1
|
Li J, Yuan N, Zhai Y, Wang M, Hao M, Liu X, Zhou D, Liu W, Jin Y, Wang A. Protein disulfide isomerase A4 binds to Brucella BtpB and mediates intracellular NAD +/NADH metabolism in RAW264.7 cells. Int Immunopharmacol 2024; 142:113046. [PMID: 39226825 DOI: 10.1016/j.intimp.2024.113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
The Toll/interleukin-1 receptor (TIR) signaling domain is distributed widely in mammalian Toll-like receptors and adaptors, plant nucleotide-binding leucine-rich repeat receptors, and specific bacterial virulence proteins. Proteins that possess TIR domain exhibit NADase activity which is distinct from the canonical signaling function of these domains. However, the effects of bacterial TIR domain proteins on host metabolic switches and the underlying mechanism of NADase activity in these proteins remain unclear. Here, we utilized Brucella TIR domain-containing type IV secretion system effector protein, BtpB, to explore the mechanism of NADase activity in host cells. We showed that using ectopic expression BtpB not only generates depletion of NAD+ but also loss of NADH and ATP in RAW264.7 macrophage cells. Moreover, immunoprecipitation-mass spectrometry, co-immunoprecipitation, and confocal microscope assays revealed that BtpB interacted with host protein disulfide isomerase A4 (PDIA4). The Brucella mutant strain deleted the gene for BtpB, significantly decreased PDIA4 expression. Furthermore, our data revealed that PDIA4 played an important role in regulating intracellular NAD+/NADH levels in macrophages, and PDIA4 overexpression restored the decline of intracellular NAD+ and NADH levels induced by Brucella BtpB. The results provide new insights into the metabolic regulatory activity of TIR domain proteins in the critical human and animal pathogen Brucella.
Collapse
Affiliation(s)
- Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Department of Veterinary Medicine, College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ningqiu Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Minghui Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Dong Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Wei Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Ji Q, Tu Z, Liu J, Zhou Z, Li F, Zhu X, Huang K. RUNX1-PDIA5 Axis Promotes Malignant Progression of Glioblastoma by Regulating CCAR1 Protein Expression. Int J Biol Sci 2024; 20:4364-4381. [PMID: 39247813 PMCID: PMC11379074 DOI: 10.7150/ijbs.92595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/28/2024] [Indexed: 09/10/2024] Open
Abstract
PDIA5 is responsible for modification of disulfide bonds of proteins. However, its impact on the malignant progression of glioblastoma multiforme (GBM) remains unknown. We analyzed the expression and prognostic significance of PDIA5 in cohorts of GBM and clinical samples. The PDIA5 protein was significantly overexpressed in GBM tissues, and higher expression of PDIA5 was statistically associated with a worse prognosis in patients with GBM. Transcriptional data from PDIA5 knockdown GBM cells revealed that downstream regulatory genes of PDIA5 were enriched in malignant regulatory pathways and PDIA5 enhanced the proliferative and invasive abilities of GBM cells. By constructing a PDIA5 CXXC motif mutant plasmid, we found CCAR1 was the vital downstream factor of PDIA5 in regulating GBM malignancy in vitro and in vivo. Additionally, RUNX1 bound to the promoter region of PDIA5 and regulated gene transcription, leading to activation of the PDIA5/CCAR1 regulatory axis in GBM. The RUNX1/PDIA5/CCAR1 axis significantly influenced the malignant behavior of GBM cells. In conclusion, this study comprehensively elucidates the crucial role of PDIA5 in the malignant progression of GBM. Downregulating PDIA5 can mitigate the malignant biological behavior of GBM both in vitro and in vivo, potentially improving the efficacy of treatment for clinical patients with GBM.
Collapse
Affiliation(s)
- Qiankun Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
- Department of Neurosurgery, Zhoukou Central Hospital, Zhoukou, Henan 466000, P. R. China
| | - Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| | - Junzhe Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| | - Zhihong Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| | - Fengze Li
- Queen Mary School, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi 330006, P. R. China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi 330006, P. R. China
| |
Collapse
|
3
|
Jaksch D, Irnstorfer J, Kalman PF, Martinez J. Thioredoxin regulates the redox state and the activity of the human tRNA ligase complex. RNA (NEW YORK, N.Y.) 2023; 29:1856-1869. [PMID: 37648453 PMCID: PMC10653391 DOI: 10.1261/rna.079732.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
The mammalian tRNA ligase complex (tRNA-LC) catalyzes the splicing of intron-containing pre-tRNAs in the nucleus and the splicing of XBP1 mRNA during the unfolded protein response (UPR) in the cytoplasm. We recently reported that the tRNA-LC coevolved with PYROXD1, an essential oxidoreductase that protects the catalytic cysteine of RTCB, the catalytic subunit of the tRNA-LC, against aerobic oxidation. In this study, we show that the oxidoreductase Thioredoxin (TRX) preserves the enzymatic activity of RTCB under otherwise inhibiting concentrations of oxidants. TRX physically interacts with oxidized RTCB, and reduces and reactivates RTCB through the action of its redox-active cysteine pair. We further show that TRX interacts with RTCB at late stages of UPR. Since the interaction requires oxidative conditions, our findings suggest that prolonged UPR generates reactive oxygen species. Thus, our results support a functional role for TRX in securing and repairing the active site of the tRNA-LC, thereby allowing pre-tRNA splicing and UPR to occur when cells encounter mild, but still inhibitory levels of reactive oxygen species.
Collapse
Affiliation(s)
- Dhaarsini Jaksch
- Max Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Johanna Irnstorfer
- Max Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Petra-Franziska Kalman
- Max Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Javier Martinez
- Max Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
4
|
Deng J, Pan T, Liu Z, McCarthy C, Vicencio JM, Cao L, Alfano G, Suwaidan AA, Yin M, Beatson R, Ng T. The role of TXNIP in cancer: a fine balance between redox, metabolic, and immunological tumor control. Br J Cancer 2023; 129:1877-1892. [PMID: 37794178 PMCID: PMC10703902 DOI: 10.1038/s41416-023-02442-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is commonly considered a master regulator of cellular oxidation, regulating the expression and function of Thioredoxin (Trx). Recent work has identified that TXNIP has a far wider range of additional roles: from regulating glucose and lipid metabolism, to cell cycle arrest and inflammation. Its expression is increased by stressors commonly found in neoplastic cells and the wider tumor microenvironment (TME), and, as such, TXNIP has been extensively studied in cancers. In this review, we evaluate the current literature regarding the regulation and the function of TXNIP, highlighting its emerging role in modulating signaling between different cell types within the TME. We then assess current and future translational opportunities and the associated challenges in this area. An improved understanding of the functions and mechanisms of TXNIP in cancers may enhance its suitability as a therapeutic target.
Collapse
Affiliation(s)
- Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caitlin McCarthy
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Jose M Vicencio
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Giovanna Alfano
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Ali Abdulnabi Suwaidan
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Mingzhu Yin
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Richard Beatson
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne 9 Building, London, WC1E 6JF, UK.
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
- Cancer Research UK City of London Centre, London, UK.
| |
Collapse
|
5
|
Sileikaite-Morvaközi I, Hansen WH, Davies MJ, Mandrup-Poulsen T, Hawkins CL. Detrimental Actions of Chlorinated Nucleosides on the Function and Viability of Insulin-Producing Cells. Int J Mol Sci 2023; 24:14585. [PMID: 37834034 PMCID: PMC10572493 DOI: 10.3390/ijms241914585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Neutrophils are innate immune cells that play a key role in pathogen clearance. They contribute to inflammatory diseases, including diabetes, by releasing pro-inflammatory cytokines, reactive oxygen species, and extracellular traps (NETs). NETs contain a DNA backbone and catalytically active myeloperoxidase (MPO), which produces hypochlorous acid (HOCl). Chlorination of the DNA nucleoside 8-chloro-deoxyguanosine has been reported as an early marker of inflammation in diabetes. In this study, we examined the reactivity of different chlorinated nucleosides, including 5-chloro-(deoxy)cytidine (5ClC, 5CldC), 8-chloro-(deoxy)adenosine (8ClA, 8CldA) and 8-chloro-(deoxy)guanosine (8ClG, 8CldG), with the INS-1E β-cell line. Exposure of INS-1E cells to 5CldC, 8CldA, 8ClA, and 8CldG decreased metabolic activity and intracellular ATP, and, together with 8ClG, induced apoptotic cell death. Exposure to 8ClA, but not the other nucleosides, resulted in sustained endoplasmic reticulum stress, activation of the unfolded protein response, and increased expression of thioredoxin-interacting protein (TXNIP) and heme oxygenase 1 (HO-1). Exposure of INS-1E cells to 5CldC also increased TXNIP and NAD(P)H dehydrogenase quinone 1 (NQO1) expression. In addition, a significant increase in the mRNA expression of NQO1 and GPx4 was seen in INS-1E cells exposed to 8ClG and 8CldA, respectively. However, a significant decrease in intracellular thiols was only observed in INS-1E cells exposed to 8ClG and 8CldG. Finally, a significant decrease in the insulin stimulation index was observed in experiments with all the chlorinated nucleosides, except for 8ClA and 8ClG. Together, these results suggest that increased formation of chlorinated nucleosides during inflammation in diabetes could influence β-cell function and may contribute to disease progression.
