1
|
Prahl LS, Liu J, Viola JM, Huang AZ, Chan TJ, Hayward-Lara G, Porter CM, Shi C, Zhang J, Hughes AJ. Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses. NATURE MATERIALS 2024; 23:1582-1591. [PMID: 39385019 DOI: 10.1038/s41563-024-02019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Urinary collecting tubules form during kidney embryogenesis through the branching of the ureteric bud epithelium. A travelling mesenchyme niche of nephron progenitor cells caps each branching ureteric bud tip. These 'tip domain' niches pack more closely over developmental time and their number relates to nephron endowment at birth. Yet, how the crowded tissue environment impacts niche number and cell decision-making remains unclear. Here, through experiments and mathematical modelling, we show that niche packing conforms to physical limitations imposed by kidney curvature. We relate packing geometries to rigidity theory to predict a stiffening transition starting at embryonic day 15 in the mouse, validated by micromechanical analysis. Using a method to estimate tip domain 'ages' relative to their most recent branch events, we find that new niches overcome mechanical resistance as they branch and displace neighbours. This creates rhythmic mechanical stress in the niche. These findings expand our understanding of kidney development and inform engineering strategies for synthetic regenerative tissues.
Collapse
Affiliation(s)
- Louis S Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - John M Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Aria Zheyuan Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Trevor J Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Hayward-Lara
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine M Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Chenjun Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA, USA.
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Precision Engineering for Health (CPE4H), University of Pennsylvania, Philadelphia, PA, USA.
- Materials Research Science and Engineering Center (MRSEC), University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Shi M, Crouse B, Sundaram N, Pode Shakked N, Ester L, Zhang W, Janakiram V, Kopan R, Helmrath MA, Bonventre JV, McCracken KW. Integrating collecting systems in kidney organoids through fusion of distal nephron to ureteric bud. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613645. [PMID: 39345524 PMCID: PMC11429897 DOI: 10.1101/2024.09.19.613645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The kidney maintains homeostasis through an array of parallel nephrons, which all originate in development as isolated epithelial structures that later fuse through their distal poles to a system of collecting ducts (CD). This connection is required to generate functional nephrons by providing a pathway for excretion of metabolic waste and byproducts. Currently, methods for differentiating human pluripotent stem cells into kidney organoids generate nephrons that lack CDs and instead terminate as blind-ended tubules. Here we describe a developmentally inspired system that addresses this deficiency through assembly of induced nephrogenic mesenchyme with ureteric bud (UB) tissues, the embryonic building blocks of the kidney's collecting system. The UB progenitors grow and develop into a network of CDs within the organoid, and importantly, they functionally integrate with the nephrons through recapitulating fusion between the distal tubule and CD to create a continuous epithelial lumen. We further showed that proximal-distal nephron specification, fusion frequency, and maturation of the CD can be augmented through temporal manipulation of developmental signaling pathways. This work provides a platform for interrogating the principles and mechanisms underlying nephron-UB fusion and a framework for engineering unobstructed nephrons with patterned collecting systems, an important step toward the de novo generation of functional kidney tissue.
Collapse
Affiliation(s)
- Min Shi
- Division of Nephrology and Hypertension, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Brittney Crouse
- Division of Nephrology and Hypertension, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Nambirajan Sundaram
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Naomi Pode Shakked
- Division of Nephrology and Hypertension, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Current address: Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lioba Ester
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Weitao Zhang
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Vinothini Janakiram
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Michael A. Helmrath
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Joseph V. Bonventre
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Kyle W. McCracken
- Division of Nephrology and Hypertension, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Lead contact
| |
Collapse
|
3
|
Puspita L, Juwono VB, Shim JW. Advances in human pluripotent stem cell reporter systems. iScience 2024; 27:110856. [PMID: 39290832 PMCID: PMC11407076 DOI: 10.1016/j.isci.2024.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The capability of human pluripotent stem cells (hPSCs) to self-renew and differentiate into any cell type has greatly contributed to the advancement of biomedicine. Reporter lines derived from hPSCs have played a crucial role in elucidating the mechanisms underlying human development and diseases by acting as an alternative reporter system that cannot be used in living humans. To bring hPSCs closer to clinical application in transplantation, scientists have generated reporter lines for isolating the desired cell populations, as well as improving graft quality and treatment outcomes. This review presents an overview of the applications of hPSC reporter lines and the important variables in designing a reporter system, including options for gene delivery and editing tools, design of reporter constructs, and selection of reporter genes. It also provides insights into the prospects of hPSC reporter lines and the challenges that must be overcome to maximize the potential of hPSC reporter lines.
Collapse
Affiliation(s)
- Lesly Puspita
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
| | - Virginia Blessy Juwono
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Korea
| |
Collapse
|
4
|
Porter CM, Qian GC, Grindel SH, Hughes AJ. Highly parallel production of designer organoids by mosaic patterning of progenitors. Cell Syst 2024; 15:649-661.e9. [PMID: 38981488 PMCID: PMC11257788 DOI: 10.1016/j.cels.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Organoids derived from human stem cells are a promising approach for disease modeling, regenerative medicine, and fundamental research. However, organoid variability and limited control over morphological outcomes remain as challenges. One open question is the extent to which engineering control over culture conditions can guide organoids to specific compositions. Here, we extend a DNA "velcro" cell patterning approach, precisely controlling the number and ratio of human induced pluripotent stem cell-derived progenitors contributing to nephron progenitor (NP) organoids and mosaic NP/ureteric bud (UB) tip cell organoids within arrays of microwells. We demonstrate long-term control over organoid size and morphology, decoupled from geometric constraints. We then show emergent trends in organoid tissue proportions that depend on initial progenitor cell composition. These include higher nephron and stromal cell representation in mosaic NP/UB organoids vs. NP-only organoids and a "goldilocks" initial cell ratio in mosaic organoids that optimizes the formation of proximal tubule structures.
Collapse
Affiliation(s)
- Catherine M Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Precision Engineering for Health (CPE4H), University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace C Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel H Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Precision Engineering for Health (CPE4H), University of Pennsylvania, Philadelphia, PA 19104, USA; Materials Research Science and Engineering Center (MRSEC), University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Precision Engineering for Health (CPE4H), University of Pennsylvania, Philadelphia, PA 19104, USA; Materials Research Science and Engineering Center (MRSEC), University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Akalay S, Rayyan M, Fidlers T, van den Heuvel L, Levtchenko E, Arcolino FO. Impact of preterm birth on kidney health and development. Front Med (Lausanne) 2024; 11:1363097. [PMID: 38601116 PMCID: PMC11004308 DOI: 10.3389/fmed.2024.1363097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Preterm birth, defined as birth before the gestational age of 37 weeks, affects 11% of the newborns worldwide. While extensive research has focused on the immediate complications associated with prematurity, emerging evidence suggests a link between prematurity and the development of kidney disease later in life. It has been demonstrated that the normal course of kidney development is interrupted in infants born prematurely, causing an overall decrease in functional nephrons. Yet, the pathogenesis leading to the alterations in kidney development and the subsequent pathophysiological consequences causing kidney disease on the long-term are incompletely understood. In the present review, we discuss the current knowledge on nephrogenesis and how this process is affected in prematurity. We further discuss the epidemiological evidence and experimental data demonstrating the increased risk of kidney disease in these individuals and highlight important knowledge gaps. Importantly, understanding the intricate interplay between prematurity, abnormal kidney development, and the long-term risk of kidney disease is crucial for implementing effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sara Akalay
- Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Maissa Rayyan
- Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Tom Fidlers
- Department of Gynecologic Oncology, Oscar Lambret Cancer Center, Lille, France
| | - Lambertus van den Heuvel
- Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elena Levtchenko
- Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Fanny Oliveira Arcolino
- Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Emma Center for Personalized Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
6
|
Vanslambrouck JM, Neil JA, Rudraraju R, Mah S, Tan KS, Groenewegen E, Forbes TA, Karavendzas K, Elliott DA, Porrello ER, Subbarao K, Little MH. Kidney organoids reveal redundancy in viral entry pathways during ACE2-dependent SARS-CoV-2 infection. J Virol 2024; 98:e0180223. [PMID: 38334329 PMCID: PMC10949421 DOI: 10.1128/jvi.01802-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024] Open
Abstract
With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.
Collapse
Affiliation(s)
- Jessica M. Vanslambrouck
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Jessica A. Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Sophia Mah
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
| | - Ker Sin Tan
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
| | - Ella Groenewegen
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
| | - Thomas A. Forbes
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Department of Nephrology, Royal Children’s Hospital, Melbourne, Australia
| | - Katerina Karavendzas
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
| | - David A. Elliott
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Australia Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Enzo R. Porrello
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children’s Hospital, Melbourne, Australia
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Melissa H. Little
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Long HY, Qian ZP, Lan Q, Xu YJ, Da JJ, Yu FX, Zha Y. Human pluripotent stem cell-derived kidney organoids: Current progress and challenges. World J Stem Cells 2024; 16:114-125. [PMID: 38455108 PMCID: PMC10915962 DOI: 10.4252/wjsc.v16.i2.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
Human pluripotent stem cell (hPSC)-derived kidney organoids share similarities with the fetal kidney. However, the current hPSC-derived kidney organoids have some limitations, including the inability to perform nephrogenesis and lack of a corticomedullary definition, uniform vascular system, and coordinated exit pathway for urinary filtrate. Therefore, further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development, regeneration, disease modeling, and drug screening. In this review, we discussed recent advances in the generation of hPSC-derived kidney organoids, how these organoids contribute to the understanding of human kidney development and research in disease modeling. Additionally, the limitations, future research focus, and applications of hPSC-derived kidney organoids were highlighted.
