1
|
Reyes JGA, Ni D, Santner-Nanan B, Pinget GV, Kraftova L, Ashhurst TM, Marsh-Wakefield F, Wishart CL, Tan J, Hsu P, King NJC, Macia L, Nanan R. A unique human cord blood CD8 +CD45RA +CD27 +CD161 + T-cell subset identified by flow cytometric data analysis using Seurat. Immunology 2024; 173:106-124. [PMID: 38798051 DOI: 10.1111/imm.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Advances in single-cell level analytical techniques, especially cytometric approaches, have led to profound innovation in biomedical research, particularly in the field of clinical immunology. This has resulted in an expansion of high-dimensional data, posing great challenges for comprehensive and unbiased analysis. Conventional manual analysis is thus becoming untenable to handle these challenges. Furthermore, most newly developed computational methods lack flexibility and interoperability, hampering their accessibility and usability. Here, we adapted Seurat, an R package originally developed for single-cell RNA sequencing (scRNA-seq) analysis, for high-dimensional flow cytometric data analysis. Based on a 20-marker antibody panel and analyses of T-cell profiles in both adult blood and cord blood (CB), we showcased the robust capacity of Seurat in flow cytometric data analysis, which was further validated by Spectre, another high-dimensional cytometric data analysis package, and conventional manual analysis. Importantly, we identified a unique CD8+ T-cell population defined as CD8+CD45RA+CD27+CD161+ T cell that was predominantly present in CB. We characterised its IFN-γ-producing and potential cytotoxic properties using flow cytometry experiments and scRNA-seq analysis from a published dataset. Collectively, we identified a unique human CB CD8+CD45RA+CD27+CD161+ T-cell subset and demonstrated that Seurat, a widely used package for scRNA-seq analysis, possesses great potential to be repurposed for cytometric data analysis. This facilitates an unbiased and thorough interpretation of complicated high-dimensional data using a single analytical pipeline and opens a novel avenue for data-driven investigation in clinical immunology.
Collapse
Affiliation(s)
- Julen Gabirel Araneta Reyes
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Brigitte Santner-Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Gabriela Veronica Pinget
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Lucie Kraftova
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Thomas Myles Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| | - Felix Marsh-Wakefield
- Liver Injury and Cancer Program, Centenary Institute, Sydney, New South Wales, Australia
- Human Cancer and Viral Immunology Laboratory, The University of Sydney, Sydney, New South Wales, Australia
| | - Claire Leana Wishart
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Viral immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Ramaciotti Facility for Human System Biology, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Hsu
- Kids Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas Jonathan Cole King
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- Viral immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Ramaciotti Facility for Human System Biology, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Nano, The University of Sydney, Sydney, New South Wales, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, The University of Sydney and Centenary Institute, Sydney, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Nepean Hospital, Nepean Blue Mountains Local Health District, Penrith, New South Wales, Australia
- Nepean Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Zhu J, Meganathan I, MacAruthur R, Kassiri Z. Inflammation in Abdominal Aortic Aneurysm: Cause or Comorbidity? Can J Cardiol 2024:S0828-282X(24)00926-7. [PMID: 39181326 DOI: 10.1016/j.cjca.2024.08.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Aortic aneurysm is a potentially deadly disease. It is chronic degeneration of the aortic wall that involves an inflammatory response and the immune system, aberrant remodelling of the extracellular matrix, and maladaptive transformation of the aortic cells. This review article focuses on the role of the inflammatory cells in abdominal aortic aneurysm. Studies in human aneurysmal specimens and animal models have identified various inflammatory cell types that could contribute to formation or expansion of aneurysms. These include the commonly studied leukocytes (neutrophils and macrophages) as well as the less commonly explored natural killer cells, dendritic cells, T cells, and B cells. Despite the well-demonstrated contribution of inflammatory cells and the related signalling pathways to development and expansion of aneurysms, anti-inflammatory therapy approaches have demonstrated limitations and may require additional considerations such as a combinational approach in targeting multiple pathways for significant beneficial outcomes.
Collapse
Affiliation(s)
- Jiechun Zhu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ilamaran Meganathan
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roderick MacAruthur
- Department of Cardiac Surgery, Mazankowski Alberta Heart Institute, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Liu H, Yang P, Chen S, Wang S, Jiang L, Xiao X, Le S, Chen S, Chen X, Ye P, Xia J. Ncf1 knockout in smooth muscle cells exacerbates angiotensin II-induced aortic aneurysm and dissection by activating the STING pathway. Cardiovasc Res 2024; 120:1081-1096. [PMID: 38639325 PMCID: PMC11288755 DOI: 10.1093/cvr/cvae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 04/20/2024] Open
Abstract
AIMS Aortic aneurysm and dissection (AAD) is caused by the progressive loss of aortic smooth muscle cells (SMCs) and is associated with a high mortality rate. Identifying the mechanisms underlying SMC apoptosis is crucial for preventing AAD. Neutrophil cytoplasmic factor 1 (Ncf1) is essential in reactive oxygen species production and SMC apoptosis; Ncf1 absence leads to autoimmune diseases and chronic inflammation. Here, the role of Ncf1 in angiotensin II (Ang II)-induced AAD was investigated. METHODS AND RESULTS Ncf1 expression increased in injured SMCs. Bioinformatic analysis identified Ncf1 as a mediator of AAD-associated SMC damage. Ncf1 expression is positively correlated with DNA replication and repair in SMCs of AAD aortas. AAD incidence increased in Ang II-challenged Sm22CreNcf1fl mice. Transcriptomics showed that Ncf1 knockout activated the stimulator of interferon genes (STING) and cell death pathways. The effects of Ncf1 on SMC death and the STING pathway in vitro were examined. Ncf1 regulated the hydrogen peroxide-mediated activation of the STING pathway and inhibited SMC apoptosis. Mechanistically, Ncf1 knockout promoted the ubiquitination of nuclear factor erythroid 2-related factor 2 (NRF2), thereby inhibiting the negative regulatory effect of NRF2 on the stability of STING mRNA and ultimately promoting STING expression. Additionally, the pharmacological inhibition of STING activation prevented AAD progression. CONCLUSION Ncf1 deficiency in SMCs exacerbated Ang II-induced AAD by promoting NRF2 ubiquitination and degradation and activating the STING pathway. These data suggest that Ncf1 may be a potential therapeutic target for AAD treatment.
Collapse
MESH Headings
- Animals
- Angiotensin II
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Aortic Dissection/chemically induced
- Aortic Dissection/prevention & control
- Signal Transduction
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Apoptosis
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Disease Models, Animal
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice, Knockout
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/pathology
- Aortic Aneurysm/genetics
- Aortic Aneurysm/chemically induced
- Aortic Aneurysm/prevention & control
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/deficiency
- Cells, Cultured
- Mice, Inbred C57BL
- Male
- Ubiquitination
- NADPH Oxidases/metabolism
- NADPH Oxidases/genetics
- Humans
- Mice
Collapse
Affiliation(s)
- Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Peiwen Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shu Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shilin Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xiaoyue Xiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Sheng Le
- Department of Thoracic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Central Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhong Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Ping Ye
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, ShengLi Street 26, Wuhan 430014, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
4
|
Li J, Liu Y, Wei Z, Cheng J, Wu Y. The occurrence and development of abdominal aortic aneurysm may be related to the energy metabolism disorder and local inflammation. Heliyon 2024; 10:e27912. [PMID: 38496900 PMCID: PMC10944252 DOI: 10.1016/j.heliyon.2024.e27912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Background The cellular mechanism of the formation of abdominal aortic aneurysm (AAA) is very complicated. A series of sophisticated events eventually led to significant pathological changes in the anatomical structure and function of the arterial wall and they are still not clear nowadays. Methods We pooled publicly available GEO datasets (GSE57691 and GSE47472) to get a comprehensive comparisons between normal tissues and AAA tissues to try to reveal molecular mechanism underlying the disease. Total 63 AAA samples and 18 normal tissue samples were compared and we fond that there were 784 significantly different gene (DEGs, threshold set as adjusted P < 0.05 and Log FC < 1) were identified. At the same time, we validate the possible signaling factor expression of AAA by comparing the normal tissue of the human body with the AAA tissue. Results In the pathway enrichment, we found that FOXP3 related signaling pathways, inflammation-related cytokine signaling pathways, interleukin-8-CXCR1 related signaling pathways and VEGFA and FGFR1 related signal pathway were significantly enrichmented. In Weighted gene co-expression network analysis (WGCNA), we found that the key hub genes were significantly related to lipid catabolic metabolism, which further verified the possibility that AAA might relate to energy metabolism disorders. Conclusion Based on the comprehensive analysis of previous high-throughput data and the validation of basic experiments, we found that the occurrence of AAA may be related to energy metabolism disorders and local inflammation.
Collapse
Affiliation(s)
- Jun Li
- Department of Endovascular and Vascular Surgery, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yang Liu
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhitao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jie Cheng
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yongfa Wu
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
5
|
Chen M, Yang D, Zhou Y, Yang C, Lin W, Li J, Liu J, Ye J, Huang W, Ma W, Li W, Chen J, Zhang Y, Shi GP, Luo J, Li J, Luo S. Colchicine Blocks Abdominal Aortic Aneurysm Development by Maintaining Vascular Smooth Muscle Cell Homeostasis. Int J Biol Sci 2024; 20:2092-2110. [PMID: 38617538 PMCID: PMC11008260 DOI: 10.7150/ijbs.93544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
Development of non-surgical treatment of human abdominal aortic aneurysm (AAA) has clinical significance. Colchicine emerges as an effective therapeutic regimen in cardiovascular diseases. Yet, whether colchicine slows AAA growth remain controversy. Here, we demonstrated that daily intragastric administration of low-dose colchicine blocked AAA formation, prevented vascular smooth muscle cell (SMC) phenotype switching and apoptosis, and vascular inflammation in both peri-aortic CaPO4 injury and subcutaneous angiotensin-II infusion induced experimental AAA mice models. Mechanistically, colchicine increased global mRNA stability by inhibiting the METTL14/YTHDC1-mediated m6A modification, resulting in increased sclerostin (SOST) expression and consequent inactivation of the WNT/β-catenin signaling pathway in vascular SMCs from mouse AAA lesions and in cultured human aortic SMCs. Moreover, human and mouse AAA lesions all showed increased m6A methylation, decreased SOST expression, and skewed synthetic SMC de-differentiation phenotype, compared to those without AAA. This study uncovers a novel mechanism of colchicine in slowing AAA development by using the METTL14/SOST/WNT/β-catenin axis to control vascular SMC homeostasis in mouse aortic vessels and in human aortic SMCs. Therefore, use of colchicine may benefit AAA patients in clinical practice.
