2- and unstructured IDR- interactions both support Atx2-induced cytotoxicity. Taken together, the data lead to a proposal for how Ataxin-2 interactions are remodelled during translational control and how structured and non-structured interactions contribute differently to the specificity and efficiency of RNP granule condensation as well as to neurodegeneration.
Collapse
Affiliation(s)
- Arnas Petrauskas
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Daniel L. Fortunati
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Arvind Reddy Kandi
- School of Biosciences and Bioengineering, Indian Institute of Technology, Mandi, India
| | | | - Khushboo Agrawal
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham University, Kollam, Kerala, India
| | - Amanjot Singh
- National Centre for Biological Sciences, TIFR, Bangalore, India
- Manipal Institute of Regenerative Medicine, MAHE-Bengaluru, Govindapura, Bengaluru, India
| | - Joern Huelsmeier
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jens Hillebrand
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Georgia Brown
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | | | - Jongbo Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, Republic of Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, Republic of Korea
| | - Georg Auburger
- Experimental Neurology, Medical School, Goethe University, Frankfurt, Germany
| | | | - Mani Ramaswami
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Baskar Bakthavachalu
- School of Biosciences and Bioengineering, Indian Institute of Technology, Mandi, India
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore, India
| |
Collapse
|
12
|
Zhang H, Zhang T, Wan X, Chen C, Wang S, Qin D, Li L, Yu L, Wu X. LSM14B coordinates protein component expression in the P-body and controls oocyte maturation. J Genet Genomics 2024; 51:48-60. [PMID: 37481122 DOI: 10.1016/j.jgg.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
The generation of mature and healthy oocytes is the most critical event in the entire female reproductive process, and the mechanisms regulating this process remain to be studied. Here, we demonstrate that Smith-like (LSM) family member 14B (LSM14B) regulates oocyte maturation, and the loss of LSM14B in mouse ovaries leads to abnormal oocyte MII arrest and female infertility. Next, we find the aberrant transcriptional activation, indicated by abnormal non-surrounded nucleolus and surrounded nucleolus oocyte proportions, and abnormal chromosome assembly and segregation in Lsm14b-deficient mouse oocytes. The global transcriptome analysis suggests that many transcripts involved in cytoplasmic processing body (P-body) function are altered in Lsm14b-deficient mouse oocytes. Deletion of Lsm14b results in the expression and/or localization changes of P-body components (such as LSM14A, DCP1A, and 4E-T). Notably, DDX6, a key component of the P-body, is downregulated and accumulates in the nuclei in Lsm14b-deficient mouse oocytes. Taken together, our data suggest that LSM14B links mouse oocyte maturation to female fertility through the regulation of the P-body.
Collapse
Affiliation(s)
- Huiru Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiang Wan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Luping Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210029, China.
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
13
|
Brothers WR, Ali F, Kajjo S, Fabian MR. The EDC4-XRN1 interaction controls P-body dynamics to link mRNA decapping with decay. EMBO J 2023; 42:e113933. [PMID: 37621215 PMCID: PMC10620763 DOI: 10.15252/embj.2023113933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Deadenylation-dependent mRNA decapping and decay is the major cytoplasmic mRNA turnover pathway in eukaryotes. Many mRNA decapping and decay factors are associated with each other via protein-protein interaction motifs. For example, the decapping enzyme DCP2 and the 5'-3' exonuclease XRN1 interact with the enhancer of mRNA-decapping protein 4 (EDC4), a large scaffold that has been reported to stimulate mRNA decapping. mRNA decapping and decay factors are also found in processing bodies (P-bodies), evolutionarily conserved ribonucleoprotein granules that are often enriched with mRNAs targeted for decay, yet paradoxically are not required for mRNA decay to occur. Here, we show that disrupting the EDC4-XRN1 interaction or altering their stoichiometry inhibits mRNA decapping, with microRNA-targeted mRNAs being stabilized in a translationally repressed state. Importantly, we demonstrate that this concomitantly leads to larger P-bodies that are responsible for preventing mRNA decapping. Finally, we demonstrate that P-bodies support cell viability and prevent stress granule formation when XRN1 is limiting. Taken together, these data demonstrate that the interaction between XRN1 and EDC4 regulates P-body dynamics to properly coordinate mRNA decapping with 5'-3' decay in human cells.
Collapse
Affiliation(s)
- William R Brothers
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
| | - Farah Ali
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
| | - Sam Kajjo
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
| | - Marc R Fabian
- Lady Davis Institute for Medical ResearchJewish General HospitalMontrealQCCanada
- Department of BiochemistryMcGill UniversityMontrealQCCanada
- Department of OncologyMcGill UniversityMontrealQCCanada
| |
Collapse
|
14
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
15
|
Krempl C, Lazzaretti D, Sprangers R. A structural biology view on the enzymes involved in eukaryotic mRNA turnover. Biol Chem 2023; 404:1101-1121. [PMID: 37709756 DOI: 10.1515/hsz-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Daniela Lazzaretti
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
16
|
Zuberek J, Warzecha M, Dobrowolski M, Modrak-Wojcik A. An intramolecular disulphide bond in human 4E-T affects its binding to eIF4E1a protein. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:497-510. [PMID: 37798395 PMCID: PMC10618305 DOI: 10.1007/s00249-023-01684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023]
Abstract
The cap at the 5'terminus of mRNA is a key determinant of gene expression in eukaryotic cells, which among others is required for cap dependent translation and protects mRNA from degradation. These properties of cap are mediated by several proteins. One of them is 4E-Transporter (4E-T), which plays an important role in translational repression, mRNA decay and P-bodies formation. 4E-T is also one of several proteins that interact with eukaryotic initiation factor 4E (eIF4E), a cap binding protein which is a key component of the translation initiation machinery. The molecular mechanisms underlying the interactions of these two proteins are crucial for mRNA processing. Studying the interactions between human eIF4E1a and the N-terminal fragment of 4E-T that possesses unstructured 4E-binding motifs under non-reducing conditions, we observed that 4E-T preferentially forms an intramolecular disulphide bond. This "disulphide loop" reduces affinity of 4E-T for eIF4E1a by about 300-fold. Considering that only human 4E-T possesses two cysteines located between the 4E binding motifs, we proposed that the disulphide bond may act as a switch to regulate interactions between the two proteins.
Collapse
Affiliation(s)
- Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| | - Marek Warzecha
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Mateusz Dobrowolski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Anna Modrak-Wojcik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Majerciak V, Zhou T, Kruhlak M, Zheng ZM. RNA helicase DDX6 and scaffold protein GW182 in P-bodies promote biogenesis of stress granules. Nucleic Acids Res 2023; 51:9337-9355. [PMID: 37427791 PMCID: PMC10516652 DOI: 10.1093/nar/gkad585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023] Open
Abstract
Two prominent cytoplasmic RNA granules, ubiquitous RNA-processing bodies (PB) and inducible stress granules (SG), regulate mRNA translation and are intimately related. In this study, we found that arsenite (ARS)-induced SG formed in a stepwise process is topologically and mechanically linked to PB. Two essential PB components, GW182 and DDX6, are repurposed under stress to play direct but distinguishable roles in SG biogenesis. By providing scaffolding activities, GW182 promotes the aggregation of SG components to form SG bodies. DEAD-box helicase DDX6 is also essential for the proper assembly and separation of PB from SG. DDX6 deficiency results in the formation of irregularly shaped 'hybrid' PB/SG granules with accumulated components of both PB and SG. Wild-type DDX6, but not its helicase mutant E247A, can rescue the separation of PB from SG in DDX6KO cells, indicating a requirement of DDX6 helicase activity for this process. DDX6 activity in biogenesis of both PB and SG in the cells under stress is further modulated by its interaction with two protein partners, CNOT1 and 4E-T, of which knockdown affects the formation of both PB and also SG. Together, these data highlight a new functional paradigm between PB and SG biogenesis during the stress.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Tongqing Zhou
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
18
|
Shan LY, Tian Y, Liu WX, Fan HT, Li FG, Liu WJ, Li A, Shen W, Sun QY, Liu YB, Zhou Y, Zhang T. LSM14B controls oocyte mRNA storage and stability to ensure female fertility. Cell Mol Life Sci 2023; 80:247. [PMID: 37578641 PMCID: PMC10425512 DOI: 10.1007/s00018-023-04898-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023]
Abstract
Controlled mRNA storage and stability is essential for oocyte meiosis and early embryonic development. However, how to regulate mRNA storage and stability in mammalian oogenesis remains elusive. Here we showed that LSM14B, a component of membraneless compartments including P-body-like granules and mitochondria-associated ribonucleoprotein domain (MARDO) in germ cell, is indispensable for female fertility. To reveal loss of LSM14B disrupted primordial follicle assembly and caused mRNA reduction in non-growing oocytes, which was concomitant with the impaired assembly of P-body-like granules. 10× Genomics single-cell RNA-sequencing and immunostaining were performed. Meanwhile, we conducted RNA-seq analysis of GV-stage oocytes and found that Lsm14b deficiency not only impaired the maternal mRNA accumulation but also disrupted the translation in fully grown oocytes, which was closely associated with dissolution of MARDO components. Moreover, Lsm14b-deficient oocytes reassembled a pronucleus containing decondensed chromatin after extrusion of the first polar body, through compromising the activation of maturation promoting factor, while the defects were restored via WEE1/2 inhibitor. Together, our findings reveal that Lsm14b plays a pivotal role in mammalian oogenesis by specifically controlling of oocyte mRNA storage and stability.