Collapse
Affiliation(s)
- Hong-Yan Long
- Graduate School, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Zu-Ping Qian
- Graduate School, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Qin Lan
- Graduate School, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yong-Jie Xu
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Jing-Jing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Fu-Xun Yu
- Key Laboratory of Diagnosis and Treatment of Pulmonary Immune Diseases, National Health Commission, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Yan Zha
- Graduate School, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China.
| |
Collapse
|
8
|
Davis SN, Grindel SH, Viola JM, Liu GY, Liu J, Qian G, Porter CM, Hughes AJ. Nephron progenitors rhythmically alternate between renewal and differentiation phases that synchronize with kidney branching morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568157. [PMID: 38045273 PMCID: PMC10690271 DOI: 10.1101/2023.11.21.568157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The mammalian kidney achieves massive parallelization of function by exponentially duplicating nephron-forming niches during development. Each niche caps a tip of the ureteric bud epithelium (the future urinary collecting duct tree) as it undergoes branching morphogenesis, while nephron progenitors within niches balance self-renewal and differentiation to early nephron cells. Nephron formation rate approximately matches branching rate over a large fraction of mouse gestation, yet the nature of this apparent pace-maker is unknown. Here we correlate spatial transcriptomics data with branching 'life-cycle' to discover rhythmically alternating signatures of nephron progenitor differentiation and renewal across Wnt, Hippo-Yap, retinoic acid (RA), and other pathways. We then find in human stem-cell derived nephron progenitor organoids that Wnt/β-catenin-induced differentiation is converted to a renewal signal when it temporally overlaps with YAP activation. Similar experiments using RA activation indicate a role in setting nephron progenitor exit from the naive state, the spatial extent of differentiation, and nephron segment bias. Together the data suggest that nephron progenitor interpretation of consistent Wnt/β-catenin differentiation signaling in the niche may be modified by rhythmic activity in ancillary pathways to set the pace of nephron formation. This would synchronize nephron formation with ureteric bud branching, which creates new sites for nephron condensation. Our data bring temporal resolution to the renewal vs. differentiation balance in the nephrogenic niche and inform new strategies to achieve self-sustaining nephron formation in synthetic human kidney tissues.
Collapse
Affiliation(s)
- Sachin N Davis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Samuel H Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - John M Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace Y Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Catherine M Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|
9
|
Kang MJ, Ioannou S, Lougheide Q, Dittmar M, Hsu Y, Pastor-Soler NM. The study of intercalated cells using ex vivo techniques: primary cell culture, cell lines, kidney slices, and organoids. Am J Physiol Cell Physiol 2024; 326:C229-C251. [PMID: 37899748 DOI: 10.1152/ajpcell.00479.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
This review summarizes methods to study kidney intercalated cell (IC) function ex vivo. While important for acid-base homeostasis, IC dysfunction is often not recognized clinically until it becomes severe. The advantage of using ex vivo techniques is that they allow for the differential evaluation of IC function in controlled environments. Although in vitro kidney tubular perfusion is a classical ex vivo technique to study IC, here we concentrate on primary cell cultures, immortalized cell lines, and ex vivo kidney slices. Ex vivo techniques are useful in evaluating IC signaling pathways that allow rapid responses to extracellular changes in pH, CO2, and bicarbonate (HCO3-). However, these methods for IC work can also be challenging, as cell lines that recapitulate IC do not proliferate easily in culture. Moreover, a "pure" IC population in culture does not necessarily replicate its collecting duct (CD) environment, where ICs are surrounded by the more abundant principal cells (PCs). It is reassuring that many findings obtained in ex vivo IC systems signaling have been largely confirmed in vivo. Some of these newly identified signaling pathways reveal that ICs are important for regulating NaCl reabsorption, thus suggesting new frontiers to target antihypertensive treatments. Moreover, recent single-cell characterization studies of kidney epithelial cells revealed a dual developmental origin of IC, as well as the presence of novel CD cell types with certain IC characteristics. These exciting findings present new opportunities for the study of IC ex vivo and will likely rediscover the importance of available tools in this field.NEW & NOTEWORTHY The study of kidney intercalated cells has been limited by current cell culture and kidney tissue isolation techniques. This review is to be used as a reference to select ex vivo techniques to study intercalated cells. We focused on the use of cell lines and kidney slices as potential useful models to study membrane transport proteins. We also review how novel collecting duct organoids may help better elucidate the role of these intriguing cells.
Collapse
Affiliation(s)
- Min Ju Kang
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Silvia Ioannou
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Quinn Lougheide
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Michael Dittmar
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Young Hsu
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Nuria M Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| |
Collapse
|
10
|
Zhou D, Li D, Nie H, Duan J, Liu S, Wang Y, Zuo W. Generation of renal tubular organoids from adult SOX9 + kidney progenitor cells. LIFE MEDICINE 2023; 2:lnad047. [PMID: 39872058 PMCID: PMC11749593 DOI: 10.1093/lifemedi/lnad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/22/2023] [Indexed: 01/29/2025]
Abstract
The pathogenesis of several kidney diseases results in the eventual destruction of the renal tubular system, which can progress to end-stage renal disease. Previous studies have demonstrated the involvement of a population of SOX9-positive cells in kidney regeneration and repair process following kidney injury. However, the ability of these cells to autonomously generate kidney organoids has never been investigated. Here, we isolated SOX9+ kidney progenitor cells (KPCs) from both mice and humans and tested their differentiation potential in vitro. The data showed that the human SOX9+ KPC could self-assemble into organoids with kidney-like morphology. We also used single-cell RNA sequencing to characterize the organoid cell populations and identified four distinct types of renal tubular cells. Compared to the induced pluripotent stem cell-derived kidney organoids, KPC demonstrated more tubular differentiation potential but failed to differentiate into glomerular cells. KPC-derived organoid formation involved the expression of genes related to metanephric development and followed a similar mechanism to renal injury repair in acute kidney injury patients. Altogether, our study provided a potentially useful approach to generating kidney tubular organoids for future application.
Collapse
Affiliation(s)
- Dewei Zhou
- Laboratory of Transplant Engineering and Transplant Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Dandan Li
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hao Nie
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jun Duan
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sarah Liu
- Super Organ R&D Center, Regend Therapeutics, Shanghai 201210, China
| | - Yujia Wang
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Super Organ R&D Center, Regend Therapeutics, Shanghai 201210, China
| | - Wei Zuo
- Laboratory of Transplant Engineering and Transplant Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Super Organ R&D Center, Regend Therapeutics, Shanghai 201210, China
| |
Collapse
|
11
|
Vanslambrouck JM, Tan KS, Mah S, Little MH. Generation of proximal tubule-enhanced kidney organoids from human pluripotent stem cells. Nat Protoc 2023; 18:3229-3252. [PMID: 37770563 DOI: 10.1038/s41596-023-00880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/26/2023] [Indexed: 09/30/2023]
Abstract
Kidney organoids derived from human pluripotent stem cells (hPSCs) are now being used as models of renal disease and nephrotoxicity screening. However, the proximal tubules (PTs), which are responsible for most kidney reabsorption functions, remain immature in kidney organoids with limited expression of critical transporters essential for nephron functionality. Here, we describe a protocol for improved specification of nephron progenitors from hPSCs that results in kidney organoids with elongated proximalized nephrons displaying improved PT maturity compared with those generated using standard kidney organoid protocols. We also describe a methodology for assessing the functionality of the PTs within the organoids and visualizing maturation markers via immunofluorescence. Using these assays, PT-enhanced organoids display increased expression of a range of critical transporters, translating to improved functionality measured by substrate uptake and transport. This protocol consists of an extended (13 d) monolayer differentiation phase, during which time hPSCs are exposed to nephron progenitor maintenance media (CDBLY2), better emulating human metanephric progenitor specification in vivo. Following nephron progenitor specification, the cells are aggregated and cultured as a three-dimensional micromass on an air-liquid interface to facilitate further differentiation and segmentation into proximalized nephrons. Experience in culturing hPSCs is required to conduct this protocol and expertise in kidney organoid generation is advantageous.
Collapse
Affiliation(s)
- Jessica M Vanslambrouck
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ker Sin Tan
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sophia Mah
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Melissa H Little
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Porter CM, Qian GC, Grindel SH, Hughes AJ. Highly-parallel production of designer organoids by mosaic patterning of progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564017. [PMID: 37961546 PMCID: PMC10634829 DOI: 10.1101/2023.10.25.564017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Human organoids are a promising approach for disease modeling and regenerative medicine. However, organoid variability and limited control over morphological outcomes remain significant challenges. Here we extend a DNA 'velcro' cell patterning approach, precisely controlling the number and ratio of human stem cell-derived progenitors contributing to nephron and mosaic nephron/ureteric bud organoids within arrays of microwells. We demonstrate long-term control over organoid size and morphology, decoupled from geometric constraints.
