1
|
Yang P, Fan M, Chen Y, Yang D, Zhai L, Fu B, Zhang L, Wang Y, Ma R, Sun L. A novel strategy for the protective effect of ginsenoside Rg1 against ovarian reserve decline by the PINK1 pathway. PHARMACEUTICAL BIOLOGY 2025; 63:68-81. [PMID: 39862058 PMCID: PMC11770866 DOI: 10.1080/13880209.2025.2453699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025]
Abstract
CONTEXT The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear. OBJECTIVE To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve. MATERIALS AND METHODS Ovarian reserve function, reproductive capacity, oxidative stress levels, and mitochondrial function were compared between ginsenoside Rg1-treated and untreated naturally aged female Drosophila using behavioral, histological, and molecular biological techniques. The protective effects of ginsenoside Rg1 were analyzed in a Drosophila model of oxidative damage induced by tert-butyl hydroperoxide. Protein expression levels in the PINK1/Parkin pathway were assessed, and molecular docking and PINK1 mutant analyses were conducted to identify potential targets. RESULTS Ginsenoside Rg1 significantly mitigated ovarian reserve decline, enhancing offspring quantity and quality, increasing the levels of ecdysteroids, preventing ovarian atrophy, and elevating germline stem cell numbers in aged Drosophila. Ginsenoside Rg1 improved superoxide dismutase, catalase activity, and gene expression while reducing reactive oxygen species levels. Ginsenoside Rg1 activated the mitophagy pathway by upregulating PINK1, Parkin, and Atg8a and downregulating Ref(2)P. Knockdown of PINK1 in the ovary by RNAi attenuated the protective effects of ginsenoside Rg1. Molecular docking analysis revealed that the ginsenoside Rg1 could bind to the active site of the PINK1 kinase domain. DISCUSSION AND CONCLUSIONS Ginsenoside Rg1 targets PINK1 to regulate mitophagy, preserving ovarian reserve. These findings suggest the potential of ginsenoside Rg1 as a therapeutic strategy to prevent ovarian reserve decline.
Collapse
Affiliation(s)
- Pengdi Yang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Meiling Fan
- Obstetrics and Gynecology Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Chen
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Dan Yang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Zhai
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Baoyu Fu
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Zhang
- Obstetrics and Gynecology Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Yanping Wang
- Obstetrics and Gynecology Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Ma
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Eaglesfield R, Fernandez-Vizarra E, Lacko E, Caldwell ST, Sloan NL, Siciarz D, Hartley RC, Tokatlidis K. Sub-organellar mitochondrial hydrogen peroxide observed using a SNAP tag targeted coumarin-based fluorescent reporter. Redox Biol 2025; 80:103502. [PMID: 39864323 DOI: 10.1016/j.redox.2025.103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
Mitochondria are major sites of reactive oxygen species (ROS) production within cells. ROS are important signalling molecules, but excessive production can cause cellular damage and dysfunction. It is therefore crucial to accurately determine when, how and where ROS are produced within mitochondria. Previously, ROS detection involved various chemical probes and fluorescent proteins. These have limitations due to accumulation of the molecules only in the mitochondrial matrix, or the need for a new protein to be expressed for every different species. We report dynamic H2O2 flux changes within all mitochondrial sub-compartments with striking spatial resolution. We combined specific targeting of self-labeling proteins with novel H2O2-reactive probes. The approach is broad-ranging and flexible, with the same expressed proteins loadable with different dyes and sensors. It provides a framework for concomitant analysis of other chemical species, beyond ROS, whose dynamics within mitochondria are yet unknown, without needing to engineer new proteins.
Collapse
Affiliation(s)
- Ross Eaglesfield
- School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK; National Renewable Energy Laboratory, Golden, CO, USA
| | - Erika Fernandez-Vizarra
- School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK; Department of Biochemistry and Molecular and Cellular Biology, Faculty of Health and Sport Sciences, University of Zaragoza, 22002, Spain
| | - Erik Lacko
- School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK
| | | | - Nikki L Sloan
- School of Chemistry, University of Glasgow, G12 8QQ, UK
| | - Daniel Siciarz
- School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK
| | | | - Kostas Tokatlidis
- School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
3
|
Mena D, Arusei RJ, Rahhali K, Di Lisa F, Kaludercic N. Measurement of Mitochondrial ROS Formation. Methods Mol Biol 2025; 2878:99-116. [PMID: 39546259 DOI: 10.1007/978-1-0716-4264-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Reactive oxygen species (ROS) play important roles in physiological and pathological processes. Mitochondria, particularly in skeletal and cardiac myocytes, are recognized as the primary site of ROS generation. Detecting oxidative modifications of intracellular or circulating molecules, such as lipids, proteins, and nucleic acids, is commonly employed to indicate ROS formation. However, this approach is indirect and provides limited insights into the spatiotemporal aspects of ROS generation. Understanding these aspects is crucial for comprehending the role of ROS in various pathophysiological conditions. To address this, fluorescent probes can be employed to measure ROS formation, offering a means to investigate ROS generation in both isolated mitochondria and intact cells. This chapter outlines three prominent examples for the use of fluorescent sensors to evaluate mitochondrial ROS formation in either isolated organelles or intact cells. The methods are explained in detail, and an analysis of the limitations of each technique is provided, underscoring potential sources of errors during the assay and the subsequent interpretation of results.
Collapse
Affiliation(s)
- Débora Mena
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra, Portugal
| | | | - Karim Rahhali
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy.
| | - Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Padova, Italy.
| |
Collapse
|
4
|
Zimmermann J, Lang L, Calabrese G, Laporte H, Amponsah PS, Michalk C, Sukmann T, Oestreicher J, Tursch A, Peker E, Owusu TNE, Weith M, Roma LP, Deponte M, Riemer J, Morgan B. Tsa1 is the dominant peroxide scavenger and a source of H 2O 2-dependent GSSG production in yeast. Free Radic Biol Med 2025; 226:408-420. [PMID: 39515595 DOI: 10.1016/j.freeradbiomed.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Hydrogen peroxide (H2O2) is an important biological molecule, functioning both as a second messenger in cell signaling and, especially at higher concentrations, as a cause of cell damage. Cells harbor multiple enzymes that have peroxide reducing activity in vitro. However, the contribution of each of these enzymes towards peroxide scavenging in vivo is less clear. Therefore, to directly investigate in vivo peroxide scavenging, we used the genetically encoded peroxide probes, roGFP2-Tsa2ΔCR and HyPer7, to systematically screen the peroxide scavenging capacity of baker's yeast thiol and heme peroxidase mutants. We show that the 2-Cys peroxiredoxin Tsa1 alone is responsible for almost all exogenous H2O2 and tert-butyl hydroperoxide scavenging. Furthermore, Tsa1 can become an important source of H2O2-dependent cytosolic glutathione disulfide production. The two catalases and cytochrome c peroxidase only produce observable scavenging defects at higher H2O2 concentrations when these three heme peroxidases are removed in combination. We also analyzed the reduction of Tsa1 in vitro, revealing that the enzyme is efficiently reduced by thioredoxin-1 with a rate constant of 2.8 × 106 M-1s-1 but not by glutaredoxin-2. Tsa1 reduction by reduced glutathione occurs nonenzymatically with a rate constant of 2.9 M-1s-1. Hence, the observed Tsa1-dependent glutathione disulfide production in yeast probably requires the oxidation of thioredoxins. Our findings clarify the importance of the various thiol and heme peroxidases for peroxide removal and suggest that most thiol peroxidases have alternative or specialized functions in specific subcellular compartments.
Collapse
Affiliation(s)
- Jannik Zimmermann
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Lukas Lang
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Gaetano Calabrese
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674, Cologne, Germany
| | - Hugo Laporte
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Prince S Amponsah
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany; Cellular Biochemistry, RPTU Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Christoph Michalk
- Cellular Biochemistry, RPTU Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Tobias Sukmann
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Julian Oestreicher
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Anja Tursch
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Esra Peker
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674, Cologne, Germany
| | - Theresa N E Owusu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Matthias Weith
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674, Cologne, Germany
| | - Leticia Prates Roma
- Institute of Biophysics, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66424, Homburg, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany.
| | - Jan Riemer
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
5
|
Scherschel M, Niemeier JO, Jacobs LJHC, Hoffmann MDA, Diederich A, Bell C, Höhne P, Raetz S, Kroll JB, Steinbeck J, Lichtenauer S, Multhoff J, Zimmermann J, Sadhanasatish T, Rothemann RA, Grashoff C, Messens J, Ampofo E, Laschke MW, Riemer J, Roma LP, Schwarzländer M, Morgan B. A family of NADPH/NADP + biosensors reveals in vivo dynamics of central redox metabolism across eukaryotes. Nat Commun 2024; 15:10704. [PMID: 39702652 DOI: 10.1038/s41467-024-55302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024] Open
Abstract
The NADPH/NADP+ redox couple is central to metabolism and redox signalling. NADP redox state is differentially regulated by distinct enzymatic machineries at the subcellular compartment level. Nonetheless, a detailed understanding of subcellular NADP redox dynamics is limited by the availability of appropriate tools. Here, we introduce NAPstars, a family of genetically encoded, fluorescent protein-based NADP redox state biosensors. NAPstars offer real-time, specific measurements, across a broad-range of NADP redox states, with subcellular resolution. NAPstar measurements in yeast, plants, and mammalian cell models, reveal a conserved robustness of cytosolic NADP redox homoeostasis. NAPstars uncover cell cycle-linked NADP redox oscillations in yeast and illumination- and hypoxia-dependent NADP redox changes in plant leaves. By applying NAPstars in combination with selective impairment of the glutathione and thioredoxin antioxidative pathways under acute oxidative challenge, we find an unexpected and conserved role for the glutathione system as the primary mediator of antioxidative electron flux.