Collapse
Affiliation(s)
- Li-Ying Shan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yu Tian
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Wen-Xiang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hai-Tao Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Feng-Guo Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Wen-Juan Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yong-Bin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Yang Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
19
|
Serajazari M, Torkamaneh D, Gordon E, Lee E, Booker H, Pauls KP, Navabi A. Identification of fusarium head blight resistance markers in a genome-wide association study of CIMMYT spring synthetic hexaploid derived wheat lines. BMC PLANT BIOLOGY 2023; 23:290. [PMID: 37259061 DOI: 10.1186/s12870-023-04306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most destructive wheat diseases worldwide. FHB infection can dramatically reduce grain yield and quality due to mycotoxins contamination. Wheat resistance to FHB is quantitatively inherited and many low-effect quantitative trait loci (QTL) have been mapped in the wheat genome. Synthetic hexaploid wheat (SHW) represents a novel source of FHB resistance derived from Aegilops tauschii and Triticum turgidum that can be transferred into common wheat (T. aestivum). In this study, a panel of 194 spring Synthetic Hexaploid Derived Wheat (SHDW) lines from the International Maize and Wheat Improvement Center (CIMMYT) was evaluated for FHB response under field conditions over three years (2017-2019). A significant phenotypic variation was found for disease incidence, severity, index, number of Fusarium Damaged Kernels (FDKs), and deoxynivalenol (DON) content. Further, 11 accessions displayed < 10 ppm DON in 2017 and 2019. Genotyping of the SHDW panel using a 90 K Single Nucleotide Polymorphism (SNP) chip array revealed 31 K polymorphic SNPs with a minor allele frequency (MAF) > 5%, which were used for a Genome-Wide Association Study (GWAS) of FHB resistance. A total of 52 significant marker-trait associations for FHB resistance were identified. These included 5 for DON content, 13 for the percentage of FDKs, 11 for the FHB index, 3 for disease incidence, and 20 for disease severity. A survey of genes associated with the markers identified 395 candidate genes that may be involved in FHB resistance. Collectively, our results strongly support the view that utilization of synthetic hexaploid wheat in wheat breeding would enhance diversity and introduce new sources of resistance against FHB into the common wheat gene pool. Further, validated SNP markers associated with FHB resistance may facilitate the screening of wheat populations for FHB resistance.
Collapse
Affiliation(s)
- Mitra Serajazari
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, Québec, G1V 0A6, Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Emily Gordon
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elizabeth Lee
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Helen Booker
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Karl Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alireza Navabi
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
20
|
Pekovic F, Rammelt C, Kubíková J, Metz J, Jeske M, Wahle E. RNA binding proteins Smaug and Cup induce CCR4-NOT-dependent deadenylation of the nanos mRNA in a reconstituted system. Nucleic Acids Res 2023; 51:3950-3970. [PMID: 36951092 PMCID: PMC10164591 DOI: 10.1093/nar/gkad159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023] Open
Abstract
Posttranscriptional regulation of the maternal nanos mRNA is essential for the development of the anterior - posterior axis of the Drosophila embryo. The nanos RNA is regulated by the protein Smaug, which binds to Smaug recognition elements (SREs) in the nanos 3'-UTR and nucleates the assembly of a larger repressor complex including the eIF4E-T paralog Cup and five additional proteins. The Smaug-dependent complex represses translation of nanos and induces its deadenylation by the CCR4-NOT deadenylase. Here we report an in vitro reconstitution of the Drosophila CCR4-NOT complex and Smaug-dependent deadenylation. We find that Smaug by itself is sufficient to cause deadenylation by the Drosophila or human CCR4-NOT complexes in an SRE-dependent manner. CCR4-NOT subunits NOT10 and NOT11 are dispensable, but the NOT module, consisting of NOT2, NOT3 and the C-terminal part of NOT1, is required. Smaug interacts with the C-terminal domain of NOT3. Both catalytic subunits of CCR4-NOT contribute to Smaug-dependent deadenylation. Whereas the CCR4-NOT complex itself acts distributively, Smaug induces a processive behavior. The cytoplasmic poly(A) binding protein (PABPC) has a minor inhibitory effect on Smaug-dependent deadenylation. Among the additional constituents of the Smaug-dependent repressor complex, Cup also facilitates CCR4-NOT-dependent deadenylation, both independently and in cooperation with Smaug.
Collapse
Affiliation(s)
- Filip Pekovic
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, 1050 Boyles Street, Frederick, MD 21702, USA
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| | - Jana Kubíková
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Jutta Metz
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120 Halle, Germany
| |
Collapse
|
21
|
The P-body protein 4E-T represses translation to regulate the balance between cell genesis and establishment of the postnatal NSC pool. Cell Rep 2023; 42:112242. [PMID: 36924490 DOI: 10.1016/j.celrep.2023.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Here, we ask how developing precursors maintain the balance between cell genesis for tissue growth and establishment of adult stem cell pools, focusing on postnatal forebrain neural precursor cells (NPCs). We show that these NPCs are transcriptionally primed to differentiate and that the primed mRNAs are associated with the translational repressor 4E-T. 4E-T also broadly associates with other NPC mRNAs encoding transcriptional regulators, and these are preferentially depleted from ribosomes, consistent with repression. By contrast, a second translational regulator, Cpeb4, associates with diverse target mRNAs that are largely ribosome associated. The 4E-T-dependent mRNA association is functionally important because 4E-T knockdown or conditional knockout derepresses proneurogenic mRNA translation and perturbs maintenance versus differentiation of early postnatal NPCs in culture and in vivo. Thus, early postnatal NPCs are primed to differentiate, and 4E-T regulates the balance between cell genesis and stem cell expansion by sequestering and repressing mRNAs encoding transcriptional regulators.
Collapse
|
22
|
Bloch DB, Sinow CO, Sauer AJ, Corman BHP. Assembly and regulation of the mammalian mRNA processing body. PLoS One 2023; 18:e0282496. [PMID: 36877681 PMCID: PMC9987799 DOI: 10.1371/journal.pone.0282496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/15/2023] [Indexed: 03/07/2023] Open
Abstract
Messenger RNA processing bodies (P-bodies) are cytoplasmic membrane-free organelles that contain proteins involved in mRNA silencing, storage and decay. The mechanism by which P-body components interact and the factors that regulate the stability of these structures are incompletely understood. In this study, we used a fluorescence-based, two-hybrid assay to investigate interactions between P-body components that occur inside the cell. LSm14a, PATL1, XRN1, and NBDY were found to interact with the N-terminal, WD40-domain-containing portion of EDC4. The N-terminus of full-length PATL1 was required to mediate the interaction between EDC4 and DDX6. The C-terminal, alpha helix-domain- containing portion of EDC4 was sufficient to mediate interaction with DCP1a and CCHCR1. In the absence of endogenous P-bodies, caused by depletion of LSm14a or DDX6, expression of the portion of EDC4 that lacked the N-terminus retained the ability to form cytoplasmic dots that were indistinguishable from P-bodies at the level of UV light microscopy. Despite the absence of endogenous P-bodies, this portion of EDC4 was able to recruit DCP1a, CCHCR1 and EDC3 to cytoplasmic dots. The results of this study permit the development of a new model of P-body formation and suggest that the N-terminus of EDC4 regulates the stability of these structures.