Collapse
Affiliation(s)
| | | | | | | | - Clare L. Hawkins
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (I.S.-M.); (M.J.D.); (T.M.-P.)
| |
Collapse
|
6
|
Ali A, Mekhaeil B, Biziotis OD, Tsakiridis EE, Ahmadi E, Wu J, Wang S, Singh K, Menjolian G, Farrell T, Mesci A, Liu S, Berg T, Bramson JL, Steinberg GR, Tsakiridis T. The SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapy. Commun Biol 2023; 6:919. [PMID: 37684337 PMCID: PMC10491589 DOI: 10.1038/s42003-023-05289-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Radiotherapy is a non-invasive standard treatment for prostate cancer (PC). However, PC develops radio-resistance, highlighting a need for agents to improve radiotherapy response. Canagliflozin, an inhibitor of sodium-glucose co-transporter-2, is approved for use in diabetes and heart failure, but is also shown to inhibit PC growth. However, whether canagliflozin can improve radiotherapy response in PC remains unknown. Here, we show that well-tolerated doses of canagliflozin suppress proliferation and survival of androgen-sensitive and insensitive human PC cells and tumors and sensitize them to radiotherapy. Canagliflozin blocks mitochondrial respiration, promotes AMPK activity, inhibits the MAPK and mTOR-p70S6k/4EBP1 pathways, activates cell cycle checkpoints, and inhibits proliferation in part through HIF-1α suppression. Canagliflozin mediates transcriptional reprogramming of several metabolic and survival pathways known to be regulated by ETS and E2F family transcription factors. Genes downregulated by canagliflozin are associated with poor PC prognosis. This study lays the groundwork for clinical investigation of canagliflozin in PC prevention and treatment in combination with radiotherapy.
Collapse
Affiliation(s)
- Amr Ali
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Bassem Mekhaeil
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
| | - Olga-Demetra Biziotis
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Departments of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elham Ahmadi
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Jianhan Wu
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Departments of Medicine, McMaster University, Hamilton, ON, Canada
| | - Simon Wang
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Kanwaldeep Singh
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Gabe Menjolian
- Department of Radiotherapy, Juravinski Cancer Center, Hamilton, ON, Canada
| | - Thomas Farrell
- Department of Physics, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Aruz Mesci
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Department of Radiation Oncology, Juravinski Cancer Center, Hamilton, ON, Canada
| | - Stanley Liu
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Tobias Berg
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Jonathan L Bramson
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Departments of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Theodoros Tsakiridis
- Departments of Oncology, McMaster University, Hamilton, ON, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada.
- Department of Radiation Oncology, Juravinski Cancer Center, Hamilton, ON, Canada.
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
8
|
Chetot T, Serfaty X, Carret L, Kriznik A, Sophie-Rahuel-Clermont, Grand L, Jacolot M, Popowycz F, Benoit E, Lambert V, Lattard V. Splice variants of protein disulfide isomerase - identification, distribution and functional characterization in the rat. Biochim Biophys Acta Gen Subj 2023; 1867:130280. [PMID: 36423740 DOI: 10.1016/j.bbagen.2022.130280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Protein Disulfide Isomerase (PDI) enzyme is an emerging therapeutic target in oncology and hematology. Although PDI reductase activity has been studied with isolated fragments of the protein, natural structural variations affecting reductase activity have not been addressed. METHODS In this study, we discovered four coding splice variants of the Pdi pre-mRNA in rats. In vitro Michaelis constants and apparent maximum steady-state rate constants after purification and distribution in different rat tissues were determined. RESULTS The consensus sequence was found to be the most expressed splice variant while the second most expressed variant represents 15 to 35% of total Pdi mRNA. The third variant shows a quasi-null expression profile and the fourth was not quantifiable. The consensus sequence splice variant and the second splice variant are widely expressed (transcription level) in the liver and even more present in males. Measurements of the reductase activity of recombinant PDI indicate that the consensus sequence and third splice variant are fully active variants. The second most expressed variant, differing by a lack of signal peptide, was found active but less than the consensus sequence. GENERAL SIGNIFICANCE Our work emphasizes the importance of taking splice variants into account when studying PDI-like proteins to understand the full biological functionalities of PDI.
Collapse
Affiliation(s)
- Thomas Chetot
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Xavier Serfaty
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Léna Carret
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | | | | | - Lucie Grand
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 69621 Villeurbanne Cedex, France
| | - Maïwenn Jacolot
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 69621 Villeurbanne Cedex, France
| | - Florence Popowycz
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 69621 Villeurbanne Cedex, France
| | - Etienne Benoit
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Véronique Lambert
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Virginie Lattard
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France.
| |
Collapse
|
9
|
Nakayama Y, Mukai N, Kreitzer G, Patwari P, Yoshioka J. Interaction of ARRDC4 With GLUT1 Mediates Metabolic Stress in the Ischemic Heart. Circ Res 2022; 131:510-527. [PMID: 35950500 PMCID: PMC9444972 DOI: 10.1161/circresaha.122.321351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND An ancient family of arrestin-fold proteins, termed alpha-arrestins, may have conserved roles in regulating nutrient transporter trafficking and cellular metabolism as adaptor proteins. One alpha-arrestin, TXNIP (thioredoxin-interacting protein), is known to regulate myocardial glucose uptake. However, the in vivo role of the related alpha-arrestin, ARRDC4 (arrestin domain-containing protein 4), is unknown. METHODS We first tested whether interaction with GLUTs (glucose transporters) is a conserved function of the mammalian alpha-arrestins. To define the in vivo function of ARRDC4, we generated and characterized a novel Arrdc4 knockout (KO) mouse model. We then analyzed the molecular interaction between arrestin domains and the basal GLUT1. RESULTS ARRDC4 binds to GLUT1, induces its endocytosis, and blocks cellular glucose uptake in cardiomyocytes. Despite the closely shared protein structure, ARRDC4 and its homologue TXNIP operate by distinct molecular pathways. Unlike TXNIP, ARRDC4 does not increase oxidative stress. Instead, ARRDC4 uniquely mediates cardiomyocyte death through its effects on glucose deprivation and endoplasmic reticulum stress. At baseline, Arrdc4-KO mice have mild fasting hypoglycemia. Arrdc4-KO hearts exhibit a robust increase in myocardial glucose uptake and glycogen storage. Accordingly, deletion of Arrdc4 improves energy homeostasis during ischemia and protects cardiomyocytes against myocardial infarction. Furthermore, structure-function analyses of the interaction of ARRDC4 with GLUT1 using both scanning mutagenesis and deep-learning Artificial Intelligence identify specific residues in the C-terminal arrestin-fold domain as the interaction interface that regulates GLUT1 function, revealing a new molecular target for potential therapeutic intervention against myocardial ischemia. CONCLUSIONS These results uncover a new mechanism of ischemic injury in which ARRDC4 drives glucose deprivation-induced endoplasmic reticulum stress leading to cardiomyocyte death. Our findings establish ARRDC4 as a new scaffold protein for GLUT1 that regulates cardiac metabolism in response to ischemia and provide insight into the therapeutic strategy for ischemic heart disease.
Collapse
Affiliation(s)
- Yoshinobu Nakayama
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Nobuhiro Mukai
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Geri Kreitzer
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Parth Patwari
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jun Yoshioka
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Miyahara H, Hasegawa K, Yashiro M, Ohara T, Fujisawa M, Yoshimura T, Matsukawa A, Tsukahara H. Thioredoxin interacting protein protects mice from fasting induced liver steatosis by activating ER stress and its downstream signaling pathways. Sci Rep 2022; 12:4819. [PMID: 35314758 PMCID: PMC8938456 DOI: 10.1038/s41598-022-08791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Under normal conditions, fasting results in decreased protein disulfide isomerase (PDI) activity and accumulation of unfolded proteins, leading to the subsequent activation of the unfolded protein response (UPR)/autophagy signaling pathway to eliminate damaged mitochondria. Fasting also induces upregulation of thioredoxin-interacting protein (TXNIP) expression and mice deficient of this protein (TXNIP-KO mice) was shown to develop severe hypoglycemia, hyperlipidemia and liver steatosis (LS). In the present study, we aimed to determine the role of TXNIP in fasting-induced LS by using male TXNIP-KO mice that developed LS without severe hypoglycemia. In TXNIP-KO mice, fasting induced severe microvesicular LS. Examinations by transmission electron microscopy revealed mitochondria with smaller size and deformities and the presence of few autophagosomes. The expression of β-oxidation-associated genes remained at the same level and the level of LC3-II was low. PDI activity level stayed at the original level and the levels of p-IRE1 and X-box binding protein 1 spliced form (sXBP1) were lower. Interestingly, treatment of TXNIP-KO mice with bacitracin, a PDI inhibitor, restored the level of LC3-II after fasting. These results suggest that TXNIP regulates PDI activity and subsequent activation of the UPR/autophagy pathway and plays a protective role in fasting-induced LS.
Collapse
Affiliation(s)
- Hiroyuki Miyahara
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. .,Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
11
|
Molecular Mechanisms of Amylin Turnover, Misfolding and Toxicity in the Pancreas. Molecules 2022; 27:molecules27031021. [PMID: 35164285 PMCID: PMC8838401 DOI: 10.3390/molecules27031021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022] Open
Abstract
Amyloidosis is a common pathological event in which proteins self-assemble into misfolded soluble and insoluble molecular forms, oligomers and fibrils that are often toxic to cells. Notably, aggregation-prone human islet amyloid polypeptide (hIAPP), or amylin, is a pancreatic hormone linked to islet β-cells demise in diabetics. The unifying mechanism by which amyloid proteins, including hIAPP, aggregate and kill cells is still matter of debate. The pathology of type-2 diabetes mellitus (T2DM) is characterized by extracellular and intracellular accumulation of toxic hIAPP species, soluble oligomers and insoluble fibrils in pancreatic human islets, eventually leading to loss of β-cell mass. This review focuses on molecular, biochemical and cell-biology studies exploring molecular mechanisms of hIAPP synthesis, trafficking and degradation in the pancreas. In addition to hIAPP turnover, the dynamics and the mechanisms of IAPP–membrane interactions; hIAPP aggregation and toxicity in vitro and in situ; and the regulatory role of diabetic factors, such as lipids and cholesterol, in these processes are also discussed.