Collapse
Affiliation(s)
- Marie Scherschel
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Jan-Ole Niemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Lianne J H C Jacobs
- Redox Metabolism, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Markus D A Hoffmann
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Anika Diederich
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Christopher Bell
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Pascal Höhne
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Sonja Raetz
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Johanna B Kroll
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Janina Steinbeck
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Jan Multhoff
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany
| | - Jannik Zimmermann
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Tanmay Sadhanasatish
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, Münster, Germany
| | - R Alexander Rothemann
- Redox Metabolism, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Carsten Grashoff
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, Münster, Germany
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Brussels Center for Redox Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Jan Riemer
- Redox Metabolism, Institute for Biochemistry, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, Homburg, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster, Germany.
| | - Bruce Morgan
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
6
|
Sies H. Dynamics of intracellular and intercellular redox communication. Free Radic Biol Med 2024; 225:933-939. [PMID: 39491734 DOI: 10.1016/j.freeradbiomed.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Cell and organ metabolism is organized through various signaling mechanisms, including redox, Ca2+, kinase and electrochemical pathways. Redox signaling operates at multiple levels, from interactions between individual molecules in their microenvironment to communication among subcellular organelles, single cells, organs, and the entire organism. Redox communication is a dynamic and ongoing spatiotemporal process. This article focuses on hydrogen peroxide (H2O2), a key second messenger that targets redox-active protein cysteine thiolates. H2O2 gradients across cell membranes are controlled by peroxiporins, specialized aquaporins. Redox-active endosomes, known as redoxosomes, form at the plasma membrane. Cell-to-cell redox communication involves direct contacts, such as per gap junctions that connect cells for transfer of molecules via connexons. Moreover, signaling occurs through the release of redox-active molecules and enzymes into the surrounding space, as well as through various types of extracellular vesicles (EVs) that transport these signals to nearby or distant target cells.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
7
|
Zhang Y, Li Y, Ren T, Duan JA, Xiao P. Promising tools into oxidative stress: A review of non-rodent model organisms. Redox Biol 2024; 77:103402. [PMID: 39437623 PMCID: PMC11532775 DOI: 10.1016/j.redox.2024.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Oxidative stress is a crucial concept in redox biology, and significant progress has been made in recent years. Excessive levels of reactive oxygen species (ROS) can lead to oxidative damage, heightening vulnerability to various diseases. By contrast, ROS maintained within a moderate range plays a role in regulating normal physiological metabolism. Choosing suitable animal models in a complex research context is critical for enhancing research efficacy. While rodents are frequently utilized in medical experiments, they pose challenges such as high costs and ethical considerations. Alternatively, non-rodent model organisms like zebrafish, Drosophila, and C. elegans offer promising avenues into oxidative stress research. These organisms boast advantages such as their small size, high reproduction rate, availability for live imaging, and ease of gene manipulation. This review highlights advancements in the detection of oxidative stress using non-rodent models. The oxidative homeostasis regulatory pathway, Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2), is systematically reviewed alongside multiple regulation of Nrf2-centered pathways in different organisms. Ultimately, this review conducts a comprehensive comparative analysis of different model organisms and further explores the combination of novel techniques with non-rodents. This review aims to summarize state-of-the-art findings in oxidative stress research using non-rodents and to delineate future directions.
Collapse
Affiliation(s)
- Yuhao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tianyi Ren
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
8
|
Grayson C, Chalifoux O, Russo MDST, Avizonis DZ, Sterman S, Faerman B, Koufos O, Agellon LB, Mailloux RJ. Ablating the glutaredoxin-2 (Glrx2) gene protects male mice against non-alcoholic fatty liver disease (NAFLD) by limiting oxidative distress. Free Radic Biol Med 2024; 224:660-677. [PMID: 39278573 DOI: 10.1016/j.freeradbiomed.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
In the present study, we investigated the consequences of deleting the glutaredoxin-2 gene (Glrx2-/-) on the development of non-alcoholic fatty liver disease (NAFLD) in male and female C57BL6N mice fed a control (CD) or high-fat diet (HFD). We report that the HFD induced a significant increase in body mass in the wild-type (Wt) and Glrx2-/- male, but not female, mice, which was associated with the hypertrophying of the abdominal fat. Interestingly, while the Wt male mice fed the HFD developed NAFLD, the deletion of the Glrx2 gene mitigated vesicle formation, intrahepatic lipid accumulation, and fibrosis in the males. The protective effect associated with ablating the Glrx2 gene in male mice was due to enhancement of mitochondrial redox buffering capacity. Specifically, liver mitochondria from male Glrx2-/- fed a CD or HFD produced significantly less hydrogen peroxide (mtH2O2), had lower malondialdehyde levels, greater activities for glutathione peroxidase and thioredoxin reductase, and less protein glutathione mixed disulfides (PSSG) when compared to the Wt male mice fed the HFD. These effects correlated with the S-glutathionylation of α-ketoglutarate dehydrogenase (KGDH), a potent mtH2O2 source and key redox sensor in hepatic mitochondria. In comparison to the male mice, both Wt and Glrx2-/- female mice displayed almost complete resistance to HFD-induced body mass increases and the development of NAFLD, which was attributed to the superior redox buffering capacity of the liver mitochondria. Together, our findings show that modulation of mitochondrial S-glutathionylation signaling through Glrx2 augments resistance of male mice towards the development of NAFLD through preservation of mitochondrial redox buffering capacity. Additionally, our findings demonstrate the sex dimorphisms associated with the manifestation of NAFLD is related to the superior redox buffering capacity and modulation of the S-glutathionylome in hepatic mitochondria from female mice.
Collapse
Affiliation(s)
- Cathryn Grayson
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Olivia Chalifoux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Mariana De Sa Tavares Russo
- Goodman Cancer Institute, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada; Department of Medicine, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada
| | - Daina Zofija Avizonis
- Goodman Cancer Institute, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada; Department of Medicine, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada
| | - Samantha Sterman
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Ben Faerman
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Olivia Koufos
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Luis B Agellon
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada.
| |
Collapse
|
9
|
Craige SM, Mammel RK, Amiri N, Willoughby OS, Drake JC. Interplay of ROS, mitochondrial quality, and exercise in aging: Potential role of spatially discrete signaling. Redox Biol 2024; 77:103371. [PMID: 39357424 PMCID: PMC11474192 DOI: 10.1016/j.redox.2024.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA.
| | - Rebecca K Mammel
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA
| | - Niloufar Amiri
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA; Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, 24061, USA
| | - Orion S Willoughby
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA.
| |
Collapse
|
10
|
Kizmaz B, Nutz A, Egeler A, Herrmann JM. Protein insertion into the inner membrane of mitochondria: routes and mechanisms. FEBS Open Bio 2024; 14:1627-1639. [PMID: 38664330 PMCID: PMC11452304 DOI: 10.1002/2211-5463.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 10/06/2024] Open
Abstract
The inner membrane of mitochondria contains hundreds of different integral membrane proteins. These proteins transport molecules into and out of the matrix, they carry out multifold catalytic reactions and they promote the biogenesis or degradation of mitochondrial constituents. Most inner membrane proteins are encoded by nuclear genes and synthesized in the cytosol from where they are imported into mitochondria by translocases in the outer and inner membrane. Three different import routes direct proteins into the inner membrane and allow them to acquire their appropriate membrane topology. First, mitochondrial import intermediates can be arrested at the level of the TIM23 inner membrane translocase by a stop-transfer sequence to reach the inner membrane by lateral insertion. Second, proteins can be fully translocated through the TIM23 complex into the matrix from where they insert into the inner membrane in an export-like reaction. Carriers and other polytopic membrane proteins embark on a third insertion pathway: these hydrophobic proteins employ the specialized TIM22 translocase to insert from the intermembrane space (IMS) into the inner membrane. This review article describes these three targeting routes and provides an overview of the machinery that promotes the topogenesis of mitochondrial inner membrane proteins.
Collapse
Affiliation(s)
- Büsra Kizmaz
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | - Annika Nutz
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | - Annika Egeler
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | | |
Collapse
|
11
|
Chen HR, Sun Y, Mittler G, Rumpf T, Shvedunova M, Grosschedl R, Akhtar A. MOF-mediated PRDX1 acetylation regulates inflammatory macrophage activation. Cell Rep 2024; 43:114682. [PMID: 39207899 DOI: 10.1016/j.celrep.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/27/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Signaling-dependent changes in protein phosphorylation are critical to enable coordination of transcription and metabolism during macrophage activation. However, the role of acetylation in signal transduction during macrophage activation remains obscure. Here, we identify the redox signaling regulator peroxiredoxin 1 (PRDX1) as a substrate of the lysine acetyltransferase MOF. MOF acetylates PRDX1 at lysine 197, preventing hyperoxidation and thus maintaining its activity under stress. PRDX1 K197ac responds to inflammatory signals, decreasing rapidly in mouse macrophages stimulated with bacterial lipopolysaccharides (LPSs) but not with interleukin (IL)-4 or IL-10. The LPS-induced decrease of PRDX1 K197ac elevates cellular hydrogen peroxide accumulation and augments ERK1/2, but not p38 or AKT, phosphorylation. Concomitantly, diminished PRDX1 K197ac stimulates glycolysis, potentiates H3 serine 28 phosphorylation, and ultimately enhances the production of pro-inflammatory mediators such as IL-6. Our work reveals a regulatory role for redox protein acetylation in signal transduction and coordinating metabolic and transcriptional programs during inflammatory macrophage activation.
Collapse
Affiliation(s)
- Hui-Ru Chen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany; Albert-Ludwigs-University Freiburg, Faculty of Biology, Freiburg, Baden-Württemberg, Germany
| | - Yidan Sun
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Tobias Rumpf
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany.
| |
Collapse
|
12
|
Cobley JN. Exploring the unmapped cysteine redox proteoform landscape. Am J Physiol Cell Physiol 2024; 327:C844-C866. [PMID: 39099422 DOI: 10.1152/ajpcell.00152.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidized. Their numbers scale: a protein with 10 cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinizes methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down mass spectrometry (TD-MS) and bottom-up mass spectrometry (BU-MS) for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the "Human Cysteine Redox Proteoform Project" is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology.
Collapse
Affiliation(s)
- James N Cobley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
13
|
Sies H, Mailloux RJ, Jakob U. Fundamentals of redox regulation in biology. Nat Rev Mol Cell Biol 2024; 25:701-719. [PMID: 38689066 DOI: 10.1038/s41580-024-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Oxidation-reduction (redox) reactions are central to the existence of life. Reactive species of oxygen, nitrogen and sulfur mediate redox control of a wide range of essential cellular processes. Yet, excessive levels of oxidants are associated with ageing and many diseases, including cardiological and neurodegenerative diseases, and cancer. Hence, maintaining the fine-tuned steady-state balance of reactive species production and removal is essential. Here, we discuss new insights into the dynamic maintenance of redox homeostasis (that is, redox homeodynamics) and the principles underlying biological redox organization, termed the 'redox code'. We survey how redox changes result in stress responses by hormesis mechanisms, and how the lifelong cumulative exposure to environmental agents, termed the 'exposome', is communicated to cells through redox signals. Better understanding of the molecular and cellular basis of redox biology will guide novel redox medicine approaches aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Jabůrek M, Klöppel E, Průchová P, Mozheitova O, Tauber J, Engstová H, Ježek P. Mitochondria to plasma membrane redox signaling is essential for fatty acid β-oxidation-driven insulin secretion. Redox Biol 2024; 75:103283. [PMID: 39067330 PMCID: PMC11332078 DOI: 10.1016/j.redox.2024.103283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
We asked whether acute redox signaling from mitochondria exists concomitantly to fatty acid- (FA-) stimulated insulin secretion (FASIS) at low glucose by pancreatic β-cells. We show that FA β-oxidation produces superoxide/H2O2, providing: i) mitochondria-to-plasma-membrane redox signaling, closing KATP-channels synergically with elevated ATP (substituting NADPH-oxidase-4-mediated H2O2-signaling upon glucose-stimulated insulin secretion); ii) activation of redox-sensitive phospholipase iPLA2γ/PNPLA8, cleaving mitochondrial FAs, enabling metabotropic GPR40 receptors to amplify insulin secretion (IS). At fasting glucose, palmitic acid stimulated IS in wt mice; palmitic, stearic, lauric, oleic, linoleic, and hexanoic acids also in perifused pancreatic islets (PIs), with suppressed 1st phases in iPLA2γ/PNPLA8-knockout mice/PIs. Extracellular/cytosolic H2O2-monitoring indicated knockout-independent redox signals, blocked by mitochondrial antioxidant SkQ1, etomoxir, CPT1 silencing, and catalase overexpression, all inhibiting FASIS, keeping ATP-sensitive K+-channels open, and diminishing cytosolic [Ca2+]-oscillations. FASIS in mice was a postprandially delayed physiological event. Redox signals of FA β-oxidation are thus documented, reaching the plasma membrane, essentially co-stimulating IS.