Collapse
Affiliation(s)
- Catherine M. Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace C. Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Samuel H. Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|
13
|
Lo EKW, Velazquez JJ, Peng D, Kwon C, Ebrahimkhani MR, Cahan P. Platform-agnostic CellNet enables cross-study analysis of cell fate engineering protocols. Stem Cell Reports 2023; 18:1721-1742. [PMID: 37478860 PMCID: PMC10444577 DOI: 10.1016/j.stemcr.2023.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/23/2023] Open
Abstract
Optimization of cell engineering protocols requires standard, comprehensive quality metrics. We previously developed CellNet, a computational tool to quantitatively assess the transcriptional fidelity of engineered cells compared with their natural counterparts, based on bulk-derived expression profiles. However, this platform and others were limited in their ability to compare data from different sources, and no current tool makes it easy to compare new protocols with existing state-of-the-art protocols in a standardized manner. Here, we utilized our prior application of the top-scoring pair transformation to build a computational platform, platform-agnostic CellNet (PACNet), to address both shortcomings. To demonstrate the utility of PACNet, we applied it to thousands of samples from over 100 studies that describe dozens of protocols designed to produce seven distinct cell types. We performed an in-depth examination of hepatocyte and cardiomyocyte protocols to identify the best-performing methods, characterize the extent of intra-protocol and inter-lab variation, and identify common off-target signatures, including a surprising neural/neuroendocrine signature in primary liver-derived organoids. We have made PACNet available as an easy-to-use web application, allowing users to assess their protocols relative to our database of reference engineered samples, and as open-source, extensible code.
Collapse
Affiliation(s)
- Emily K W Lo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeremy J Velazquez
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Peng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Jensen KB, Little MH. Organoids are not organs: Sources of variation and misinformation in organoid biology. Stem Cell Reports 2023; 18:1255-1270. [PMID: 37315519 DOI: 10.1016/j.stemcr.2023.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
In the past decade, the term organoid has moved from obscurity to common use to describe a 3D in vitro cellular model of a tissue that recapitulates structural and functional elements of the in vivo organ it models. The term organoid is now applied to structures formed as a result of two distinct processes: the capacity for adult epithelial stem cells to re-create a tissue niche in vitro and the ability to direct the differentiation of pluripotent stem cells to a 3D self-organizing multicellular model of organogenesis. While these two organoid fields rely upon different stem cell types and recapitulate different processes, both share common challenges around robustness, accuracy, and reproducibility. Critically, organoids are not organs. This commentary serves to discuss these challenges, how they impact genuine utility, and shine a light on the need to improve the standards applied to all organoid approaches.
Collapse
Affiliation(s)
- Kim Bak Jensen
- Novo Nordisk Foundation Centre for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Melissa Helen Little
- Novo Nordisk Foundation Centre for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Centre for Stem Cell Medicine, Murdoch Children's Research Institute, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|
15
|
The "3Ds" of Growing Kidney Organoids: Advances in Nephron Development, Disease Modeling, and Drug Screening. Cells 2023; 12:cells12040549. [PMID: 36831216 PMCID: PMC9954122 DOI: 10.3390/cells12040549] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
A kidney organoid is a three-dimensional (3D) cellular aggregate grown from stem cells in vitro that undergoes self-organization, recapitulating aspects of normal renal development to produce nephron structures that resemble the native kidney organ. These miniature kidney-like structures can also be derived from primary patient cells and thus provide simplified context to observe how mutations in kidney-disease-associated genes affect organogenesis and physiological function. In the past several years, advances in kidney organoid technologies have achieved the formation of renal organoids with enhanced numbers of specialized cell types, less heterogeneity, and more architectural complexity. Microfluidic bioreactor culture devices, single-cell transcriptomics, and bioinformatic analyses have accelerated the development of more sophisticated renal organoids and tailored them to become increasingly amenable to high-throughput experimentation. However, many significant challenges remain in realizing the use of kidney organoids for renal replacement therapies. This review presents an overview of the renal organoid field and selected highlights of recent cutting-edge kidney organoid research with a focus on embryonic development, modeling renal disease, and personalized drug screening.
Collapse
|
16
|
Lacueva-Aparicio A, Lindoso RS, Mihăilă SM, Giménez I. Role of extracellular matrix components and structure in new renal models in vitro. Front Physiol 2022; 13:1048738. [PMID: 36569770 PMCID: PMC9767975 DOI: 10.3389/fphys.2022.1048738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM), a complex set of fibrillar proteins and proteoglycans, supports the renal parenchyma and provides biomechanical and biochemical cues critical for spatial-temporal patterning of cell development and acquisition of specialized functions. As in vitro models progress towards biomimicry, more attention is paid to reproducing ECM-mediated stimuli. ECM's role in in vitro models of renal function and disease used to investigate kidney injury and regeneration is discussed. Availability, affordability, and lot-to-lot consistency are the main factors determining the selection of materials to recreate ECM in vitro. While simpler components can be synthesized in vitro, others must be isolated from animal or human tissues, either as single isolated components or as complex mixtures, such as Matrigel or decellularized formulations. Synthetic polymeric materials with dynamic and instructive capacities are also being explored for cell mechanical support to overcome the issues with natural products. ECM components can be used as simple 2D coatings or complex 3D scaffolds combining natural and synthetic materials. The goal is to recreate the biochemical signals provided by glycosaminoglycans and other signaling molecules, together with the stiffness, elasticity, segmentation, and dimensionality of the original kidney tissue, to support the specialized functions of glomerular, tubular, and vascular compartments. ECM mimicking also plays a central role in recent developments aiming to reproduce renal tissue in vitro or even in therapeutical strategies to regenerate renal function. Bioprinting of renal tubules, recellularization of kidney ECM scaffolds, and development of kidney organoids are examples. Future solutions will probably combine these technologies.
Collapse
Affiliation(s)
- Alodia Lacueva-Aparicio
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, Zaragoza, Spain
| | - Rafael Soares Lindoso
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ignacio Giménez
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain,School of Medicine, University of Zaragoza, Zaragoza, Spain,*Correspondence: Ignacio Giménez,
| |
Collapse
|
17
|
Production of kidney organoids arranged around single ureteric bud trees, and containing endogenous blood vessels, solely from embryonic stem cells. Sci Rep 2022; 12:12573. [PMID: 35869233 PMCID: PMC9307805 DOI: 10.1038/s41598-022-16768-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
There is intense worldwide effort in generating kidney organoids from pluripotent stem cells, for research, for disease modelling and, perhaps, for making transplantable organs. Organoids generated from pluripotent stem cells (PSC) possess accurate micro-anatomy, but they lack higher-organization. This is a problem, especially for transplantation, as such organoids will not be able to perform their physiological functions. In this study, we develop a method for generating murine kidney organoids with improved higher-order structure, through stages using chimaeras of ex-fetu and PSC-derived cells to a system that works entirely from embryonic stem cells. These organoids have nephrons organised around a single ureteric bud tree and also make vessels, with the endothelial network approaching podocytes.
Collapse
|
18
|
Dorison A, Forbes TA, Little MH. What can we learn from kidney organoids? Kidney Int 2022; 102:1013-1029. [PMID: 35970244 DOI: 10.1016/j.kint.2022.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022]
Abstract
The ability to generate 3-dimensional models of the developing human kidney via the directed differentiation of pluripotent stem cells-termed kidney organoids-has been hailed as a major advance in experimental nephrology. Although these provide an opportunity to interrogate human development, model-specific kidney diseases facilitate drug screening and even deliver bioengineered tissue; most of these prophetic end points remain to be realized. Indeed, at present we are still finding out what we can learn and what we cannot learn from this approach. In this review, we will summarize the approaches available to generate models of the human kidney from stem cells, the existing successful applications of kidney organoids, their limitations, and remaining challenges.