Collapse
|
12
|
Potential Combination Drug Therapy to Prevent Redox Stress and Mitophagy Dysregulation in Retinal Müller Cells under High Glucose Conditions: Implications for Diabetic Retinopathy. Diseases 2021; 9:diseases9040091. [PMID: 34940029 PMCID: PMC8700204 DOI: 10.3390/diseases9040091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hyperglycemia-induced thioredoxin-interacting protein (TXNIP) expression, associated oxidative/nitrosative stress (ROS/RNS), and mitochondrial dysfunction play critical roles in the etiology of diabetic retinopathy (DR). However, there is no effective drug treatment to prevent or slow down the progression of DR. The purpose of this study is to examine if a combination drug treatment targeting TXNIP and the mitochondria-lysosome pathway prevents high glucose-induced mitochondrial stress and mitophagic flux in retinal Müller glial cells in culture, relevant to DR. We show that diabetes induces TXNIP expression, redox stress, and Müller glia activation (gliosis) in rat retinas when compared to non-diabetic rat retinas. Furthermore, high glucose (HG, 25 mM versus low glucose, LG 5.5 mM) also induces TXNIP expression and mitochondrial stress in a rat retinal Müller cell line, rMC1, in in vitro cultures. Additionally, we develop a mitochondria-targeted mCherry and EGFP probe tagged with two tandem COX8a mitochondrial target sequences (adenovirus-CMV-2×mt8a-CG) to examine mitophagic flux in rMC1. A triple drug combination treatment was applied using TXNIP-IN1 (which inhibits TXNIP interaction with thioredoxin), Mito-Tempo (mitochondrial anti-oxidant), and ML-SA1 (lysosome targeted activator of transient calcium channel MCOLN1/TRPML1 and of transcription factor TFEB) to study the mitochondrial-lysosomal axis dysregulation. We found that HG induces TXNIP expression, redox stress, and mitophagic flux in rMC1 versus LG. Treatment with the triple drug combination prevents mitophagic flux and restores transcription factor TFEB and PGC1α nuclear localization under HG, which is critical for lysosome biosynthesis and mitogenesis, respectively. Our results demonstrate that 2×mt8a-CG is a suitable probe for monitoring mitophagic flux, both in live and fixed cells in in vitro experiments, which may also be applicable to in vivo animal studies, and that the triple drug combination treatment has the potential for preventing retinal injury and disease progression in diabetes.
Collapse
|
13
|
Ricci D, Gidalevitz T, Argon Y. The special unfolded protein response in plasma cells. Immunol Rev 2021; 303:35-51. [PMID: 34368957 DOI: 10.1111/imr.13012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
The high rate of antibody production places considerable metabolic and folding stress on plasma cells (PC). Not surprisingly, they rely on the unfolded protein response (UPR), a universal signaling, and transcriptional network that monitors the health of the secretory pathway and mounts cellular responses to stress. Typically, the UPR utilizes three distinct stress sensors in the ER membrane, each regulating a subset of targets to re-establish homeostasis. PC use a specialized UPR scheme-they preemptively trigger the UPR via developmental signals and suppress two of the sensors, PERK and ATF6, relying on IRE1 alone. The specialized PC UPR program is tuned to the specific needs at every stage of development-from early biogenesis of secretory apparatus, to massive immunoglobulin expression later. Furthermore, the UPR in PC integrates with other pathways essential in a highly secretory cell-mTOR pathway that ensures efficient synthesis, autophagosomes that recycle components of the synthetic machinery, and apoptotic signaling that controls cell fate in the face of excessive folding stress. This specialized PC program is not shared with other secretory cells, for reasons yet to be defined. In this review, we give a perspective into how and why PC need such a unique UPR program.
Collapse
Affiliation(s)
- Daniela Ricci
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Tali Gidalevitz
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Cao X, He W, Pang Y, Cao Y, Qin A. Redox-dependent and independent effects of thioredoxin interacting protein. Biol Chem 2021; 401:1215-1231. [PMID: 32845855 DOI: 10.1515/hsz-2020-0181] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Thioredoxin interacting protein (TXNIP) is an important physiological inhibitor of the thioredoxin (TXN) redox system in cells. Regulation of TXNIP expression and/or activity not only plays an important role in redox regulation but also exerts redox-independent physiological effects that exhibit direct pathophysiological consequences including elevated inflammatory response, aberrant glucose metabolism, cellular senescence and apoptosis, cellular immunity, and tumorigenesis. This review provides a brief overview of the current knowledge concerning the redox-dependent and independent roles of TXNIP and its relevance to various disease states. The implications for the therapeutic targeting of TXNIP will also be discussed.
Collapse
Affiliation(s)
- Xiankun Cao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - Wenxin He
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - Yichuan Pang
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011,People's Republic of China
| | - Yu Cao
- Department of Orthopaedics and Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| | - An Qin
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200011,People's Republic of China
| |
Collapse
|
15
|
Meng J, Wang L, Wang C, Zhao G, Wang H, Xu B, Guo X. AccPDIA6 from Apis cerana cerana plays important roles in antioxidation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104830. [PMID: 33993956 DOI: 10.1016/j.pestbp.2021.104830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
PDIA6 is a member of the protein disulfide isomerase (PDI) family, shows disulfide isomerase activity and oxidoreductase activity, and can act as a molecular chaperone. Its biological functions include modulating apoptosis, regulating the proliferation and invasion of cancer cells, supporting thrombosis and modulating insulin secretion. However, the roles of PDIA6 in Apis cerana cerana are poorly understood. Herein, we obtained the PDIA6 gene from A. cerana cerana (AccPDIA6). We investigated the expression patterns of AccPDIA6 in response to oxidative stress induced by H2O2, UV, HgCl2, extreme temperatures (4 °C, 42 °C) and pesticides (thiamethoxam and hexythiazox) and found that AccPDIA6 was upregulated by these treatments. Western blot analysis indicated that AccPDIA6 was also upregulated by oxidative stress at the protein level. In addition, a survival test demonstrated that the survival rate of E. coli cells expressing AccPDIA6 increased under oxidative stress, suggesting a possible antioxidant function of AccPDIA6. In addition, we tested the transcripts of other antioxidant genes and found that some of them were downregulated in AccPDIA6 knockdown samples. It was also discovered that the antioxidant enzymatic activity of superoxide dismutase (SOD) decreased in AccPDIA6-silenced bees. Moreover, the survival rate of AccPDIA6 knockdown bees decreased under oxidative stress, implying that AccPDIA6 may function in the oxidative stress response by enhancing the viability of honeybees. Taken together, these results indicated that AccPDIA6 may play an essential role in counteracting oxidative stress.
Collapse
Affiliation(s)
- Jie Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
16
|
FoxA2 and RNA Pol II mediate human islet amyloid polypeptide turnover in ER-stressed pancreatic β-cells. Biochem J 2021; 478:1261-1282. [PMID: 33650632 DOI: 10.1042/bcj20200984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022]
Abstract
Here, we investigated transcriptional and trafficking mechanisms of human islet amyloid polypeptide (hIAPP) in normal and stressed β-cells. In high glucose-challenged human islets and rat insulinoma cells overexpressing hIAPP, cell fractionation studies revealed increased accumulation of hIAPP. Unexpectedly, a significant fraction (up to 22%) of hIAPP was found in the nuclear soluble and chromatin-enriched fractions of cultured human islet and rat insulinoma cells. The nucleolar accumulation of monomeric forms of hIAPP did not have any adverse effect on the proliferation of β-cells nor did it affect nucleolar organization or function. However, intact nucleolar organization and function were essential for hIAPP expression under normal and ER-stress conditions as RNA polymerase II inhibitor, α-amanitin, reduced hIAPP protein expression evoked by high glucose and thapsigargin. Promoter activity studies revealed the essential role of transcription factor FoxA2 in hIAPP promoter activation in ER-stressed β-cells. Transcriptome and secretory studies demonstrate that the biosynthetic and secretory capacity of islet β-cells was preserved during ER stress. Thus, the main reason for increased intracellular hIAPP accumulation is its enhanced biosynthesis under these adverse conditions.
Collapse
|
17
|
Nakayama Y, Mukai N, Wang BF, Yang K, Patwari P, Kitsis RN, Yoshioka J. Txnip C247S mutation protects the heart against acute myocardial infarction. J Mol Cell Cardiol 2021; 155:36-49. [PMID: 33652022 DOI: 10.1016/j.yjmcc.2021.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/11/2021] [Accepted: 02/20/2021] [Indexed: 01/15/2023]
Abstract
RATIONALE Thioredoxin-interacting protein (Txnip) is a novel molecular target with translational potential in diverse human diseases. Txnip has several established cellular actions including binding to thioredoxin, a scavenger of reactive oxygen species (ROS). It has been long recognized from in vitro evidence that Txnip forms a disulfide bridge through cysteine 247 (C247) with reduced thioredoxin to inhibit the anti-oxidative properties of thioredoxin. However, the physiological significance of the Txnip-thioredoxin interaction remains largely undefined in vivo. OBJECTIVE A single mutation of Txnip, C247S, abolishes the binding of Txnip with thioredoxin. Using a conditional and inducible approach with a mouse model of a mutant Txnip that does not bind thioredoxin, we tested whether the interaction of thioredoxin with Txnip is required for Txnip's pro-oxidative or cytotoxic effects in the heart. METHODS AND RESULTS Overexpression of Txnip C247S in cells resulted in a reduction in ROS, due to an inability to inhibit thioredoxin. Hypoxia (1% O2, 24 h)-induced killing effects of Txnip were decreased by lower levels of cellular ROS in Txnip C247S-expressing cells compared with wild-type Txnip-expressing cells. Then, myocardial ischemic injuries were assessed in the animal model. Cardiomyocyte-specific Txnip C247S knock-in mice had better survival with smaller infarct size following myocardial infarction (MI) compared to control animals. The absence of Txnip's inhibition of thioredoxin promoted mitochondrial anti-oxidative capacities in cardiomyocytes, thereby protecting the heart from oxidative damage induced by MI. Furthermore, an unbiased RNA sequencing screen identified that hypoxia-inducible factor 1 signaling pathway was involved in Txnip C247S-mediated cardioprotective mechanisms. CONCLUSION Txnip is a cysteine-containing redox protein that robustly regulates the thioredoxin system via a disulfide bond-switching mechanism in adult cardiomyocytes. Our results provide the direct in vivo evidence that regulation of redox state by Txnip is a crucial component for myocardial homeostasis under ischemic stress.