Collapse
Affiliation(s)
- Min Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Dafeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yangzhao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chongzhe Yang
- Department of Geriatrics, National Key Clinic Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenhui Lin
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Jie Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Jitao Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Jiamin Ye
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Wenhui Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Wentao Ma
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Cardiology, Guangdong Provincial People's Hospital Zhuhai Hospital, Zhuhai, China
| | - Jiyan Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Ying Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jianfang Luo
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Jie Li
- Department of Geriatrics, National Key Clinic Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Songyuan Luo
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Hypertension, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
Ren J, Sun Y. Letter by Ren and Sun Regarding Article, "Association of HIV Infection and Incident Abdominal Aortic Aneurysm Among 143 001 Veterans". Circulation 2024; 149:75-76. [PMID: 38153990 DOI: 10.1161/circulationaha.123.066809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Affiliation(s)
- Jian Ren
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Shandong, PR China (J.R., Y.S.)
- Department of Cardiology, Liaocheng Dongchangfu People's Hospital, Liaocheng People's Hospital Dongchangfu Campus, Shandong, PR China (J.R.)
| | - Ying Sun
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong First Medical University, Shandong, PR China (J.R., Y.S.)
| |
Collapse
|
7
|
Loste A, Clément M, Delbosc S, Guedj K, Sénémaud J, Gaston AT, Morvan M, Even G, Gautier G, Eggel A, Arock M, Procopio E, Deschildre C, Louedec L, Michel JB, Deschamps L, Castier Y, Coscas R, Alsac JM, Launay P, Caligiuri G, Nicoletti A, Le Borgne M. Involvement of an IgE/Mast cell/B cell amplification loop in abdominal aortic aneurysm progression. PLoS One 2023; 18:e0295408. [PMID: 38055674 DOI: 10.1371/journal.pone.0295408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
AIMS IgE type immunoglobulins and their specific effector cells, mast cells (MCs), are associated with abdominal aortic aneurysm (AAA) progression. In parallel, immunoglobulin-producing B cells, organised in tertiary lymphoid organs (TLOs) within the aortic wall, have also been linked to aneurysmal progression. We aimed at investigating the potential role and mechanism linking local MCs, TLO B cells, and IgE production in aneurysmal progression. METHODS AND RESULTS Through histological assays conducted on human surgical samples from AAA patients, we uncovered that activated MCs were enriched at sites of unhealed haematomas, due to subclinical aortic wall fissuring, in close proximity to adventitial IgE+ TLO B cells. Remarkably, in vitro the IgEs deriving from these samples enhanced MC production of IL-4, a cytokine which favors IgE class-switching and production by B cells. Finally, the role of MCs in aneurysmal progression was further analysed in vivo in ApoE-/- mice subjected to angiotensin II infusion aneurysm model, through MC-specific depletion after the establishment of dissecting aneurysms. MC-specific depletion improved intramural haematoma healing and reduced aneurysmal progression. CONCLUSIONS Our data suggest that MC located close to aortic wall fissures are activated by adventitial TLO B cell-produced IgEs and participate to their own activation by providing support for further IgE synthesis through IL-4 production. By preventing prompt repair of aortic subclinical fissures, such a runaway MC activation loop could precipitate aneurysmal progression, suggesting that MC-targeting treatments may represent an interesting adjunctive therapy for reducing AAA progression.
Collapse
Affiliation(s)
- Alexia Loste
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Marc Clément
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Sandrine Delbosc
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Kevin Guedj
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Jean Sénémaud
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
- Department of Vascular and Thoracic Surgery, AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
| | - Anh-Thu Gaston
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Marion Morvan
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Guillaume Even
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Grégory Gautier
- DHU FIRE, Paris, France
- INSERM UMRS 1149, Centre de Recherche sur l'Inflammation (CRI), Université Paris Cité, Paris, France
| | - Alexander Eggel
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Michel Arock
- Department of Biology and CNRS UMR8113, Ecole Normale Supérieure de Paris-Saclay, Saclay, France
| | - Emanuele Procopio
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Catherine Deschildre
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Liliane Louedec
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Jean-Baptiste Michel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Lydia Deschamps
- Department of Pathology, AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
| | - Yves Castier
- INSERM UMRS 1149, Centre de Recherche sur l'Inflammation (CRI), Université Paris Cité, Paris, France
| | - Raphaël Coscas
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- Department of Vascular Surgery, AP-HP, Ambroise Paré University Hospital, Université Paris Cité, Boulogne-Billancourt, France
| | - Jean-Marc Alsac
- Department of Vascular Surgery, AP-HP, Hôpital Européen Georges Pompidou, Université Paris Cité, Paris, France
| | - Pierre Launay
- DHU FIRE, Paris, France
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Giuseppina Caligiuri
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
- Department of Cardiology, AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
| | - Antonino Nicoletti
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Marie Le Borgne
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| |
Collapse
|
8
|
Ivanov SM, Tarasova OA, Poroikov VV. Transcriptome-based analysis of human peripheral blood reveals regulators of immune response in different viral infections. Front Immunol 2023; 14:1199482. [PMID: 37795081 PMCID: PMC10546413 DOI: 10.3389/fimmu.2023.1199482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction There are difficulties in creating direct antiviral drugs for all viruses, including new, suddenly arising infections, such as COVID-19. Therefore, pathogenesis-directed therapy is often necessary to treat severe viral infections and comorbidities associated with them. Despite significant differences in the etiopathogenesis of viral diseases, in general, they are associated with significant dysfunction of the immune system. Study of common mechanisms of immune dysfunction caused by different viral infections can help develop novel therapeutic strategies to combat infections and associated comorbidities. Methods To identify common mechanisms of immune functions disruption during infection by nine different viruses (cytomegalovirus, Ebstein-Barr virus, human T-cell leukemia virus type 1, Hepatitis B and C viruses, human immunodeficiency virus, Dengue virus, SARS-CoV, and SARS-CoV-2), we analyzed the corresponding transcription profiles from peripheral blood mononuclear cells (PBMC) using the originally developed pipeline that include transcriptome data collection, processing, normalization, analysis and search for master regulators of several viral infections. The ten datasets containing transcription data from patients infected by nine viruses and healthy people were obtained from Gene Expression Omnibus. The analysis of the data was performed by Genome Enhancer pipeline. Results We revealed common pathways, cellular processes, and master regulators for studied viral infections. We found that all nine viral infections cause immune activation, exhaustion, cell proliferation disruption, and increased susceptibility to apoptosis. Using network analysis, we identified PBMC receptors, representing proteins at the top of signaling pathways that may be responsible for the observed transcriptional changes and maintain the current functional state of cells. Discussion The identified relationships between some of them and virus-induced alteration of immune functions are new and have not been found earlier, e.g., receptors for autocrine motility factor, insulin, prolactin, angiotensin II, and immunoglobulin epsilon. Modulation of the identified receptors can be investigated as one of therapeutic strategies for the treatment of severe viral infections.
Collapse
Affiliation(s)
- Sergey M. Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga A. Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
9
|
López-Sanz L, Bernal S, Jiménez-Castilla L, Pardines M, Hernández-García A, Blanco-Colio L, Martín-Ventura JL, Gómez Guerrero C. The presence of activating IgG Fc receptors in macrophages aggravates the development of experimental abdominal aortic aneurysm. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2023; 35:185-194. [PMID: 36737385 DOI: 10.1016/j.arteri.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Abdominal aortic aneurysm (AAA) is a multifactorial, degenerative disease characterized by progressive aortic dilation and chronic activation of inflammation, proteolytic activity, and oxidative stress in the aortic wall. The immune response triggered by antibodies against antigens present in the vascular wall participates in the formation and progression of AAA through mechanisms not completely understood. This work analyses the function of specific IgG receptors (FcγR), especially those expressed by monocytes/macrophages, in the development of experimental AAA. METHODS In the elastase-induced AAA model, the abdominal aortas from wildtype and FcγR deficient mice with/without macrophage adoptive transfer were analysed by histology and quantitative PCR. In vitro, mouse macrophages were transfected with RNA interference of FcγRIV/CD16.2 or treated with Syk kinase inhibitor before stimulation with IgG immune complexes. RESULTS Macrophage adoptive transfer in FcγR deficient mice increased the susceptibility to AAA development. Mice receiving macrophages with functional FcγR exhibited higher aortic diameter increase, higher content of macrophages and B lymphocytes, and upregulated expression of chemokine CCL2, cytokines (TNF-α and IL-17), metalloproteinase MMP2, prooxidant enzyme NADPH oxidase-2, and the isoforms FcγRIII/CD16 and FcγRIV/CD16.2. In vitro, both FcγRIV/CD16.2 gene silencing and Syk inhibition reduced cytokines and reactive oxygen species production induced by immune complexes in macrophages. CONCLUSIONS Activation of macrophage FcγR contributes to AAA development by inducing mediators of inflammation, proteolysis, and oxidative stress. Modulation of FcγR or effector molecules may represent a potential target for AAA treatment.
Collapse
Affiliation(s)
- Laura López-Sanz
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, España
| | - Susana Bernal
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, España
| | - Luna Jiménez-Castilla
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, España
| | - Marisa Pardines
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España
| | - Ana Hernández-García
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España
| | - Luis Blanco-Colio
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, España
| | - José Luis Martín-Ventura
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, España
| | - Carmen Gómez Guerrero
- Laboratorio de Patología Vascular y Renal, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD/UAM), Madrid, España; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, España.
| |
Collapse
|
10
|
Huanggu H, Yang D, Zheng Y. Blood immunological profile of abdominal aortic aneurysm based on autoimmune injury. Autoimmun Rev 2023; 22:103258. [PMID: 36563768 DOI: 10.1016/j.autrev.2022.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Abdominal aortic aneurysm (AAA) occupies a large part of aorta aneurysm, and if there's no timely intervention or treatment, the risks of rupture and death would rise sharply. With the depth of research in AAA, more and more evidence showed correlations between AAA and autoimmune injury. Currently, a variety of bioactive peptides and cells have been confirmed to be related with AAA progression. Despite the tremendous progress, more than half researches were sampling from lesion tissues, which would be difficult to obtain. Given that the intrusiveness and convenience, serological test take advantages in initial diagnosis. Here we review blood biomarkers associated with autoimmune injury work in AAA evolution, aiming to make a profile on blood immune substances of AAA and provide a thought for potential clinical practice.