Collapse
Affiliation(s)
- Donald B. Bloch
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Claire O. Sinow
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew J. Sauer
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin H. P. Corman
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
23
|
Ngo C, Verret B, Vibert J, Cotteret S, Levy A, Pechoux CL, Haddag-Miliani L, Honore C, Faron M, Quinquis F, Cesne AL, Scoazec JY, Pierron G. A novel fusion variant LSM14A::NR4A3 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 2023; 62:52-56. [PMID: 35932215 DOI: 10.1002/gcc.23090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Extraskeletal myxoid chondrosarcoma (EMC) is a rare soft tissue neoplasm of uncertain lineage characterized by the pathognomonic rearrangement of the NR4A3 gene, which in most cases is fused with EWSR1. Other NR4A3 fusion partners have been described, namely TAF15, FUS, TCF12, and TGF. Some studies suggest that EMCs with non-EWSR1 variant fusion are associated with high-grade morphology and worst clinical behavior compared to EWSR1::NR4A3 tumors, supporting the potential significance of particular fusion variant in EMC. We report a case of a 34-year-old male who presented with calf EMC and subsequently developed a slowly progressive metastatic disease 3 years after diagnosis. Whole-transcriptome analysis with total RNA sequencing enabled identification of a novel fusion transcript LSM14A::NR4A3, expanding the molecular spectrum of EMC.
Collapse
Affiliation(s)
- Carine Ngo
- Department of Pathology and Biology, Gustave Roussy, Villejuif, France
| | | | - Julien Vibert
- Department of Medicine, Gustave Roussy, Villejuif, France
| | - Sophie Cotteret
- Department of Pathology and Biology, Gustave Roussy, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | | | | | - Charles Honore
- Department of Surgery, Gustave Roussy, Villejuif, France
| | - Matthieu Faron
- Department of Surgery, Gustave Roussy, Villejuif, France
| | | | - Axel Le Cesne
- Department of Medicine, Gustave Roussy, Villejuif, France
| | - Jean-Yves Scoazec
- Department of Pathology and Biology, Gustave Roussy, Villejuif, France
| | | |
Collapse
|
24
|
Cheng S, Altmeppen G, So C, Welp LM, Penir S, Ruhwedel T, Menelaou K, Harasimov K, Stützer A, Blayney M, Elder K, Möbius W, Urlaub H, Schuh M. Mammalian oocytes store mRNAs in a mitochondria-associated membraneless compartment. Science 2022; 378:eabq4835. [PMID: 36264786 DOI: 10.1126/science.abq4835] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Full-grown oocytes are transcriptionally silent and must stably maintain the messenger RNAs (mRNAs) needed for oocyte meiotic maturation and early embryonic development. However, where and how mammalian oocytes store maternal mRNAs is unclear. Here, we report that mammalian oocytes accumulate mRNAs in a mitochondria-associated ribonucleoprotein domain (MARDO). MARDO assembly around mitochondria was promoted by the RNA-binding protein ZAR1 and directed by an increase in mitochondrial membrane potential during oocyte growth. MARDO foci coalesced into hydrogel-like matrices that clustered mitochondria. Maternal mRNAs stored in the MARDO were translationally repressed. Loss of ZAR1 disrupted the MARDO, dispersed mitochondria, and caused a premature loss of MARDO-localized mRNAs. Thus, a mitochondria-associated membraneless compartment controls mitochondrial distribution and regulates maternal mRNA storage, translation, and decay to ensure fertility in mammals.
Collapse
Affiliation(s)
- Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gerrit Altmeppen
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Chun So
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sarah Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Electron Microscopy City Campus, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katerina Menelaou
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bourn Hall Clinic, Cambridge, UK
| | - Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandra Stützer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | | | - Wiebke Möbius
- Electron Microscopy City Campus, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
25
|
Kim J, Muraoka M, Okada H, Toyoda A, Ajima R, Saga Y. The RNA helicase DDX6 controls early mouse embryogenesis by repressing aberrant inhibition of BMP signaling through miRNA-mediated gene silencing. PLoS Genet 2022; 18:e1009967. [PMID: 36197846 PMCID: PMC9534413 DOI: 10.1371/journal.pgen.1009967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
The evolutionarily conserved RNA helicase DDX6 is a central player in post-transcriptional regulation, but its role during embryogenesis remains elusive. We here show that DDX6 enables proper cell lineage specification from pluripotent cells by analyzing Ddx6 knockout (KO) mouse embryos and employing an in vitro epiblast-like cell (EpiLC) induction system. Our study unveils that DDX6 is an important BMP signaling regulator. Deletion of Ddx6 causes the aberrant upregulation of the negative regulators of BMP signaling, which is accompanied by enhanced expression of Nodal and related genes. Ddx6 KO pluripotent cells acquire higher pluripotency with a strong inclination toward neural lineage commitment. During gastrulation, abnormally expanded Nodal and Eomes expression in the primitive streak likely promotes endoderm cell fate specification while inhibiting mesoderm differentiation. We also genetically dissected major DDX6 pathways by generating Dgcr8, Dcp2, and Eif4enif1 KO models in addition to Ddx6 KO. We found that the miRNA pathway mutant Dgcr8 KO phenocopies Ddx6 KO, indicating that DDX6 mostly works along with the miRNA pathway during early development, whereas its P-body-related functions are dispensable. Therefore, we conclude that DDX6 prevents aberrant upregulation of BMP signaling inhibitors by participating in miRNA-mediated gene silencing processes. Overall, this study delineates how DDX6 affects the development of the three primary germ layers during early mouse embryogenesis and the underlying mechanism of DDX6 function.
Collapse
Affiliation(s)
- Jessica Kim
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masafumi Muraoka
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Hajime Okada
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Rieko Ajima
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
- * E-mail: (RA); (YS)
| | - Yumiko Saga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
- * E-mail: (RA); (YS)
| |
Collapse
|
26
|
Brothers WR, Fakim H, Kajjo S, Fabian MR. P-bodies directly regulate MARF1-mediated mRNA decay in human cells. Nucleic Acids Res 2022; 50:7623-7636. [PMID: 35801873 PMCID: PMC9303261 DOI: 10.1093/nar/gkac557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/12/2022] Open
Abstract
Processing bodies (P-bodies) are ribonucleoprotein granules that contain mRNAs, RNA-binding proteins and effectors of mRNA turnover. While P-bodies have been reported to contain translationally repressed mRNAs, a causative role for P-bodies in regulating mRNA decay has yet to be established. Enhancer of decapping protein 4 (EDC4) is a core P-body component that interacts with multiple mRNA decay factors, including the mRNA decapping (DCP2) and decay (XRN1) enzymes. EDC4 also associates with the RNA endonuclease MARF1, an interaction that antagonizes the decay of MARF1-targeted mRNAs. How EDC4 interacts with MARF1 and how it represses MARF1 activity is unclear. In this study, we show that human MARF1 and XRN1 interact with EDC4 using analogous conserved short linear motifs in a mutually exclusive manner. While the EDC4–MARF1 interaction is required for EDC4 to inhibit MARF1 activity, our data indicate that the interaction with EDC4 alone is not sufficient. Importantly, we show that P-body architecture plays a critical role in antagonizing MARF1-mediated mRNA decay. Taken together, our study suggests that P-bodies can directly regulate mRNA turnover by sequestering an mRNA decay enzyme and preventing it from interfacing with and degrading targeted mRNAs.
Collapse
Affiliation(s)
- William R Brothers
- Lady David Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
| | - Hana Fakim
- Lady David Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
| | - Sam Kajjo
- Lady David Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
| | - Marc R Fabian
- Lady David Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada.,Department of Biochemistry, McGill University Montreal, Quebec, H3A 1A3, Canada.,Gerald Bronfman Department of Oncology, McGill University Montreal, Quebec, H3A 1G5, Canada
| |
Collapse
|
27
|
Abstract
The 5'-terminal cap is a fundamental determinant of eukaryotic gene expression which facilitates cap-dependent translation and protects mRNAs from exonucleolytic degradation. Enzyme-directed hydrolysis of the cap (decapping) decisively affects mRNA expression and turnover, and is a heavily regulated event. Following the identification of the decapping holoenzyme (Dcp1/2) over two decades ago, numerous studies revealed the complexity of decapping regulation across species and cell types. A conserved set of Dcp1/2-associated proteins, implicated in decapping activation and molecular scaffolding, were identified through genetic and molecular interaction studies, and yet their exact mechanisms of action are only emerging. In this review, we discuss the prevailing models on the roles and assembly of decapping co-factors, with considerations of conservation across species and comparison across physiological contexts. We next discuss the functional convergences of decapping machineries with other RNA-protein complexes in cytoplasmic P bodies and compare current views on their impact on mRNA stability and translation. Lastly, we review the current models of decapping activation and highlight important gaps in our current understanding.