Collapse
Affiliation(s)
- Yoshinobu Nakayama
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, NY, New York, United States of America
| | - Nobuhiro Mukai
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, NY, New York, United States of America
| | - Bing F Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kristen Yang
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, NY, New York, United States of America
| | - Parth Patwari
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jun Yoshioka
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, NY, New York, United States of America; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
18
|
Brocker CN, Kim D, Melia T, Karri K, Velenosi TJ, Takahashi S, Aibara D, Bonzo JA, Levi M, Waxman DJ, Gonzalez FJ. Long non-coding RNA Gm15441 attenuates hepatic inflammasome activation in response to PPARA agonism and fasting. Nat Commun 2020; 11:5847. [PMID: 33203882 PMCID: PMC7673042 DOI: 10.1038/s41467-020-19554-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Exploring the molecular mechanisms that prevent inflammation during caloric restriction may yield promising therapeutic targets. During fasting, activation of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) promotes the utilization of lipids as an energy source. Herein, we show that ligand activation of PPARα directly upregulates the long non-coding RNA gene Gm15441 through PPARα binding sites within its promoter. Gm15441 expression suppresses its antisense transcript, encoding thioredoxin interacting protein (TXNIP). This, in turn, decreases TXNIP-stimulated NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, caspase-1 (CASP1) cleavage, and proinflammatory interleukin 1β (IL1B) maturation. Gm15441-null mice were developed and shown to be more susceptible to NLRP3 inflammasome activation and to exhibit elevated CASP1 and IL1B cleavage in response to PPARα agonism and fasting. These findings provide evidence for a mechanism by which PPARα attenuates hepatic inflammasome activation in response to metabolic stress through induction of lncRNA Gm15441.
Collapse
Affiliation(s)
- Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Thomas J Velenosi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
- Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, 20057, USA
| | - Daisuke Aibara
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jessica A Bonzo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Moshe Levi
- Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, 20057, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20814, USA.
| |
Collapse
|
19
|
Shah A, Dagdeviren S, Lewandowski JP, Schmider AB, Ricci-Blair EM, Natarajan N, Hundal H, Noh HL, Friedline RH, Vidoudez C, Kim JK, Wagers AJ, Soberman RJ, Lee RT. Thioredoxin Interacting Protein Is Required for a Chronic Energy-Rich Diet to Promote Intestinal Fructose Absorption. iScience 2020; 23:101521. [PMID: 32927265 PMCID: PMC7495107 DOI: 10.1016/j.isci.2020.101521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/16/2020] [Accepted: 08/28/2020] [Indexed: 01/02/2023] Open
Abstract
Increased consumption of fats and added sugars has been associated with an increase in metabolic syndromes. Here we show that mice chronically fed an energy-rich diet (ERD) with high fat and moderate sucrose have enhanced the absorption of a gastrointestinal fructose load, and this required expression of the arrestin domain protein Txnip in the intestinal epithelial cells. ERD feeding induced gene and protein expression of Glut5, and this required the expression of Txnip. Furthermore, Txnip interacted with Rab11a, a small GTPase that facilitates the apical localization of Glut5. We also demonstrate that ERD promoted Txnip/Glut5 complexes in the apical intestinal epithelial cell. Our findings demonstrate that ERD facilitates fructose absorption through a Txnip-dependent mechanism in the intestinal epithelial cell, suggesting that increased fructose absorption could potentially provide a mechanism for worsening of metabolic syndromes in the setting of a chronic ERD.
Collapse
Affiliation(s)
- Anu Shah
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jordan P. Lewandowski
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Angela B. Schmider
- Molecular Imaging Core and Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Elisabeth M. Ricci-Blair
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Niranjana Natarajan
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Henna Hundal
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Randall H. Friedline
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Charles Vidoudez
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Jason K. Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Roy J. Soberman
- Molecular Imaging Core and Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Sherman Fairchild Biochemistry Building, 7 Divinity Avenue, Cambridge, MA 02138, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Wu C, Xu H, Li J, Hu X, Wang X, Huang Y, Li Y, Sheng S, Wang Y, Xu H, Ni W, Zhou K. Baicalein Attenuates Pyroptosis and Endoplasmic Reticulum Stress Following Spinal Cord Ischemia-Reperfusion Injury via Autophagy Enhancement. Front Pharmacol 2020; 11:1076. [PMID: 32903577 PMCID: PMC7438740 DOI: 10.3389/fphar.2020.01076] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Spinal cord ischemia-reperfusion injury (SCIRI) is the main complication after the repair of a complex thoracoabdominal aortic aneurysm. Many clinical treatments are not ideal due to the complex pathophysiological process of this injury. Baicalein (BA), a component derived from the roots of the herb Scutellaria baicalensis, may contribute to the successful treatment of ischemia/reperfusion injury. Purpose In the present study, the effects of BA on spinal cord ischemia-reperfusion injury and the underlying mechanisms were assessed. Materials and Methods Spinal cord ischemia was induced in C57BL/6 mice by blocking the aortic arch. Fifty-five mice were then randomly divided into four groups: Sham, SCIR+Vehicle, SCIR+BA, and SCIR+BA +3MA groups. At 0 and 24 h pre-SCIRI and at 24 h and 7 days post-SCIRI, evaluations with the Basso mouse scale (BMS) were performed. On postoperative 24 h, the spinal cord was harvested to assess pyroptosis, endoplasmic reticulum stress mediated apoptosis and autophagy. Results BA enhanced the functional recovery of spinal cord ischemia-reperfusion injury. In addition, BA attenuated pyroptosis, alleviated endoplasmic reticulum stress-mediated apoptosis, and activated autophagy. However, the effects of BA on the functional recovery of SCIRI, pyroptosis and endoplasmic reticulum stress-mediated apoptosis were reversed by the inhibition of autophagy. Conclusions In general, our findings revealed that BA enhances the functional recovery of spinal cord ischemia-reperfusion injury by dampening pyroptosis and alleviating endoplasmic reticulum stress-mediated apoptosis, which are mediated by the activation of autophagy.
Collapse
Affiliation(s)
- Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Xingyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yijia Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Sunren Sheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yongli Wang
- Department of Orthopaedics, Huzhou Central Hospital, Huzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| |
Collapse
|
21
|
Hirata CL, Ito S, Masutani H. Thioredoxin interacting protein (Txnip) forms redox sensitive high molecular weight nucleoprotein complexes. Arch Biochem Biophys 2019; 677:108159. [DOI: 10.1016/j.abb.2019.108159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
|
22
|
Tang V, Fu S, Rayner BS, Hawkins CL. 8-Chloroadenosine induces apoptosis in human coronary artery endothelial cells through the activation of the unfolded protein response. Redox Biol 2019; 26:101274. [PMID: 31307008 PMCID: PMC6629973 DOI: 10.1016/j.redox.2019.101274] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 01/02/2023] Open
Abstract
Infiltration of leukocytes within the vessel at sites of inflammation and the subsequent generation of myeloperoxidase-derived oxidants, including hypochlorous acid, are key characteristics of atherosclerosis. Hypochlorous acid is a potent oxidant that reacts readily with most biological molecules, including DNA and RNA. This results in nucleic acid modification and the formation of different chlorinated products. These products have been used as biomarkers of inflammation, owing to their presence in elevated amounts in different inflammatory fluids and diseased tissue, including atherosclerotic lesions. However, it is not clear whether these materials are simply biomarkers, or could also play a role in the development of chronic inflammatory pathologies. In this study, we examined the reactivity of different chlorinated nucleosides with human coronary artery endothelial cells (HCAEC). Evidence was obtained for the incorporation of each chlorinated nucleoside into the cellular RNA or DNA. However, only 8-chloro-adenosine (8ClA) had a significant effect on the cell viability and metabolic activity. Exposure of HCAEC to 8ClA decreased glycolysis, and resulted in a reduction in ATP, with a corresponding increase in the chlorinated analogue, 8Cl-ATP in the nucleotide pool. 8ClA also induced sustained endoplasmic reticulum stress within the HCAEC, which resulted in activation of the unfolded protein response, the altered expression of antioxidant genes and culminated in the release of calcium into the cytosol and cell death by apoptosis. Taken together, these data provide new insight into pathways by which myeloperoxidase activity and resultant hypochlorous acid generation could promote endothelial cell damage during chronic inflammation, which could be relevant to the progression of atherosclerosis.
Collapse
Affiliation(s)
- Vickie Tang
- Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia; Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Shanlin Fu
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Benjamin S Rayner
- Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Clare L Hawkins
- Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia; Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, DK, 2200, Denmark.
| |
Collapse
|
23
|
Long-Term Exercise Protects against Cellular Stresses in Aged Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2894247. [PMID: 29765493 PMCID: PMC5889853 DOI: 10.1155/2018/2894247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/07/2018] [Accepted: 01/22/2018] [Indexed: 01/09/2023]
Abstract
The current study examined the effect of aging and long-term wheel-running on the expression of heat shock protein (HSP), redox regulation, and endoplasmic reticulum (ER) stress markers in tibialis anterior (T.A.) and soleus muscle of mice. Male mice were divided into young (Y, 3-month-old), old-sedentary (OS, 24-month-old), and old-exercise (OE, 24-month-old) groups. The OE group started voluntary wheel-running at 3 months and continued until 24 months of age. Aging was associated with a higher thioredoxin-interacting protein (TxNiP) level, lower thioredoxin-1 (TRX-1) to TxNiP ratio—a determinant of redox regulation and increased CHOP, an indicator of ER stress-related apoptosis signaling in both muscles. Notably, GRP78, a key indicator of ER stress, was selectively elevated in T.A. Long-term exercise decreased TxNiP in T.A. and soleus muscles and increased the TRX-1/TxNiP ratio in soleus muscle of aged mice. Inducible HSP70 and constituent HSC70 were upregulated, whereas CHOP was reduced after exercise in soleus muscle. Thus, our data demonstrated that aging induced oxidative stress and activated ER stress-related apoptosis signaling in skeletal muscle, whereas long-term wheel-running improved redox regulation, ER stress adaptation and attenuated ER stress-related apoptosis signaling. These findings suggest that life-long exercise can protect against age-related cellular stress.