Collapse
Affiliation(s)
- Martin Jabůrek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Eduardo Klöppel
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Pavla Průchová
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Oleksandra Mozheitova
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Jan Tauber
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Hana Engstová
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic.
| |
Collapse
|
15
|
Racho J, Riemer J. Approaches for the analysis of redox-dependent protein import into mitochondria of mammalian cells. Methods Enzymol 2024; 707:637-671. [PMID: 39488395 DOI: 10.1016/bs.mie.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Oxidation of cysteine residues in proteins can take place as part of an enzymatic reaction cycle, during oxidative protein folding or as a consequence of redox signalling or oxidative stress. Following changes in protein thiol redox states allows to investigate the mechanisms underlying thiol-disulphide redox processes. In this book chapter, we provide information and protocols on different methods for redox state determination with a focus on these processes in the context of oxidation-dependent protein import into the mitochondrial intermembrane space. These methods include assessing the cysteine redox state of mature proteins, methods to investigate oxidative protein folding in radioactive pulse chase assays and methods to follow specifically the formation of oxidative folding intermediates between oxidoreductases and substrates.
Collapse
Affiliation(s)
- Julia Racho
- Redox Metabolism, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Redox Metabolism, Institute of Biochemistry, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
16
|
Pedre B. A guide to genetically-encoded redox biosensors: State of the art and opportunities. Arch Biochem Biophys 2024; 758:110067. [PMID: 38908743 DOI: 10.1016/j.abb.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Genetically-encoded redox biosensors have become invaluable tools for monitoring cellular redox processes with high spatiotemporal resolution, coupling the presence of the redox-active analyte with a change in fluorescence signal that can be easily recorded. This review summarizes the available fluorescence recording methods and presents an in-depth classification of the redox biosensors, organized by the analytes they respond to. In addition to the fluorescent protein-based architectures, this review also describes the recent advances on fluorescent, chemigenetic-based redox biosensors and other emerging chemigenetic strategies. This review examines how these biosensors are designed, the biosensors sensing mechanism, and their practical advantages and disadvantages.
Collapse
Affiliation(s)
- Brandán Pedre
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU Leuven, Belgium.
| |
Collapse
|
17
|
Veal EA, Kritsiligkou P. How are hydrogen peroxide messages relayed to affect cell signalling? Curr Opin Chem Biol 2024; 81:102496. [PMID: 38959751 DOI: 10.1016/j.cbpa.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 07/05/2024]
Abstract
H2O2 signals trigger adaptive responses affecting cell division, differentiation, migration, and survival. These signals are transduced by selective oxidation of cysteines on specific target proteins, with redox-sensitive cysteines now identified in many proteins, including both kinases and phosphatases. Assessing the contribution of these oxidation events to cell signalling presents several challenges including understanding how and when the selective oxidation of specific proteins takes place in vivo. In recent years, a combination of biochemical, structural, genetic, and computational approaches in fungi, plants, and animals have revealed different ways in which thiol peroxidases (peroxiredoxins) are bypassed or utilised in relaying these signals. Together, these mechanisms provide a conceptual framework for selectively oxidising proteins that will further advance understanding of how redox modifications contribute to health and disease.
Collapse
Affiliation(s)
- Elizabeth A Veal
- Newcastle University Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK.
| | - Paraskevi Kritsiligkou
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
18
|
Waldeck-Weiermair M, Das AA, Covington TA, Yadav S, Kaynert J, Guo R, Balendran P, Thulabandu VR, Pandey AK, Spyropoulos F, Thomas DC, Michel T. An essential role for EROS in redox-dependent endothelial signal transduction. Redox Biol 2024; 73:103214. [PMID: 38805973 PMCID: PMC11153901 DOI: 10.1016/j.redox.2024.103214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
The chaperone protein EROS ("Essential for Reactive Oxygen Species") was recently discovered in phagocytes. EROS was shown to regulate the abundance of the ROS-producing enzyme NADPH oxidase isoform 2 (NOX2) and to control ROS-mediated cell killing. Reactive oxygen species are important not only in immune surveillance, but also modulate physiological signaling responses in multiple tissues. The roles of EROS have not been previously explored in the context of oxidant-modulated cell signaling. Here we show that EROS plays a key role in ROS-dependent signal transduction in vascular endothelial cells. We used siRNA-mediated knockdown and developed CRISPR/Cas9 knockout of EROS in human umbilical vein endothelial cells (HUVEC), both of which cause a significant decrease in the abundance of NOX2 protein, associated with a marked decrease in RAC1, a small G protein that activates NOX2. Loss of EROS also attenuates receptor-mediated hydrogen peroxide (H2O2) and Ca2+ signaling, disrupts cytoskeleton organization, decreases cell migration, and promotes cellular senescence. EROS knockdown blocks agonist-modulated eNOS phosphorylation and nitric oxide (NO●) generation. These effects of EROS knockdown are strikingly similar to the alterations in endothelial cell responses that we previously observed following RAC1 knockdown. Proteomic analyses following EROS or RAC1 knockdown in endothelial cells showed that reduced abundance of these two distinct proteins led to largely overlapping effects on endothelial biological processes, including oxidoreductase, protein phosphorylation, and endothelial nitric oxide synthase (eNOS) pathways. These studies demonstrate that EROS plays a central role in oxidant-modulated endothelial cell signaling by modulating NOX2 and RAC1.
Collapse
Affiliation(s)
- Markus Waldeck-Weiermair
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA; Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria.
| | - Apabrita A Das
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Taylor A Covington
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Shambhu Yadav
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jonas Kaynert
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Ruby Guo
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Priyanga Balendran
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Venkata Revanth Thulabandu
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Arvind K Pandey
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Fotios Spyropoulos
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - David C Thomas
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| | - Thomas Michel
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Lamontagne F, Paz-Trejo C, Zamorano Cuervo N, Grandvaux N. Redox signaling in cell fate: Beyond damage. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119722. [PMID: 38615720 DOI: 10.1016/j.bbamcr.2024.119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
This review explores the nuanced role of reactive oxygen species (ROS) in cell fate, challenging the traditional view that equates ROS with cellular damage. Through significant technological advancements in detecting localized redox states and identifying oxidized cysteines, a paradigm shift has emerged: from ROS as merely damaging agents to crucial players in redox signaling. We delve into the intricacies of redox mechanisms, which, although confined, exert profound influences on cellular physiological responses. Our analysis extends to both the positive and negative impacts of these mechanisms on cell death processes, including uncontrolled and programmed pathways. By unraveling these complex interactions, we argue against the oversimplified notion of a 'stress response', advocating for a more nuanced understanding of redox signaling. This review underscores the importance of localized redox states in determining cell fate, highlighting the sophistication and subtlety of ROS functions beyond mere damage.
Collapse
Affiliation(s)
- Felix Lamontagne
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada
| | - Cynthia Paz-Trejo
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal H3C 3J7, Québec, Canada
| | - Natalia Zamorano Cuervo
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada
| | - Nathalie Grandvaux
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
20
|
Hieronimus K, Donauer T, Klein J, Hinkel B, Spänle JV, Probst A, Niemeyer J, Kibrom S, Kiefer AM, Schneider L, Husemann B, Bischoff E, Möhring S, Bayer N, Klein D, Engels A, Ziehmer BG, Stieβ J, Moroka P, Schroda M, Deponte M. A Modular Cloning Toolkit for the production of recombinant proteins in Leishmania tarentolae. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:128-142. [PMID: 38799406 PMCID: PMC11121976 DOI: 10.15698/mic2024.04.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
Modular Cloning (MoClo) is based on libraries of standardized genetic parts that can be directionally assembled via Golden Gate cloning in one-pot reactions into transcription units and multigene constructs. Here, a team of bachelor students established a MoClo toolkit for the protist Leishmania tarentolae in the frame of the international Genetically Engineered Machine (iGEM) competition. Our modular toolkit is based on a domesticated version of a commercial LEXSY expression vector and comprises 34 genetic parts encoding various affinity tags, targeting signals as well as fluorescent and luminescent proteins. We demonstrated the utility of our kit by the successful production of 16 different tagged versions of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in L. tarentolae liquid cultures. While highest yields of secreted recombinant RBD were obtained for GST-tagged fusion proteins 48 h post induction, C-terminal peptide tags were often degraded and resulted in lower yields of secreted RBD. Fusing secreted RBD to a synthetic O-glycosylation SP20 module resulted in an apparent molecular mass shift around 10 kDa. No disadvantage regarding the production of RBD was detected when the three antibiotics of the LEXSY system were omitted during the 48-h induction phase. Furthermore, the successful purification of secreted RBD from the supernatant of L. tarentolae liquid cultures was demonstrated in pilot experiments. In summary, we established a MoClo toolkit and exemplified its application for the production of recombinant proteins in L. tarentolae.