Collapse
Affiliation(s)
- Haotian Huanggu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China; Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Ling X, Jie W, Qin X, Zhang S, Shi K, Li T, Guo J. Gut microbiome sheds light on the development and treatment of abdominal aortic aneurysm. Front Cardiovasc Med 2022; 9:1063683. [PMID: 36505348 PMCID: PMC9732037 DOI: 10.3389/fcvm.2022.1063683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high disability and mortality. Its susceptible risk factors include old age, being male, smoking, hypertension, and aortic atherosclerosis. With the improvement of screening techniques, AAA incidence and number of deaths caused by aneurysm rupture increase annually, attracting much clinical attention. Due to the lack of non-invasive treatment, early detection and development of novel treatment of AAA is an urgent clinical concern. The pathophysiology and progression of AAA are characterized by inflammatory destruction. The gut microbiota is an "invisible organ" that directly or indirectly affects the vascular wall inflammatory cell infiltration manifested with enhanced arterial wall gut microbiota and metabolites, which plays an important role in the formation and progression of AAA. As such, the gut microbiome may become an important risk factor for AAA. This review summarizes the direct and indirect effects of the gut microbiome on the pathogenesis of AAA and highlights the gut microbiome-mediated inflammatory responses and discoveries of relevant therapeutic targets that may help manage the development and rupture of AAA.
Collapse
Affiliation(s)
- Xuebin Ling
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Wei Jie
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xue Qin
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shuya Zhang
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Kaijia Shi
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tianfa Li
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Junli Guo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
12
|
Márquez-Sánchez AC, Koltsova EK. Immune and inflammatory mechanisms of abdominal aortic aneurysm. Front Immunol 2022; 13:989933. [PMID: 36275758 PMCID: PMC9583679 DOI: 10.3389/fimmu.2022.989933] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Immune-mediated infiltration and a destruction of the aortic wall during AAA development plays significant role in the pathogenesis of this disease. While various immune cells had been found in AAA, the mechanisms of their activation and function are still far from being understood. A better understanding of mechanisms regulating the development of aberrant immune cell activation in AAA is essential for the development of novel preventive and therapeutic approaches. In this review we summarize current knowledge about the role of immune cells in AAA and discuss how pathogenic immune cell activation is regulated in this disease.
Collapse
|
13
|
Autoantibodies to IgE can induce the release of proinflammatory and vasoactive mediators from human cardiac mast cells. Clin Exp Med 2022:10.1007/s10238-022-00861-w. [PMID: 35879625 PMCID: PMC10390627 DOI: 10.1007/s10238-022-00861-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
Abstract
Mast cells are multifunctional immune cells with complex roles in tissue homeostasis and disease. Cardiac mast cells (HCMCs) are strategically located within the human myocardium, in atherosclerotic plaques, in proximity to nerves, and in the aortic valve. HCMCs express the high-affinity receptor (FcεRI) for IgE and can be activated by anti-IgE and anti-FcεRI. Autoantibodies to IgE and/or FcεRI have been found in the serum of patients with a variety of immune disorders. We have compared the effects of different preparations of IgG anti-IgE obtained from patients with atopic dermatitis (AD) with rabbit IgG anti-IgE on the release of preformed (histamine and tryptase) and lipid mediators [prostaglandin D2 (PGD2) and cysteinyl leukotriene C4 (LTC4)] from HCMCs. Functional human IgG anti-IgE from one out of six AD donors and rabbit IgG anti-IgE induced the release of preformed (histamine, tryptase) and de novo synthesized mediators (PGD2 and LTC4) from HCMCs. Human IgG anti-IgE was more potent than rabbit IgG anti-IgE in inducing proinflammatory mediators from HCMCs. Human monoclonal IgE was a competitive antagonist of both human and rabbit IgG anti-IgE. Although functional anti-IgE autoantibodies rarely occur in patients with AD, when present, they can powerfully activate the release of proinflammatory and vasoactive mediators from HCMCs.
Collapse
|
14
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Shu T, Liu Y, Zhou Y, Zhou Z, Li B, Xing Y, Yang P, Pang J, Li J, Song X, Ning X, Qi X, Xiong C, Yang H, Chen Q, Chen J, Yu Y, Wang J, Wang C. Inhibition of immunoglobulin E attenuates pulmonary hypertension. NATURE CARDIOVASCULAR RESEARCH 2022; 1:665-678. [PMID: 39196237 DOI: 10.1038/s44161-022-00095-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 06/06/2022] [Indexed: 08/29/2024]
Abstract
Pulmonary hypertension (PH) is a severe cardiopulmonary disease characterized by pulmonary vascular remodeling. Immunoglobulin E (IgE) is known to participate in aortic vascular remodeling, but whether IgE mediates pulmonary vascular disease is unknown. In the present study, we found serum IgE elevation in pulmonary arterial hypertension (PAH) patients, hypoxia-induced PH mice and monocrotaline-induced PH rats. Neutralizing IgE with an anti-IgE antibody was effective in preventing PH development in mice and rat models. The IgE receptor FcεRIα was also upregulated in PH lung tissues and Fcer1a deficiency prevented the development of PH. Single-cell RNA-sequencing revealed that FcεRIα was mostly expressed in mast cells (MCs) and MC-specific Fcer1a knockout protected against PH in mice. IgE-activated MCs produced interleukin (IL)-6 and IL-13, which subsequently promoted vascular muscularization. Clinically approved IgE antibody omalizumab alleviated the progression of established PH in rats. Using genetic and pharmacological approaches, we have demonstrated that blocking IgE-FcεRIα signaling may hold potential for PAH treatment.
Collapse
Affiliation(s)
- Ting Shu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yitian Zhou
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Peking Union Medical College, MD Program, Beijing, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanjiang Xing
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jinqiu Li
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xin Ning
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xianmei Qi
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Changming Xiong
- Department of Cardiology, Pulmonary Vascular Disease Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianlong Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyu Chen
- Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Ying Yu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Chen Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Seals MR, Moran MM, Leavenworth JD, Leavenworth JW. Contribution of Dysregulated B-Cells and IgE Antibody Responses to Multiple Sclerosis. Front Immunol 2022; 13:900117. [PMID: 35784370 PMCID: PMC9243362 DOI: 10.3389/fimmu.2022.900117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS), a debilitating autoimmune inflammatory disease that affects the brain and spinal cord, causes demyelination of neurons, axonal damage, and neurodegeneration. MS and the murine experimental autoimmune encephalomyelitis (EAE) model have been viewed mainly as T-cell-mediated diseases. Emerging data have suggested the contribution of B-cells and autoantibodies to the disease progression. However, the underlying mechanisms by which dysregulated B-cells and antibody response promote MS and EAE remain largely unclear. Here, we provide an updated review of this specific subject by including B-cell biology and the role of B-cells in triggering autoimmune neuroinflammation with a focus on the regulation of antibody-producing B-cells. We will then discuss the role of a specific type of antibody, IgE, as it relates to the potential regulation of microglia and macrophage activation, autoimmunity and MS/EAE development. This knowledge can be utilized to develop new and effective therapeutic approaches to MS, which fits the scope of the Research Topic "Immune Mechanism in White Matter Lesions: Clinical and Pathophysiological Implications".
Collapse
Affiliation(s)
- Malik R. Seals
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Multidisciplinary Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Monica M. Moran
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan D. Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
17
|
Gao H, Wang L, Ren J, Liu Y, Liang S, Zhang B, Sun X. Interleukin 2 receptor subunit beta as a novel hub gene plays a potential role in the immune microenvironment of abdominal aortic aneurysms. Gene 2022; 827:146472. [PMID: 35381314 DOI: 10.1016/j.gene.2022.146472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is potentially life threatening and characterized by immune-inflammatory cell infiltration and extracellular matrix degradation. Currently, pharmacotherapy mainly aims to control risk factors without reversion of the dilated aorta. This study analyzed the immune-inflammatory response and identified the immune-related hub genes of AAA. METHOD Gene Expression Omnibus datasets (GSE57691, GSE47472 and GSE7084) were downloaded. After identification of GSE57691 differentially expressed genes (DEGs), weighted gene co-expression network analysis of the DEGs was performed. Through enrichment analysis of each module and screening in Immunology Database and Analysis Portal, immune-related hub genes were identified via protein-protein interaction (PPI) network construction and lasso regression. CIBERSORT was utilized to analyze AAA immune infiltration. The correlations between the immune-related hub genes and infiltrating immune cells were investigated. Receiver operating characteristic (ROC) curve analysis was performed to determine immune-related hub gene cutoff values, which were validated in GSE47472 and GSE7084. RESULT In GSE57691, 1,018 DEGs were identified. Five modules were identified in the co-expression network. The blue and green modules were found to be related to immune-inflammatory responses, and 61 immune-related genes were identified. PPI and lasso regression analyses identified FOS, IL-6 and IL2RB as AAA immune-related hub genes. CIBERSORT analysis indicated significantly increased infiltration of naive B cells, memory activated CD4 T cells, follicular helper T cells, monocytes and M1 macrophages and significantly decreased infiltration of M2 macrophages in AAA compared with normal samples. IL2RB was more strongly associated with immune infiltration in AAA than were FOS and IL6. The IL2RB area under the ROC curve (AUC) value was > 0.9 in both the training and validation set, demonstrating its strong, stable diagnostic value in AAA. CONCLUSION AAA and normal samples had different immune infiltration statuses. IL2RB was identified as an immune-related hub gene and a potential hub gene with significant diagnostic value in AAA.
Collapse
Affiliation(s)
- Haoyu Gao
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luchen Wang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ren
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxiang Liu
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenghua Liang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Zhang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Hsa_circ_0087352 promotes the inflammatory response of macrophages in abdominal aortic aneurysm by adsorbing hsa-miR-149-5p. Int Immunopharmacol 2022; 107:108691. [DOI: 10.1016/j.intimp.2022.108691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
|
19
|
Association of Circulating IgE and CML Levels with In-Stent Restenosis in Type 2 Diabetic Patients with Stable Coronary Artery Disease. J Cardiovasc Dev Dis 2022; 9:jcdd9050157. [PMID: 35621868 PMCID: PMC9145878 DOI: 10.3390/jcdd9050157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background: We investigated whether serum levels of immunoglobin (Ig) E and Nε-carboxymethyl-lysine (CML) are related to in-stent restenosis (ISR) in patients with stable coronary artery disease and type 2 diabetes mellitus (T2DM). Methods: Serum levels of IgE and CML were measured in 196 ISR patients and 220 non-ISR patients with stable angina and T2DM who received angiographic follow-up 12 months after percutaneous coronary intervention (PCI) with third-generation drug-eluting stent (DES) implantation for de novo lesions. Multivariate logistic regression analysis was performed to assess the association between IgE or CML and ISR. Results: Both IgE and CML levels were higher in patients with ISR compared with non-ISR patients (IgE: 187.10 (63.75−489.65) vs. 80.25 (30.65−202.50), p < 0.001; CML: 203.26 (164.50−266.84) vs. 174.26 (130.85−215.56), p < 0.001). The rate of ISR increased stepwise with increasing tertiles of IgE and CML levels (p for all trends < 0.001), and IgE correlated significantly with CML. After adjusting for potential confounders, IgE and CML levels remained independently associated with ISR. Moreover, IgE and CML levels improved the predictive capability of traditional risk factors for ISR, and there existed an interaction between IgE and CML in relation to ISR (p for interaction < 0.01). Conclusion: Elevated circulating IgE and CML levels confer an increased risk for ISR after DES-based PCI in type 2 diabetic patients with stable coronary artery disease.