Collapse
Affiliation(s)
- Aude Dorison
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia; Novo Nordisk Foundation Centre for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas A Forbes
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia; Department of Nephrology, Royal Children's Hospital, Parkville, Melbourne, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, Melbourne, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia; Novo Nordisk Foundation Centre for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
19
|
Mansour F, Hinze C, Telugu NS, Kresoja J, Shaheed IB, Mosimann C, Diecke S, Schmidt-Ott KM. The centrosomal protein 83 (CEP83) regulates human pluripotent stem cell differentiation toward the kidney lineage. eLife 2022; 11:e80165. [PMID: 36222666 PMCID: PMC9629839 DOI: 10.7554/elife.80165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, the mesoderm undergoes patterning into diverse lineages including axial, paraxial, and lateral plate mesoderm (LPM). Within the LPM, the so-called intermediate mesoderm (IM) forms kidney and urogenital tract progenitor cells, while the remaining LPM forms cardiovascular, hematopoietic, mesothelial, and additional progenitor cells. The signals that regulate these early lineage decisions are incompletely understood. Here, we found that the centrosomal protein 83 (CEP83), a centriolar component necessary for primary cilia formation and mutated in pediatric kidney disease, influences the differentiation of human-induced pluripotent stem cells (hiPSCs) toward IM. We induced inactivating deletions of CEP83 in hiPSCs and applied a 7-day in vitro protocol of IM kidney progenitor differentiation, based on timed application of WNT and FGF agonists. We characterized induced mesodermal cell populations using single-cell and bulk transcriptomics and tested their ability to form kidney structures in subsequent organoid culture. While hiPSCs with homozygous CEP83 inactivation were normal regarding morphology and transcriptome, their induced differentiation into IM progenitor cells was perturbed. Mesodermal cells induced after 7 days of monolayer culture of CEP83-deficient hiPCS exhibited absent or elongated primary cilia, displayed decreased expression of critical IM genes (PAX8, EYA1, HOXB7), and an aberrant induction of LPM markers (e.g. FOXF1, FOXF2, FENDRR, HAND1, HAND2). Upon subsequent organoid culture, wildtype cells differentiated to form kidney tubules and glomerular-like structures, whereas CEP83-deficient cells failed to generate kidney cell types, instead upregulating cardiomyocyte, vascular, and more general LPM progenitor markers. Our data suggest that CEP83 regulates the balance of IM and LPM formation from human pluripotent stem cells, identifying a potential link between centriolar or ciliary function and mesodermal lineage induction.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Narasimha Swamy Telugu
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Jelena Kresoja
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Iman B Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Sebastian Diecke
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
20
|
Safi W, Marco A, Moya D, Prado P, Garreta E, Montserrat N. Assessing kidney development and disease using kidney organoids and CRISPR engineering. Front Cell Dev Biol 2022; 10:948395. [PMID: 36120564 PMCID: PMC9479189 DOI: 10.3389/fcell.2022.948395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
The differentiation of human pluripotent stem cells (hPSCs) towards organoids is one of the biggest scientific advances in regenerative medicine. Kidney organoids have not only laid the groundwork for various organ-like tissue systems but also provided insights into kidney embryonic development. Thus, several protocols for the differentiation of renal progenitors or mature cell types have been established. Insights into the interplay of developmental pathways in nephrogenesis and determination of different cell fates have enabled the in vitro recapitulation of nephrogenesis. Here we first provide an overview of kidney morphogenesis and patterning in the mouse model in order to dissect signalling pathways that are key to define culture conditions sustaining renal differentiation from hPSCs. Secondly, we also highlight how genome editing approaches have provided insights on the specific role of different genes and molecular pathways during renal differentiation from hPSCs. Based on this knowledge we further review how CRISPR/Cas9 technology has enabled the recapitulation and correction of cellular phenotypes associated with human renal disease. Last, we also revise how the field has positively benefited from emerging technologies as single cell RNA sequencing and discuss current limitations on kidney organoid technology that will take advantage from bioengineering solutions to help standardizing the use of this model systems to study kidney development and disease.
Collapse
Affiliation(s)
- Wajima Safi
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| | - Andrés Marco
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | | | - Patricia Prado
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| |
Collapse
|
21
|
Tran T, Song CJ, Nguyen T, Cheng SY, McMahon JA, Yang R, Guo Q, Der B, Lindström NO, Lin DCH, McMahon AP. A scalable organoid model of human autosomal dominant polycystic kidney disease for disease mechanism and drug discovery. Cell Stem Cell 2022; 29:1083-1101.e7. [PMID: 35803227 PMCID: PMC11088748 DOI: 10.1016/j.stem.2022.06.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/28/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem-cell-derived organoids are models for human development and disease. We report a modified human kidney organoid system that generates thousands of similar organoids, each consisting of 1-2 nephron-like structures. Single-cell transcriptomic profiling and immunofluorescence validation highlighted patterned nephron-like structures utilizing similar pathways, with distinct morphogenesis, to human nephrogenesis. To examine this platform for therapeutic screening, the polycystic kidney disease genes PKD1 and PKD2 were inactivated by gene editing. PKD1 and PKD2 mutant models exhibited efficient and reproducible cyst formation. Cystic outgrowths could be propagated for months to centimeter-sized cysts. To shed new light on cystogenesis, 247 protein kinase inhibitors (PKIs) were screened in a live imaging assay identifying compounds blocking cyst formation but not overall organoid growth. Scaling and further development of the organoid platform will enable a broader capability for kidney disease modeling and high-throughput drug screens.
Collapse
Affiliation(s)
- Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Cheng Jack Song
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Amgen Research, Cardiometabolic Disorders, 1120 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Trang Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shun-Yang Cheng
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Rui Yang
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel C-H Lin
- Amgen Research, Cardiometabolic Disorders, 1120 Veterans Blvd, South San Francisco, CA 94080, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
22
|
Pode-Shakked N, Devarajan P. Human Stem Cell and Organoid Models to Advance Acute Kidney Injury Diagnostics and Therapeutics. Int J Mol Sci 2022; 23:ijms23137211. [PMID: 35806216 PMCID: PMC9266524 DOI: 10.3390/ijms23137211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury (AKI) is an increasingly common problem afflicting all ages, occurring in over 20% of non-critically ill hospitalized patients and >30% of children and >50% of adults in critical care units. AKI is associated with serious short-term and long-term consequences, and current therapeutic options are unsatisfactory. Large gaps remain in our understanding of human AKI pathobiology, which have hindered the discovery of novel diagnostics and therapeutics. Although animal models of AKI have been extensively studied, these differ significantly from human AKI in terms of molecular and cellular responses. In addition, animal models suffer from interspecies differences, high costs and ethical considerations. Static two-dimensional cell culture models of AKI also have limited utility since they have focused almost exclusively on hypoxic or cytotoxic injury to proximal tubules alone. An optimal AKI model would encompass several of the diverse specific cell types in the kidney that could be targets of injury. Second, it would resemble the human physiological milieu as closely as possible. Third, it would yield sensitive and measurable readouts that are directly applicable to the human condition. In this regard, the past two decades have seen a dramatic shift towards newer personalized human-based models to study human AKI. In this review, we provide recent developments using human stem cells, organoids, and in silico approaches to advance personalized AKI diagnostics and therapeutics.
Collapse
Affiliation(s)
- Naomi Pode-Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel;
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
23
|
Vanslambrouck JM, Wilson SB, Tan KS, Groenewegen E, Rudraraju R, Neil J, Lawlor KT, Mah S, Scurr M, Howden SE, Subbarao K, Little MH. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.10.14.464320. [PMID: 35665006 PMCID: PMC9164445 DOI: 10.1101/2021.10.14.464320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
While pluripotent stem cell-derived kidney organoids are now being used to model renal disease, the proximal nephron remains immature with limited evidence for key functional solute channels. This may reflect early mispatterning of the nephrogenic mesenchyme and/or insufficient maturation. Here we show that enhanced specification to metanephric nephron progenitors results in elongated and radially aligned proximalised nephrons with distinct S1 - S3 proximal tubule cell types. Such PT-enhanced organoids possess improved albumin and organic cation uptake, appropriate KIM-1 upregulation in response to cisplatin, and improved expression of SARS-CoV-2 entry factors resulting in increased viral replication. The striking proximo-distal orientation of nephrons resulted from localized WNT antagonism originating from the organoid stromal core. PT-enhanced organoids represent an improved model to study inherited and acquired proximal tubular disease as well as drug and viral responses.
Collapse
Affiliation(s)
- Jessica M. Vanslambrouck
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sean B. Wilson
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Ker Sin Tan
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Ella Groenewegen
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Jessica Neil
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Kynan T. Lawlor
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Sophia Mah
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Michelle Scurr
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
| | - Sara E. Howden
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Melissa H. Little
- Murdoch Children’s Research Institute, Flemington Rd, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia
- Author for correspondence: M.H.L.: +61 3 9936 6206;
| |
Collapse
|
24
|
Methods for vascularization and perfusion of tissue organoids. Mamm Genome 2022; 33:437-450. [PMID: 35333952 DOI: 10.1007/s00335-022-09951-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/10/2022] [Indexed: 12/17/2022]
Abstract
Tissue organoids or "mini organs" can be invaluable tools for understanding health and disease biology, modeling tissue dynamics, or screening potential drug candidates. Effective vascularization of these models is critical for truly representing the in vivo tissue environment. Not only is the formation of a vascular network, and ultimately a microcirculation, essential for proper distribution and exchange of oxygen and nutrients throughout larger organoids, but vascular cells dynamically communicate with other cells to modulate overall tissue behavior. Additionally, interstitial fluid flow, mediated by a perfused microvasculature, can have profound influences on tissue biology. Thus, a truly functionally and biologically relevant organoid requires a vasculature. Here, we review existing strategies for fabricating and incorporating vascular elements and perfusion within tissue organoids.