Collapse
Affiliation(s)
- Katrin Hieronimus
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Tabea Donauer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Jonas Klein
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Bastian Hinkel
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Julia Vanessa Spänle
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Anna Probst
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Justus Niemeyer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Salina Kibrom
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Anna Maria Kiefer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Luzia Schneider
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Britta Husemann
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Eileen Bischoff
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Sophie Möhring
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Nicolas Bayer
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Dorothée Klein
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Adrian Engels
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Benjamin Gustav Ziehmer
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Julian Stieβ
- Faculty of Computer Science, RPTU Kaiserslautern, D-67663
Kaiserslautern, Germany
| | - Pavlo Moroka
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Michael Schroda
- Faculty of Biology, Molecular Biotechnology & Systems
Biology, RPTU Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Marcel Deponte
- Faculty of Chemistry, Comparative Biochemistry, RPTU
Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
21
|
Zhuravlev A, Ezeriņa D, Ivanova J, Guriev N, Pugovkina N, Shatrova A, Aksenov N, Messens J, Lyublinskaya O. HyPer as a tool to determine the reductive activity in cellular compartments. Redox Biol 2024; 70:103058. [PMID: 38310683 PMCID: PMC10848024 DOI: 10.1016/j.redox.2024.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024] Open
Abstract
A multitude of cellular metabolic and regulatory processes rely on controlled thiol reduction and oxidation mechanisms. Due to our aerobic environment, research preferentially focuses on oxidation processes, leading to limited tools tailored for investigating cellular reduction. Here, we advocate for repurposing HyPer1, initially designed as a fluorescent probe for H2O2 levels, as a tool to measure the reductive power in various cellular compartments. The response of HyPer1 depends on kinetics between thiol oxidation and reduction in its OxyR sensing domain. Here, we focused on the reduction half-reaction of HyPer1. We showed that HyPer1 primarily relies on Trx/TrxR-mediated reduction in the cytosol and nucleus, characterized by a second order rate constant of 5.8 × 102 M-1s-1. On the other hand, within the mitochondria, HyPer1 is predominantly reduced by glutathione (GSH). The GSH-mediated reduction rate constant is 1.8 M-1s-1. Using human leukemia K-562 cells after a brief oxidative exposure, we quantified the compartmentalized Trx/TrxR and GSH-dependent reductive activity using HyPer1. Notably, the recovery period for mitochondrial HyPer1 was twice as long compared to cytosolic and nuclear HyPer1. After exploring various human cells, we revealed a potent cytosolic Trx/TrxR pathway, particularly pronounced in cancer cell lines such as K-562 and HeLa. In conclusion, our study demonstrates that HyPer1 can be harnessed as a robust tool for assessing compartmentalized reduction activity in cells following oxidative stress.
Collapse
Affiliation(s)
- Andrei Zhuravlev
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium
| | - Julia Ivanova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Nikita Guriev
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Natalia Pugovkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Alla Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Nikolay Aksenov
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut Voor Biotechnologie, B-1050, Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050, Brussels, Belgium.
| | - Olga Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretskii Pr. 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
22
|
van Soest DMK, Polderman PE, den Toom WTF, Keijer JP, van Roosmalen MJ, Leyten TMF, Lehmann J, Zwakenberg S, De Henau S, van Boxtel R, Burgering BMT, Dansen TB. Mitochondrial H 2O 2 release does not directly cause damage to chromosomal DNA. Nat Commun 2024; 15:2725. [PMID: 38548751 PMCID: PMC10978998 DOI: 10.1038/s41467-024-47008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Reactive Oxygen Species (ROS) derived from mitochondrial respiration are frequently cited as a major source of chromosomal DNA mutations that contribute to cancer development and aging. However, experimental evidence showing that ROS released by mitochondria can directly damage nuclear DNA is largely lacking. In this study, we investigated the effects of H2O2 released by mitochondria or produced at the nucleosomes using a titratable chemogenetic approach. This enabled us to precisely investigate to what extent DNA damage occurs downstream of near- and supraphysiological amounts of localized H2O2. Nuclear H2O2 gives rise to DNA damage and mutations and a subsequent p53 dependent cell cycle arrest. Mitochondrial H2O2 release shows none of these effects, even at levels that are orders of magnitude higher than what mitochondria normally produce. We conclude that H2O2 released from mitochondria is unlikely to directly damage nuclear genomic DNA, limiting its contribution to oncogenic transformation and aging.
Collapse
Affiliation(s)
- Daan M K van Soest
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Paulien E Polderman
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Wytze T F den Toom
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Janneke P Keijer
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, 3584 CS, The Netherlands
| | - Tim M F Leyten
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Johannes Lehmann
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Susan Zwakenberg
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Sasha De Henau
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, 3584 CS, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, 3521 AL, The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, 3521 AL, The Netherlands
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands.
| |
Collapse
|
23
|
Eid M, Barayeu U, Sulková K, Aranda-Vallejo C, Dick TP. Using the heme peroxidase APEX2 to probe intracellular H 2O 2 flux and diffusion. Nat Commun 2024; 15:1239. [PMID: 38336829 PMCID: PMC10858230 DOI: 10.1038/s41467-024-45511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Currently available genetically encoded H2O2 probes report on the thiol redox state of the probe, which means that they reflect the balance between probe thiol oxidation and reduction. Here we introduce the use of the engineered heme peroxidase APEX2 as a thiol-independent chemogenetic H2O2 probe that directly and irreversibly converts H2O2 molecules into either fluorescent or luminescent signals. We demonstrate sensitivity, specificity, and the ability to quantitate endogenous H2O2 turnover. We show how the probe can be used to detect changes in endogenous H2O2 generation and to assess the roles and relative contributions of endogenous H2O2 scavengers. Furthermore, APEX2 can be used to study H2O2 diffusion inside the cytosol. Finally, APEX2 reveals the impact of commonly used alkylating agents and cell lysis protocols on cellular H2O2 generation.
Collapse
Affiliation(s)
- Mohammad Eid
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Kateřina Sulková
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Carla Aranda-Vallejo
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
Griffith M, Araújo A, Travasso R, Salvador A. The architecture of redox microdomains: Cascading gradients and peroxiredoxins' redox-oligomeric coupling integrate redox signaling and antioxidant protection. Redox Biol 2024; 69:103000. [PMID: 38150990 PMCID: PMC10829873 DOI: 10.1016/j.redox.2023.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
In the cytosol of human cells under low oxidative loads, hydrogen peroxide is confined to microdomains around its supply sites, due to its fast consumption by peroxiredoxins. So are the sulfenic and disulfide forms of the 2-Cys peroxiredoxins, according to a previous theoretical analysis [Travasso et al., Redox Biology 15 (2017) 297]. Here, an extended reaction-diffusion model that for the first time considers the differential properties of human peroxiredoxins 1 and 2 and the thioredoxin redox cycle predicts important new aspects of the dynamics of redox microdomains. The peroxiredoxin 1 sulfenates and disulfides are more localized than the corresponding peroxiredoxin 2 forms, due to the former peroxiredoxin's faster resolution step. The thioredoxin disulfides are also localized. As the H2O2 supply rate (vsup) approaches and then surpasses the maximal rate of the thioredoxin/thioredoxin reductase system (V), these concentration gradients become shallower, and then vanish. At low vsup the peroxiredoxin concentration determines the H2O2 concentrations and gradient length scale, but as vsup approaches V, the thioredoxin reductase activity gains influence. A differential mobility of peroxiredoxin disulfide dimers vs. reduced decamers enhances the redox polarity of the cytosol: as vsup approaches V, reduced decamers are preferentially retained far from H2O2 sources, attenuating the local H2O2 buildup. Substantial total protein concentration gradients of both peroxiredoxins emerge under these conditions, and the concentration of reduced peroxiredoxin 1 far from the H2O2 sources even increases with vsup. Altogether, the properties of 2-Cys peroxiredoxins and thioredoxin are such that localized H2O2 supply induces a redox and functional polarization between source-proximal regions (redox microdomains) that facilitate peroxiredoxin-mediated signaling and distal regions that maximize antioxidant protection.
Collapse
Affiliation(s)
- Matthew Griffith
- CNC - Centre for Neuroscience Cell Biology, University of Coimbra, UC-Biotech, Parque Tecnológico de Cantanhede, Núcleo 4, Lote 8, 3060-197, Cantanhede, Portugal; Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Adérito Araújo
- CMUC, Department of Mathematics, University of Coimbra, Largo D. Dinis, 3004-143, Coimbra, Portugal.
| | - Rui Travasso
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Rua Larga, 3004-516, Coimbra, Portugal.
| | - Armindo Salvador
- CNC - Centre for Neuroscience Cell Biology, University of Coimbra, UC-Biotech, Parque Tecnológico de Cantanhede, Núcleo 4, Lote 8, 3060-197, Cantanhede, Portugal; Coimbra Chemistry Center - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789, Coimbra, Portugal.
| |
Collapse
|
25
|
Del Olmo M, Kalashnikov A, Schmal C, Kramer A, Herzel H. Coupling allows robust mammalian redox circadian rhythms despite heterogeneity and noise. Heliyon 2024; 10:e24773. [PMID: 38312577 PMCID: PMC10835301 DOI: 10.1016/j.heliyon.2024.e24773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/06/2023] [Accepted: 01/14/2024] [Indexed: 02/06/2024] Open
Abstract
Circadian clocks are endogenous oscillators present in almost all cells that drive daily rhythms in physiology and behavior. There are two mechanisms that have been proposed to explain how circadian rhythms are generated in mammalian cells: through a transcription-translation feedback loop (TTFL) and based on oxidation/reduction reactions, both of which are intrinsically stochastic and heterogeneous at the single cell level. In order to explore the emerging properties of stochastic and heterogeneous redox oscillators, we simplify a recently developed kinetic model of redox oscillations to an amplitude-phase oscillator with 'twist' (period-amplitude correlation) and subject to Gaussian noise. We show that noise and heterogeneity alone lead to fast desynchronization, and that coupling between noisy oscillators can establish robust and synchronized rhythms with amplitude expansions and tuning of the period due to twist. Coupling a network of redox oscillators to a simple model of the TTFL also contributes to synchronization, large amplitudes and fine-tuning of the period for appropriate interaction strengths. These results provide insights into how the circadian clock compensates randomness from intracellular sources and highlight the importance of noise, heterogeneity and coupling in the context of circadian oscillators.
Collapse
Affiliation(s)
- Marta Del Olmo
- Institute for Theoretical Biology - Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Anton Kalashnikov
- Institute for Theoretical Biology - Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Christoph Schmal
- Institute for Theoretical Biology - Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Achim Kramer
- Institute for Medical Immunology - Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology - Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
26
|
Khan K, Tran HC, Mansuroglu B, Önsell P, Buratti S, Schwarzländer M, Costa A, Rasmusson AG, Van Aken O. Mitochondria-derived reactive oxygen species are the likely primary trigger of mitochondrial retrograde signaling in Arabidopsis. Curr Biol 2024; 34:327-342.e4. [PMID: 38176418 DOI: 10.1016/j.cub.2023.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/28/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Besides their central function in respiration, plant mitochondria play a crucial role in maintaining cellular homeostasis during stress by providing "retrograde" feedback to the nucleus. Despite the growing understanding of this signaling network, the nature of the signals that initiate mitochondrial retrograde regulation (MRR) in plants remains unknown. Here, we investigated the dynamics and causative relationship of a wide range of mitochondria-related parameters for MRR, using a combination of Arabidopsis fluorescent protein biosensor lines, in vitro assays, and genetic and pharmacological approaches. We show that previously linked physiological parameters, including changes in cytosolic ATP, NADH/NAD+ ratio, cytosolic reactive oxygen species (ROS), pH, free Ca2+, and mitochondrial membrane potential, may often be correlated with-but are not the primary drivers of-MRR induction in plants. However, we demonstrate that the induced production of mitochondrial ROS is the likely primary trigger for MRR induction in Arabidopsis. Furthermore, we demonstrate that mitochondrial ROS-mediated signaling uses the ER-localized ANAC017-pathway to induce MRR response. Finally, our data suggest that mitochondrially generated ROS can induce MRR without substantially leaking into other cellular compartments such as the cytosol or ER lumen, as previously proposed. Overall, our results offer compelling evidence that mitochondrial ROS elevation is the likely trigger of MRR.