Collapse
|
20
|
Guo J, Zhang Y, Liu T, Levy BD, Libby P, Shi GP. Allergic asthma is a risk factor for human cardiovascular diseases. NATURE CARDIOVASCULAR RESEARCH 2022; 1:417-430. [PMID: 39195946 DOI: 10.1038/s44161-022-00067-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/08/2022] [Indexed: 08/29/2024]
Abstract
Asthma is an allergic airway disease in which type 2-mediated inflammation has a pathogenic role. Cardiovascular diseases (CVDs) are type 1-dominant inflammatory diseases in which type 2 cytokines often have a protective role. However, clinical studies demonstrate that allergic asthma and associated allergies are essential risk factors for CVD, including coronary heart diseases, aortic diseases, peripheral arterial diseases, pulmonary embolism, right ventricular dysfunction, atrial fibrillation, cardiac hypertrophy and even hypertension. Mast cells, eosinophils, inflammatory cytokines and immunoglobulin (Ig)E accumulate in asthmatic lungs and in the injured heart and vasculature of patients with CVD. Clinical studies show that many anti-asthmatic therapies affect the risk of CVD. As such, allergic asthma and CVD may share common pathogenic mechanisms. Preclinical investigations indicate that anti-asthmatic drugs have therapeutic potential in certain CVDs. In this Review, we discuss how asthma and allied allergic conditions may contribute to the prevalence, incidence and progression of CVD and vice versa.
Collapse
Affiliation(s)
- Junli Guo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province & Key Laboratory of Emergency and Trauma of Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuanyuan Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province & Key Laboratory of Emergency and Trauma of Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Wu S, Liu S, Chen N, Zhang C, Zhang H, Guo X. Genome-Wide Identification of Immune-Related Alternative Splicing and Splicing Regulators Involved in Abdominal Aortic Aneurysm. Front Genet 2022; 13:816035. [PMID: 35251127 PMCID: PMC8892299 DOI: 10.3389/fgene.2022.816035] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanism of AAA formation is still poorly understood and has not been fully elucidated. The study was designed to identify the immune-related genes, immune-RAS in AAA using bioinformatics methods. The GSE175683 datasets were downloaded from the GEO database. The DEseq2 software was used to identify differentially expressed genes (DEGs). SUVA pipeline was used to quantify AS events and RAS events. KOBAS 2.0 server was used to identify GO terms and KEGG pathways to sort out functional categories of DEGs. The CIBERSORT algorithm was used with the default parameter for estimating immune cell fractions. Nine samples from GSE175683 were used to construct the co-disturbed network between expression of SFs and splicing ratio of RAS events. PCA analysis was performed by R package factoextra to show the clustering of samples, and the pheatmap package in R was used to perform the clustering based on Euclidean distance. The results showed that there were 3,541 genes significantly differentially expressed, of which 177 immune-related genes were upregulated and 48 immune-related genes were downregulated between the WT and WTA group. Immune-RAS events were mainly alt5P and IR events, and about 60% of it was complex splicing events in AAA. The WT group and the WTA group can be clearly distinguished in the first principal component by using the splicing ratio of immune-RAS events. Two downregulated genes, Nr4a1 and Nr4a2, and eight upregulated genes, Adipor2, Akt2, Bcl3, Dhx58, Pparg, Ptgds, Sytl1, and Vegfa were identified among the immune-related genes with RAS and DEGs. Eighteen differentially expressed SFs were identified and displayed by heatmap. The proportion of different types of cells and ratio of the average ratio of different cells were quite different. Both M1 and M2 types of macrophages and plasma cells were upregulated, while M0 type was downregulated in AAA. The proportion of plasma cells in the WTA group had sharply increased. There is a correlation between SF expression and immune cells/immune-RAS. Sf3b1, a splicing factor with significantly different expression, was selected to bind on a mass of immune-related genes. In conclusion, our results showed that immune-related genes, immune-RAS, and SFs by genome-wide identification were involved in AAA.
Collapse
Affiliation(s)
- Shiyong Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shibiao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningheng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuang Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hairong Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hairong Zhang, ; Xueli Guo,
| | - Xueli Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hairong Zhang, ; Xueli Guo,
| |
Collapse
|
22
|
Ge W, Guo X, Song X, Pang J, Zou X, Liu Y, Niu Y, Li Z, Zhao H, Gao R, Wang J. OUP accepted manuscript. Cardiovasc Res 2022; 118:2985-2999. [PMID: 35048969 DOI: 10.1093/cvr/cvac010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Weipeng Ge
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaomin Song
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| | - Junling Pang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| | - Xuan Zou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| | - Yonglin Liu
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shaanxi Province, Shenmu 719300, China
| | - Yongliang Niu
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shaanxi Province, Shenmu 719300, China
| | - Zhengqing Li
- Shenmu Hospital, The Affiliated Shenmu Hospital of Northwest University, Shaanxi Province, Shenmu 719300, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| | - Ran Gao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Dongdansantiao 5, Dongcheng District, Beijing 100730, China
| |
Collapse
|
23
|
Cao H, Xiao C, He Z, Huang H, Tang H. IgE and TGF-β Signaling: From Immune to Cardiac Remodeling. J Inflamm Res 2021; 14:5523-5526. [PMID: 34737601 PMCID: PMC8560010 DOI: 10.2147/jir.s332591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Cardiac remodeling is accompanied by cardiac hypertrophy, fibrosis, and dysfunction, eventually leading to heart failure (HF). However, the molecular mechanisms involved in cardiac remodeling are complicated, especially the association with immune. Immunoglobulin E (IgE) is a class of immunoglobulins involved in immune response to specific allergens. Recently, Zhao et al characterized a novel specific role of IgE and its high affinity receptor (FcεR1) in directly promoting pathological myocardial remodeling and cardiac dysfunction. Additionally, upon blocking IgE-FcεR1 signaling using FcεR1 genetic depletion or by administrating the anti-IgE monoclonal antibody omalizumab (Oma) in mice, they observed that cardiac hypertrophy and cardiac interstitial fibrosis induced by angiotensin II (Ang II) or transverse aortic constriction (TAC) were significantly suppressed. In contrast, IgE administration alone can aggravate pathological cardiac remodeling and dysfunction. RNA-seq and downstream analysis indicated that TGF-β was the common pathway and the most pivotal mediator in IgE-FcεR1-induced cardiac remodeling and dysfunction. Furthermore, the administration of a TGF-β inhibitor could ameliorate cardiac remodeling and improve cardiac function. Therefore, these findings suggest that IgE-FcεR1 maybe promising therapeutic targets for cardiac remodeling and provide an experimental basis for the use of omalizumab for HF patients combined with high serum IgE levels or allergic diseases.
Collapse
Affiliation(s)
- Hua Cao
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Chungang Xiao
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Zhangxiu He
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Hong Huang
- The First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.,The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Huifang Tang
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.,The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
24
|
Xu B, Li G, Guo J, Ikezoe T, Kasirajan K, Zhao S, Dalman RL. Angiotensin-converting enzyme 2, coronavirus disease 2019, and abdominal aortic aneurysms. J Vasc Surg 2021; 74:1740-1751. [PMID: 33600934 PMCID: PMC7944865 DOI: 10.1016/j.jvs.2021.01.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiologic agent of the current, world-wide coronavirus disease 2019 (COVID-19) pandemic. Angiotensin-converting enzyme 2 (ACE2) is the SARS-CoV-2 host entry receptor for cellular inoculation and target organ injury. We reviewed ACE2 expression and the role of ACE2-angiotensin 1-7-Mas receptor axis activity in abdominal aortic aneurysm (AAA) pathogenesis to identify potential COVID-19 influences on AAA disease pathogenesis. METHODS A comprehensive literature search was performed on PubMed, National Library of Medicine. Key words included COVID-19, SARS-CoV-2, AAA, ACE2, ACE or angiotensin II type 1 (AT1) receptor inhibitor, angiotensin 1-7, Mas receptor, age, gender, respiratory diseases, diabetes, and autoimmune diseases. Key publications on the epidemiology and pathogenesis of COVID-19 and AAAs were identified and reviewed. RESULTS All vascular structural cells, including endothelial and smooth muscle cells, fibroblasts, and pericytes express ACE2. Cigarette smoking, diabetes, chronic obstructive pulmonary disease, lupus, certain types of malignancies, and viral infection promote ACE2 expression and activity, with the magnitude of response varying by sex and age. Genetic deficiency of AT1 receptor, or pharmacologic ACE or AT1 inhibition also increases ACE2 and its catalytic product angiotensin 1-7. Genetic ablation or pharmacologic inhibition of ACE2 or Mas receptor augments, whereas ACE2 activation or angiotensin 1-7 treatment attenuates, progression of experimental AAAs. The potential influences of SARS-CoV-2 on AAA pathogenesis include augmented ACE-angiotensin II-AT1 receptor activity resulting from decreased reciprocal ACE2-angiotensin 1-7-Mas activation; increased production of proaneurysmal mediators stimulated by viral spike proteins in ACE2-negative myeloid cells or by ACE2-expressing vascular structural cells; augmented local or systemic cross-talk between viral targeted nonvascular, nonleukocytic ACE2-expressing cells via ligand recognition of their cognate leukocyte receptors; and hypoxemia and increased systemic inflammatory tone experienced during severe COVID-19 illness. CONCLUSIONS COVID-19 may theoretically influence AAA disease through multiple SARS-CoV-2-induced mechanisms. Further investigation and clinical follow-up will be necessary to determine whether and to what extent the COVID-19 pandemic will influence the prevalence, progression, and lethality of AAA disease in the coming decade.
Collapse
Affiliation(s)
- Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif.
| | - Gang Li
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Jia Guo
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Toru Ikezoe
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | | | - Sihai Zhao
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| | - Ronald L Dalman
- Department of Surgery, Stanford University School of Medicine, Stanford, Calif
| |
Collapse
|
25
|
Basophils and Mast Cells in COVID-19 Pathogenesis. Cells 2021; 10:cells10102754. [PMID: 34685733 PMCID: PMC8534912 DOI: 10.3390/cells10102754] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Basophils and mast cells are among the principal inducers of Th2 responses and have a crucial role in allergic and anti-parasitic protective immunity. Basophils can function as antigen-presenting cells that bind antigens on their surface and boost humoral immune responses, inducing Th2 cell differentiation. Their depletion results in lower humoral memory activation and greater infection susceptibility. Basophils seem to have an active role upon immune response to SARS-CoV-2. In fact, a coordinate adaptive immune response to SARS-CoV-2 is magnified by basophils. It has been observed that basophil amount is lower during acute disease with respect to the recovery phase and that the grade of this depletion is an important determinant of the antibody response to the virus. Moreover, mast cells, present in a great quantity in the nasal epithelial and lung cells, participate in the first immune response to SARS-CoV-2. Their activation results in a hyperinflammatory syndrome through the release of inflammatory molecules, participating to the “cytokine storm” and, in a longer period, inducing pulmonary fibrosis. The literature data suggest that basophil counts may be a useful prognostic tool for COVID-19, since their reduction is associated with a worse prognosis. Mast cells, on the other hand, represent a possible therapeutic target for reducing the airway inflammation characteristic of the hyperacute phase of the disease.