Collapse
|
25
|
Wilson SB, Howden SE, Vanslambrouck JM, Dorison A, Alquicira-Hernandez J, Powell JE, Little MH. DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets. Genome Med 2022. [PMID: 35189942 DOI: 10.1101/2021.01.20.427346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND While single-cell transcriptional profiling has greatly increased our capacity to interrogate biology, accurate cell classification within and between datasets is a key challenge. This is particularly so in pluripotent stem cell-derived organoids which represent a model of a developmental system. Here, clustering algorithms and selected marker genes can fail to accurately classify cellular identity while variation in analyses makes it difficult to meaningfully compare datasets. Kidney organoids provide a valuable resource to understand kidney development and disease. However, direct comparison of relative cellular composition between protocols has proved challenging. Hence, an unbiased approach for classifying cell identity is required. METHODS The R package, scPred, was trained on multiple single cell RNA-seq datasets of human fetal kidney. A hierarchical model classified cellular subtypes into nephron, stroma and ureteric epithelial elements. This model, provided in the R package DevKidCC ( github.com/KidneyRegeneration/DevKidCC ), was then used to predict relative cell identity within published kidney organoid datasets generated using distinct cell lines and differentiation protocols, interrogating the impact of such variations. The package contains custom functions for the display of differential gene expression within cellular subtypes. RESULTS DevKidCC was used to directly compare between distinct kidney organoid protocols, identifying differences in relative proportions of cell types at all hierarchical levels of the model and highlighting variations in stromal and unassigned cell types, nephron progenitor prevalence and relative maturation of individual epithelial segments. Of note, DevKidCC was able to distinguish distal nephron from ureteric epithelium, cell types with overlapping profiles that have previously confounded analyses. When applied to a variation in protocol via the addition of retinoic acid, DevKidCC identified a consequential depletion of nephron progenitors. CONCLUSIONS The application of DevKidCC to kidney organoids reproducibly classifies component cellular identity within distinct single-cell datasets. The application of the tool is summarised in an interactive Shiny application, as are examples of the utility of in-built functions for data presentation. This tool will enable the consistent and rapid comparison of kidney organoid protocols, driving improvements in patterning to kidney endpoints and validating new approaches.
Collapse
Affiliation(s)
- Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | | | - Aude Dorison
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
| | - Jose Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Parkville, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, Copenhagen, Denmark.
| |
Collapse
|
26
|
Wilson SB, Howden SE, Vanslambrouck JM, Dorison A, Alquicira-Hernandez J, Powell JE, Little MH. DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets. Genome Med 2022; 14:19. [PMID: 35189942 PMCID: PMC8862535 DOI: 10.1186/s13073-022-01023-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background While single-cell transcriptional profiling has greatly increased our capacity to interrogate biology, accurate cell classification within and between datasets is a key challenge. This is particularly so in pluripotent stem cell-derived organoids which represent a model of a developmental system. Here, clustering algorithms and selected marker genes can fail to accurately classify cellular identity while variation in analyses makes it difficult to meaningfully compare datasets. Kidney organoids provide a valuable resource to understand kidney development and disease. However, direct comparison of relative cellular composition between protocols has proved challenging. Hence, an unbiased approach for classifying cell identity is required. Methods The R package, scPred, was trained on multiple single cell RNA-seq datasets of human fetal kidney. A hierarchical model classified cellular subtypes into nephron, stroma and ureteric epithelial elements. This model, provided in the R package DevKidCC (github.com/KidneyRegeneration/DevKidCC), was then used to predict relative cell identity within published kidney organoid datasets generated using distinct cell lines and differentiation protocols, interrogating the impact of such variations. The package contains custom functions for the display of differential gene expression within cellular subtypes. Results DevKidCC was used to directly compare between distinct kidney organoid protocols, identifying differences in relative proportions of cell types at all hierarchical levels of the model and highlighting variations in stromal and unassigned cell types, nephron progenitor prevalence and relative maturation of individual epithelial segments. Of note, DevKidCC was able to distinguish distal nephron from ureteric epithelium, cell types with overlapping profiles that have previously confounded analyses. When applied to a variation in protocol via the addition of retinoic acid, DevKidCC identified a consequential depletion of nephron progenitors. Conclusions The application of DevKidCC to kidney organoids reproducibly classifies component cellular identity within distinct single-cell datasets. The application of the tool is summarised in an interactive Shiny application, as are examples of the utility of in-built functions for data presentation. This tool will enable the consistent and rapid comparison of kidney organoid protocols, driving improvements in patterning to kidney endpoints and validating new approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01023-z.
Collapse
Affiliation(s)
- Sean B Wilson
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia
| | | | - Aude Dorison
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia
| | - Jose Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.,UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria, Australia. .,Department of Paediatrics, The University of Melbourne, Victoria, Parkville, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Parkville, Australia. .,Novo Nordisk Foundation Centre for Stem Cell Medicine, Copenhagen, Denmark.
| |
Collapse
|
27
|
Dissecting nephron morphogenesis using kidney organoids from human pluripotent stem cells. Curr Opin Genet Dev 2021; 72:22-29. [PMID: 34781071 DOI: 10.1016/j.gde.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022]
Abstract
During kidney development the emergence of complex multicellular shapes such as the nephron (the functional unit of the kidney) rely on spatiotemporally coordinated developmental programs. These involve gene regulatory networks, signaling pathways and mechanical forces, that work in concert to shape and form the nephron(s). The generation of kidney organoids from human pluripotent stem cells now represent an unprecedented experimental set up to study these processes. Here we discuss the potential applications of kidney organoids to advance our knowledge of how mechanical forces and cell fate specification spatiotemporally interact to orchestrate nephron patterning and morphogenesis in humans. Progress in innovative techniques for quantifying and perturbing these processes in a controlled manner will be crucial. A mechanistic understanding of the multicellular dynamic processes occurring during nephrogenesis will pave the way to unveil new mechanisms of human kidney disease.
Collapse
|
28
|
Abstract
The postnatal kidney is predominantly composed of nephron epithelia with the interstitial components representing a small proportion of the final organ, except in the diseased state. This is in stark contrast to the developing organ, which arises from the mesoderm and comprises an expansive stromal population with distinct regional gene expression. In many organs, the identity and ultimate function of an epithelium is tightly regulated by the surrounding stroma during development. However, although the presence of a renal stromal stem cell population has been demonstrated, the focus has been on understanding the process of nephrogenesis whereas the role of distinct stromal components during kidney morphogenesis is less clear. In this Review, we consider what is known about the role of the stroma of the developing kidney in nephrogenesis, where these cells come from as well as their heterogeneity, and reflect on how this information may improve human kidney organoid models.
Collapse
Affiliation(s)
- Sean B. Wilson
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Melissa H. Little
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
29
|
Little MH, Howden SE, Lawlor KT, Vanslambrouck JM. Determining lineage relationships in kidney development and disease. Nat Rev Nephrol 2021; 18:8-21. [PMID: 34594045 DOI: 10.1038/s41581-021-00485-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/17/2022]
Abstract
The lineage relationships of cells provide information about the origins of component cell types during development and repair as well as the source of aberrant cells during disease. Genetic approaches to lineage tracing applied in the mouse have revealed much about how the mammalian kidney forms, including the identification of key progenitors for the nephrons and stromal compartments. Inducible Cre systems have also facilitated lineage tracing studies in the postnatal animal that illustrate the changes in cellular fate that can occur during kidney injury. With the advent of single-cell transcriptional profiling and trajectory analyses, predictions of cellular relationships across development are now being made in model systems, such as the mouse, as well as in human fetal kidney. Importantly, these approaches provide predictions of lineage relationships rather than definitive evidence. Although genetic approaches to the study of lineage have not previously been possible in a human setting, the application of CRISPR-Cas9 gene editing of pluripotent stem cells is beginning to teach us about human lineage relationships.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Parkville, VIC, Australia. .,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia.
| | - Sara E Howden
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Kynan T Lawlor
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | | |
Collapse
|
30
|
Wiraja C, Mori Y, Ichimura T, Hwang J, Xu C, Bonventre JV. Nephrotoxicity Assessment with Human Kidney Tubuloids using Spherical Nucleic Acid-Based mRNA Nanoflares. NANO LETTERS 2021; 21:5850-5858. [PMID: 34156251 PMCID: PMC9844158 DOI: 10.1021/acs.nanolett.1c01840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Drug-induced nephrotoxicity represents an important cause of acute kidney injury with associated patient morbidity and mortality and is often responsible for termination of drug development, after extensive resource allocation. We have developed a human kidney tubuloid system that phenocopies, in 3D culture, kidney proximal tubules, a primary injury site of most nephrotoxicants. Traditional end point assays are often performed on 2D cultures of cells that have lost their differentiated phenotype. Herein, we pair a tubuloid system with Nanoflare (NF) mRNA nanosensors to achieve a facile, real-time assessment of drug nephrotoxicity. Using kidney injury molecule-1 (KIM-1) mRNA as a model injury biomarker, we verify NF specificity in engineered and adenovirus-transfected cells and confirm their efficacy to report tubular cell injury by aristolochic acid and cisplatin. The system also facilitates nephrotoxicity screening as demonstrated with 10 representative anticancer moieties. 5-Fluorouracil and paclitaxel induce acute tubular injury, as reflected by an NF signal increase.