Collapse
Affiliation(s)
- Elva Vidya
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
28
|
Yang C, Dominique GM, Champion MM, Huber PW. Remnants of the Balbiani body are required for formation of RNA transport granules in Xenopus oocytes. iScience 2022; 25:103878. [PMID: 35243240 PMCID: PMC8861640 DOI: 10.1016/j.isci.2022.103878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/24/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
The Balbiani body (Bb), an organelle comprised of mitochondria, ER, and RNA, is found in the oocytes of most organisms. In Xenopus, the structure is initially positioned immediately adjacent to the nucleus, extends toward the vegetal pole, and eventually disperses, leaving behind a region highly enriched in mitochondria. This area is later transversed by RNP complexes that are being localized to the vegetal cortex. Inhibition of mitochondrial ATP synthesis prevents perinuclear formation of the transport complexes that can be reversed by a nonhydrolyzable ATP analog, indicating the nucleotide is acting as a hydrotrope. The protein composition, sensitivity to hexanediol, and coalescence in the absence of transport provide evidence that the transport RNP complexes are biocondensates. The breakdown of the Bb engenders regions of clustered mitochondria that are used not to meet extraordinary energy demands, but rather to promote a liquid-liquid phase separation.
Collapse
Affiliation(s)
- Chao Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gena M. Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W. Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
29
|
Sharma NR, Zheng ZM. RNA Granules in Antiviral Innate Immunity: A Kaposi's Sarcoma-Associated Herpesvirus Journey. Front Microbiol 2022; 12:794431. [PMID: 35069491 PMCID: PMC8767106 DOI: 10.3389/fmicb.2021.794431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022] Open
Abstract
RNA granules are cytoplasmic, non-membranous ribonucleoprotein compartments that form ubiquitously and are often referred to as foci for post-transcriptional gene regulation. Recent research on RNA processing bodies (PB) and stress granules (SG) has shown wide implications of these cytoplasmic RNA granules and their components in suppression of RNA translation as host intracellular innate immunity against infecting viruses. Many RNA viruses either counteract or co-opt these RNA granules; however, many fundamental questions about DNA viruses with respect to their interaction with these two RNA granules remain elusive. Kaposi’s sarcoma-associated herpesvirus (KSHV), a tumor-causing DNA virus, exhibits two distinct phases of infection and encodes ∼90 viral gene products during the lytic phase of infection compared to only a few (∼5) during the latent phase. Thus, productive KSHV infection relies heavily on the host cell translational machinery, which often links to the formation of PB and SG. One major question is how KSHV counteracts the hostile environment of RNA granules for its productive infection. Recent studies demonstrated that KSHV copes with the translational suppression by cellular RNA granules, PB and SG, by expressing ORF57, a viral RNA-binding protein, during KSHV lytic infection. ORF57 interacts with Ago2 and GW182, two major components of PB, and prevents the scaffolding activity of GW182 at the initial stage of PB formation in the infected cells. ORF57 also interacts with protein kinase R (PKR) and PKR-activating protein (PACT) to block PKR dimerization and kinase activation, and thus inhibits eIF2α phosphorylation and SG formation. The homologous immediate-early regulatory protein ICP27 of herpes simplex virus type 1 (HSV-1), but not the EB2 protein of Epstein-Barr virus (EBV), shares this conserved inhibitory function with KSHV ORF57 on PB and SG. Through KSHV ORF57 studies, we have learned much about how a DNA virus in the infected cells is equipped to evade host antiviral immunity for its replication and productive infection. KSHV ORF57 would be an excellent viral target for development of anti-KSHV-specific therapy.
Collapse
Affiliation(s)
- Nishi R Sharma
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard University, New Delhi, India
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
30
|
Bearss JJ, Padi SKR, Singh N, Cardo‐Vila M, Song JH, Mouneimne G, Fernandes N, Li Y, Harter MR, Gard JMC, Cress AE, Peti W, Nelson ADL, Buchan JR, Kraft AS, Okumura K. EDC3 phosphorylation regulates growth and invasion through controlling P-body formation and dynamics. EMBO Rep 2021; 22:e50835. [PMID: 33586867 PMCID: PMC8025014 DOI: 10.15252/embr.202050835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/20/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Regulation of mRNA stability and translation plays a critical role in determining protein abundance within cells. Processing bodies (P-bodies) are critical regulators of these processes. Here, we report that the Pim1 and 3 protein kinases bind to the P-body protein enhancer of mRNA decapping 3 (EDC3) and phosphorylate EDC3 on serine (S)161, thereby modifying P-body assembly. EDC3 phosphorylation is highly elevated in many tumor types, is reduced upon treatment of cells with kinase inhibitors, and blocks the localization of EDC3 to P-bodies. Prostate cancer cells harboring an EDC3 S161A mutation show markedly decreased growth, migration, and invasion in tissue culture and in xenograft models. Consistent with these phenotypic changes, the expression of integrin β1 and α6 mRNA and protein is reduced in these mutated cells. These results demonstrate that EDC3 phosphorylation regulates multiple cancer-relevant functions and suggest that modulation of P-body activity may represent a new paradigm for cancer treatment.
Collapse
Affiliation(s)
| | - Sathish KR Padi
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Molecular Biology and BiophysicsUConn Health CenterFarmingtonCTUSA
| | - Neha Singh
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
| | - Marina Cardo‐Vila
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Otolaryngology‐Head and Neck SurgeryUniversity of ArizonaTucsonAZUSA
| | - Jin H Song
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Ghassan Mouneimne
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Nikita Fernandes
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonAZUSA
| | - Yang Li
- Department of Molecular Biology and BiophysicsUConn Health CenterFarmingtonCTUSA
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonAZUSA
| | - Matthew R Harter
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonAZUSA
| | - Jaime MC Gard
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
| | - Anne E Cress
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of Cellular and Molecular MedicineUniversity of ArizonaTucsonAZUSA
| | - Wolfgang Peti
- Department of Molecular Biology and BiophysicsUConn Health CenterFarmingtonCTUSA
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonAZUSA
| | | | - J Ross Buchan
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonAZUSA
| | - Andrew S Kraft
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of MedicineUniversity of ArizonaTucsonAZUSA
| | - Koichi Okumura
- University of Arizona Cancer CenterUniversity of ArizonaTucsonAZUSA
- Department of PhysiologyUniversity of ArizonaTucsonAZUSA
| |
Collapse
|
31
|
Guduric-Fuchs J, Pedrini E, Lechner J, Chambers SE, O’Neill CL, Mendes Lopes de Melo J, Pathak V, Church RH, McKeown S, Bojdo J, Mcloughlin KJ, Stitt AW, Medina RJ. miR-130a activates the VEGFR2/STAT3/HIF1α axis to potentiate the vasoregenerative capacity of endothelial colony-forming cells in hypoxia. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:968-981. [PMID: 33614244 PMCID: PMC7869000 DOI: 10.1016/j.omtn.2021.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
Abstract
Hypoxia modulates reparative angiogenesis, which is a tightly regulated pathophysiological process. MicroRNAs (miRNAs) are important regulators of gene expression in hypoxia and angiogenesis. However, we do not yet have a clear understanding of how hypoxia-induced miRNAs fine-tune vasoreparative processes. Here, we identify miR-130a as a mediator of the hypoxic response in human primary endothelial colony-forming cells (ECFCs), a well-characterized subtype of endothelial progenitors. Under hypoxic conditions of 1% O2, miR-130a gain-of-function enhances ECFC pro-angiogenic capacity in vitro and potentiates their vasoreparative properties in vivo. Mechanistically, miR-130a orchestrates upregulation of VEGFR2, activation of STAT3, and accumulation of HIF1α via translational inhibition of Ddx6. These findings unveil a new role for miR-130a in hypoxia, whereby it activates the VEGFR2/STAT3/HIF1α axis to enhance the vasoregenerative capacity of ECFCs.