Collapse
|
26
|
Shu T, Xing Y, Wang J. Autoimmunity in Pulmonary Arterial Hypertension: Evidence for Local Immunoglobulin Production. Front Cardiovasc Med 2021; 8:680109. [PMID: 34621794 PMCID: PMC8490641 DOI: 10.3389/fcvm.2021.680109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive life-threatening disease. The notion that autoimmunity is associated with PAH is widely recognized by the observations that patients with connective tissue diseases or virus infections are more susceptible to PAH. However, growing evidence supports that the patients with idiopathic PAH (IPAH) with no autoimmune diseases also have auto-antibodies. Anti-inflammatory therapy shows less help in decreasing auto-antibodies, therefore, elucidating the process of immunoglobulin production is in great need. Maladaptive immune response in lung tissues is considered implicating in the local auto-antibodies production in patients with IPAH. In this review, we will discuss the specific cell types involved in the lung in situ immune response, the potential auto-antigens, and the contribution of local immunoglobulin production in PAH development, providing a theoretical basis for drug development and precise treatment in patients with PAH.
Collapse
Affiliation(s)
- Ting Shu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanjiang Xing
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Lopez‐Sanz L, Bernal S, Jimenez‐Castilla L, Prieto I, La Manna S, Gomez‐Lopez S, Blanco‐Colio LM, Egido J, Martin‐Ventura JL, Gomez‐Guerrero C. Fcγ receptor activation mediates vascular inflammation and abdominal aortic aneurysm development. Clin Transl Med 2021; 11:e463. [PMID: 34323424 PMCID: PMC8255062 DOI: 10.1002/ctm2.463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA), a degenerative vascular pathology characterized by permanent dilation of the aorta, is considered a chronic inflammatory disease involving innate/adaptive immunity. However, the functional role of antibody-dependent immune response against antigens present in the damaged vessel remains unresolved. We hypothesized that engagement of immunoglobulin G (IgG) Fc receptors (FcγR) by immune complexes (IC) in the aortic wall contributes to AAA development. We therefore evaluated FcγR expression in AAA lesions and analysed whether inhibition of FcγR signaling molecules (γ-chain and Syk kinase) influences AAA formation in mice. METHODS FcγR gene/protein expression was assessed in human and mouse AAA tissues. Experimental AAA was induced by aortic elastase perfusion in wild-type (WT) mice and γ-chain knockout (γKO) mice (devoid of activating FcγR) in combination with macrophage adoptive transfer or Syk inhibitor treatment. To verify the mechanisms of FcγR in vitro, vascular smooth muscle cells (VSMC) and macrophages were stimulated with IgG IC. RESULTS FcγR overexpression was detected in adventitia and media layers of human and mouse AAA. Elastase-perfused γKO mice exhibited a decrease in AAA incidence, aortic dilation, elastin degradation, and VSMC loss. This was associated with (1) reduced infiltrating leukocytes and immune deposits in AAA lesions, (2) inflammatory genes and metalloproteinases downregulation, (3) redox balance restoration, and (4) converse phenotype of anti-inflammatory macrophage M2 and contractile VSMC. Adoptive transfer of FcγR-expressing macrophages aggravated aneurysm in γKO mice. In vitro, FcγR deficiency attenuated inflammatory gene expression, oxidative stress, and phenotypic switch triggered by IC. Additionally, Syk inhibition prevented IC-mediated cell responses, reduced inflammation, and mitigated AAA formation. CONCLUSION Our findings provide insight into the role and mechanisms mediating IgG-FcγR-associated inflammation and aortic wall injury in AAA, which might represent therapeutic targets against AAA disease.
Collapse
MESH Headings
- Animals
- Antigen-Antibody Complex/adverse effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Disease Models, Animal
- Humans
- Immunoglobulin gamma-Chains/genetics
- Immunoglobulin gamma-Chains/metabolism
- Inflammation/metabolism
- Inflammation/pathology
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Niacinamide/analogs & derivatives
- Niacinamide/therapeutic use
- Oxidative Stress
- Pancreatic Elastase/adverse effects
- Pyrimidines/therapeutic use
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Syk Kinase/antagonists & inhibitors
- Syk Kinase/metabolism
Collapse
Affiliation(s)
- Laura Lopez‐Sanz
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Susana Bernal
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Luna Jimenez‐Castilla
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Ignacio Prieto
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Sara La Manna
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
| | | | - Luis Miguel Blanco‐Colio
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Spanish Biomedical Research Centre in Cardiovascular Diseases (CIBERCV)MadridSpain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Jose Luis Martin‐Ventura
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Cardiovascular Diseases (CIBERCV)MadridSpain
| | - Carmen Gomez‐Guerrero
- Renal, Vascular and Diabetes Research LabIIS‐Fundacion Jimenez Diaz (IIS‐FJD)MadridSpain
- Universidad Autonoma de Madrid (UAM)MadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| |
Collapse
|
28
|
Zhao H, Yang H, Geng C, Chen Y, Tang Y, Li Z, Pang J, Shu T, Nie Y, Liu Y, Jia K, Wang J. Elevated IgE promotes cardiac fibrosis by suppressing miR-486a-5p. Theranostics 2021; 11:7600-7615. [PMID: 34158869 PMCID: PMC8210611 DOI: 10.7150/thno.47845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Cardiac fibrosis is an important feature of cardiac remodeling and is a hallmark of heart failure. Recent studies indicate that elevated IgE plays a causal role in pathological cardiac remodeling. However, the underlying mechanism of how IgE promotes cardiac fibrosis has not been fully elucidated. Methods and Results: To explore the function of IgE in cardiac fibrosis, we stimulated mouse primary cardiac fibroblasts (CFs) with IgE and found that both IgE receptor (FcεR1) and fibrosis related proteins were increased after IgE stimulation. Specific deletion of FcεR1 in CFs alleviated angiotensin II (Ang II)-induced cardiac fibrosis in mice. To investigate the mechanisms underlying the IgE-mediated cardiac fibrosis, deep miRNA-seq was performed. Bioinformatics and signaling pathway analysis revealed that IgE upregulated Col1a1 and Col3a1 expression in CFs by repressing miR-486a-5p, with Smad1 participating downstream of miR-486a-5p in this process. Lentivirus-mediated overexpression of miR-486a-5p was found to alleviate Ang II-induced myocardial interstitial fibrosis in mice. Moreover, miR-486-5p serum levels were lower in patients with heart failure than in healthy controls, and were negatively correlated with NT-proBNP levels. Conclusions: Our study demonstrates that elevated IgE promotes pathological cardiac fibrosis by modulating miR-486a-5p and downstream factors, such as Smad1. These findings suggest new targets for pathological cardiac fibrosis intervention.
Collapse
Affiliation(s)
- Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Hongqin Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Chi Geng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Yang Chen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Yaqin Tang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Zhiwei Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102308, China
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Kegang Jia
- Department of Clinical Laboratory, TEDA International Cardiovascular Hospital, Tianjin 300457, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
29
|
Taniguchi S, Elhance A, Van Duzer A, Kumar S, Leitenberger J, Oshimori N. Response to Comment on "Tumor-initiating cells establish an IL-33-TGF-β niche signaling loop to promote cancer progression". Science 2021; 372:372/6538/eabf3316. [PMID: 33833096 DOI: 10.1126/science.abf3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/10/2021] [Indexed: 11/02/2022]
Abstract
Kamphuis et al argue that macrophages accumulated in the proximity of tumor-initiating cells do not express the high-affinity immunoglobulin E receptor FcεRIα. Although we cannot exclude the possibility of nonspecific binding of anti-FcεRIα antibody (clone MAR-1), we provide evidence that macrophages in squamous cell carcinomas express FcεRIα and that IL-33 induces FcεRIα expression in bone marrow cell-derived macrophages.
Collapse
Affiliation(s)
- Sachiko Taniguchi
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ajit Elhance
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Avery Van Duzer
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sushil Kumar
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Justin Leitenberger
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Naoki Oshimori
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA. .,Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
30
|
Davis FM, Tsoi LC, Melvin WJ, denDekker A, Wasikowski R, Joshi AD, Wolf S, Obi AT, Billi AC, Xing X, Audu C, Moore BB, Kunkel SL, Daugherty A, Lu HS, Gudjonsson JE, Gallagher KA. Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. J Exp Med 2021; 218:211922. [PMID: 33779682 PMCID: PMC8008365 DOI: 10.1084/jem.20201839] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/23/2020] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a life-threatening disease for which there is a lack of effective therapy preventing aortic rupture. During AAA formation, pathological vascular remodeling is driven by macrophage infiltration, and the mechanisms regulating macrophage-mediated inflammation remain undefined. Recent evidence suggests that an epigenetic enzyme, JMJD3, plays a critical role in establishing macrophage phenotype. Using single-cell RNA sequencing of human AAA tissues, we identified increased JMJD3 in aortic monocyte/macrophages resulting in up-regulation of an inflammatory immune response. Mechanistically, we report that interferon-β regulates Jmjd3 expression via JAK/STAT and that JMJD3 induces NF-κB–mediated inflammatory gene transcription in infiltrating aortic macrophages. In vivo targeted inhibition of JMJD3 with myeloid-specific genetic depletion (JMJD3f/fLyz2Cre+) or pharmacological inhibition in the elastase or angiotensin II–induced AAA model preserved the repressive H3K27me3 on inflammatory gene promoters and markedly reduced AAA expansion and attenuated macrophage-mediated inflammation. Together, our findings suggest that cell-specific pharmacologic therapy targeting JMJD3 may be an effective intervention for AAA expansion.