Collapse
Affiliation(s)
- Kasim Khan
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Huy Cuong Tran
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Berivan Mansuroglu
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Pinar Önsell
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Stefano Buratti
- Department of Biosciences, University of Milan, Via G. Celoria 26, Milan 20133, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, Milan 20133, Italy; Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via G. Celoria 26, 20133 Milan, Italy
| | - Allan G Rasmusson
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, Lund 223 62, Sweden.
| |
Collapse
|
27
|
Wu XN, Li JY, He Q, Li BQ, He YH, Pan X, Wang MY, Sang R, Ding JC, Gao X, Wu Z, Liu W. Targeting the PHF8/YY1 axis suppresses cancer cell growth through modulation of ROS. Proc Natl Acad Sci U S A 2024; 121:e2219352120. [PMID: 38165927 PMCID: PMC10786316 DOI: 10.1073/pnas.2219352120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/17/2023] [Indexed: 01/04/2024] Open
Abstract
High levels of mitochondrial reactive oxygen species (mROS) are linked to cancer development, which is tightly controlled by the electron transport chain (ETC). However, the epigenetic mechanisms governing ETC gene transcription to drive mROS production and cancer cell growth remain to be fully characterized. Here, we report that protein demethylase PHF8 is overexpressed in many types of cancers, including colon and lung cancer, and is negatively correlated with ETC gene expression. While it is well known to demethylate histones to activate transcription, PHF8 demethylates transcription factor YY1, functioning as a co-repressor for a large set of nuclear-coded ETC genes to drive mROS production and cancer development. In addition to genetically ablating PHF8, pharmacologically targeting PHF8 with a specific chemical inhibitor, iPHF8, is potent in regulating YY1 methylation, ETC gene transcription, mROS production, and cell growth in colon and lung cancer cells. iPHF8 exhibits potency and safety in suppressing tumor growth in cell-line- and patient-derived xenografts in vivo. Our data uncover a key epigenetic mechanism underlying ETC gene transcriptional regulation, demonstrating that targeting the PHF8/YY1 axis has great potential to treat cancers.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Jia-yuan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Qi He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Bo-qun Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Yao-hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Xu Pan
- Xiamen University-Amogene Joint Research and Development Center for Genetic Diagnostics, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Ming-yue Wang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Rui Sang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Jian-cheng Ding
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Xiang Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian361102, China
| |
Collapse
|
28
|
Rodriguez-Colman MJ, Dansen TB, Burgering BMT. FOXO transcription factors as mediators of stress adaptation. Nat Rev Mol Cell Biol 2024; 25:46-64. [PMID: 37710009 DOI: 10.1038/s41580-023-00649-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
The forkhead box protein O (FOXO, consisting of FOXO1, FOXO3, FOXO4 and FOXO6) transcription factors are the mammalian orthologues of Caenorhabditis elegans DAF-16, which gained notoriety for its capability to double lifespan in the absence of daf-2 (the gene encoding the worm insulin receptor homologue). Since then, research has provided many mechanistic details on FOXO regulation and FOXO activity. Furthermore, conditional knockout experiments have provided a wealth of data as to how FOXOs control development and homeostasis at the organ and organism levels. The lifespan-extending capabilities of DAF-16/FOXO are highly correlated with their ability to induce stress response pathways. Exogenous and endogenous stress, such as cellular redox stress, are considered the main drivers of the functional decline that characterizes ageing. Functional decline often manifests as disease, and decrease in FOXO activity indeed negatively impacts on major age-related diseases such as cancer and diabetes. In this context, the main function of FOXOs is considered to preserve cellular and organismal homeostasis, through regulation of stress response pathways. Paradoxically, the same FOXO-mediated responses can also aid the survival of dysfunctional cells once these eventually emerge. This general property to control stress responses may underlie the complex and less-evident roles of FOXOs in human lifespan as opposed to model organisms such as C. elegans.
Collapse
Affiliation(s)
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
29
|
Chalifoux O, Faerman B, Mailloux RJ. Mitochondrial hydrogen peroxide production by pyruvate dehydrogenase and α-ketoglutarate dehydrogenase in oxidative eustress and oxidative distress. J Biol Chem 2023; 299:105399. [PMID: 37898400 PMCID: PMC10692731 DOI: 10.1016/j.jbc.2023.105399] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH) are vital entry points for monosaccharides and amino acids into the Krebs cycle and thus integral for mitochondrial bioenergetics. Both complexes produce mitochondrial hydrogen peroxide (mH2O2) and are deactivated by electrophiles. Here, we provide an update on the role of PDH and KGDH in mitochondrial redox balance and their function in facilitating metabolic reprogramming for the propagation of oxidative eustress signals in hepatocytes and how defects in these pathways can cause liver diseases. PDH and KGDH are known to account for ∼45% of the total mH2O2 formed by mitochondria and display rates of production several-fold higher than the canonical source complex I. This mH2O2 can also be formed by reverse electron transfer (RET) in vivo, which has been linked to metabolic dysfunctions that occur in pathogenesis. However, the controlled emission of mH2O2 from PDH and KGDH has been proposed to be fundamental for oxidative eustress signal propagation in several cellular contexts. Modification of PDH and KGDH with protein S-glutathionylation (PSSG) and S-nitrosylation (PSNO) adducts serves as a feedback inhibitor for mH2O2 production in response to glutathione (GSH) pool oxidation. PSSG and PSNO adduct formation also reprogram the Krebs cycle to generate metabolites vital for interorganelle and intercellular signaling. Defects in the redox modification of PDH and KGDH cause the over generation of mH2O2, resulting in oxidative distress and metabolic dysfunction-associated fatty liver disease (MAFLD). In aggregate, PDH and KGDH are essential platforms for emitting and receiving oxidative eustress signals.
Collapse
Affiliation(s)
- Olivia Chalifoux
- Faculty of Agricultural and Environmental Sciences, The School of Human Nutrition, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada
| | - Ben Faerman
- Faculty of Agricultural and Environmental Sciences, The School of Human Nutrition, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada
| | - Ryan J Mailloux
- Faculty of Agricultural and Environmental Sciences, The School of Human Nutrition, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
30
|
Kritsiligkou P, Bosch K, Shen TK, Meurer M, Knop M, Dick TP. Proteome-wide tagging with an H 2O 2 biosensor reveals highly localized and dynamic redox microenvironments. Proc Natl Acad Sci U S A 2023; 120:e2314043120. [PMID: 37991942 PMCID: PMC10691247 DOI: 10.1073/pnas.2314043120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/20/2023] [Indexed: 11/24/2023] Open
Abstract
Hydrogen peroxide (H2O2) sensing and signaling involves the reversible oxidation of particular thiols on particular proteins to modulate protein function in a dynamic manner. H2O2 can be generated from various intracellular sources, but their identities and relative contributions are often unknown. To identify endogenous "hotspots" of H2O2 generation on the scale of individual proteins and protein complexes, we generated a yeast library in which the H2O2 sensor HyPer7 was fused to the C-terminus of all protein-coding open reading frames (ORFs). We also generated a control library in which a redox-insensitive mutant of HyPer7 (SypHer7) was fused to all ORFs. Both libraries were screened side-by-side to identify proteins located within H2O2-generating environments. Screening under a variety of different metabolic conditions revealed dynamic changes in H2O2 availability highly specific to individual proteins and protein complexes. These findings suggest that intracellular H2O2 generation is much more localized and functionally differentiated than previously recognized.
Collapse
Affiliation(s)
- Paraskevi Kritsiligkou
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance69120Heidelberg, Germany
| | - Katharina Bosch
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance69120Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120Heidelberg, Germany
| | - Tzu Keng Shen
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance69120Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120Heidelberg, Germany
| | - Matthias Meurer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120Heidelberg, Germany
- Research Group Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120Heidelberg, Germany
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120Heidelberg, Germany
- Research Group Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120Heidelberg, Germany
| | - Tobias P. Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance69120Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120Heidelberg, Germany
| |
Collapse
|
31
|
Mathai C, Jourd'heuil F, Pham LGC, Gilliard K, Balnis J, Jen A, Overmyer KA, Coon JJ, Jaitovich A, Boivin B, Jourd'heuil D. A role for cytoglobin in regulating intracellular hydrogen peroxide and redox signals in the vasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535146. [PMID: 37034694 PMCID: PMC10081330 DOI: 10.1101/2023.03.31.535146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The oxidant hydrogen peroxide serves as a signaling molecule that alters many aspects of cardiovascular functions. Recent studies suggest that cytoglobin - a hemoglobin expressed in the vasculature - may promote electron transfer reactions with proposed functions in hydrogen peroxide decomposition. Here, we determined the extent to which cytoglobin regulates intracellular hydrogen peroxide and established mechanisms. We found that cytoglobin decreased the hyperoxidation of peroxiredoxins and maintained the activity of peroxiredoxin 2 following challenge with exogenous hydrogen peroxide. Cytoglobin promoted a reduced intracellular environment and facilitated the reduction of the thiol-based hydrogen peroxide sensor Hyper7 after bolus addition of hydrogen peroxide. Cytoglobin also limited the inhibitory effect of hydrogen peroxide on glycolysis and reversed the oxidative inactivation of the glycolytic enzyme GAPDH. Our results indicate that cytoglobin in cells exists primarily as oxyferrous cytoglobin (CygbFe 2+ -O 2 ) with its cysteine residues in the reduced form. We found that the specific substitution of one of two cysteine residues on cytoglobin (C83A) inhibited the reductive activity of cytoglobin on Hyper7 and GAPDH. Carotid arteries from cytoglobin knockout mice were more sensitive to glycolytic inhibition by hydrogen peroxide than arteries from wildtype mice. Together, these results support a role for cytoglobin in regulating intracellular redox signals associated with hydrogen peroxide through oxidation of its cysteine residues, independent of hydrogen peroxide reaction at its heme center.