Collapse
Affiliation(s)
- Jasenka Guduric-Fuchs
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Edoardo Pedrini
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Judith Lechner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Sarah E.J. Chambers
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Christina L. O’Neill
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Joana Mendes Lopes de Melo
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Varun Pathak
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Rachel H. Church
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Stuart McKeown
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - James Bojdo
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Kiran J. Mcloughlin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Alan W. Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Reinhold J. Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
32
|
Zhang Y, Lv M, Li F, Li M, Zhang J, Shi Y, Hong J. Structural and biochemical insights into the recognition of RNA helicase CGH-1 by CAR-1 in C. elegans. Biochem Biophys Res Commun 2021; 549:135-142. [PMID: 33676181 DOI: 10.1016/j.bbrc.2021.02.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022]
Abstract
A protein-RNA complex containing the RNA helicase CGH-1 and a germline specific RNA-binding protein CAR-1 is involved in various aspects of function in C. elegans. However, the structural basis for the assembly of this protein complex remains unclear. Here, we elucidate the molecular basis of the recognition of CGH-1 by CAR-1. Additionally, we found that the ATPase activity of CGH-1 is stimulated by NTL-1a MIF4G domain in vitro. Furthermore, we determined the structures of the two RecA-like domains of CGH-1 by X-ray crystallography at resolutions of 1.85 and 2.40 Å, respectively. Structural and biochemical approaches revealed a bipartite interface between CGH-1 RecA2 and the FDF-TFG motif of CAR-1. NMR and structure-based mutations in CGH-1 RecA2 or CAR-1 attenuated or disrupted CGH-1 binding to CAR-1, assessed by ITC and GST-pulldown in vitro. These findings provide insights into a conserved mechanism in the recognition of CGH-1 by CAR-1. Together, our data provide the missing physical links in understanding the assembly and function of CGH-1 and CAR-1 in C. elegans.
Collapse
Affiliation(s)
- Yong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, PR China
| | - Mengqi Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, PR China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, PR China
| | - Meili Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, PR China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, PR China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, PR China.
| | - Jingjun Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, PR China; Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei, PR China.
| |
Collapse
|
33
|
Scheer H, de Almeida C, Ferrier E, Simonnot Q, Poirier L, Pflieger D, Sement FM, Koechler S, Piermaria C, Krawczyk P, Mroczek S, Chicher J, Kuhn L, Dziembowski A, Hammann P, Zuber H, Gagliardi D. The TUTase URT1 connects decapping activators and prevents the accumulation of excessively deadenylated mRNAs to avoid siRNA biogenesis. Nat Commun 2021; 12:1298. [PMID: 33637717 PMCID: PMC7910438 DOI: 10.1038/s41467-021-21382-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Uridylation is a widespread modification destabilizing eukaryotic mRNAs. Yet, molecular mechanisms underlying TUTase-mediated mRNA degradation remain mostly unresolved. Here, we report that the Arabidopsis TUTase URT1 participates in a molecular network connecting several translational repressors/decapping activators. URT1 directly interacts with DECAPPING 5 (DCP5), the Arabidopsis ortholog of human LSM14 and yeast Scd6, and this interaction connects URT1 to additional decay factors like DDX6/Dhh1-like RNA helicases. Nanopore direct RNA sequencing reveals a global role of URT1 in shaping poly(A) tail length, notably by preventing the accumulation of excessively deadenylated mRNAs. Based on in vitro and in planta data, we propose a model that explains how URT1 could reduce the accumulation of oligo(A)-tailed mRNAs both by favoring their degradation and because 3' terminal uridines intrinsically hinder deadenylation. Importantly, preventing the accumulation of excessively deadenylated mRNAs avoids the biogenesis of illegitimate siRNAs that silence endogenous mRNAs and perturb Arabidopsis growth and development.
Collapse
Affiliation(s)
- Hélène Scheer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Caroline de Almeida
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Emilie Ferrier
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Quentin Simonnot
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Laure Poirier
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - David Pflieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - François M Sement
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Sandrine Koechler
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Christina Piermaria
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Paweł Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Johana Chicher
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade du CNRS, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
34
|
Mutations in genes encoding regulators of mRNA decapping and translation initiation: links to intellectual disability. Biochem Soc Trans 2021; 48:1199-1211. [PMID: 32412080 PMCID: PMC7329352 DOI: 10.1042/bst20200109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Intellectual disability (ID) affects at least 1% of the population, and typically presents in the first few years of life. ID is characterized by impairments in cognition and adaptive behavior and is often accompanied by further delays in language and motor skills, as seen in many neurodevelopmental disorders (NDD). Recent widespread high-throughput approaches that utilize whole-exome sequencing or whole-genome sequencing have allowed for a considerable increase in the identification of these pathogenic variants in monogenic forms of ID. Notwithstanding this progress, the molecular and cellular consequences of the identified mutations remain mostly unknown. This is particularly important as the associated protein dysfunctions are the prerequisite to the identification of targets for novel drugs of these rare disorders. Recent Next-Generation sequencing-based studies have further established that mutations in genes encoding proteins involved in RNA metabolism are a major cause of NDD. Here, we review recent studies linking germline mutations in genes encoding factors mediating mRNA decay and regulators of translation, namely DCPS, EDC3, DDX6 helicase and ID. These RNA-binding proteins have well-established roles in mRNA decapping and/or translational repression, and the mutations abrogate their ability to remove 5′ caps from mRNA, diminish their interactions with cofactors and stabilize sub-sets of transcripts. Additional genes encoding RNA helicases with roles in translation including DDX3X and DHX30 have also been linked to NDD. Given the speed in the acquisition, analysis and sharing of sequencing data, and the importance of post-transcriptional regulation for brain development, we anticipate mutations in more such factors being identified and functionally characterized.
Collapse
|
35
|
Wang J, Li T, Deng S, Ma E, Zhang J, Xing S. DDX6 Is Essential for Oocyte Development and Maturation in Locusta migratoria. INSECTS 2021; 12:70. [PMID: 33466820 PMCID: PMC7830464 DOI: 10.3390/insects12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
DEAD-box protein 6 (DDX6) is a member of the DDX RNA helicase family that exists in all eukaryotes. It has been extensively studied in yeast and mammals and has been shown to be involved in messenger ribonucleoprotein assembly, mRNA storage, and decay, as well as in miRNA-mediated gene silencing. DDX6 participates in many developmental processes but the biological function of DDX6 in insects has not yet been adequately addressed. Herein, we characterized the LmDDX6 gene that encodes the LmDDX6 protein in Locusta migratoria, a global, destructive pest. LmDDX6 possesses five motifs unique to the DDX6 subfamily. In the phylogenetic tree, LmDDX6 was closely related to its orthologs in Apis dorsata and Zootermopsis nevadensis. RT-qPCR data revealed high expression of LmDDX6 in the ovary, muscle, and fat body, with a declining trend in the ovary after adult ecdysis. LmDDX6 knockdown downregulated the expression levels of the juvenile hormone receptor Met, and genes encoding Met downstream targeted Grp78-1 and Grp78-2, reduced LmVg expression, and impaired ovary development and oocyte maturation. These results demonstrate that LmDDX6 plays an essential role in locust female reproduction and, thus, could be a novel target for locust biological control.
Collapse
Affiliation(s)
- Junxiu Wang
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China; (J.W.); (T.L.); (S.D.); (E.M.); (J.Z.)
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Tingting Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China; (J.W.); (T.L.); (S.D.); (E.M.); (J.Z.)
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Sufang Deng
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China; (J.W.); (T.L.); (S.D.); (E.M.); (J.Z.)
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China; (J.W.); (T.L.); (S.D.); (E.M.); (J.Z.)
- Shanxi Provincial Key Laboratory of Agricultural Integrated Pest Management, Taiyuan 030006, Shanxi, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China; (J.W.); (T.L.); (S.D.); (E.M.); (J.Z.)
- Shanxi Provincial Key Laboratory of Agricultural Integrated Pest Management, Taiyuan 030006, Shanxi, China
| | - Shuping Xing
- Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China; (J.W.); (T.L.); (S.D.); (E.M.); (J.Z.)