Collapse
Affiliation(s)
- Frank M Davis
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI.,Department Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI.,Department of Computation Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI.,Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - William J Melvin
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Aaron denDekker
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Amrita D Joshi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Sonya Wolf
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Andrea T Obi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | - Christopher Audu
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Bethany B Moore
- Department Microbiology and Immunology, University of Michigan, Ann Arbor, MI.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Steven L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Alan Daugherty
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Hong S Lu
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | | | - Katherine A Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI.,Department Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
31
|
Zhao H, Yang H, Geng C, Chen Y, Pang J, Shu T, Zhao M, Tang Y, Li Z, Li B, Hou C, Song X, Wu A, Guo X, Chen S, Liu B, Yan C, Wang J. Role of IgE-FcεR1 in Pathological Cardiac Remodeling and Dysfunction. Circulation 2020; 143:1014-1030. [PMID: 33305586 DOI: 10.1161/circulationaha.120.047852] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Immunoglobulin E (IgE) belongs to a class of immunoglobulins involved in immune response to specific allergens. However, the roles of IgE and IgE receptor (FcεR1) in pathological cardiac remodeling and heart failure are unknown. METHODS Serum IgE levels and cardiac FcεR1 expression were assessed in diseased hearts from human and mouse. The role of FcεR1 signaling in pathological cardiac remodeling was explored in vivo by FcεR1 genetic depletion, anti-IgE antibodies, and bone marrow transplantation. The roles of the IgE-FcεR1 pathway were further evaluated in vitro in primary cultured rat cardiomyocytes and cardiac fibroblasts (CFs). RNA sequencing and bioinformatic analyses were used to identify biochemical changes and signaling pathways that are regulated by IgE/FcεR1. RESULTS Serum IgE levels were significantly elevated in patients with heart failure as well as in 2 mouse cardiac disease models induced by chronic pressure overload via transverse aortic constriction and chronic angiotensin II infusion. Interestingly, FcεR1 expression levels were also significantly upregulated in failing hearts from human and mouse. Blockade of the IgE-FcεR1 pathway by FcεR1 knockout alleviated transverse aortic constriction- or angiotensin II-induced pathological cardiac remodeling or dysfunction. Anti-IgE antibodies (including the clinical drug omalizumab) also significantly alleviated angiotensin II-induced cardiac remodeling. Bone marrow transplantation experiments indicated that IgE-induced cardiac remodeling was mediated through non-bone marrow-derived cells. FcεR1 was found to be expressed in both cardiomyocytes and CFs. In cultured rat cardiomyocytes, IgE-induced cardiomyocyte hypertrophy and hypertrophic marker expression were abolished by depleting FcεR1. In cultured rat CFs, IgE-induced CF activation and matrix protein production were also blocked by FcεR1 deficiency. RNA sequencing and signaling pathway analyses revealed that transforming growth factor-β may be a critical mediator, and blocking transforming growth factor-β indeed alleviated IgE-induced cardiomyocyte hypertrophy and cardiac fibroblast activation in vitro. CONCLUSIONS Our findings suggest that IgE induction plays a causative role in pathological cardiac remodeling, at least partially via the activation of IgE-FcεR1 signaling in cardiomyocytes and CFs. Therapeutic strategies targeting the IgE-FcεR1 axis may be effective for managing IgE-mediated cardiac remodeling.
Collapse
Affiliation(s)
- Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Hongqin Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Chi Geng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Yang Chen
- Department of Pharmacology, School of Basic Medical Sciences, Inner Mongolia Medical University, Huhhot, China (Y.C.)
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Meijun Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Yaqin Tang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Zhiwei Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Baicun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Cuiliu Hou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| | - Aoxue Wu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (A.W., X.G.)
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing (A.W., X.G.)
| | - Si Chen
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, NY (S.C., B.L., C.Y.)
| | - Bin Liu
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, NY (S.C., B.L., C.Y.)
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, NY (S.C., B.L., C.Y.)
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing (H.Z., H.Y., C.G., J.P., T.S., M.Z., Y.T., Z.L., B.L., C.H., X.S., J.W.)
| |
Collapse
|
32
|
Nie H, Qiu J, Wen S, Zhou W. Combining Bioinformatics Techniques to Study the Key Immune-Related Genes in Abdominal Aortic Aneurysm. Front Genet 2020; 11:579215. [PMID: 33362847 PMCID: PMC7758434 DOI: 10.3389/fgene.2020.579215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Approximately 13,000 people die of an abdominal aortic aneurysm (AAA) every year. This study aimed to identify the immune response-related genes that play important roles in AAA using bioinformatics approaches. We downloaded the GSE57691 and GSE98278 datasets related to AAA from the Gene Expression Omnibus database, which included 80 AAA and 10 normal vascular samples. CIBERSORT was used to analyze the samples and detect the infiltration of 22 types of immune cells and their differences and correlations. The principal component analysis showed significant differences in the infiltration of immune cells between normal vascular and AAA samples. High proportions of CD4+ T cells, activated mast cells, resting natural killer cells, and 12 other types of immune cells were found in normal vascular tissues, whereas high proportions of macrophages, CD8+ T cells, resting mast cells, and six other types of immune cells were found in AAA tissues. In the selected samples, we identified 39 upregulated (involved in growth factor activity, hormone receptor binding, and cytokine receptor activity) and 133 downregulated genes (involved in T cell activation, cell chemotaxis, and regulation of immune response mediators). The key differentially expressed immune response-related genes were screened using the STRING database and Cytoscape software. Two downregulated genes, PI3 and MAP2K1, and three upregulated genes, SSTR1, GPER1, and CCR10, were identified by constructing a protein-protein interaction network. Functional enrichment of the differentially expressed genes was analyzed, and the expression of the five key genes in AAA samples was verified using quantitative polymerase chain reaction, which revealed that MAP2K1 was downregulated in AAA, whereas SSTR1, GEPR1, and CCR10 were upregulated; there was no significant difference in PI3 expression. Our study shows that normal vascular and AAA samples can be distinguished via the infiltration of immune cells. Five genes, PI3, MAP2K1, SSTR1, GPER1, and CCR10, may play important roles in the development, diagnosis, and treatment of AAA.
Collapse
Affiliation(s)
- Han Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiacong Qiu
- Divison of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Wen
- Xinjian District People's Hospital of Jiangxi Province, Jiangxi, China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Motta Junior JDS, Miggiolaro AFRDS, Nagashima S, de Paula CBV, Baena CP, Scharfstein J, de Noronha L. Mast Cells in Alveolar Septa of COVID-19 Patients: A Pathogenic Pathway That May Link Interstitial Edema to Immunothrombosis. Front Immunol 2020; 11:574862. [PMID: 33042157 PMCID: PMC7530169 DOI: 10.3389/fimmu.2020.574862] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
It is currently believed that innate immunity is unable to prevent the spread of SARS-CoV-2 from the upper airways to the alveoli of high-risk groups of patients. SARS-CoV-2 replication in ACE-2-expressing pneumocytes can drive the diffuse alveolar injury through the cytokine storm and immunothrombosis by upregulating the transcription of chemokine/cytokines, unlike several other respiratory viruses. Here we report histopathology data obtained in post-mortem lung biopsies of COVID-19, showing the increased density of perivascular and septal mast cells (MCs) and IL-4-expressing cells (n = 6), in contrast to the numbers found in pandemic H1N1-induced pneumonia (n = 10) or Control specimens (n = 10). Noteworthy, COVID-19 lung biopsies showed a higher density of CD117+ cells, suggesting that c-kit positive MCs progenitors were recruited earlier to the alveolar septa. These findings suggest that MC proliferation/differentiation in the alveolar septa might be harnessed by the shift toward IL-4 expression in the inflamed alveolar septa. Future studies may clarify whether the fibrin-dependent generation of the hyaline membrane, processes that require the diffusion of procoagulative plasma factors into the alveolar lumen and the endothelial dysfunction, are preceded by MC-driven formation of interstitial edema in the alveolar septa.
Collapse
Affiliation(s)
- Jarbas da Silva Motta Junior
- School of Medicine, Pontifícia Universidade Católica do Paraná PUCPR, Curitiba, Brazil
- Hospital Marcelino Champagnat, Curitiba, Brazil
| | | | - Seigo Nagashima
- School of Medicine, Pontifícia Universidade Católica do Paraná PUCPR, Curitiba, Brazil
| | | | - Cristina Pellegrino Baena
- School of Medicine, Pontifícia Universidade Católica do Paraná PUCPR, Curitiba, Brazil
- Hospital Marcelino Champagnat, Curitiba, Brazil
| | - Julio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucia de Noronha
- School of Medicine, Pontifícia Universidade Católica do Paraná PUCPR, Curitiba, Brazil
| |
Collapse
|
34
|
Patterns of immune infiltration in stable and raptured abdominal aortic aneurysms: A gene-expression-based retrospective study. Gene 2020; 762:145056. [PMID: 32805313 DOI: 10.1016/j.gene.2020.145056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/24/2020] [Accepted: 08/12/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a disease characterized by weakening arterial wall and permanent expansion with high mortality once rupture, which was involved with immune system activation. However, owing to technical difficulties, previous research has limited the impact of one or limited immune cells on AAA. METHODS We analyzed the composition of immune cells using the CIBERSORT algorithm through transcriptome sequencing data from patients with stable (eAAA) and ruptured aneurysms (rAAA). The whole transcriptome sequencing data, including 17 patients with ruptured AAA and 31 patients with stable AAA were downloaded from Gene Expression Omnibus (GEO, GSE98278). After normalizing and data processing, five rAAA and seventeen eAAA patients entered the follow-up analysis. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify several pathways that were significantly enriched in rAAA compared to eAAA tissues. RESULTS We demonstrated that the compositions of infiltrative immune cell in eAAA and rAAA were different. Naïve B cells, both resting and activated CD4+ memory T cells were found significantly higher in ruptured AAA, while memory B cells and activated mast cells were much less in ruptured AAA than that in stable AAA. Besides, PTX3 was significantly highly expressed in rAAA, which might be associated with the complement system and polarization of macrophages. Finally, differentially expressed genes and the related immune cells were mapped in a network to reveal the relationship between gene expression and infiltrative immune cells. CONCLUSION We identified the infiltrated immune cell profile of eAAA and rAAA patients, which might be the potential target of AAA treatment.
Collapse
|
35
|
Liu CL, Liu X, Wang Y, Deng Z, Liu T, Sukhova GK, Wojtkiewicz GR, Tang R, Zhang JY, Achilefu S, Nahrendorf M, Libby P, Wang X, Shi GP. Reduced Nhe1 (Na +-H + Exchanger-1) Function Protects ApoE-Deficient Mice From Ang II (Angiotensin II)-Induced Abdominal Aortic Aneurysms. Hypertension 2020; 76:87-100. [PMID: 32475310 DOI: 10.1161/hypertensionaha.119.14485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IgE-mediated activation of Nhe1 (Na+-H+ exchanger-1) induces aortic cell extracellular acidification and promotes cell apoptosis. A pH-sensitive probe pHrodo identified acidic regions at positions of macrophage accumulation, IgE expression, and cell apoptosis in human and mouse abdominal aortic aneurysm (AAA) lesions. Ang II (angiotensin II)-induced AAA in Nhe1-insufficient Apoe-/-Nhe1+/- mice and Apoe-/-Nhe1+/+ littermates tested Nhe1 activity in experimental AAA, because Nhe1-/- mice develop ataxia and epileptic-like seizures and die early. Nhe1 insufficiency reduced AAA incidence and size, lesion macrophage and T-cell accumulation, collagen deposition, elastin fragmentation, cell apoptosis, smooth muscle cell loss, and MMP (matrix metalloproteinase) activity. Nhe1 insufficiency also reduced blood pressure and the plasma apoptosis marker TCTP (translationally controlled tumor protein) but did not affect plasma IgE. While pHrodo localized the acidic regions to macrophage clusters, IgE expression, and cell apoptosis in AAA lesions from Apoe-/-Nhe1+/+ mice, such acidic areas were much smaller in lesions from Apoe-/-Nhe1+/- mice. Nhe1-FcεR1 colocalization in macrophages from AAA lesions support a role of IgE-mediated Nhe1 activation. Gelatin zymography, immunoblot, and real-time polymerase chain reaction analyses demonstrated that Nhe1 insufficiency reduced the MMP activity, cysteinyl cathepsin expression, IgE-induced apoptosis, and NF-κB activation in macrophages and blocked IgE-induced adhesion molecule expression in endothelial cells. A near-infrared fluorescent probe (LS662) together with fluorescence reflectance imaging of intact aortas showed reduced acidity in AAA lesions from Nhe-1-insufficient mice. This study revealed extracellular acidity at regions rich in macrophages, IgE expression, and cell apoptosis in human and mouse AAA lesions and established a direct role of Nhe1 in AAA pathogenesis.