Collapse
|
24
|
Singh LP, Yumnamcha T, Swornalata Devi T. Mitophagic Flux Deregulation, Lysosomal Destabilization and NLRP3 Inflammasome Activation in Diabetic Retinopathy: Potentials of Gene Therapy Targeting TXNIP and The Redox System. OPHTHALMOLOGY RESEARCH AND REPORTS 2018; 3:ORRT-126. [PMID: 31355373 PMCID: PMC6660147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The retina being a part of the central nervous system consumes large amounts of glucose and oxygen to generate ATP for its visual function. During ATP generation in the mitochondrial electron transport chain, mitochondrial Reactive Oxygen Species (mtROS) is generated as a byproduct. Although anti-oxidants are present in the mitochondrion to counter free radicals, excess mtROS causes damage to mitochondrial proteins, mtDNA, and membrane lipids. Furthermore, damaged mitochondria are inefficient in ATP production but continue to release ROS. Mitochondrial components, when released into the cytosol, are recognized as Danger-Associated Molecular Patterns (DAMPS) by pattern recognition NOD-like receptors including the NLRP3 inflammasome. NLRP3 inflammasomes process inactive pro-caspase-1 to an active caspase-1, which cleaves pro-inflammatory IL-1β to mature IL-1β causing inflammation and premature cell death. To counter the damaging action of mtROS and inflammasomes in fully differentiated retinal cells, the removal of dysfunctional mitochondria is needed by mitophagy, a specific form of lysosomal degradation via autophagy. Nonetheless, mitophagy deregulation, lysosome destabilization and NLRP3 inflammasome activations occur in Diabetic Retinopathy (DR) causing chronic inflammation and disease progression. Recently, the Thioredoxin-interacting protein, TXNIP, has been shown to be induced strongly by high glucose and diabetes inhibiting the anti-oxidant function of Thioredoxin. Subsequently, TXNIP causes mitochondrial dysfunction, oxidative stress, mitophagy deregulation, lysosome destabilization and inflammation in DR. Therefore, gene therapies targeting TXNIP, NLRP3 and/or the redox system have potentials to prevent/slow down retinal damages in DR.
Collapse
Affiliation(s)
- Lalit Pukhrambam Singh
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
- Department of Ophthalmology, Wayne State University School of Medicine, USA
| | - Thangal Yumnamcha
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| | | |
Collapse
|
25
|
Kim HK, Lee GH, Bhattarai KR, Junjappa RP, Lee HY, Handigund M, Marahatta A, Bhandary B, Baek IH, Pyo JS, Kim HK, Chai OH, Kim HR, Lee YC, Chae HJ. PI3Kδ contributes to ER stress-associated asthma through ER-redox disturbances: the involvement of the RIDD-RIG-I-NF-κB axis. Exp Mol Med 2018; 50:e444. [PMID: 29504610 PMCID: PMC5903822 DOI: 10.1038/emm.2017.270] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/16/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
Hyperactivation of phosphoinositol 3-kinase (PI3K) has been suggested to be a potential mechanism for endoplasmic reticulum (ER) stress-enhanced airway hyperresponsiveness, and PI3K inhibitors have been examined as asthma therapeutics. However, the regulatory mechanism linking PI3K to ER stress and related pathological signals in asthma have not been defined. To elucidate these pathogenic pathways, we investigated the influence of a selective PI3Kδ inhibitor, IC87114, on airway inflammation in an ovalbumin/lipopolysaccharide (OVA/LPS)-induced asthma model. In OVA/LPS-induced asthmatic mice, the activity of PI3K, downstream phosphorylation of AKT and activation of nuclear factor-κB (NF-κB) were all significantly elevated; these effects were reversed by IC87114. IC87114 treatment also reduced the OVA/LPS-induced ER stress response by enhancing the intra-ER oxidative folding status through suppression of protein disulfide isomerase activity, ER-associated reactive oxygen species (ROS) accumulation and NOX4 activity. Furthermore, inositol-requiring enzyme-1α (IRE1α)-dependent degradation (RIDD) of IRE1α was reduced by IC87114, resulting in a decreased release of proinflammatory cytokines from bronchial epithelial cells. These results suggest that PI3Kδ may induce severe airway inflammation and hyperresponsiveness by activating NF-κB signaling through ER-associated ROS and RIDD–RIG-I activation. The PI3Kδ inhibitor IC87114 is a potential therapeutic agent against neutrophil-dominant asthma.
Collapse
Affiliation(s)
- Hyun-Kyoung Kim
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Kashi Raj Bhattarai
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Raghu Patil Junjappa
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Hwa-Young Lee
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Mallikarjun Handigund
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Anu Marahatta
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Bidur Bhandary
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - In-Hwan Baek
- College of Pharmacy, Kyungsung University, Busan, Republic of Korea
| | - Jae Sung Pyo
- College of Pharmacy, Kyungsung University, Busan, Republic of Korea
| | - Hye-Kyung Kim
- College of Pharmacy, Kyungsung University, Busan, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Hyung-Ryong Kim
- Daegu Gyeonbuk Institute of Science & Technology (DGIST) Graduate School, Daegu, Republic of Korea
| | - Yong-Chul Lee
- Department of Internal Medicine, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
26
|
Lalit PS, Thangal Y, Fayi Y, Takhellambam SD. Potentials of Gene Therapy for Diabetic Retinopathy: The Use of Nucleic Acid Constructs Containing a TXNIP Promoter. OPEN ACCESS JOURNAL OF OPHTHALMOLOGY 2018; 3. [PMID: 31106306 DOI: 10.23880/oajo-16000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) is considered as a chronic eye disease leading to blindness. DR is associated with hyperglycemia-induced oxidative stress, chronic low-grade inflammation and premature cell death. DR affects retinal capillaries, neuroretina and the retinal pigment epithelium. Recently, the thioredoxin-interacting protein TXNIP has been shown as a pro-oxidative stress, pro-inflammatory and pro-apoptotic protein, highly induced by diabetes and high glucose in all cells examined including the retina. TXNIP's actions involve binding to and inhibition of anti-oxidant and thiol-reducing capacities of thioredoxins (Trx) causing cellular oxidative stress and apoptosis. Trx1 is found in the cytosol and nucleus while Trx2 is the mitochondrial isoform. Several studies provided evidence that knockdown of TXNIP by siRNA or chemical blockade ameliorates early abnormalities of DR including endothelial dysfunction, pericyte apoptosis, Müller cell gliosis and neurodegeneration. Therefore, TXNIP is considered a potential target for preventing or slowing down the progression of DR. We recently proposed that nucleic acid constructs containing a proximal TXNIP promoter linked to a redox gene or shRNA that reduces oxidative stress and inflammation may be used to treat DR. The TXNIP promoter is sensitive to hyperglycemia therefore can drive expression of the linked gene or shRNA under high glucose environment such as seen in diabetes while remaining unresponsive at physiological glucose levels. Such a TXNIP-promoter linked gene or shRNA construct can be delivered to the retina by using adeno-associated viral vectors including AAV2 and AAV2/8 or an appropriate carrier via the intravitreal or sub retinal delivery for long-term gene therapies in DR.
Collapse
Affiliation(s)
- P S Lalit
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA.,Department of Ophthalmology, Wayne State University School of Medicine, USA
| | - Y Thangal
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| | - Y Fayi
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| | - S D Takhellambam
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, USA
| |
Collapse
|
27
|
Nam Dia long, a Vietnamese folk formula, induces apoptosis in MCF-7 cells through various mechanisms of action. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:522. [PMID: 29202775 PMCID: PMC5716261 DOI: 10.1186/s12906-017-2027-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022]
Abstract
Background The holistic approach of traditional medicine renders the identification of its mechanisms of action difficult. Microarray technology provides an efficient way to analyze the complex genome-wide gene expression of cells treated with mixtures of medicinal ingredients. We performed transcriptional profiling of MCF-7 cells treated with Nam Dia Long (NDL), a Vietnamese traditional formula, to explore the mechanism of action underlying the apoptosis inducing effect of this formula reported in a previous study. Methods MCF-7 cells were treated with aqueous extracts of NDL at the IC50 concentration for 24, 36 and 48 h. Total RNAs at 24 h and 48 h were subsequently extracted, reverse transcribed and submitted to microarray expression profiling using the Human HT-12 v4.0 Expression Bead Chip (Illumina). Functional analyses were performed using the Database for Annotation, Visualization and Integrated Discovery and the Ingenuity Pathways Analysis. The expression level from selected genes at the three time points were assessed by quantitative real-time RT-PCR and Western blot. Results Fifty-four and 601 genes were differentially expressed at 24 and 48 h of NDL treatment, respectively. Genes with altered expression at 24 h were mostly involved in cell responses to xenobiotic stress whereas genes differentially expressed at 48 h were related to endoplasmic reticulum stress, DNA damage and cell cycle control. Apoptosis of NDL treated MCF-7 cells resulted from a combination of different mechanisms including the intrinsic and extrinsic pathways, cell cycle arrest- and oxidative stress-related cell death. Conclusion NDL elicited a two-stage response in MCF-7 treated cells with apoptosis as the ultimate result. The various mechanisms inducing apoptosis reflected the complexity of the formula composition. Electronic supplementary material The online version of this article (10.1186/s12906-017-2027-2) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Lee HY, Zeeshan HMA, Kim HR, Chae HJ. Nox4 regulates the eNOS uncoupling process in aging endothelial cells. Free Radic Biol Med 2017; 113:26-35. [PMID: 28916474 DOI: 10.1016/j.freeradbiomed.2017.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/17/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023]
Abstract
ROS and its associated signaling contribute to vascular aging-associated endothelial disturbance. Since the non-effective endothelial nitric oxide synthase (eNOS) coupling status is related to vascular aging-related phenotypes, eNOS coupled/uncoupled system signaling was studied in human umbilical vein endothelial cells (HUVEC). Nitric oxide (NO) and eNOS Ser1177 were significantly decreased, whereas O2- (superoxide anion radical) increased with passage number. In aging cells, NADPH oxidase 4 (Nox4), one of the main superoxide generating enzymes, and its associated protein disulfide isomerase (PDI) chaperone were highly activated, and the resultant ER redox imbalance leads to disturbance of protein folding capability, namely endoplasmic reticulum (ER) stress, ultimately inducing dissociation between HSP90 and IRE-1α or PERK, decreasing HSP90 stability and dissociating the binding of eNOS from the HSP90 and leading to eNOS uncoupling. Through chemical and Nox4 siRNA approaches, Nox4 and its linked ER stress were shown to mainly contribute to eNOS uncoupling and its associated signaling, suggesting that Nox4 and its related ER stress signaling are key signals of the aging process in endothelial cells.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Chonbuk, South Korea
| | - Hafiz Maher Ali Zeeshan
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Chonbuk, South Korea
| | - Hyung-Ryong Kim
- Daegu Gyeonbuk Institute of Science & Technology (DGIST) Graduate School, Daegu, South Korea
| | - Han-Jung Chae
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Chonbuk National University, Jeonju, Chonbuk, South Korea.