Collapse
|
32
|
Cobley JN. 50 shades of oxidative stress: A state-specific cysteine redox pattern hypothesis. Redox Biol 2023; 67:102936. [PMID: 37875063 PMCID: PMC10618833 DOI: 10.1016/j.redox.2023.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Oxidative stress is biochemically complex. Like primary colours, specific reactive oxygen species (ROS) and antioxidant inputs can be mixed to create unique "shades" of oxidative stress. Even a minimal redox module comprised of just 12 (ROS & antioxidant) inputs and 3 outputs (oxidative damage, cysteine-dependent redox-regulation, or both) yields over half a million "shades" of oxidative stress. The present paper proposes the novel hypothesis that: state-specific shades of oxidative stress, such as a discrete disease, are associated with distinct tell-tale cysteine oxidation patterns. The patterns are encoded by many parameters, from the identity of the oxidised proteins, the cysteine oxidation type, and magnitude. The hypothesis is conceptually grounded in distinct ROS and antioxidant inputs coalescing to produce unique cysteine oxidation outputs. And considers the potential biological significance of the holistic cysteine oxidation outputs. The literature supports the existence of state-specific cysteine oxidation patterns. Measuring and manipulating these patterns offer promising avenues for advancing oxidative stress research. The pattern inspired hypothesis provides a framework for understanding the complex biochemical nature of state-specific oxidative stress.
Collapse
Affiliation(s)
- James N Cobley
- Cysteine redox technology Group, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
33
|
Grayson C, Mailloux RJ. Coenzyme Q 10 and nicotinamide nucleotide transhydrogenase: Sentinels for mitochondrial hydrogen peroxide signaling. Free Radic Biol Med 2023; 208:260-271. [PMID: 37573896 DOI: 10.1016/j.freeradbiomed.2023.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Mitochondria use hydrogen peroxide (H2O2) as a mitokine for cell communication. H2O2 output for signaling depends on its rate of production and degradation, both of which are strongly affected by the redox state of the coenzyme Q10 (CoQ) pool and NADPH availability. Here, we propose the CoQ pool and nicotinamide nucleotide transhydrogenase (NNT) have evolved to be central modalities for mitochondrial H2O2 signaling. Both factors play opposing yet equally important roles in dictating H2O2 availability because they are connected to one another by two central parameters in bioenergetics: electron supply and Δp. The CoQ pool is the central point of convergence for electrons from various dehydrogenases and the electron transport chain (ETC). The increase in Δp creates a significant amount of protonic backpressure on mitochondria to promote H2O2 genesis through CoQ pool reduction. These same factors also drive the activity of NNT, which uses electrons and the Δp to eliminate H2O2. In this way, electron supply and the magnitude of the Δp manifests as a redox connection between the two sentinels, CoQ and NNT, which serve as opposing yet equally important forces required for budgeting H2O2. Taken together, CoQ and NNT are sentinels linked through mitochondrial bioenergetics to manage H2O2 availability for interorganelle and intercellular redox signaling.
Collapse
Affiliation(s)
- Cathryn Grayson
- The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada
| | - Ryan J Mailloux
- The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
34
|
Zhang J, Bar-Peled L. Chemical biology approaches to uncovering nuclear ROS control. Curr Opin Chem Biol 2023; 76:102352. [PMID: 37352605 PMCID: PMC10524750 DOI: 10.1016/j.cbpa.2023.102352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Heightened concentrations of reactive metabolites, including reactive oxygen species (ROS), can damage all macromolecules leading to the erosion of cellular fidelity. In this regard, the control of ROS in the nuclues is essential for cellular homeostasis, and dysregulation of nuclear ROS has been attributed to multiple pathologies and the mechanism of action of certain chemotherapies. How nuclear ROS is generated, detoxified and sensed is poorly understood, and stems in part, from a historical lack of tools that allow for its precise generation and detection. Here, we summarize the latest advances in chemical biology inspired approaches that have been developed to study nuclear ROS and highlight how these tools have led to major breakthroughs in understanding its regulation. The continued development and application of chemical biology approaches to understand nuclear ROS promises to unlock fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Junbing Zhang
- Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA.
| | - Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital, Boston MA, USA; Department of Medicine, Harvard Medical School, Boston MA, USA.
| |
Collapse
|
35
|
Koren SA, Ahmed Selim N, De la Rosa L, Horn J, Farooqi MA, Wei AY, Müller-Eigner A, Emerson J, Johnson GVW, Wojtovich AP. All-optical spatiotemporal mapping of ROS dynamics across mitochondrial microdomains in situ. Nat Commun 2023; 14:6036. [PMID: 37758713 PMCID: PMC10533892 DOI: 10.1038/s41467-023-41682-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Hydrogen peroxide (H2O2) functions as a second messenger to signal metabolic distress through highly compartmentalized production in mitochondria. The dynamics of reactive oxygen species (ROS) generation and diffusion between mitochondrial compartments and into the cytosol govern oxidative stress responses and pathology, though these processes remain poorly understood. Here, we couple the H2O2 biosensor, HyPer7, with optogenetic stimulation of the ROS-generating protein KillerRed targeted into multiple mitochondrial microdomains. Single mitochondrial photogeneration of H2O2 demonstrates the spatiotemporal dynamics of ROS diffusion and transient hyperfusion of mitochondria due to ROS. This transient hyperfusion phenotype required mitochondrial fusion but not fission machinery. Measurement of microdomain-specific H2O2 diffusion kinetics reveals directionally selective diffusion through mitochondrial microdomains. All-optical generation and detection of physiologically-relevant concentrations of H2O2 between mitochondrial compartments provide a map of mitochondrial H2O2 diffusion dynamics in situ as a framework to understand the role of ROS in health and disease.
Collapse
Affiliation(s)
- Shon A Koren
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Nada Ahmed Selim
- University of Rochester Medical Center, Department of Pharmacology and Physiology, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Lizbeth De la Rosa
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Jacob Horn
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - M Arsalan Farooqi
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Alicia Y Wei
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Annika Müller-Eigner
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Jacen Emerson
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Gail V W Johnson
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA.
| |
Collapse
|
36
|
Chelius X, Bartosch V, Rausch N, Haubner M, Schramm J, Braun RJ, Klecker T, Westermann B. Selective retention of dysfunctional mitochondria during asymmetric cell division in yeast. PLoS Biol 2023; 21:e3002310. [PMID: 37721958 PMCID: PMC10538663 DOI: 10.1371/journal.pbio.3002310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/28/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
Decline of mitochondrial function is a hallmark of cellular aging. To counteract this process, some cells inherit mitochondria asymmetrically to rejuvenate daughter cells. The molecular mechanisms that control this process are poorly understood. Here, we made use of matrix-targeted D-amino acid oxidase (Su9-DAO) to selectively trigger oxidative damage in yeast mitochondria. We observed that dysfunctional mitochondria become fusion-incompetent and immotile. Lack of bud-directed movements is caused by defective recruitment of the myosin motor, Myo2. Intriguingly, intact mitochondria that are present in the same cell continue to move into the bud, establishing that quality control occurs directly at the level of the organelle in the mother. The selection of healthy organelles for inheritance no longer works in the absence of the mitochondrial Myo2 adapter protein Mmr1. Together, our data suggest a mechanism in which the combination of blocked fusion and loss of motor protein ensures that damaged mitochondria are retained in the mother cell to ensure rejuvenation of the bud.
Collapse
Affiliation(s)
- Xenia Chelius
- Zellbiologie, Universität Bayreuth, Bayreuth, Germany
| | | | | | | | - Jana Schramm
- Zellbiologie, Universität Bayreuth, Bayreuth, Germany
| | - Ralf J. Braun
- Department Medizin, Fakultät Medizin/Zahnmedizin, Danube Private University, Krems, Austria
| | - Till Klecker
- Zellbiologie, Universität Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
37
|
den Toom WTF, van Soest DMK, Polderman PE, van Triest MH, Bruurs LJM, De Henau S, Burgering BMT, Dansen TB. Oxygen-consumption based quantification of chemogenetic H 2O 2 production in live human cells. Free Radic Biol Med 2023; 206:134-142. [PMID: 37392950 DOI: 10.1016/j.freeradbiomed.2023.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Reactive Oxygen Species (ROS) in the form of H2O2 can act both as physiological signaling molecules as well as damaging agents, depending on their concentration and localization. The downstream biological effects of H2O2 were often studied making use of exogenously added H2O2, generally as a bolus and at supraphysiological levels. But this does not mimic the continuous, low levels of intracellular H2O2 production by for instance mitochondrial respiration. The enzyme d-Amino Acid Oxidase (DAAO) catalyzes H2O2 formation using d-amino acids, which are absent from culture media, as a substrate. Ectopic expression of DAAO has recently been used in several studies to produce inducible and titratable intracellular H2O2. However, a method to directly quantify the amount of H2O2 produced by DAAO has been lacking, making it difficult to assess whether observed phenotypes are the result of physiological or artificially high levels of H2O2. Here we describe a simple assay to directly quantify DAAO activity by measuring the oxygen consumed during H2O2 production. The oxygen consumption rate (OCR) of DAAO can directly be compared to the basal mitochondrial respiration in the same assay, to estimate whether the ensuing level of H2O2 production is within the range of physiological mitochondrial ROS production. In the tested monoclonal RPE1-hTERT cells, addition of 5 mM d-Ala to the culture media amounts to a DAAO-dependent OCR that surpasses ∼5% of the OCR that stems from basal mitochondrial respiration and hence produces supra-physiological levels of H2O2. We show that the assay can also be used to select clones that express differentially localized DAAO with the same absolute level of H2O2 production to be able to discriminate the effects of H2O2 production at different subcellular locations from differences in total oxidative burden. This method therefore greatly improves the interpretation and applicability of DAAO-based models, thereby moving the redox biology field forward.