Collapse
Affiliation(s)
- Christian Wiraja
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Yutaro Mori
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Takaharu Ichimura
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jangsun Hwang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Joseph V Bonventre
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
31
|
Djenoune L, Tomar R, Dorison A, Ghobrial I, Schenk H, Hegermann J, Beverly-Staggs L, Hidalgo-Gonzalez A, Little MH, Drummond IA. Autonomous Calcium Signaling in Human and Zebrafish Podocytes Controls Kidney Filtration Barrier Morphogenesis. J Am Soc Nephrol 2021; 32:1697-1712. [PMID: 33911000 PMCID: PMC8425667 DOI: 10.1681/asn.2020101525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/12/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocytes are critical to maintaining the glomerular filtration barrier, and mutations in nephrotic syndrome genes are known to affect podocyte calcium signaling. However, the role of calcium signaling during podocyte development remains unknown. METHODS We undertook live imaging of calcium signaling in developing podocytes, using zebrafish larvae and human kidney organoids. To evaluate calcium signaling during development and in response to channel blockers and genetic defects, the calcium biosensor GCaMP6s was expressed in zebrafish podocytes. We used electron microscopy to evaluate filtration barrier formation in zebrafish, and Fluo-4 to detect calcium signals in differentiating podocytes in human kidney organoids. RESULTS Immature zebrafish podocytes (2.5 days postfertilization) generated calcium transients that correlated with interactions with forming glomerular capillaries. Calcium transients persisted until 4 days postfertilization, and were absent after glomerular barrier formation was complete. We detected similar calcium transients in maturing human organoid glomeruli, suggesting a conserved mechanism. In both models, inhibitors of SERCA or IP3 receptor calcium-release channels blocked calcium transients in podocytes, whereas lanthanum was ineffective, indicating the calcium source is from intracellular podocyte endoplasmic-reticulum stores. Calcium transients were not affected by blocking heartbeat or by blocking development of endothelium or endoderm, and they persisted in isolated glomeruli, suggesting podocyte-autonomous calcium release. Inhibition of expression of phospholipase C-γ1, but not nephrin or phospholipase C-ε1, led to significantly decreased calcium activity. Finally, blocking calcium release affected glomerular shape and podocyte foot process formation, supporting the critical role of calcium signaling in glomerular morphogenesis. CONCLUSIONS These findings establish podocyte cell-autonomous calcium signaling as a prominent and evolutionarily conserved feature of podocyte differentiation and demonstrate its requirement for podocyte foot process formation.
Collapse
Affiliation(s)
- Lydia Djenoune
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ritu Tomar
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Aude Dorison
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Irene Ghobrial
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Heiko Schenk
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Lynne Beverly-Staggs
- Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, Maine
| | | | - Melissa H. Little
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia,Department of Anatomy and Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Iain A. Drummond
- Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, Maine
| |
Collapse
|
32
|
Little MH. Returning to kidney development to deliver synthetic kidneys. Dev Biol 2021; 474:22-36. [PMID: 33333068 PMCID: PMC8052282 DOI: 10.1016/j.ydbio.2020.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022]
Abstract
There is no doubt that the development of transplantable synthetic kidneys could improve the outcome for the many millions of people worldwide suffering from chronic kidney disease. Substantial progress has been made in the last 6 years in the generation of kidney tissue from stem cells. However, the limited scale, incomplete cellular complexity and functional immaturity of such structures suggests we are some way from this goal. While developmental biology has successfully guided advances to date, these human kidney models are limited in their capacity for ongoing nephrogenesis and lack corticomedullary definition, a unified vasculature and a coordinated exit path for urinary filtrate. This review will reassess our developmental understanding of how the mammalian embryo manages to create kidneys, how this has informed our progress to date and how both engineering and developmental biology can continue to guide us towards a synthetic kidney.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Hendriks D, Clevers H, Artegiani B. CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell 2021; 27:705-731. [PMID: 33157047 DOI: 10.1016/j.stem.2020.10.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas technology has revolutionized biological research and holds great therapeutic potential. Here, we review CRISPR-Cas systems and their latest developments with an emphasis on application to human cells. We also discuss how different CRISPR-based strategies can be used to accomplish a particular genome engineering goal. We then review how different CRISPR tools have been used in genome engineering of human stem cells in vitro, covering both the pluripotent (iPSC/ESC) and somatic adult stem cell fields and, in particular, 3D organoid cultures. Finally, we discuss the progress and challenges associated with CRISPR-based genome editing of human stem cells for therapeutic use.
Collapse
Affiliation(s)
- Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands; The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
34
|
Rizki-Safitri A, Traitteur T, Morizane R. Bioengineered Kidney Models: Methods and Functional Assessments. FUNCTION 2021; 2:zqab026. [PMID: 35330622 PMCID: PMC8788738 DOI: 10.1093/function/zqab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023] Open
Abstract
Investigations into bioengineering kidneys have been extensively conducted owing to their potential for preclinical assays and regenerative medicine. Various approaches and methods have been developed to improve the structure and function of bioengineered kidneys. Assessments of functional properties confirm the adequacy of bioengineered kidneys for multipurpose translational applications. This review is to summarize the studies performed in kidney bioengineering in the past decade. We identified 84 original articles from PubMed and Mendeley with keywords of kidney organoid or kidney tissue engineering. Those were categorized into 5 groups based on their approach: de-/recellularization of kidney, reaggregation of kidney cells, kidney organoids, kidney in scaffolds, and kidney-on-a-chip. These models were physiologically assessed by filtration, tubular reabsorption/secretion, hormone production, and nephrotoxicity. We found that bioengineered kidney models have been developed from simple cell cultures to multicellular systems to recapitulate kidney function and diseases. Meanwhile, only about 50% of these studies conducted functional assessments on their kidney models. Factors including cell composition and organization are likely to alter the applicability of physiological assessments in bioengineered kidneys. Combined with recent technologies, physiological assessments importantly contribute to the improvement of the bioengineered kidney model toward repairing and refunctioning the damaged kidney.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tamara Traitteur
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| |
Collapse
|
35
|
Rauth S, Karmakar S, Batra SK, Ponnusamy MP. Recent advances in organoid development and applications in disease modeling. Biochim Biophys Acta Rev Cancer 2021; 1875:188527. [PMID: 33640383 PMCID: PMC8068668 DOI: 10.1016/j.bbcan.2021.188527] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
An improved understanding of stem cell niches, organogenesis, and disease models has paved the way for developing a three-dimensional (3D) organoid culture system. Organoid cultures can be derived from primary tissues (single cells or tissue subunits), adult stem cells (ASCs), induced pluripotent stem cells (iPSCs), or embryonic stem cells (ESCs). As a significant technological breakthrough, 3D organoid models offer a promising approach for understanding the complexities of human diseases ranging from the mechanistic investigation of disease pathogenesis to therapy. Here, we discuss the recent applications, advantages, and limitations of organoids as in vitro models for studying metabolomics, drug development, infectious diseases, and the gut microbiome. We further discuss the use of organoids in cancer modeling using high throughput sequencing approaches.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Saswati Karmakar
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
36
|
Howden SE, Wilson SB, Groenewegen E, Starks L, Forbes TA, Tan KS, Vanslambrouck JM, Holloway EM, Chen YH, Jain S, Spence JR, Little MH. Plasticity of distal nephron epithelia from human kidney organoids enables the induction of ureteric tip and stalk. Cell Stem Cell 2021; 28:671-684.e6. [PMID: 33378647 PMCID: PMC8026527 DOI: 10.1016/j.stem.2020.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/05/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
During development, distinct progenitors contribute to the nephrons versus the ureteric epithelium of the kidney. Indeed, previous human pluripotent stem-cell-derived models of kidney tissue either contain nephrons or pattern specifically to the ureteric epithelium. By re-analyzing the transcriptional distinction between distal nephron and ureteric epithelium in human fetal kidney, we show here that, while existing nephron-containing kidney organoids contain distal nephron epithelium and no ureteric epithelium, this distal nephron segment alone displays significant in vitro plasticity and can adopt a ureteric epithelial tip identity when isolated and cultured in defined conditions. "Induced" ureteric epithelium cultures can be cryopreserved, serially passaged without loss of identity, and transitioned toward a collecting duct fate. Cultures harboring loss-of-function mutations in PKHD1 also recapitulate the cystic phenotype associated with autosomal recessive polycystic kidney disease.
Collapse
Affiliation(s)
- Sara E Howden
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, 3052 VIC, Australia.
| | - Sean B Wilson
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, 3052 VIC, Australia
| | - Ella Groenewegen
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia
| | - Lakshi Starks
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia
| | - Thomas A Forbes
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, 3052 VIC, Australia; Department of Nephrology, Royal Children's Hospital, Flemington Rd, Parkville, Melbourne, 3052 VIC, Australia
| | - Ker Sin Tan
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia
| | | | | | | | | | - Jason R Spence
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Melissa H Little
- Murdoch Children's Research Institute, Parkville, Melbourne, 3052 VIC, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, 3052 VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
37
|
Shimizu T, Yamagata K, Osafune K. Kidney organoids: Research in developmental biology and emerging applications. Dev Growth Differ 2021; 63:166-177. [PMID: 33569792 DOI: 10.1111/dgd.12714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Kidney organoids generated from human pluripotent stem cells (hPSCs) have drastically changed the field of stem cell research on human kidneys within a few years. They are self-organizing multicellular structures that contain nephron components such as glomeruli and renal tubules in most cases, but hPSC-derived ureteric buds, the progenitors of collecting ducts and ureters, can also form three-dimensional organoids. Today's challenges facing human kidney organoids are further maturation and anatomical integrity in order to achieve a complete model of the developing kidneys and ultimately a complete adult organ. Since chronic kidney disease (CKD) and impaired kidney function are an increasing burden on public health worldwide, there is an urgent need to develop effective treatments for various renal conditions. In this regard, hPSC-derived kidney organoids may impact medicine by providing new translational approaches. The unique ability of kidney organoids derived from disease-specific hPSCs to reproduce human diseases caused by genetic alterations may help provide the next generation of kidney disease models. Recent advances in the field of kidney organoid research have been generally accompanied by progress in developmental biology and other technological breakthroughs. In this review, we consider the current trends in kidney organoid technology, especially focusing on the relationship to the study of human kidney development, and discuss the remaining hurdles and prospects in regenerating human kidney structures beyond organoids.