Collapse
Affiliation(s)
- Cong-Lin Liu
- From the Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, China (C.-L.L., Y.W., J.-Y.Z., X.W., G.-P.S.).,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Xin Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Yunzhe Wang
- From the Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, China (C.-L.L., Y.W., J.-Y.Z., X.W., G.-P.S.).,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Zhiyong Deng
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.R.W., M.N.)
| | - Rui Tang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO (R.T., S.A.)
| | - Jin-Ying Zhang
- From the Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, China (C.-L.L., Y.W., J.-Y.Z., X.W., G.-P.S.)
| | - Samuel Achilefu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO (R.T., S.A.)
| | - Matthias Nahrendorf
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| | - Xiaofang Wang
- From the Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, China (C.-L.L., Y.W., J.-Y.Z., X.W., G.-P.S.)
| | - Guo-Ping Shi
- From the Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, China (C.-L.L., Y.W., J.-Y.Z., X.W., G.-P.S.).,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (C.-L.L., X.L., Y.W., Z.D., T.L., G.K.S., P.L., G.-P.S.)
| |
Collapse
|
36
|
Jabłońska A, Zagrapan B, Neumayer C, Klinger M, Eilenberg W, Nanobachvili J, Paradowska E, Brostjan C, Huk I. TLR2 2029C/T and TLR3 1377C/T and −7C/A Polymorphisms Are Associated with the Occurrence of Abdominal Aortic Aneurysm. THE JOURNAL OF IMMUNOLOGY 2020; 204:2900-2909. [DOI: 10.4049/jimmunol.1901014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/23/2020] [Indexed: 01/08/2023]
|
37
|
Ren J, Han Y, Ren T, Fang H, Xu X, Lun Y, Jiang H, Xin S, Zhang J. AEBP1 Promotes the Occurrence and Development of Abdominal Aortic Aneurysm by Modulating Inflammation via the NF-κB Pathway. J Atheroscler Thromb 2020; 27:255-270. [PMID: 31462616 PMCID: PMC7113137 DOI: 10.5551/jat.49106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/13/2019] [Indexed: 01/03/2023] Open
Abstract
AIM Inflammation plays a significant role in the pathogenesis of human abdominal aortic aneurysm (AAA). AEBP1 can promote activation of the NF-κB pathway, subsequently affecting the expression of NF-κB target genes, including inflammatory cytokines and matrix metalloproteinases (MMPs). Our objective was to examine the role of AEBP1 in the development of AAA and characterize the underlying mechanism. METHODS ITRAQ, RT-PCR, western blot, immunohistochemistry, and ELISA were used to compare different experimental groups with the controls and to determine the differentially expressed genes. We generated an AAA model using porcine pancreatic elastase in Sprague-Dawley rats and silenced their AEBP1 in vivo by adenoviruses injected intra-adventitially. We also silenced or overexpressed AEBP1 in human vascular smooth muscle cells in vitro in the presence and in the absence of NF-κB inhibitor BAY 11-7082. RESULTS Proteome iTRAQ revealed a high expression of AEBP1 in AAA patients, which was verified by qRT-PCR, western blot, immunohistochemistry, and ELISA. The mean expression level of AEBP1 in AAA patients was higher than that in controls. Along with AEBP1 upregulation, we also verified mis-activation of NF-κB in human AAA samples. The in vivo studies indicated that AEBP1 knockdown suppressed AAA progression. Finally, the in vitro studies illustrated that AEBP1 promotes activation of the NF-κB pathway, subsequently upregulating pro-inflammatory factors and MMPs. CONCLUSIONS Our results indicate a role of AEBP1 in the pathogenesis of AAA and provide a novel insight into how AEBP1 causes the development of AAA by activating the NF-κB pathway.
Collapse
Affiliation(s)
- Jiancong Ren
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Yanshuo Han
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Tongming Ren
- Department of Anatomy Laboratory, Xinxiang Medical College, Xinxiang, China
| | - Hong Fang
- Department of Pancreatic Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Xiaohan Xu
- Department of Anesthesiology, the First Hospital, China Medical University, Shenyang, China
| | - Yu Lun
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Han Jiang
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Shijie Xin
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| | - Jian Zhang
- Department of Vascular & Thyroid Surgery, the First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
38
|
Gao R, Liu D, Guo W, Ge W, Fan T, Li B, Gao P, Liu B, Zheng Y, Wang J. Meprin-α (Mep1A) enhances TNF-α secretion by mast cells and aggravates abdominal aortic aneurysms. Br J Pharmacol 2020; 177:2872-2885. [PMID: 32072633 DOI: 10.1111/bph.15019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Abdominal aorticaneurysm (AAA) rupture is mainly due to elastic lamina degradation. As a metalloendopeptidase, meprin-α (Mep1A) critically modulates the activity of proteins and inflammatory cytokines in various diseases. Here, we sought to investigate the functional role of Mep1A in AAA formation and rupture. EXPERIMENTAL APPROACH AAA tissues were detected by using real-time PCR (RT-PCR), western blotting (WB), and immunohistochemistry. Further mechanistic studies used RT-PCR, WB, and enzyme-linked immunosorbent assays. KEY RESULTS Mep1A mediated AAA formation by regulating the mast cell (MC) secretion of TNF-α, which promoted matrix metalloproteinase (MMP) expression and apoptosis in smooth muscle cells (SMCs). Importantly, increased Mep1A expression was found in human AAA tissues and in angiotensin II-induced mouse AAA tissues. Mep1A deficiency reduced AAA formation and increased the survival rate of AAA mice. Pathological analysis showed that Mep1A deletion decreased elastic lamina degradation and SMC apoptosis in AAA tissues. Furthermore, Mep1A was expressed mainly in MCs, wherein it mediated TNF-α expression. Mep1A inhibitor actinonin significantly inhibited TNF-α secretion in MCs. TNF-α secreted by MCs enhanced MMP2 expression in SMCs and promoted SMC apoptosis. CONCLUSION AND IMPLICATIONS Taken together, these data suggest that Mep1A may be vital in AAA pathophysiology by regulating TNF-α production by MCs. Knocking out Mep1A significantly decreased AAA diameter and improved AAA stability in mice. Therefore, Mep1A is a potential new therapeutic target in the development of AAA.
Collapse
Affiliation(s)
- Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Duan Liu
- Peking Union Medical College Hospital, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Tianfei Fan
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Pan Gao
- Department of Geriatrics, Southwest Hospital, The First Affiliated Hospital to Army Medical University, Chongqing, China
| | - Bin Liu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, USA
| | - Yuehong Zheng
- Peking Union Medical College Hospital, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Li J, Deng Z, Zhang X, Liu F, Yang C, Shi GP. Deficiency of immunoglobulin E protects mice from experimental abdominal aortic aneurysms. FASEB J 2020; 34:3091-3104. [PMID: 31909541 PMCID: PMC7018578 DOI: 10.1096/fj.201902095rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 11/11/2022]
Abstract
Allergic asthma with high plasma IgE levels is a significant risk factor of human abdominal aortic aneurysm (AAA). This study tests a direct role of IgE in angiotensin-II (Ang-II) perfusion- and peri-aortic CaCl2 injury-induced AAA in mice. In both models, IgE-deficiency in Apoe-/- Ige-/- mice blunts AAA growth and reduces lesion accumulation of macrophages, CD4+ and CD8+ T cells, and lesion MHC class-II expression, CD31+ microvessel growth, and media smooth muscle cell loss, compared with those from Apoe-/- control mice. Real time-PCR reveals significant reductions in expression of neutrophil chemoattractants MIP-2α and CXCL5 in AAA lesions or macrophages from Apoe-/- Ige-/- mice, along with reduced lesion Ly6G+ neutrophil accumulation. Consistent with reduced lesion inflammatory cell accumulation, we find significant reductions of plasma and AAA lesion IL6 expression in Apoe-/- Ige-/- mice. Immunofluorescent staining and FACS analysis show that AAA lesion neutrophils express FcεR1. Mechanistic study demonstrates that IgE induces neutrophil FcεR1 expression, activates MAPK signaling, and promotes IL6 production. This study supports a direct role of IgE in AAA by promoting lesion chemokine expression, inflammatory cell accumulation, MAPK signaling, and cytokine expression. IgE inhibition may represent a novel therapeutic approach in AAA management.