| |
Collapse
|
29
|
Hong F, Liu B, Wu BX, Morreall J, Roth B, Davies C, Sun S, Diehl JA, Li Z. CNPY2 is a key initiator of the PERK-CHOP pathway of the unfolded protein response. Nat Struct Mol Biol 2017; 24:834-839. [PMID: 28869608 PMCID: PMC6102046 DOI: 10.1038/nsmb.3458] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 08/08/2017] [Indexed: 12/15/2022]
Abstract
The unfolded protein response (UPR) in the endoplasmic reticulum (ER) is a highly conserved protein quality control mechanism critical for cells to make survival-or-death decisions under ER stress conditions. However, how UPR sensors are activated remains unclear. Here, we report that ER luminal protein canopy homolog 2 (CNPY2) is released from grp78 upon ER stress. Free CNPY2 then engages protein kinase R-like ER kinase (PERK) to induce expression of the transcription factor C/EBP homologous protein (CHOP), thereby initiating the UPR. Indeed, deletion of CNPY2 blocked the PERK-CHOP pathway and protected mice from UPR-induced liver damage and steatosis. Additionally, CNPY2 is transcriptionally upregulated by CHOP in a forward-feed loop to further enhance the UPR signaling. These findings demonstrate the critical roles of CNPY2 in ER stress, and suggest that CNPY2 is a potential new therapeutic target for UPR-related diseases such as metabolic disorders, inflammation and cancer.
Collapse
Affiliation(s)
- Feng Hong
- Department of Microbiology &Immunology, Medical University of South Carolina, Charleston, South Carolina, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bei Liu
- Department of Microbiology &Immunology, Medical University of South Carolina, Charleston, South Carolina, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bill X Wu
- Department of Microbiology &Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jordan Morreall
- Department of Microbiology &Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brady Roth
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shaoli Sun
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - J Alan Diehl
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Zihai Li
- Department of Microbiology &Immunology, Medical University of South Carolina, Charleston, South Carolina, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.,First Affiliated Hospital, Zhengzhou University School of Medicine, Zhengzhou, China
| |
Collapse
|
30
|
Mammalian ECD Protein Is a Novel Negative Regulator of the PERK Arm of the Unfolded Protein Response. Mol Cell Biol 2017; 37:MCB.00030-17. [PMID: 28652267 PMCID: PMC5574048 DOI: 10.1128/mcb.00030-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/17/2017] [Indexed: 01/01/2023] Open
Abstract
Mammalian Ecdysoneless (ECD) is a highly conserved ortholog of the DrosophilaEcd gene product whose mutations impair the synthesis of Ecdysone and produce cell-autonomous survival defects, but the mechanisms by which ECD functions are largely unknown. Here we present evidence that ECD regulates the endoplasmic reticulum (ER) stress response. ER stress induction led to a reduced ECD protein level, but this effect was not seen in PKR-like ER kinase knockout (PERK-KO) or phosphodeficient eukaryotic translation initiation factor 2α (eIF2α) mouse embryonic fibroblasts (MEFs); moreover, ECD mRNA levels were increased, suggesting impaired ECD translation as the mechanism for reduced protein levels. ECD colocalizes and coimmunoprecipitates with PERK and GRP78. ECD depletion increased the levels of both phospho-PERK (p-PERK) and p-eIF2α, and these effects were enhanced upon ER stress induction. Reciprocally, overexpression of ECD led to marked decreases in p-PERK, p-eIF2α, and ATF4 levels but robust increases in GRP78 protein levels. However, GRP78 mRNA levels were unchanged, suggesting a posttranscriptional event. Knockdown of GRP78 reversed the attenuating effect of ECD overexpression on PERK signaling. Significantly, overexpression of ECD provided a survival advantage to cells upon ER stress induction. Taken together, our data demonstrate that ECD promotes survival upon ER stress by increasing GRP78 protein levels to enhance the adaptive folding protein in the ER to attenuate PERK signaling.
Collapse
|
31
|
Lee HY, Kim SW, Lee GH, Choi MK, Chung HW, Lee YC, Kim HR, Kwon HJ, Chae HJ. Curcumin and Curcuma longa L. extract ameliorate lipid accumulation through the regulation of the endoplasmic reticulum redox and ER stress. Sci Rep 2017; 7:6513. [PMID: 28747775 PMCID: PMC5529367 DOI: 10.1038/s41598-017-06872-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/20/2017] [Indexed: 12/13/2022] Open
Abstract
For this study, we examined the effects of curcumin against acute and chronic stress, paying specific attention to ROS. We also aimed to clarify the differences between acute and chronic stress conditions. We investigated the effects of curcumin against acute stress (once/1 day CCl4 treatment) and chronic-stress (every other day/4week CCl4 treatment). Compared with acute stress, in which the antioxidant system functioned properly and aspartate transaminase (AST) and ROS production increased, chronic stress increased AST, alanine aminotransferase (ALT), hepatic enzymes, and ROS more significantly, and the antioxidant system became impaired. We also found that ER-originated ROS accumulated in the chronic model, another difference between the two conditions. ER stress was induced consistently, and oxidative intra-ER protein folding status, representatively PDI, was impaired, especially in chronic stress. The PDI-associated client protein hepatic apoB accumulated with the PDI-binding status in chronic stress, and curcumin recovered the altered ER folding status, regulating ER stress and the resultant hepatic dyslipidemia. Throughout this study, curcumin and curcumin-rich Curcuma longa L. extract promoted recovery from CCl4-induced hepatic toxicity in both stress conditions. For both stress-associated hepatic dyslipidemia, curcumin and Curcuma longa L. extract might be recommendable to recover liver activity.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Seung-Wook Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Min-Kyung Choi
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Han-Wool Chung
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Yong-Chul Lee
- Department of Internal Medicine, School of Medicine, Chonbuk National University, Jeonju, 560-182, Republic of Korea
| | - Hyung-Ryong Kim
- Daegu Gyeonbuk Institute of Science & Technology (DGIST) graduate school, Daegu Gyeonbuk Institute of Science & Technology (DGIST) graduate school, Daegu, Gyeonbuk, South Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752, Republic of Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea.
| |
Collapse
|
32
|
Reactive Oxygen Species Evoked by Potassium Deprivation and Staurosporine Inactivate Akt and Induce the Expression of TXNIP in Cerebellar Granule Neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8930406. [PMID: 28367274 PMCID: PMC5358461 DOI: 10.1155/2017/8930406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/08/2017] [Accepted: 01/22/2017] [Indexed: 12/19/2022]
Abstract
The reactive oxygen species (ROS) play a critical role in neuronal apoptosis; however, the mechanisms are not well understood. It has been shown that thioredoxin-interacting protein (TXNIP) overexpression renders cells more susceptible to oxidative stress and promotes apoptosis and that the activation of PI3K/Akt pathway leads to a downregulation of TXNIP. Here, we evaluated the role of ROS in the regulation of Akt activity and the subsequent regulation of the TXNIP expression in a model of apoptotic death of cerebellar granule neurons (CGN). We observed that two apoptotic conditions that generate ROS at short times led to an increase in the expression of TXNIP in a time-dependent manner; antioxidants significantly reduced this expression. Also, H2O2 caused an increase in TXNIP expression. Moreover, apoptotic conditions induced inactivation of Akt in a time-dependent manner similar to TXNIP expression and H2O2 treatment led to Akt inactivation. Besides, the pharmacological inhibition of Akt increases TXNIP expression and induces CGN cell death. Together, these results suggest that ROS promote neuronal apoptosis through the Akt-TXNIP signaling pathway, supporting the idea that the PI3K/Akt pathway regulates the TXNIP expression. This study highlights the potential importance of this mechanism in neuronal death.
Collapse
|
33
|
Lee JM. Nuclear Receptors Resolve Endoplasmic Reticulum Stress to Improve Hepatic Insulin Resistance. Diabetes Metab J 2017; 41:10-19. [PMID: 28236381 PMCID: PMC5328691 DOI: 10.4093/dmj.2017.41.1.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic endoplasmic reticulum (ER) stress culminating in proteotoxicity contributes to the development of insulin resistance and progression to type 2 diabetes mellitus. Pharmacologic interventions targeting several different nuclear receptors have emerged as potential treatments for insulin resistance. The mechanistic basis for these antidiabetic effects has primarily been attributed to multiple metabolic and inflammatory functions. Here we review recent advances in our understanding of the association of ER stress with insulin resistance and the role of nuclear receptors in promoting ER stress resolution and improving insulin resistance in the liver.