Collapse
Affiliation(s)
- Wytze T F den Toom
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Daan M K van Soest
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Paulien E Polderman
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Miranda H van Triest
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Lucas J M Bruurs
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Sasha De Henau
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL, Utrecht, the Netherlands
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
38
|
Ježek P. Pitfalls of Mitochondrial Redox Signaling Research. Antioxidants (Basel) 2023; 12:1696. [PMID: 37759999 PMCID: PMC10525995 DOI: 10.3390/antiox12091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Redox signaling from mitochondria (mt) to the cytosol and plasma membrane (PM) has been scarcely reported, such as in the case of hypoxic cell adaptation or (2-oxo-) 2-keto-isocaproate (KIC) β-like-oxidation stimulating insulin secretion in pancreatic β-cells. Mutual redox state influence between mitochondrial major compartments, the matrix and the intracristal space, and the cytosol is therefore derived theoretically in this article to predict possible conditions, when mt-to-cytosol and mt-to-PM signals may occur, as well as conditions in which the cytosolic redox signaling is not overwhelmed by the mitochondrial antioxidant capacity. Possible peroxiredoxin 3 participation in mt-to-cytosol redox signaling is discussed, as well as another specific case, whereby mitochondrial superoxide release is diminished, whereas the matrix MnSOD is activated. As a result, the enhanced conversion to H2O2 allows H2O2 diffusion into the cytosol, where it could be a predominant component of the H2O2 release. In both of these ways, mt-to-cytosol and mt-to-PM signals may be realized. Finally, the use of redox-sensitive probes is discussed, which disturb redox equilibria, and hence add a surplus redox-buffering to the compartment, where they are localized. Specifically, when attempts to quantify net H2O2 fluxes are to be made, this should be taken into account.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| |
Collapse
|
39
|
Cheng F, Ji Q, Wang L, Wang C, Liu G, Wang L. Reducing oxidative protein folding alleviates senescence by minimizing ER-to-nucleus H 2 O 2 release. EMBO Rep 2023; 24:e56439. [PMID: 37306027 PMCID: PMC10398651 DOI: 10.15252/embr.202256439] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023] Open
Abstract
Oxidative protein folding occurs in the endoplasmic reticulum (ER) to generate disulfide bonds, and the by-product is hydrogen peroxide (H2 O2 ). However, the relationship between oxidative protein folding and senescence remains uncharacterized. Here, we find that the protein disulfide isomerase (PDI), a key oxidoreductase that catalyzes oxidative protein folding, accumulated in aged human mesenchymal stem cells (hMSCs) and deletion of PDI alleviated hMSCs senescence. Mechanistically, knocking out PDI slows the rate of oxidative protein folding and decreases the leakage of ER-derived H2 O2 into the nucleus, thereby decreasing the expression of SERPINE1, which was identified as a key driver of cell senescence. Furthermore, we show that depletion of PDI alleviated senescence in various cell models of aging. Our findings reveal a previously unrecognized role of oxidative protein folding in promoting cell aging, providing a potential target for aging and aging-related disease intervention.
Collapse
Affiliation(s)
- Fang Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Qianzhao Ji
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Lu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Chih‐chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Guang‐Hui Liu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
40
|
Kim M, Serwa RA, Samluk L, Suppanz I, Kodroń A, Stępkowski TM, Elancheliyan P, Tsegaye B, Oeljeklaus S, Wasilewski M, Warscheid B, Chacinska A. Immunoproteasome-specific subunit PSMB9 induction is required to regulate cellular proteostasis upon mitochondrial dysfunction. Nat Commun 2023; 14:4092. [PMID: 37433777 DOI: 10.1038/s41467-023-39642-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Perturbed cellular protein homeostasis (proteostasis) and mitochondrial dysfunction play an important role in neurodegenerative diseases, however, the interplay between these two phenomena remains unclear. Mitochondrial dysfunction leads to a delay in mitochondrial protein import, causing accumulation of non-imported mitochondrial proteins in the cytosol and challenging proteostasis. Cells respond by increasing proteasome activity and molecular chaperones in yeast and C. elegans. Here, we demonstrate that in human cells mitochondrial dysfunction leads to the upregulation of a chaperone HSPB1 and, interestingly, an immunoproteasome-specific subunit PSMB9. Moreover, PSMB9 expression is dependent on the translation elongation factor EEF1A2. These mechanisms constitute a defense response to preserve cellular proteostasis under mitochondrial stress. Our findings define a mode of proteasomal activation through the change in proteasome composition driven by EEF1A2 and its spatial regulation, and are useful to formulate therapies to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Minji Kim
- IMol Polish Academy of Sciences, Warsaw, Poland
| | - Remigiusz A Serwa
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Samluk
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ida Suppanz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Agata Kodroń
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz M Stępkowski
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Silke Oeljeklaus
- Department of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Department of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agnieszka Chacinska
- IMol Polish Academy of Sciences, Warsaw, Poland.
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
41
|
Zhu Y, Wang J, Ni Y, Rao Q, Zhu X, Yu J, Wang S, Zhou H. A multifunctionally reversible detector: Photoacoustic and dual-channel fluorescence sensing for SO 2/H 2O 2. Anal Chim Acta 2023; 1263:341181. [PMID: 37225328 DOI: 10.1016/j.aca.2023.341181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/26/2023]
Abstract
In this work, the phenothiazine fragment with powerful electron-donating ability was specifically selected to construct a multifunctional detector (noted as T1) in double-organelle with near-infrared region I (NIR-I) absorption. The changes of SO2/H2O2 content in mitochondria and lipid droplets were observed through red/green channels respectively, which was due to the reaction between benzopyrylium fragment of T1 and SO2/H2O2 to achieve red/green fluorescence conversion. Additionally, T1 was endowed with photoacoustic properties deriving from NIR-I absorption to reversibly monitor SO2/H2O2in vivo. This work was significant for more accurately deciphering the physiological and pathological processes in living organisms.
Collapse
Affiliation(s)
- Yicai Zhu
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China
| | - Yingyong Ni
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China
| | - Qingpeng Rao
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China
| | - Jianhua Yu
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China.
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Hefei, 230601, PR China; Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei, 230601, PR China.
| |
Collapse
|
42
|
Cobley JN. Oxiforms: Unique cysteine residue- and chemotype-specified chemical combinations can produce functionally-distinct proteoforms: Like how mixing primary colours creates new shades, cysteine residue- and chemotype-specified chemical combinations can produce functionally-distinct proteoforms called oxiforms: Like how mixing primary colours creates new shades, cysteine residue- and chemotype-specified chemical combinations can produce functionally-distinct proteoforms called oxiforms. Bioessays 2023:e2200248. [PMID: 37147790 DOI: 10.1002/bies.202200248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
A single protein molecule with one or more cysteine residues can occupy a plurality of unique residue and oxidation-chemotype specified proteoforms that I term oxiforms. In binary reduced or oxidised terms, one molecule with three cysteines will adopt one of eight unique oxiforms. Residue-defined sulfur chemistry endows specific oxiforms with distinct functionally-relevant biophysical properties (e.g., steric effects). Their emergent complexity means a functionally-relevant effect may only manifest when multiple cysteines are oxidised. Like how mixing colours makes new shades, combining discrete redox chemistries-colours-can create a kaleidoscope of oxiform hues. The sheer diversity of oxiforms co-existing within the human body provides a biological basis for redox heterogeneity. Of evolutionary significance, oxiforms may enable individual cells to mount a broad spectrum of responses to the same stimulus. Their biological significance, however plausible, is speculative because protein-specific oxiforms remain essentially unexplored. Excitingly, pioneering new techniques can push the field into uncharted territory by quantifying oxiforms. The oxiform concept can advance our understanding of redox-regulation in health and disease.
Collapse
Affiliation(s)
- James N Cobley
- Cysteine Redox Technology Group, Life Science Innovation Centre, University of the Highlands and Islands, Inverness, Scotland, UK
| |
Collapse
|
43
|
Nanadikar MS, Vergel Leon AM, Guo J, van Belle GJ, Jatho A, Philip ES, Brandner AF, Böckmann RA, Shi R, Zieseniss A, Siemssen CM, Dettmer K, Brodesser S, Schmidtendorf M, Lee J, Wu H, Furdui CM, Brandenburg S, Burgoyne JR, Bogeski I, Riemer J, Chowdhury A, Rehling P, Bruegmann T, Belousov VV, Katschinski DM. IDH3γ functions as a redox switch regulating mitochondrial energy metabolism and contractility in the heart. Nat Commun 2023; 14:2123. [PMID: 37055412 PMCID: PMC10102218 DOI: 10.1038/s41467-023-37744-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
Redox signaling and cardiac function are tightly linked. However, it is largely unknown which protein targets are affected by hydrogen peroxide (H2O2) in cardiomyocytes that underly impaired inotropic effects during oxidative stress. Here, we combine a chemogenetic mouse model (HyPer-DAO mice) and a redox-proteomics approach to identify redox sensitive proteins. Using the HyPer-DAO mice, we demonstrate that increased endogenous production of H2O2 in cardiomyocytes leads to a reversible impairment of cardiac contractility in vivo. Notably, we identify the γ-subunit of the TCA cycle enzyme isocitrate dehydrogenase (IDH)3 as a redox switch, linking its modification to altered mitochondrial metabolism. Using microsecond molecular dynamics simulations and experiments using cysteine-gene-edited cells reveal that IDH3γ Cys148 and 284 are critically involved in the H2O2-dependent regulation of IDH3 activity. Our findings provide an unexpected mechanism by which mitochondrial metabolism can be modulated through redox signaling processes.
Collapse
Affiliation(s)
- Maithily S Nanadikar
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany
| | - Ana M Vergel Leon
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany
| | - Jia Guo
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany
| | - Gijsbert J van Belle
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany
| | - Aline Jatho
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany
| | - Elvina S Philip
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany
| | - Astrid F Brandner
- Computational Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Rainer A Böckmann
- Computational Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Erlangen National High-Performance Computing Center (NHR@FAU), Erlangen, Germany
| | - Runzhu Shi
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany
| | - Anke Zieseniss
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany
| | - Carla M Siemssen
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, 93053, Regensburg, Germany
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931, Cologne, Germany
| | - Marlen Schmidtendorf
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931, Cologne, Germany
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sören Brandenburg
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Joseph R Burgoyne
- King's College London, School of Cardiovascular Medicine & Sciences, The British Heart Foundation Centre of Excellence, SE1 7EH, London, UK
| | - Ivan Bogeski
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany
| | - Jan Riemer
- Institute for Biochemistry, Redox Metabolism and CECAD, University of Cologne, 50674, Cologne, Germany
| | - Arpita Chowdhury
- Institute of Cellular Biochemistry, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Peter Rehling
- Institute of Cellular Biochemistry, University Medical Center Göttingen, 37073, Göttingen, Germany
- Cluster of Excellence, Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Tobias Bruegmann
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence, Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
| | - Vsevolod V Belousov
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Agency, 117997, Moscow, Russia
| | - Dörthe M Katschinski
- Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg-August, University Göttingen, 37073, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
44
|
Jacobs LJHC, Riemer J. Maintenance of small molecule redox homeostasis in mitochondria. FEBS Lett 2023; 597:205-223. [PMID: 36030088 DOI: 10.1002/1873-3468.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 01/26/2023]
Abstract
Compartmentalisation of eukaryotic cells enables fundamental otherwise often incompatible cellular processes. Establishment and maintenance of distinct compartments in the cell relies not only on proteins, lipids and metabolites but also on small redox molecules. In particular, small redox molecules such as glutathione, NAD(P)H and hydrogen peroxide (H2 O2 ) cooperate with protein partners in dedicated machineries to establish specific subcellular redox compartments with conditions that enable oxidative protein folding and redox signalling. Dysregulated redox homeostasis has been directly linked with a number of diseases including cancer, neurological disorders, cardiovascular diseases, obesity, metabolic diseases and ageing. In this review, we will summarise mechanisms regulating establishment and maintenance of redox homeostasis in the mitochondrial subcompartments of mammalian cells.