Collapse
Affiliation(s)
- Tatsuya Shimizu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Lawlor KT, Vanslambrouck JM, Higgins JW, Chambon A, Bishard K, Arndt D, Er PX, Wilson SB, Howden SE, Tan KS, Li F, Hale LJ, Shepherd B, Pentoney S, Presnell SC, Chen AE, Little MH. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. NATURE MATERIALS 2021; 20:260-271. [PMID: 33230326 PMCID: PMC7855371 DOI: 10.1038/s41563-020-00853-9] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/02/2020] [Indexed: 05/23/2023]
Abstract
Directed differentiation of human pluripotent stem cells to kidney organoids brings the prospect of drug screening, disease modelling and the generation of tissue for renal replacement. Currently, these applications are hampered by organoid variability, nephron immaturity, low throughput and limited scale. Here, we apply extrusion-based three-dimensional cellular bioprinting to deliver rapid and high-throughput generation of kidney organoids with highly reproducible cell number and viability. We demonstrate that manual organoid generation can be replaced by 6- or 96-well organoid bioprinting and evaluate the relative toxicity of aminoglycosides as a proof of concept for drug testing. In addition, three-dimensional bioprinting enables precise manipulation of biophysical properties, including organoid size, cell number and conformation, with modification of organoid conformation substantially increasing nephron yield per starting cell number. This facilitates the manufacture of uniformly patterned kidney tissue sheets with functional proximal tubular segments. Hence, automated extrusion-based bioprinting for kidney organoid production delivers improvements in throughput, quality control, scale and structure, facilitating in vitro and in vivo applications of stem cell-derived human kidney tissue.
Collapse
Affiliation(s)
- Kynan T Lawlor
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | - Pei Xuan Er
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sean B Wilson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Ker Sin Tan
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Fanyi Li
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Lorna J Hale
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | | | | | | | | | - Melissa H Little
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
39
|
Uchimura K, Wu H, Yoshimura Y, Humphreys BD. Human Pluripotent Stem Cell-Derived Kidney Organoids with Improved Collecting Duct Maturation and Injury Modeling. Cell Rep 2020; 33:108514. [PMID: 33326782 PMCID: PMC10122187 DOI: 10.1016/j.celrep.2020.108514] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 11/19/2020] [Indexed: 01/28/2023] Open
Abstract
Maximizing the potential of human kidney organoids for drug testing and regenerative medicine and to model development and disease requires addressing cell immaturity, the lack of a mature collecting system, and off-target cell types. By independently generating two kidney progenitor cell populations-metanephric mesenchyme and ureteric bud (UB)-like cells-we could generate kidney organoids with a collecting system. We also identify the hormones aldosterone and arginine vasopressin (AVP) as critical to promote differentiation of collecting duct cell types including both principal cells (PCs) and intercalated cells (ICs). The resulting PCs express aquaporin-2 (AQP2) protein, which undergoes translocation to the apical membrane after vasopressin or forskolin stimulation. By single-cell RNA sequencing (scRNA-seq), we demonstrate improved proximal tubule maturation and reduced off-target cell populations. We also show appropriate downregulation of progenitor cell types, improved modeling of tubular injury, the presence of urothelium (Uro), and the ability of Notch pathway modulation to regulate PC:IC ratios during organoid development.
Collapse
Affiliation(s)
- Kohei Uchimura
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yasuhiro Yoshimura
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
40
|
Romero-Guevara R, Ioannides A, Xinaris C. Kidney Organoids as Disease Models: Strengths, Weaknesses and Perspectives. Front Physiol 2020; 11:563981. [PMID: 33250772 PMCID: PMC7672034 DOI: 10.3389/fphys.2020.563981] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease is a major global health problem, as it affects 10% of the global population and kills millions of patients every year. It is therefore of the utmost importance to develop models that can help us to understand the pathogenesis of CKD and improve our therapeutic strategies. The discovery of human induced pluripotent stem cells (hiPSCs) and, more recently, the development of methods for the generation of 3D organoids, have opened the way for modeling human kidney development and disease in vitro, and testing new drugs directly on human tissue. In this review we will discuss the most recent advances in the field of kidney organoids for modeling disease, as well as the prospective applications of these models for drug screening. We will also emphasize the impact of CRISPR/cas9 genome engineering on the field, point out the current limitations of the existing organoid technologies, and discuss a set of technical developments that may help to overcome limitations and facilitate the incorporation of these exciting tools into basic biomedical research.
Collapse
Affiliation(s)
| | | | - Christodoulos Xinaris
- University of Nicosia Medical School, Nicosia, Cyprus.,Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
41
|
Conway RF, Frum T, Conchola AS, Spence JR. Understanding Human Lung Development through In Vitro Model Systems. Bioessays 2020; 42:e2000006. [PMID: 32310312 PMCID: PMC7433239 DOI: 10.1002/bies.202000006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Indexed: 12/19/2022]
Abstract
An abundance of information about lung development in animal models exists; however, comparatively little is known about lung development in humans. Recent advances using primary human lung tissue combined with the use of human in vitro model systems, such as human pluripotent stem cell-derived tissue, have led to a growing understanding of the mechanisms governing human lung development. They have illuminated key differences between animal models and humans, underscoring the need for continued advancements in modeling human lung development and utilizing human tissue. This review discusses the use of human tissue and the use of human in vitro model systems that have been leveraged to better understand key regulators of human lung development and that have identified uniquely human features of development. This review also examines the implementation and challenges of human model systems and discusses how they can be applied to address knowledge gaps.
Collapse
Affiliation(s)
- Renee F Conway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Ansley S Conchola
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, 48104, USA
| |
Collapse
|
42
|
Yousef Yengej FA, Jansen J, Rookmaaker MB, Verhaar MC, Clevers H. Kidney Organoids and Tubuloids. Cells 2020; 9:E1326. [PMID: 32466429 PMCID: PMC7349753 DOI: 10.3390/cells9061326] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
In the past five years, pluripotent stem cell (PSC)-derived kidney organoids and adult stem or progenitor cell (ASC)-based kidney tubuloids have emerged as advanced in vitro models of kidney development, physiology, and disease. PSC-derived organoids mimic nephrogenesis. After differentiation towards the kidney precursor tissues ureteric bud and metanephric mesenchyme, their reciprocal interaction causes self-organization and patterning in vitro to generate nephron structures that resemble the fetal kidney. ASC tubuloids on the other hand recapitulate renewal and repair in the adult kidney tubule and give rise to long-term expandable and genetically stable cultures that consist of adult proximal tubule, loop of Henle, distal tubule, and collecting duct epithelium. Both organoid types hold great potential for: (1) studies of kidney physiology, (2) disease modeling, (3) high-throughput screening for drug efficacy and toxicity, and (4) regenerative medicine. Currently, organoids and tubuloids are successfully used to model hereditary, infectious, toxic, metabolic, and malignant kidney diseases and to screen for effective therapies. Furthermore, a tumor tubuloid biobank was established, which allows studies of pathogenic mutations and novel drug targets in a large group of patients. In this review, we discuss the nature of kidney organoids and tubuloids and their current and future applications in science and medicine.