Collapse
Affiliation(s)
- Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Korea.
| |
Collapse
|
34
|
Soares Moretti AI, Martins Laurindo FR. Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum. Arch Biochem Biophys 2016; 617:106-119. [PMID: 27889386 DOI: 10.1016/j.abb.2016.11.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Protein disulfide isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily. As redox folding catalysts from the endoplasmic reticulum (ER), their roles in ER-related redox homeostasis and signaling are well-studied. PDIA1 exerts thiol oxidation/reduction and isomerization, plus chaperone effects. Also, substantial evidence indicates that PDIs regulate thiol-disulfide switches in other cell locations such as cell surface and possibly cytosol. Subcellular PDI translocation routes remain unclear and seem Golgi-independent. The list of signaling and structural proteins reportedly regulated by PDIs keeps growing, via thiol switches involving oxidation, reduction and isomerization, S-(de)nytrosylation, (de)glutathyonylation and protein oligomerization. PDIA1 is required for agonist-triggered Nox NADPH oxidase activation and cell migration in vascular cells and macrophages, while PDIA1-dependent cytoskeletal regulation appears a converging pathway. Extracellularly, PDIs crucially regulate thiol redox signaling of thrombosis/platelet activation, e.g., integrins, and PDIA1 supports expansive caliber remodeling during injury repair via matrix/cytoskeletal organization. Some proteins display regulatory PDI-like motifs. PDI effects are orchestrated by expression levels or post-translational modifications. PDI is redox-sensitive, although probably not a mass-effect redox sensor due to kinetic constraints. Rather, the "all-in-one" organization of its peculiar redox/chaperone properties likely provide PDIs with precision and versatility in redox signaling, making them promising therapeutic targets.
Collapse
Affiliation(s)
- Ana Iochabel Soares Moretti
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
35
|
Hulmi JJ, Hentilä J, DeRuisseau KC, Oliveira BM, Papaioannou KG, Autio R, Kujala UM, Ritvos O, Kainulainen H, Korkmaz A, Atalay M. Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress. Free Radic Biol Med 2016; 99:308-322. [PMID: 27554968 DOI: 10.1016/j.freeradbiomed.2016.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, a model of DMD, under basal conditions and in response to seven weeks of voluntary exercise and/or activin receptor IIB ligand blocking using soluble activin receptor-Fc (sAcvR2B-Fc) administration. In conjunction with reduced muscle strength, mdx muscle displayed greater levels of UPR/ER-pathway indicators including greater protein levels of IRE1α, PERK and Atf6b mRNA. Downstream to IRE1α and PERK, spliced Xbp1 mRNA and phosphorylation of eIF2α, were also increased. Most of the cytoplasmic and ER chaperones and mitochondrial UPR markers were unchanged in mdx muscle. Oxidized glutathione was greater in mdx and was associated with increases in lysine acetylated proteome and phosphorylated sirtuin 1. Exercise increased oxidative stress when performed independently or combined with sAcvR2B-Fc administration. Although neither exercise nor sAcvR2B-Fc administration imparted a clear effect on ER stress/UPR pathways or heat shock proteins, sAcvR2B-Fc administration increased protein expression levels of GRP78/BiP, a triggering factor for ER stress/UPR activation and TxNIP, a redox-regulator of ER stress-induced inflammation. In conclusion, the ER stress and UPR are increased in mdx muscle. However, these processes are not distinctly improved by voluntary exercise or blocking activin receptor IIB ligands and thus do not appear to be optimal therapeutic choices for improving proteostasis in DMD.
Collapse
MESH Headings
- Activating Transcription Factor 6/genetics
- Activating Transcription Factor 6/metabolism
- Activin Receptors, Type II/antagonists & inhibitors
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Disease Models, Animal
- Endoplasmic Reticulum Chaperone BiP
- Endoplasmic Reticulum Stress/drug effects
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Eukaryotic Initiation Factor-2/genetics
- Eukaryotic Initiation Factor-2/metabolism
- Gene Expression Regulation
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Immunoglobulin Fc Fragments/pharmacology
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Phosphorylation/drug effects
- Physical Conditioning, Animal
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proteostasis/drug effects
- Proteostasis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Thioredoxins/genetics
- Thioredoxins/metabolism
- Unfolded Protein Response/drug effects
- X-Box Binding Protein 1/genetics
- X-Box Binding Protein 1/metabolism
- eIF-2 Kinase/genetics
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Juha J Hulmi
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland.
| | - Jaakko Hentilä
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Keith C DeRuisseau
- Syracuse University, Department of Exercise Science, 820 Comstock Ave., 201 WB, Syracuse, NY, USA; Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| | - Bernardo M Oliveira
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Konstantinos G Papaioannou
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Reija Autio
- School of Health Sciences, University of Tampere, Medisiinarinkatu 3, FI-33014, Finland
| | - Urho M Kujala
- Department of Health Sciences, University of Jyväskylä, Rautpohjankatu 8, P.O. Box 35, FI-40014, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Heikki Kainulainen
- University of Jyväskylä, Department of Biology of Physical Activity, Neuromuscular Research Center, P.O. Box 35, FI-40014, Finland
| | - Ayhan Korkmaz
- Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, Physiology, University of Eastern Finland, Yliopistonranta 1 E, 70210 Kuopio, Finland
| |
Collapse
|
36
|
Clarke DJ, Murray E, Faktor J, Mohtar A, Vojtesek B, MacKay CL, Smith PL, Hupp TR. Mass spectrometry analysis of the oxidation states of the pro-oncogenic protein anterior gradient-2 reveals covalent dimerization via an intermolecular disulphide bond. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:551-61. [DOI: 10.1016/j.bbapap.2016.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/23/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
|
37
|
Myers RB, Fomovsky GM, Lee S, Tan M, Wang BF, Patwari P, Yoshioka J. Deletion of thioredoxin-interacting protein improves cardiac inotropic reserve in the streptozotocin-induced diabetic heart. Am J Physiol Heart Circ Physiol 2016; 310:H1748-59. [PMID: 27037370 DOI: 10.1152/ajpheart.00051.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/25/2016] [Indexed: 02/05/2023]
Abstract
Although the precise pathogenesis of diabetic cardiac damage remains unclear, potential mechanisms include increased oxidative stress, autonomic nervous dysfunction, and altered cardiac metabolism. Thioredoxin-interacting protein (Txnip) was initially identified as an inhibitor of the antioxidant thioredoxin but is now recognized as a member of the arrestin superfamily of adaptor proteins that classically regulate G protein-coupled receptor signaling. Here we show that Txnip plays a key role in diabetic cardiomyopathy. High glucose levels induced Txnip expression in rat cardiomyocytes in vitro and in the myocardium of streptozotocin-induced diabetic mice in vivo. While hyperglycemia did not induce cardiac dysfunction at baseline, β-adrenergic challenge revealed a blunted myocardial inotropic response in diabetic animals (24-wk-old male and female C57BL/6;129Sv mice). Interestingly, diabetic mice with cardiomyocyte-specific deletion of Txnip retained a greater cardiac response to β-adrenergic stimulation than wild-type mice. This benefit in Txnip-knockout hearts was not related to the level of thioredoxin activity or oxidative stress. Unlike the β-arrestins, Txnip did not interact with β-adrenergic receptors to desensitize downstream signaling. However, our proteomic and functional analyses demonstrated that Txnip inhibits glucose transport through direct binding to glucose transporter 1 (GLUT1). An ex vivo analysis of perfused hearts further demonstrated that the enhanced functional reserve afforded by deletion of Txnip was associated with myocardial glucose utilization during β-adrenergic stimulation. These data provide novel evidence that hyperglycemia-induced Txnip is responsible for impaired cardiac inotropic reserve by direct regulation of insulin-independent glucose uptake through GLUT1 and plays a role in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ronald B Myers
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gregory M Fomovsky
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samuel Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Max Tan
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bing F Wang
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Parth Patwari
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jun Yoshioka
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Zhang J, Yi M, Zha L, Chen S, Li Z, Li C, Gong M, Deng H, Chu X, Chen J, Zhang Z, Mao L, Sun S. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis. PLoS One 2016; 11:e0147218. [PMID: 26784903 PMCID: PMC4718706 DOI: 10.1371/journal.pone.0147218] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells. METHODS Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5-5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot. RESULTS Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin) and genetic (siRNA targeting BIP and CHOP) methods, the induction of BIP, PDI, IRE1a, and LC3-II was blocked, but PARP cleavage was markedly enhanced. DISCUSSION Taken together, these results suggested that sodium butyrate-induced autophagy was mediated by endoplasmic reticulum stress, and that preventing autophagy by blocking the endoplasmic reticulum stress response enhanced sodium butyrate-induced apoptosis. These results provide novel insights into the anti-tumor mechanisms of butyric acid.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Sha-Tai Rd, Guangzhou, Guangdong, P.R.China, 510515
| | - Man Yi
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Sha-Tai Rd, Guangzhou, Guangdong, P.R.China, 510515
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Sha-Tai Rd, Guangzhou, Guangdong, P.R.China, 510515
| | - Siqiang Chen
- Department of Certification Supervision, Guangdong Entry-Exit Inspection and Quarantine Bureau, Guojian Building, No.66, Huacheng Avenue, Zhujiang Xincheng, Guangzhou, Guangdong Province, P.R. China 510623
| | - Zhijia Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Sha-Tai Rd, Guangzhou, Guangdong, P.R.China, 510515
| | - Cheng Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Sha-Tai Rd, Guangzhou, Guangdong, P.R.China, 510515
| | - Mingxing Gong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Sha-Tai Rd, Guangzhou, Guangdong, P.R.China, 510515
| | - Hong Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Sha-Tai Rd, Guangzhou, Guangdong, P.R.China, 510515
| | - Xinwei Chu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Sha-Tai Rd, Guangzhou, Guangdong, P.R.China, 510515
| | - Jiehua Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Sha-Tai Rd, Guangzhou, Guangdong, P.R.China, 510515
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Sha-Tai Rd, Guangzhou, Guangdong, P.R.China, 510515
| | - Limei Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Sha-Tai Rd, Guangzhou, Guangdong, P.R.China, 510515
| | - Suxia Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Sha-Tai Rd, Guangzhou, Guangdong, P.R.China, 510515
- * E-mail:
| |
Collapse
|
39
|
Zhang L, Zhang L, Cheng X, Gao Y, Bao J, Yu H, Guan H, Sun Y, Lu R. Curcumin induces cell death of human papillary thyroid carcinoma BCPAP cells through endoplasmic reticulum stress. RSC Adv 2016. [DOI: 10.1039/c6ra01515h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Curcumin induced cell death of BCPAP cells via ER stress with activation of the ATF6/XBP-1 signaling pathway and Ca2+ release.