Collapse
Affiliation(s)
- Lianne J H C Jacobs
- Institute for Biochemistry and Center of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry and Center of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
45
|
Calabrese G, Jacobs LJHC, Riemer J. Real-Time Monitoring of Hydrogen Peroxide Levels in Yeast and Mammalian Cells. Methods Mol Biol 2023; 2675:149-165. [PMID: 37258762 DOI: 10.1007/978-1-0716-3247-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hydrogen peroxide (H2O2) is an important signaling molecule involved in regulating antioxidative transcriptional responses, cellular differentiation, and hypoxia response. H2O2 generation and signaling are highly localized processes. Understanding the dynamics of this molecule inside intact cells with subcompartmental resolution is instrumental to unravel its role in cellular signaling. Different genetically encoded fluorescent sensors have been developed over the last few years that enable such non-disruptive monitoring with high spatiotemporal resolution. In this chapter, we describe the use of these genetically encoded sensors to directly monitor H2O2 dynamics in yeast and cultured mammalian cells.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Lianne J H C Jacobs
- Department for Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Department for Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
46
|
Hermeling JCW, Herholz M, Baumann L, Cores EC, Zečić A, Hoppe T, Riemer J, Trifunovic A. Mitochondria-originated redox signalling regulates KLF-1 to promote longevity in Caenorhabditis elegans. Redox Biol 2022; 58:102533. [PMID: 36442394 PMCID: PMC9709155 DOI: 10.1016/j.redox.2022.102533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Alternations of redox metabolism have been associated with the extension of lifespan in roundworm Caenorhabditis elegans, caused by moderate mitochondrial dysfunction, although the underlying signalling cascades are largely unknown. Previously, we identified transcriptional factor Krüppel-like factor-1 (KLF-1) as the main regulator of cytoprotective longevity-assurance pathways in the C. elegans long-lived mitochondrial mutants. Here, we show that KLF-1 translocation to the nucleus and the activation of the signalling cascade is dependent on the mitochondria-derived hydrogen peroxide (H2O2) produced during late developmental phases where aerobic respiration and somatic mitochondrial biogenesis peak. We further show that mitochondrial-inducible superoxide dismutase-3 (SOD-3), together with voltage-dependent anion channel-1 (VDAC-1), is required for the life-promoting H2O2 signalling that is further regulated by peroxiredoxin-3 (PRDX-3). Increased H2O2 release in the cytoplasm activates the p38 MAPK signalling cascade that induces KLF-1 translocation to the nucleus and the activation of transcription of C. elegans longevity-promoting genes, including cytoprotective cytochrome P450 oxidases. Taken together, our results underline the importance of redox-regulated signalling as the key regulator of longevity-inducing pathways in C. elegans, and position precisely timed mitochondria-derived H2O2 in the middle of it.
Collapse
Affiliation(s)
- Johannes CW Hermeling
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Marija Herholz
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Linda Baumann
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Estela Cepeda Cores
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Aleksandra Zečić
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Thorsten Hoppe
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Center for Molecular Medicine Cologne (CMMC), Cologne, D-50931, Germany,Institute for Genetics, University of Cologne, Cologne, D-50674, Germany
| | - Jan Riemer
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Biochemistry, University of Cologne, Cologne, D-50931, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany,Center for Molecular Medicine Cologne (CMMC), Cologne, D-50931, Germany,Corresponding author. CECAD Research CenterUniversity of Cologne, Joseph-Stelzmann-Str. 26, Cologne, D-50931, Germany.
| |
Collapse
|
47
|
Jacobs LJHC, Hoehne MN, Riemer J. Measuring Intracellular H 2 O 2 in Intact Human Cells Using the Genetically Encoded Fluorescent Sensor HyPer7. Bio Protoc 2022; 12:4538. [PMID: 36619497 PMCID: PMC9797356 DOI: 10.21769/bioprotoc.4538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/05/2022] Open
Abstract
Depending on its local concentration, hydrogen peroxide (H2O2) can serve as a cellular signaling molecule but can also cause damage to biomolecules. The levels of H 2O2 are influenced by the activity of its generator sites, local antioxidative systems, and the metabolic state of the cell. To study and understand the role of H2O2 in cellular signaling, it is crucial to assess its dynamics with high spatiotemporal resolution. Measuring these subcellular H2O2 dynamics has been challenging. However, with the introduction of the super sensitive pH-independent genetically encoded fluorescent H2O2sensor HyPer7, many limitations of previous measurement approaches could be overcome. Here, we describe a method to measure local H2O2 dynamics in intact human cells, utilizing the HyPer7 sensor in combination with a microscopic multi-mode microplate reader. Graphical abstract: Overview of HyPer7 sensor function and measurement results.
Collapse
Affiliation(s)
- Lianne J. H. C. Jacobs
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Michaela N. Hoehne
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
| | - Jan Riemer
- Institute of Biochemistry, Redox Biochemistry, University of Cologne, Zuelpicher Str. 47a/R. 3.49, 50674 Cologne, Germany
,
Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
,
*For correspondence:
| |
Collapse
|
48
|
Bar-Peled L, Kory N. Principles and functions of metabolic compartmentalization. Nat Metab 2022; 4:1232-1244. [PMID: 36266543 PMCID: PMC10155461 DOI: 10.1038/s42255-022-00645-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/24/2022] [Indexed: 01/20/2023]
Abstract
Metabolism has historically been studied at the levels of whole cells, whole tissues and whole organisms. As a result, our understanding of how compartmentalization-the spatial and temporal separation of pathways and components-shapes organismal metabolism remains limited. At its essence, metabolic compartmentalization fulfils three important functions or 'pillars': establishing unique chemical environments, providing protection from reactive metabolites and enabling the regulation of metabolic pathways. However, how these pillars are established, regulated and maintained at both the cellular and systemic levels remains unclear. Here we discuss how the three pillars are established, maintained and regulated within the cell and discuss the consequences of dysregulation of metabolic compartmentalization in human disease. Organelles are increasingly emerging as 'command-and-control centres' and the increased understanding of metabolic compartmentalization is revealing new aspects of metabolic homeostasis, with this knowledge being translated into therapies for the treatment of cancer and certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Nora Kory
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
49
|
NADPH and Mitochondrial Quality Control as Targets for a Circadian-Based Fasting and Exercise Therapy for the Treatment of Parkinson's Disease. Cells 2022; 11:cells11152416. [PMID: 35954260 PMCID: PMC9367803 DOI: 10.3390/cells11152416] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dysfunctional mitochondrial quality control (MQC) is implicated in the pathogenesis of Parkinson's disease (PD). The improper selection of mitochondria for mitophagy increases reactive oxygen species (ROS) levels and lowers ATP levels. The downstream effects include oxidative damage, failure to maintain proteostasis and ion gradients, and decreased NAD+ and NADPH levels, resulting in insufficient energy metabolism and neurotransmitter synthesis. A ketosis-based metabolic therapy that increases the levels of (R)-3-hydroxybutyrate (BHB) may reverse the dysfunctional MQC by partially replacing glucose as an energy source, by stimulating mitophagy, and by decreasing inflammation. Fasting can potentially raise cytoplasmic NADPH levels by increasing the mitochondrial export and cytoplasmic metabolism of ketone body-derived citrate that increases flux through isocitrate dehydrogenase 1 (IDH1). NADPH is an essential cofactor for nitric oxide synthase, and the nitric oxide synthesized can diffuse into the mitochondrial matrix and react with electron transport chain-synthesized superoxide to form peroxynitrite. Excessive superoxide and peroxynitrite production can cause the opening of the mitochondrial permeability transition pore (mPTP) to depolarize the mitochondria and activate PINK1-dependent mitophagy. Both fasting and exercise increase ketogenesis and increase the cellular NAD+/NADH ratio, both of which are beneficial for neuronal metabolism. In addition, both fasting and exercise engage the adaptive cellular stress response signaling pathways that protect neurons against the oxidative and proteotoxic stress implicated in PD. Here, we discuss how intermittent fasting from the evening meal through to the next-day lunch together with morning exercise, when circadian NAD+/NADH is most oxidized, circadian NADP+/NADPH is most reduced, and circadian mitophagy gene expression is high, may slow the progression of PD.
Collapse
|
50
|
Esworthy RS, Doroshow JH, Chu FF. The beginning of GPX2 and 30 years later. Free Radic Biol Med 2022; 188:419-433. [PMID: 35803440 PMCID: PMC9341242 DOI: 10.1016/j.freeradbiomed.2022.06.232] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
We published the first paper to characterize GPX2 (aka GSHPx-GI) as a selenoenzyme with glutathione peroxidase activity in 1993. Among the four Se-GPX isozymes, GPX1-4, GPX1 and GPX2 are closely related in terms of structure, substrate specificities, and subcellular localization. What sets them apart are distinct patterns of gene regulation, tissue distribution and response to selenium. While we identified the digestive tract epithelium as the main site of GPX2 expression, later work has shown GPX2 is found more widely in epithelial tissues with concentration of expression in stem cell and proliferative compartments. GPX2 expression is regulated over a wide range of levels by many pathways, including NRF2, WNT, p53, RARE and this often results in attaching undue significance to GPX2 as GPX2 is only a part of a system of hydroperoxidase activities, including GPX1, peroxiredoxins and catalase. These other activities may play equal or greater roles, particularly in cell lines cultured without selenium supplementation and often with very low GPX2 levels. This could be assessed by examining levels of mRNA and protein among these various peroxidases at the outset of studies. As an example, it was found that GPX1 responds to the absence of GPX2 in mouse ileum and colon epithelium with higher expression. As such, both Gpx1 and Gpx2 had to be knocked out in mice to produce ileocolitis. However, we note that the actual role of GPX1 and GPX2 in relation to peroxiredoxin function is unclear. There may be an interdependence that requires only low amounts of GPX1 and/or GPX2 in a supporting role to maintain proper peroxiredoxin function. GPX2 levels may be prognostic for cancer progression in colon, breast, prostate and liver, however, there is no consistent trend for higher or lower levels to be favorable.
Collapse
Affiliation(s)
- R Steven Esworthy
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute of City of Hope. Duarte, California, USA, 91010.
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Fong-Fong Chu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute of City of Hope. Duarte, California, USA, 91010.
| |
Collapse
|