- Shanxi Provincial Key Laboratory of Agricultural Integrated Pest Management, Taiyuan 030006, Shanxi, China
| |
Collapse
|
36
|
Mateu-Regué À, Nielsen FC, Christiansen J. Cytoplasmic mRNPs revisited: Singletons and condensates. Bioessays 2020; 42:e2000097. [PMID: 33145808 DOI: 10.1002/bies.202000097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Cytoplasmic messenger ribonucleoprotein particles (mRNPs) represent the cellular transcriptome, and recent data have challenged our current understanding of their architecture, transport, and complexity before translation. Pre-translational mRNPs are composed of a single transcript, whereas P-bodies and stress granules are condensates. Both pre-translational mRNPs and actively translating mRNPs seem to adopt a linear rather than a closed-loop configuration. Moreover, assembly of pre-translational mRNPs in physical RNA regulons is an unlikely event, and co-regulated translation may occur locally following extracellular cues. We envisage a stochastic mRNP transport mechanism where translational repression of single mRNPs-in combination with microtubule-mediated cytoplasmic streaming and docking events-are prerequisites for local translation, rather than direct transport.
Collapse
Affiliation(s)
| | | | - Jan Christiansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
The E3 ubiquitin-protein ligase MDM2 is a novel interactor of the von Hippel-Lindau tumor suppressor. Sci Rep 2020; 10:15850. [PMID: 32985545 PMCID: PMC7522254 DOI: 10.1038/s41598-020-72683-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/06/2020] [Indexed: 12/16/2022] Open
Abstract
Mutations of the von Hippel-Lindau (pVHL) tumor suppressor are causative of a familiar predisposition to develop different types of cancer. pVHL is mainly known for its role in regulating hypoxia-inducible factor 1 α (HIF-1α) degradation, thus modulating the hypoxia response. There are different pVHL isoforms, including pVHL30 and pVHL19. However, little is known about isoform-specific functions and protein-protein interactions. Integrating in silico predictions with in vitro and in vivo assays, we describe a novel interaction between pVHL and mouse double minute 2 homolog (MDM2). We found that pVHL30, and not pVHL19, forms a complex with MDM2, and that the N-terminal acidic tail of pVHL30 is required for its association with MDM2. Further, we demonstrate that an intrinsically disordered region upstream of the tetramerization domain of MDM2 is responsible for its isoform-specific association with pVHL30. This region is highly conserved in higher mammals, including primates, similarly to what has been already shown for the N-terminal tail of pVHL30. Finally, we show that overexpression of pVHL30 and MDM2 together reduces cell metabolic activity and necrosis, suggesting a synergistic effect of these E3 ubiquitin ligases. Collectively, our data show an isoform-specific interaction of pVHL with MDM2, suggesting an interplay between these two E3 ubiquitin ligases.
Collapse
|
38
|
Räsch F, Weber R, Izaurralde E, Igreja C. 4E-T-bound mRNAs are stored in a silenced and deadenylated form. Genes Dev 2020; 34:847-860. [PMID: 32354837 PMCID: PMC7263148 DOI: 10.1101/gad.336073.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
Abstract
Human 4E-T is an eIF4E-binding protein (4E-BP) present in processing (P)-bodies that represses translation and regulates decay of mRNAs destabilized by AU-rich elements and microRNAs (miRNAs). However, the underlying regulatory mechanisms are still unclear. Here, we show that upon mRNA binding 4E-T represses translation and promotes deadenylation via the recruitment of the CCR4-NOT deadenylase complex. The interaction with CCR4-NOT is mediated by previously uncharacterized sites in the middle region of 4E-T. Importantly, mRNA decapping and decay are inhibited by 4E-T and the deadenylated target is stored in a repressed form. Inhibition of mRNA decapping requires the interaction of 4E-T with the cap-binding proteins eIF4E/4EHP. We further show that regulation of decapping by 4E-T participates in mRNA repression by the miRNA effector protein TNRC6B and that 4E-T overexpression interferes with tristetraprolin (TTP)- and NOT1-mediated mRNA decay. Thus, we postulate that 4E-T modulates 5'-to-3' decay by swapping the fate of a deadenylated mRNA from complete degradation to storage. Our results provide insight into the mechanism of mRNA storage that controls localized translation and mRNA stability in P-bodies.
Collapse
Affiliation(s)
- Felix Räsch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| |
Collapse
|
39
|
Sanders DW, Kedersha N, Lee DSW, Strom AR, Drake V, Riback JA, Bracha D, Eeftens JM, Iwanicki A, Wang A, Wei MT, Whitney G, Lyons SM, Anderson P, Jacobs WM, Ivanov P, Brangwynne CP. Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization. Cell 2020; 181:306-324.e28. [PMID: 32302570 PMCID: PMC7816278 DOI: 10.1016/j.cell.2020.03.050] [Citation(s) in RCA: 499] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 10/24/2019] [Accepted: 03/20/2020] [Indexed: 12/22/2022]
Abstract
Liquid-liquid phase separation (LLPS) mediates formation of membraneless condensates such as those associated with RNA processing, but the rules that dictate their assembly, substructure, and coexistence with other liquid-like compartments remain elusive. Here, we address the biophysical mechanism of this multiphase organization using quantitative reconstitution of cytoplasmic stress granules (SGs) with attached P-bodies in human cells. Protein-interaction networks can be viewed as interconnected complexes (nodes) of RNA-binding domains (RBDs), whose integrated RNA-binding capacity determines whether LLPS occurs upon RNA influx. Surprisingly, both RBD-RNA specificity and disordered segments of key proteins are non-essential, but modulate multiphase condensation. Instead, stoichiometry-dependent competition between protein networks for connecting nodes determines SG and P-body composition and miscibility, while competitive binding of unconnected proteins disengages networks and prevents LLPS. Inspired by patchy colloid theory, we propose a general framework by which competing networks give rise to compositionally specific and tunable condensates, while relative linkage between nodes underlies multiphase organization.
Collapse
Affiliation(s)
- David W Sanders
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S W Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Amy R Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Victoria Drake
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Joshua A Riback
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jorine M Eeftens
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Allana Iwanicki
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Alicia Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ming-Tzo Wei
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Gena Whitney
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Shawn M Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - William M Jacobs
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton, NJ 08544, USA.
| |
Collapse
|
40
|
Kakumani PK, Harvey LM, Houle F, Guitart T, Gebauer F, Simard MJ. CSDE1 controls gene expression through the miRNA-mediated decay machinery. Life Sci Alliance 2020; 3:e201900632. [PMID: 32161113 PMCID: PMC7067469 DOI: 10.26508/lsa.201900632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
In animals, miRNAs are the most prevalent small non-coding RNA molecules controlling posttranscriptional gene regulation. The Argonaute proteins (AGO) mediate miRNA-guided gene silencing by recruiting multiple factors involved in translational repression, deadenylation, and decapping. Here, we report that CSDE1, an RNA-binding protein linked to stem cell maintenance and metastasis in cancer, interacts with AGO2 within miRNA-induced silencing complex and mediates gene silencing through its N-terminal domains. We show that CSDE1 interacts with LSM14A, a constituent of P-body assembly and further associates to the DCP1-DCP2 decapping complex, suggesting that CSDE1 could promote the decay of miRNA-induced silencing complex-targeted mRNAs. Together, our findings uncover a hitherto unknown mechanism used by CSDE1 in the control of gene expression mediated by the miRNA pathway.