Collapse
Affiliation(s)
- Lixi Zhang
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Li Zhang
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Xian Cheng
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Yanyan Gao
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Jiandong Bao
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Huixin Yu
- Key Laboratory of Nuclear Medicine
- Ministry of Health
- Jiangsu Key Laboratory of Molecular Nuclear Medicine
- Jiangsu Institute of Nuclear Medicine
- Wuxi
| | - Haixia Guan
- Department of Endocrinology & Metabolism and Institute of Endocrinology
- The First Hospital of China Medical University
- Shenyang
- China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing
- China
| | - Rongrong Lu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
40
|
Zhang L, Su J, Xie Q, Zeng L, Wang Y, Yi D, Yu Y, Liu S, Li S, Xu Y. 2-Deoxy-d-Glucose Sensitizes Human Ovarian Cancer Cells to Cisplatin by Increasing ER Stress and Decreasing ATP Stores in Acidic Vesicles. J Biochem Mol Toxicol 2015; 29:572-8. [PMID: 26241884 DOI: 10.1002/jbt.21730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 01/07/2023]
Abstract
Cisplatin is a commonly used chemotherapeutic agent; however, the development of acquired resistance limits its application. Here, we demonstrate that 2-deoxy-d-glucose (2-DG) enhanced the antitumor effects of cisplatin in SKOV3 cells, which include inhibition of proliferation and promotion of apoptosis. Additionally, either cisplatin or 2-DG alone could upregulate the endoplasmic reticulum (ER) stress-associated protein glucose-regulated protein-78 (GRP78). Moreover, exposure to 2-DG increased the expression of GRP78 induced by cisplatin. Cisplatin also upregulated ER stress-associated apoptotic protein 153/C/EBP homology protein (CHOP) in SKOV3 cells. While treatment with 2-DG alone could not upregulate the CHOP expression, a combination of both 2-DG and cisplatin increased the protein levels of CHOP above those induced by Cisplatin alone. Finally, cisplatin mediated an increase in ATP stores within acidic vesicles, whereas 2-DG decreased this effect. These data demonstrate that 2-DG sensitizes SKOV3 cells to cisplatin by increasing ER stress and decreasing ATP stores in acidic vesicles.
Collapse
Affiliation(s)
- Lili Zhang
- School of Public Health, Jilin Medical University, Jilin, Jilin, People's Republic of China
| | - Jing Su
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Qi Xie
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Linchuan Zeng
- School of Public Health, Jilin Medical University, Jilin, Jilin, People's Republic of China
| | - Yan Wang
- School of Public Health, Jilin Medical University, Jilin, Jilin, People's Republic of China
| | - Dan Yi
- Medical Examination Center, Jilin Traditional Chinese and Western Medicine Hospital, Jilin, Jilin, People's Republic of China
| | - Yang Yu
- Medical Research Laboratory, Jilin Medical University, Jilin, Jilin, People's Republic of China
| | - Shibing Liu
- Medical Research Laboratory, Jilin Medical University, Jilin, Jilin, People's Republic of China
| | - Songyan Li
- Medical Research Laboratory, Jilin Medical University, Jilin, Jilin, People's Republic of China
| | - Ye Xu
- Medical Research Laboratory, Jilin Medical University, Jilin, Jilin, People's Republic of China. .,Department of Histology and Embryology, Jilin Medical University, Jilin, Jilin, People's Republic of China.
| |
Collapse
|
41
|
Salvadó L, Palomer X, Barroso E, Vázquez-Carrera M. Targeting endoplasmic reticulum stress in insulin resistance. Trends Endocrinol Metab 2015; 26:438-48. [PMID: 26078196 DOI: 10.1016/j.tem.2015.05.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is involved in the development of insulin resistance and progression to type 2 diabetes mellitus (T2DM). Disruption of ER homeostasis leads to ER stress, which activates the unfolded protein response (UPR). This response is linked to different processes involved in the development of insulin resistance (IR) and T2DM, including inflammation, lipid accumulation, insulin biosynthesis, and β-cell apoptosis. Understanding the mechanisms by which disruption of ER homeostasis leads to IR and its progression to T2DM may offer new pharmacological targets for the treatment and prevention of these diseases. Here, we examine ER stress, the UPR, and downstream pathways in insulin sensitive tissues, and in IR, and offer insights towards therapeutic strategies.
Collapse
Affiliation(s)
- Laia Salvadó
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Palomer
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Barroso
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
42
|
Chong CR, Chan WPA, Nguyen TH, Liu S, Procter NEK, Ngo DT, Sverdlov AL, Chirkov YY, Horowitz JD. Thioredoxin-interacting protein: pathophysiology and emerging pharmacotherapeutics in cardiovascular disease and diabetes. Cardiovasc Drugs Ther 2015; 28:347-60. [PMID: 25088927 DOI: 10.1007/s10557-014-6538-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The thioredoxin system, which consists of thioredoxin (Trx), nicotinamide adenine dinucleotide phosphate (NADPH) and thioredoxin reductase (TrxR), has emerged as a major anti-oxidant involved in the maintenance of cellular physiology and survival. Dysregulation in this system has been associated with metabolic, cardiovascular, and malignant disorders. Thioredoxin-interacting protein (TXNIP), also known as vitamin D-upregulated protein or thioredoxin-binding-protein-2, functions as a physiological inhibitor of Trx, and pathological suppression of Trx by TXNIP has been demonstrated in diabetes and cardiovascular diseases. Furthermore, TXNIP effects are partially Trx-independent; these include direct activation of inflammation and inhibition of glucose uptake. Many of the effects of TXNIP are initiated by its dissociation from intra-nuclear binding with Trx or other SH-containing proteins: these effects include its migration to cytoplasm, modulating stress responses in mitochondria and endoplasmic reticulum, and also potentially activating apoptotic pathways. TXNIP also interacts with the nitric oxide (NO) signaling system, with apparent suppression of NO effect. TXNIP production is modulated by redox stress, glucose levels, hypoxia and several inflammatory activators. In recent studies, it has been shown that therapeutic agents including insulin, metformin, angiotensin converting enzyme inhibitors and calcium channel blockers reduce TXNIP expression, although it is uncertain to what extent TXNIP suppression contributes to their clinical efficacy. This review addresses the role of TXNIP in health and in cardiovascular and metabolic disorders. Finally, the potential advantages (and disadvantages) of pharmacological suppression of TXNIP in cardiovascular disease and diabetes are summarized.
Collapse
Affiliation(s)
- Cher-Rin Chong
- Cardiology and Clinical Pharmacology Department, Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Analysis of the isomerase and chaperone-like activities of an amebic PDI (EhPDI). BIOMED RESEARCH INTERNATIONAL 2015; 2015:286972. [PMID: 25695056 PMCID: PMC4324885 DOI: 10.1155/2015/286972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Protein disulfide isomerases (PDI) are eukaryotic oxidoreductases that catalyze the formation and rearrangement of disulfide bonds during folding of substrate proteins. Structurally, PDI enzymes share as a common feature the presence of at least one active thioredoxin-like domain. PDI enzymes are also involved in holding, refolding, and degradation of unfolded or misfolded proteins during stressful conditions. The EhPDI enzyme (a 38 kDa polypeptide with two active thioredoxin-like domains) has been used as a model to gain insights into protein folding and disulfide bond formation in E. histolytica. Here, we performed a functional complementation assay, using a ΔdsbC mutant of E. coli, to test whether EhPDI exhibits isomerase activity in vivo. Our preliminary results showed that EhPDI exhibits isomerase activity; however, further mutagenic analysis revealed significant differences in the functional role of each thioredoxin-like domain. Additional studies confirmed that EhPDI protects heat-labile enzymes against thermal inactivation, extending our knowledge about its chaperone-like activity. The characterization of EhPDI, as an oxidative folding catalyst with chaperone-like function, represents the initial step to dissect the molecular mechanisms involved in protein folding in E. histolytica.
Collapse
|
44
|
Lycium barbarum polysaccharide improves traumatic cognition via reversing imbalance of apoptosis/regeneration in hippocampal neurons after stress. Life Sci 2015; 121:124-34. [DOI: 10.1016/j.lfs.2014.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023]
|
45
|
Watanabe MM, Laurindo FRM, Fernandes DC. Methods of measuring protein disulfide isomerase activity: a critical overview. Front Chem 2014; 2:73. [PMID: 25232538 PMCID: PMC4153470 DOI: 10.3389/fchem.2014.00073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022] Open
Abstract
Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.
Collapse
Affiliation(s)
- Monica M Watanabe
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine São Paulo, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine São Paulo, Brazil
| | - Denise C Fernandes
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine São Paulo, Brazil
| |
Collapse
|