Collapse
Affiliation(s)
- Fjodor A. Yousef Yengej
- Hubrecht Institute—Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Jitske Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 24, 6500 HB Nijmegen, The Netherlands;
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children’s Hospital, Geert Grooteplein 24, 6500 HB Nijmegen, The Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.B.R.); (M.C.V.)
| | - Hans Clevers
- Hubrecht Institute—Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| |
Collapse
|
43
|
Little MH, Lawlor KT. Recreating, expanding and using nephron progenitor populations. Nat Rev Nephrol 2020; 16:75-76. [PMID: 31811252 DOI: 10.1038/s41581-019-0238-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Parkville, VIC, Australia. .,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia.
| | - Kynan T Lawlor
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
44
|
Wu H, Humphreys BD. Single Cell Sequencing and Kidney Organoids Generated from Pluripotent Stem Cells. Clin J Am Soc Nephrol 2020; 15:550-556. [PMID: 31992574 PMCID: PMC7133134 DOI: 10.2215/cjn.07470619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Methods to differentiate human pluripotent stem cells into kidney organoids were first introduced about 5 years ago, and since that time, the field has grown substantially. Protocols are producing increasingly complex three-dimensional structures, have been used to model human kidney disease, and have been adapted for high-throughput screening. Over this same time frame, technologies for massively parallel, single-cell RNA sequencing (scRNA-seq) have matured. Now, both of these powerful approaches are being combined to better understand how kidney organoids can be applied to the understanding of kidney development and disease. There are several reasons why this is a synergistic combination. Kidney organoids are complicated and contain many different cell types of variable maturity. scRNA-seq is an unbiased technology that can comprehensively categorize cell types, making it ideally suited to catalog all cell types present in organoids. These same characteristics also make scRNA-seq a powerful approach for quantitative comparisons between protocols, batches, and pluripotent cell lines as it becomes clear that reproducibility and quality can vary across all three variables. Lineage trajectories can be reconstructed using scRNA-seq data, enabling the rational adjustment of differentiation strategies to promote maturation of desired kidney cell types or inhibit differentiation of undesired off-target cell types. Here, we review the ways that scRNA-seq has been successfully applied in the organoid field and predict future applications for this powerful technique. We also review other developing single-cell technologies and discuss how they may be combined, using "multiomic" approaches, to improve our understanding of kidney organoid differentiation and usefulness in modeling development, disease, and toxicity testing.
Collapse
Affiliation(s)
- Haojia Wu
- Division of Nephrology, Department of Medicine; and
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine; and
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
45
|
Steichen C, Giraud S, Hauet T. Combining Kidney Organoids and Genome Editing Technologies for a Better Understanding of Physiopathological Mechanisms of Renal Diseases: State of the Art. Front Med (Lausanne) 2020; 7:10. [PMID: 32118002 PMCID: PMC7010937 DOI: 10.3389/fmed.2020.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Kidney organoids derived from pluripotent stem cells became a real alternative to the use of in vitro cellular models or in vivo animal models. Indeed, the comprehension of the key steps involved during kidney embryonic development led to the establishment of protocols enabling the differentiation of pluripotent stem cells into highly complex and organized structures, composed of various renal cell types. These organoids are linked with one major application based on iPSC technology advantage: the possibility to control iPSC genome, by selecting patients with specific disease or by genome editing tools such as CRISPR/Cas9 system. This allows the generation of kidney organoïds which recapitulate important physiopathological mechanisms such as cyst formation in renal polycystic disease for example. This review will focus on studies combining these both cutting edge technologies i.e., kidney organoid differentiation and genome editing and will describe what are the main advances performed in the comprehension of physiopathological mechanisms of renal diseases, as well as discuss remaining technical barriers and perspectives in the field.
Collapse
Affiliation(s)
- Clara Steichen
- INSERM U1082-IRTOMIT, Poitiers, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France
| | - Sébastien Giraud
- INSERM U1082-IRTOMIT, Poitiers, France.,CHU Poitiers, Service de Biochimie, Poitiers, France
| | - Thierry Hauet
- INSERM U1082-IRTOMIT, Poitiers, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France.,CHU Poitiers, Service de Biochimie, Poitiers, France
| |
Collapse
|
46
|
Abstract
There are now many reports of human kidney organoids generated via the directed differentiation of human pluripotent stem cells (PSCs) based on an existing understanding of mammalian kidney organogenesis. Such kidney organoids potentially represent tractable tools for the study of normal human development and disease with improvements in scale, structure, and functional maturation potentially providing future options for renal regeneration. The utility of such organotypic models, however, will ultimately be determined by their developmental accuracy. While initially inferred from mouse models, recent transcriptional analyses of human fetal kidney have provided greater insight into nephrogenesis. In this review, we discuss how well human kidney organoids model the human fetal kidney and how the remaining differences challenge their utility.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Victoria 3052, Australia
| | - Alexander N Combes
- Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria 3052, Australia
| |
Collapse
|
47
|
Vanslambrouck JM, Wilson SB, Tan KS, Soo JYC, Scurr M, Spijker HS, Starks LT, Neilson A, Cui X, Jain S, Little MH, Howden SE. A Toolbox to Characterize Human Induced Pluripotent Stem Cell-Derived Kidney Cell Types and Organoids. J Am Soc Nephrol 2019; 30:1811-1823. [PMID: 31492807 DOI: 10.1681/asn.2019030303] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The generation of reporter lines for cell identity, lineage, and physiologic state has provided a powerful tool in advancing the dissection of mouse kidney morphogenesis at a molecular level. Although use of this approach is not an option for studying human development in vivo, its application in human induced pluripotent stem cells (iPSCs) is now feasible. METHODS We used CRISPR/Cas9 gene editing to generate ten fluorescence reporter iPSC lines designed to identify nephron progenitors, podocytes, proximal and distal nephron, and ureteric epithelium. Directed differentiation to kidney organoids was performed according to published protocols. Using immunofluorescence and live confocal microscopy, flow cytometry, and cell sorting techniques, we investigated organoid patterning and reporter expression characteristics. RESULTS Each iPSC reporter line formed well patterned kidney organoids. All reporter lines showed congruence of endogenous gene and protein expression, enabling isolation and characterization of kidney cell types of interest. We also demonstrated successful application of reporter lines for time-lapse imaging and mouse transplantation experiments. CONCLUSIONS We generated, validated, and applied a suite of fluorescence iPSC reporter lines for the study of morphogenesis within human kidney organoids. This fluorescent iPSC reporter toolbox enables the visualization and isolation of key populations in forming kidney organoids, facilitating a range of applications, including cellular isolation, time-lapse imaging, protocol optimization, and lineage-tracing approaches. These tools offer promise for enhancing our understanding of this model system and its correspondence with human kidney morphogenesis.
Collapse
Affiliation(s)
| | - Sean B Wilson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Ker Sin Tan
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joanne Y-C Soo
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Michelle Scurr
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - H Siebe Spijker
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lakshi T Starks
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Amber Neilson
- Department of Genetics, Genome Engineering and iPSC Center and
| | - Xiaoxia Cui
- Department of Genetics, Genome Engineering and iPSC Center and
| | - Sanjay Jain
- Department of Medicine, Kidney Translational Research Center, Washington University School of Medicine, St. Louis, Missouri; and
| | - Melissa Helen Little
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; .,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics and.,Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, Department of Paediatrics and
| |
Collapse
|
48
|
Abstract
Kidney organoids are regarded as important tools with which to study the development of the normal and diseased human kidney. Since the first reports of human pluripotent stem cell-derived kidney organoids 5 years ago, kidney organoids have been successfully used to model glomerular and tubular diseases. In parallel, advances in single-cell RNA sequencing have led to identification of a variety of cell types in the organoids, and have shown these to be similar to, but more immature than, human kidney cells in vivo. Protocols for the in vitro expansion of stem cell-derived nephron progenitor cells (NPCs), as well as those for the selective induction of specific lineages, especially glomerular podocytes, have also been reported. Although most current organoids are based on the induction of NPCs, an induction protocol for ureteric buds (collecting duct precursors) has also been developed, and approaches to generate more complex kidney structures may soon be possible. Maturation of organoids is a major challenge, and more detailed analysis of the developing kidney at a single cell level is needed. Eventually, organotypic kidney structures equipped with nephrons, collecting ducts, ureters, stroma and vascular flow are required to generate transplantable kidneys; such attempts are in progress.
Collapse
|
49
|
Combes AN, Phipson B, Lawlor KT, Dorison A, Patrick R, Zappia L, Harvey RP, Oshlack A, Little MH. Single cell analysis of the developing mouse kidney provides deeper insight into marker gene expression and ligand-receptor crosstalk. Development 2019; 146:dev.178673. [PMID: 31118232 DOI: 10.1242/dev.178673] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
Recent advances in the generation of kidney organoids and the culture of primary nephron progenitors from mouse and human have been based on knowledge of the molecular basis of kidney development in mice. Although gene expression during kidney development has been intensely investigated, single cell profiling provides new opportunities to further subsect component cell types and the signalling networks at play. Here, we describe the generation and analysis of 6732 single cell transcriptomes from the fetal mouse kidney [embryonic day (E)18.5] and 7853 sorted nephron progenitor cells (E14.5). These datasets provide improved resolution of cell types and specific markers, including subdivision of the renal stroma and heterogeneity within the nephron progenitor population. Ligand-receptor interaction and pathway analysis reveals novel crosstalk between cellular compartments and associates new pathways with differentiation of nephron and ureteric epithelium cell types. We identify transcriptional congruence between the distal nephron and ureteric epithelium, showing that most markers previously used to identify ureteric epithelium are not specific. Together, this work improves our understanding of metanephric kidney development and provides a template to guide the regeneration of renal tissue.
Collapse
Affiliation(s)
- Alexander N Combes
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia .,Cell Biology, Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Belinda Phipson
- Cell Biology, Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kynan T Lawlor
- Cell Biology, Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia
| | - Aude Dorison
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Ralph Patrick
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Luke Zappia
- Cell Biology, Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia.,School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Kensington, New South Wales 2033, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2010, Australia
| | - Alicia Oshlack
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia.,School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Melissa H Little
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia .,Cell Biology, Murdoch Children's Research Institute, Flemington Rd, Parkville, Victoria 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|