Collapse
Affiliation(s)
- Pavan Kumar Kakumani
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - Louis-Mathieu Harvey
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - François Houle
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| |
Collapse
|
41
|
Arvola RM, Chang CT, Buytendorp JP, Levdansky Y, Valkov E, Freddolino L, Goldstrohm AC. Unique repression domains of Pumilio utilize deadenylation and decapping factors to accelerate destruction of target mRNAs. Nucleic Acids Res 2020; 48:1843-1871. [PMID: 31863588 PMCID: PMC7038932 DOI: 10.1093/nar/gkz1187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Pumilio is an RNA-binding protein that represses a network of mRNAs to control embryogenesis, stem cell fate, fertility and neurological functions in Drosophila. We sought to identify the mechanism of Pumilio-mediated repression and find that it accelerates degradation of target mRNAs, mediated by three N-terminal Repression Domains (RDs), which are unique to Pumilio orthologs. We show that the repressive activities of the Pumilio RDs depend on specific subunits of the Ccr4-Not (CNOT) deadenylase complex. Depletion of Pop2, Not1, Not2, or Not3 subunits alleviates Pumilio RD-mediated repression of protein expression and mRNA decay, whereas depletion of other CNOT components had little or no effect. Moreover, the catalytic activity of Pop2 deadenylase is important for Pumilio RD activity. Further, we show that the Pumilio RDs directly bind to the CNOT complex. We also report that the decapping enzyme, Dcp2, participates in repression by the N-terminus of Pumilio. These results support a model wherein Pumilio utilizes CNOT deadenylase and decapping complexes to accelerate destruction of target mRNAs. Because the N-terminal RDs are conserved in mammalian Pumilio orthologs, the results of this work broadly enhance our understanding of Pumilio function and roles in diseases including cancer, neurodegeneration and epilepsy.
Collapse
Affiliation(s)
- René M Arvola
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Joseph P Buytendorp
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yevgen Levdansky
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Tang NH, Kim KW, Xu S, Blazie SM, Yee BA, Yeo GW, Jin Y, Chisholm AD. The mRNA Decay Factor CAR-1/LSM14 Regulates Axon Regeneration via Mitochondrial Calcium Dynamics. Curr Biol 2020; 30:865-876.e7. [PMID: 31983639 DOI: 10.1016/j.cub.2019.12.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
mRNA decay factors regulate mRNA turnover by recruiting non-translating mRNAs and targeting them for translational repression and mRNA degradation. How mRNA decay pathways regulate cellular function in vivo with specificity is poorly understood. Here, we show that C. elegans mRNA decay factors, including the translational repressors CAR-1/LSM14 and CGH-1/DDX6, and the decapping enzymes DCAP-1/DCP1, function in neurons to differentially regulate axon development, maintenance, and regrowth following injury. In neuronal cell bodies, CAR-1 fully colocalizes with CGH-1 and partially colocalizes with DCAP-1, suggesting that mRNA decay components form at least two types of cytoplasmic granules. Following axon injury in adult neurons, loss of CAR-1 or CGH-1 results in increased axon regrowth and growth cone formation, whereas loss of DCAP-1 or DCAP-2 results in reduced regrowth. To determine how CAR-1 inhibits regrowth, we analyzed mRNAs bound to pan-neuronally expressed GFP::CAR-1 using a crosslinking and immunoprecipitation-based approach. Among the putative mRNA targets of CAR-1, we characterized the roles of micu-1, a regulator of the mitochondrial calcium uniporter MCU-1, in axon injury. We show that loss of car-1 results increased MICU-1 protein levels, and that enhanced axon regrowth in car-1 mutants is dependent on micu-1 and mcu-1. Moreover, axon injury induces transient calcium influx into axonal mitochondria, dependent on MCU-1. In car-1 loss-of-function mutants and in micu-1 overexpressing animals, the axonal mitochondrial calcium influx is more sustained, which likely underlies enhanced axon regrowth. Our data uncover a novel pathway that controls axon regrowth through axonal mitochondrial calcium uptake.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyung Won Kim
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Suhong Xu
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen M Blazie
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
DEKTV and YVG motifs in the Lsm domain are important for the activity of Scd6, a conserved translation repressor protein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194474. [PMID: 31926930 DOI: 10.1016/j.bbagrm.2019.194474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Scd6 is a conserved RGG-motif protein which represses translation by binding eIF4G through its RGG-motif. Lsm and FDF are two other conserved domains present in the protein, however the role of both these domains is unclear. We provide evidence in this report that the Lsm domain is important for the role of Scd6 in translation. Mutant of Scd6 lacking the Lsm domain does not cause overexpression growth defect in a manner comparable to the wild type. Similar results were observed with two distinct point mutants of Scd6 wherein putative RNA-binding motifs DxEKxTV and YVG were mutated. Upon overexpression, the three mutants were defective in inducing formation of P-bodies and stress granules which are conserved sites of translation repression. Importantly localization to granules in response to glucose deprivation and sodium azide stress was defective for Lsm domain mutants indicating that the inability to localize to granules could be a reason for their defective role in translation. Deletion of scd6 impairs Lsm1 foci formation upon glucose deprivation stress which could not be rescued by complementation with Lsm-domain deletion mutant of Scd6 when compared to the full-length protein. Put together, our results highlight the role of Lsm domain and its specific motifs in Scd6 activity and provide crucial insight into its function.
Collapse
|
44
|
Tian L, Wu C, Wen G, Li C. Transcriptional responses of LSm14A after infection of blue eggshell layers with Newcastle disease viruses. J Vet Med Sci 2019; 81:1468-1474. [PMID: 31534060 PMCID: PMC6863722 DOI: 10.1292/jvms.19-0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
LSm14A is a key innate immunity component of processing body (P-body) that mediates
interferon-β (IFN-β) signaling by viral RNA. This is the first study to report chicken
LSm14A (cLSm14A) cloning from blue eggshell layer, high
tibia and frizzle chickens. The cLSm14A gene, encoding 461
amino acids, is highly homologous in the three types of chickens. The cLSm14A was
extensively expressed in several tissues. The transcriptional level of cLSm14A was
significantly increased in various stages of Newcastle disease virus (NDV) infection. In
HEK293 cells, full length cLSm14A from blue eggshell layer was localized
in the cytoplasm as dots. The results of this study indicated that cLSm14A is an important
sensor that mediates innate immunity in chicken against NDV infections.
Collapse
Affiliation(s)
- Lang Tian
- College of Animal Sciences, Preventive Veterinary Laboratory, Guizhou University, Guiyang 550025 China
| | - Changhua Wu
- Agricultural and Rural Bureau of Anshun City, Guizhou Province, Anshun 561000 China
| | - Guilan Wen
- College of Animal Sciences, Preventive Veterinary Laboratory, Guizhou University, Guiyang 550025 China
| | - Changhong Li
- College of Animal Sciences, Preventive Veterinary Laboratory, Guizhou University, Guiyang 550025 China
| |
Collapse
|
45
|
Peter D, Ruscica V, Bawankar P, Weber R, Helms S, Valkov E, Igreja C, Izaurralde E. Molecular basis for GIGYF-Me31B complex assembly in 4EHP-mediated translational repression. Genes Dev 2019; 33:1355-1360. [PMID: 31439631 PMCID: PMC6771390 DOI: 10.1101/gad.329219.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/18/2019] [Indexed: 11/24/2022]
Abstract
In this study, Peter et al. provide new insights into how GIGYF proteins function together with DDX6 in the regulation of mRNA expression. They used structural analysis, in vivo expression analysis, and biochemical assays to show that GIGYF contains a motif that is necessary and sufficient for direct interaction with Me31B/DDX6, and their findings advance our understanding of the mechanism and assembly of the 4EHP–GIGYF–DDX6 repressor complex. GIGYF (Grb10-interacting GYF [glycine–tyrosine–phenylalanine domain]) proteins coordinate with 4EHP (eIF4E [eukaryotic initiation factor 4E] homologous protein), the DEAD (Asp–Glu–Ala–Asp)-box helicase Me31B/DDX6, and mRNA-binding proteins to elicit transcript-specific repression. However, the underlying molecular mechanism remains unclear. Here, we report that GIGYF contains a motif necessary and sufficient for direct interaction with Me31B/DDX6. A 2.4 Å crystal structure of the GIGYF–Me31B complex reveals that this motif arranges into a coil connected to a β hairpin on binding to conserved hydrophobic patches on the Me31B RecA2 domain. Structure-guided mutants indicate that 4EHP–GIGYF–DDX6 complex assembly is required for tristetraprolin-mediated down-regulation of an AU-rich mRNA, thus revealing the molecular principles of translational repression.
Collapse
Affiliation(s)
- Daniel Peter
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany.,European Molecular Biology Laboratory, 38042 Grenoble Cedex 9, France
| | - Vincenzo Ruscica
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Praveen Bawankar
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany.,Institute of Molecular Biology, 55128 Mainz, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Sigrun Helms
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| |
Collapse
|
46
|
Nakagaki-Silva EE, Gooding C, Llorian M, Jacob AG, Richards F, Buckroyd A, Sinha S, Smith CW. Identification of RBPMS as a mammalian smooth muscle master splicing regulator via proximity of its gene with super-enhancers. eLife 2019; 8:46327. [PMID: 31283468 PMCID: PMC6613909 DOI: 10.7554/elife.46327] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing (AS) programs are primarily controlled by regulatory RNA-binding proteins (RBPs). It has been proposed that a small number of master splicing regulators might control cell-specific splicing networks and that these RBPs could be identified by proximity of their genes to transcriptional super-enhancers. Using this approach we identified RBPMS as a critical splicing regulator in differentiated vascular smooth muscle cells (SMCs). RBPMS is highly down-regulated during phenotypic switching of SMCs from a contractile to a motile and proliferative phenotype and is responsible for 20% of the AS changes during this transition. RBPMS directly regulates AS of numerous components of the actin cytoskeleton and focal adhesion machineries whose activity is critical for SMC function in both phenotypes. RBPMS also regulates splicing of other splicing, post-transcriptional and transcription regulators including the key SMC transcription factor Myocardin, thereby matching many of the criteria of a master regulator of AS in SMCs.
Collapse
Affiliation(s)
| | - Clare Gooding
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Miriam Llorian
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,Francis Crick Institute, London, United Kingdom
| | - Aishwarya G Jacob
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,Anne McLaren Laboratory, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Frederick Richards
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Adrian Buckroyd
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.,Anne McLaren Laboratory, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
47
|
Vindry C, Weil D, Standart N. Pat1 RNA-binding proteins: Multitasking shuttling proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1557. [PMID: 31231973 DOI: 10.1002/wrna.1557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Post-transcriptional regulation of gene expression is largely achieved at the level of splicing in the nucleus, and translation and mRNA decay in the cytosol. While the regulation may be global, through the direct inhibition of central factors, such as the spliceosome, translation initiation factors and mRNA decay enzymes, in many instances transcripts bearing specific sequences or particular features are regulated by RNA-binding factors which mobilize or impede recruitment of these machineries. This review focuses on the Pat1 family of RNA-binding proteins, conserved from yeast to man, that enhance the removal of the 5' cap by the decapping enzyme Dcp1/2, leading to mRNA decay and also have roles in translational repression. Like Dcp1/2, other decapping coactivators, including DDX6 and Edc3, and translational repressor proteins, Pat1 proteins are enriched in cytoplasmic P-bodies, which have a principal role in mRNA storage. They also concentrate in nuclear Cajal-bodies and splicing speckles and in man, impact splice site choice in some pre-mRNAs. Pivotal to these functions is the association of Pat1 proteins with distinct heptameric Lsm complexes: the cytosolic Pat1/Lsm1-7 complex mediates mRNA decay and the nuclear Pat1/Lsm2-8 complex alternative splicing. This dual role of human Pat1b illustrates the power of paralogous complexes to impact distinct processes in separate compartments. The review highlights our recent findings that Pat1b mediates the decay of AU-rich mRNAs, which are particularly enriched in P-bodies, unlike the decapping activator DDX6, which acts on GC-rich mRNAs, that tend to be excluded from P-bodies, and discuss the implications for mRNA decay pathways. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNRNA Processing > Splicing Regulation/Alternative Splicing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Caroline Vindry
- Centre International de Recherche en Infectiologie, CIRI, Lyon, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie du Développement, Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
48
|
Zeidan Q, He F, Zhang F, Zhang H, Jacobson A, Hinnebusch AG. Conserved mRNA-granule component Scd6 targets Dhh1 to repress translation initiation and activates Dcp2-mediated mRNA decay in vivo. PLoS Genet 2018; 14:e1007806. [PMID: 30532217 PMCID: PMC6307823 DOI: 10.1371/journal.pgen.1007806] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/27/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022] Open
Abstract
Scd6 protein family members are evolutionarily conserved components of translationally silent mRNA granules. Yeast Scd6 interacts with Dcp2 and Dhh1, respectively a subunit and a regulator of the mRNA decapping enzyme, and also associates with translation initiation factor eIF4G to inhibit translation in cell extracts. However, the role of Scd6 in mRNA turnover and translational repression in vivo is unclear. We demonstrate that tethering Scd6 to a GFP reporter mRNA reduces mRNA abundance via Dcp2 and suppresses reporter mRNA translation via Dhh1. Thus, in a dcp2Δ mutant, tethered Scd6 reduces GFP protein expression with little effect on mRNA abundance, whereas tethered Scd6 has no impact on GFP protein or mRNA expression in a dcp2Δ dhh1Δ double mutant. The conserved LSm domain of Scd6 is required for translational repression and mRNA turnover by tethered Scd6. Both functions are enhanced in a ccr4Δ mutant, suggesting that the deadenylase function of Ccr4-Not complex interferes with a more efficient repression pathway enlisted by Scd6. Ribosome profiling and RNA-Seq analysis of scd6Δ and dhh1Δ mutants suggests that Scd6 cooperates with Dhh1 in translational repression and turnover of particular native mRNAs, with both processes dependent on Dcp2. Our results suggest that Scd6 can (i) recruit Dhh1 to confer translational repression and (ii) activate mRNA decapping by Dcp2 with attendant degradation of specific mRNAs in vivo, in a manner dependent on the Scd6 LSm domain and modulated by Ccr4.
Collapse
Affiliation(s)
- Quira Zeidan
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Fan Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Hongen Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Alan G. Hinnebusch
- Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
49
|
Chicois C, Scheer H, Garcia S, Zuber H, Mutterer J, Chicher J, Hammann P, Gagliardi D, Garcia D. The UPF1 interactome reveals interaction networks between RNA degradation and translation repression factors in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:119-132. [PMID: 29983000 DOI: 10.1111/tpj.14022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The RNA helicase UP-FRAMESHIFT (UPF1) is a key factor of nonsense-mediated decay (NMD), a mRNA decay pathway involved in RNA quality control and in the fine-tuning of gene expression. UPF1 recruits UPF2 and UPF3 to constitute the NMD core complex, which is conserved across eukaryotes. No other components of UPF1-containing ribonucleoproteins (RNPs) are known in plants, despite its key role in regulating gene expression. Here, we report the identification of a large set of proteins that co-purify with the Arabidopsis UPF1, either in an RNA-dependent or RNA-independent manner. We found that like UPF1, several of its co-purifying proteins have a dual localization in the cytosol and in P-bodies, which are dynamic structures formed by the condensation of translationally repressed mRNPs. Interestingly, more than half of the proteins of the UPF1 interactome also co-purify with DCP5, a conserved translation repressor also involved in P-body formation. We identified a terminal nucleotidyltransferase, ribonucleases and several RNA helicases among the most significantly enriched proteins co-purifying with both UPF1 and DCP5. Among these, RNA helicases are the homologs of DDX6/Dhh1, known as translation repressors in humans and yeast, respectively. Overall, this study reports a large set of proteins associated with the Arabidopsis UPF1 and DCP5, two components of P-bodies, and reveals an extensive interaction network between RNA degradation and translation repression factors. Using this resource, we identified five hitherto unknown components of P-bodies in plants, pointing out the value of this dataset for the identification of proteins potentially involved in translation repression and/or RNA degradation.
Collapse
Affiliation(s)
- Clara Chicois
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Hélène Scheer
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Shahïnez Garcia
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Jérôme Mutterer
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
50
|
Standart N, Weil D. P-Bodies: Cytosolic Droplets for Coordinated mRNA Storage. Trends Genet 2018; 34:612-626. [PMID: 29908710 DOI: 10.1016/j.tig.2018.05.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022]
Abstract
P-bodies (PBs) are cytosolic RNP granules that are conserved among eukaryotic organisms. In the past few years, major progress has been made in understanding the biochemical and biophysical mechanisms that lead to their formation. However, whether they play a role in mRNA storage or decay remains actively debated. P-bodies were recently isolated from human cells by a novel fluorescence-activated particle sorting (FAPS) approach that enabled the characterization of their protein and RNA content, providing new insights into their function. Together with recent innovative imaging studies, these new data show that mammalian PBs are primarily involved not in RNA decay but rather in the coordinated storage of mRNAs encoding regulatory functions. These small cytoplasmic droplets could thus be important for cell adaptation to the environment.
Collapse
Affiliation(s)
- Nancy Standart
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005 Paris, France.
| |
Collapse
|