Collapse
Affiliation(s)
- Jie Li
- Department of Geriatrics, National Key Clinic Specialty, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangzhou, China
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Zhiyong Deng
- Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xian Zhang
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Feng Liu
- Department of Geriatrics, National Key Clinic Specialty, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangzhou, China
| | - Chongzhe Yang
- Department of Geriatrics, National Key Clinic Specialty, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangzhou, China
- Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
40
|
Zhang X, Li J, Luo S, Wang M, Huang Q, Deng Z, de Febbo C, Daoui A, Liew PX, Sukhova GK, Metso J, Jauhiainen M, Shi GP, Guo J. IgE Contributes to Atherosclerosis and Obesity by Affecting Macrophage Polarization, Macrophage Protein Network, and Foam Cell Formation. Arterioscler Thromb Vasc Biol 2020; 40:597-610. [PMID: 31996021 DOI: 10.1161/atvbaha.119.313744] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE By binding to its high-affinity receptor FcεR1, IgE activates mast cells, macrophages, and other inflammatory and vascular cells. Recent studies support an essential role of IgE in cardiometabolic diseases. Plasma IgE level is an independent predictor of human coronary heart disease. Yet, a direct role of IgE and its mechanisms in cardiometabolic diseases remain incompletely understood. Approach and Results: Using atherosclerosis prone Apoe-/- mice and IgE-deficient Ige-/- mice, we demonstrated that IgE deficiency reduced atherosclerosis lesion burden, lesion lipid deposition, smooth muscle cell and endothelial cell contents, chemokine MCP (monocyte chemoattractant protein)-1 expression and macrophage accumulation. IgE deficiency also reduced bodyweight gain and increased glucose and insulin sensitivities with significantly reduced plasma cholesterol, triglyceride, insulin, and inflammatory cytokines and chemokines, including IL (interleukin)-6, IFN (interferon)-γ, and MCP-1. From atherosclerotic lesions and peritoneal macrophages from Apoe-/-Ige-/- mice that consumed an atherogenic diet, we detected reduced expression of M1 macrophage markers (CD68, MCP-1, TNF [tumor necrosis factor]-α, IL-6, and iNOS [inducible nitric oxide synthase]) but increased expression of M2 macrophage markers (Arg [arginase]-1 and IL-10) and macrophage-sterol-responsive-network molecules (complement C3, lipoprotein lipase, LDLR [low-density lipoprotein receptor]-related protein 1, and TFR [transferrin]) that suppress macrophage foam cell formation. These IgE activities can be reproduced in bone marrow-derived macrophages from wild-type mice, but muted in cells from FcεR1-deficient mice, or blocked by anti-IgE antibody or complement C3 deficiency. CONCLUSIONS IgE deficiency protects mice from diet-induced atherosclerosis, obesity, glucose tolerance, and insulin resistance by regulating macrophage polarization, macrophage-sterol-responsive-network gene expression, and foam cell formation.
Collapse
Affiliation(s)
- Xian Zhang
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.Z., J.L., S.L., M.W., Q.H., Z.D., C.d.F., A.D., P.X.L., G.K.S., G.-P.S., J.G.)
| | - Jie Li
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.Z., J.L., S.L., M.W., Q.H., Z.D., C.d.F., A.D., P.X.L., G.K.S., G.-P.S., J.G.).,Department of Geriatrics, National Key Clinic Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China (J.L.)
| | - Songyuan Luo
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.Z., J.L., S.L., M.W., Q.H., Z.D., C.d.F., A.D., P.X.L., G.K.S., G.-P.S., J.G.)
| | - Minjie Wang
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.Z., J.L., S.L., M.W., Q.H., Z.D., C.d.F., A.D., P.X.L., G.K.S., G.-P.S., J.G.)
| | - Qin Huang
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.Z., J.L., S.L., M.W., Q.H., Z.D., C.d.F., A.D., P.X.L., G.K.S., G.-P.S., J.G.)
| | - Zhiyong Deng
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.Z., J.L., S.L., M.W., Q.H., Z.D., C.d.F., A.D., P.X.L., G.K.S., G.-P.S., J.G.)
| | - Caroline de Febbo
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.Z., J.L., S.L., M.W., Q.H., Z.D., C.d.F., A.D., P.X.L., G.K.S., G.-P.S., J.G.)
| | - Aida Daoui
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.Z., J.L., S.L., M.W., Q.H., Z.D., C.d.F., A.D., P.X.L., G.K.S., G.-P.S., J.G.)
| | - Pei Xiong Liew
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.Z., J.L., S.L., M.W., Q.H., Z.D., C.d.F., A.D., P.X.L., G.K.S., G.-P.S., J.G.)
| | - Galina K Sukhova
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.Z., J.L., S.L., M.W., Q.H., Z.D., C.d.F., A.D., P.X.L., G.K.S., G.-P.S., J.G.)
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and Biobank Unit, Biomedicum 2U, Helsinki, Finland (J.M., M.J.)
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and Biobank Unit, Biomedicum 2U, Helsinki, Finland (J.M., M.J.)
| | - Guo-Ping Shi
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.Z., J.L., S.L., M.W., Q.H., Z.D., C.d.F., A.D., P.X.L., G.K.S., G.-P.S., J.G.)
| | - Junli Guo
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (X.Z., J.L., S.L., M.W., Q.H., Z.D., C.d.F., A.D., P.X.L., G.K.S., G.-P.S., J.G.).,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou 571199, China (J.G.)
| |
Collapse
|
41
|
Li G, Zhou H, He Y, Sun S, Wu X, Yuan H. Ulinastatin Inhibits the Formation and Progression of Experimental Abdominal Aortic Aneurysms. J Vasc Res 2020; 57:58-64. [PMID: 31962313 DOI: 10.1159/000504848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 11/18/2019] [Indexed: 11/19/2022] Open
Abstract
AIMS Aortic mural inflammatory damage takes a vital part in abdominal aortic aneurysm (AAA). Recently, ulinastatin (UTI) has attracted attention for its anti-inflammatory function. Our study aimed to evaluate potential influences of UTI on experimental AAA. METHODS A mouse model of AAA was induced by infusion of porcine pancreatic elastase (PPE) into the abdominal aorta. Mice were treated with UTI (50,000 U/kg/day i.p.) beginning either immediately or on the 4th day after PPE infusion, with treatment being continued until the 14th day. UTI effects were assessed by aortic diameter measurements and aortic histopathological analysis. RESULTS Significant and time-dependent aortic diameter enlargement persisted in the control mice from day 0. In the UTI group, aortic diameter increased, and depletion of aortic mural smooth muscle cells and elastin was significantly -attenuated. Simultaneously, mural CD68+ macrophages, CD8+ T-cell and B220+ B-cell density, as well as neoangiogenesis were suppressed by UTI. In addition, delayed UTI treatment could still effectively limit aneurysm expansion. CONCLUSIONS UTI treatment limits the formation and growth of experimental AAA, and UTI may be a potential treatment for early AAA disease.
Collapse
Affiliation(s)
- Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hua Zhou
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yuxiang He
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shunji Sun
- Vascular Intervention Department, Hospital Affiliated to Weifang Medical University, Weifang, China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China,
| |
Collapse
|
42
|
Depletion of CD11c+ cell attenuates progression of abdominal aortic aneurysm. Clin Sci (Lond) 2020; 134:33-37. [PMID: 31898748 DOI: 10.1042/cs20191083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/17/2022]
Abstract
Chronic inflammation of the arterial wall has been implicated in the development of abdominal aortic aneurysm (AAA). However, the detailed molecular mechanism(s) by which inflammatory cells contributes to AAA pathogenesis remains largely unclear. In their article in Clinical Science, Krishna et al. have reported that depletion of CD11c+ dendritic cells inhibited experimental AAA formation in mice. The authors also demonstrated a decrease in CD4 and CD8 positive T cells in the circulation, lower plasma neutrophil elastase activity, and aortic matrix remodeling. These novel findings will help clarify the underlying mechanisms of AAA progression and may provide a new target for future therapeutic research in AAA formation.
Collapse
|
43
|
Abstract
Aortic aneurysms are a common vascular disease in Western populations that can involve virtually any portion of the aorta. Abdominal aortic aneurysms are much more common than thoracic aortic aneurysms and combined they account for >25 000 deaths in the United States annually. Although thoracic and abdominal aortic aneurysms share some common characteristics, including the gross anatomic appearance, alterations in extracellular matrix, and loss of smooth muscle cells, they are distinct diseases. In recent years, advances in genetic analysis, robust molecular tools, and increased availability of animal models have greatly enhanced our knowledge of the pathophysiology of aortic aneurysms. This review examines the various proposed cellular mechanisms responsible for aortic aneurysm formation and identifies opportunities for future studies.
Collapse
Affiliation(s)
- Raymundo Alain Quintana
- From the Division of Cardiology, Department of Medicine (R.A.Q., W.R.T.), Emory University School of Medicine, Atlanta, GA
| | - W Robert Taylor
- From the Division of Cardiology, Department of Medicine (R.A.Q., W.R.T.), Emory University School of Medicine, Atlanta, GA.,Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology (W.R.T.), Emory University School of Medicine, Atlanta, GA.,Division of Cardiology, Atlanta VA Medical Center, Decatur, GA (W.R.T.)
| |
Collapse
|
44
|
Peshkova IO, Aghayev T, Fatkhullina AR, Makhov P, Titerina EK, Eguchi S, Tan YF, Kossenkov AV, Khoreva MV, Gankovskaya LV, Sykes SM, Koltsova EK. IL-27 receptor-regulated stress myelopoiesis drives abdominal aortic aneurysm development. Nat Commun 2019; 10:5046. [PMID: 31695038 PMCID: PMC6834661 DOI: 10.1038/s41467-019-13017-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent life-threatening disease, where aortic wall degradation is mediated by accumulated immune cells. Although cytokines regulate inflammation within the aorta, their contribution to AAA via distant alterations, particularly in the control of hematopoietic stem cell (HSC) differentiation, remains poorly defined. Here we report a pathogenic role for the interleukin-27 receptor (IL-27R) in AAA, as genetic ablation of IL-27R protects mice from the disease development. Mitigation of AAA is associated with a blunted accumulation of myeloid cells in the aorta due to the attenuation of Angiotensin II (Ang II)-induced HSC expansion. IL-27R signaling is required to induce transcriptional programming to overcome HSC quiescence and increase differentiation and output of mature myeloid cells in response to stress stimuli to promote their accumulation in the diseased aorta. Overall, our studies illuminate how a prominent vascular disease can be distantly driven by a cytokine-dependent regulation of bone marrow precursors.
Collapse
Affiliation(s)
- Iuliia O Peshkova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Turan Aghayev
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Aliia R Fatkhullina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | - Petr Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | - Elizaveta K Titerina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Satoru Eguchi
- Lewis Katz School of Medicine, Temple University Cardiovascular Research Center, Philadelphia, Pennsylvania, 19140, USA
| | - Yin Fei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | - Andrew V Kossenkov
- Bioinformatics Facility, The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - Marina V Khoreva
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | | | - Stephen M Sykes
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA
| | - Ekaterina K Koltsova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, 19111, USA.
| |
Collapse
|
45
|
Liu CL, Zhang X, Liu J, Wang Y, Sukhova GK, Wojtkiewicz GR, Liu T, Tang R, Achilefu S, Nahrendorf M, Libby P, Guo J, Zhang JY, Shi GP. Na +-H + exchanger 1 determines atherosclerotic lesion acidification and promotes atherogenesis. Nat Commun 2019; 10:3978. [PMID: 31484936 PMCID: PMC6726618 DOI: 10.1038/s41467-019-11983-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/15/2019] [Indexed: 01/25/2023] Open
Abstract
The pH in atherosclerotic lesions varies between individuals. IgE activates macrophage Na+-H+ exchanger (Nhe1) and induces extracellular acidification and cell apoptosis. Here, we show that the pH-sensitive pHrodo probe localizes the acidic regions in atherosclerotic lesions to macrophages, IgE, and cell apoptosis. In Apoe-/- mice, Nhe1-deficiency or anti-IgE antibody reduces atherosclerosis and blocks lesion acidification. Reduced atherosclerosis in Apoe-/- mice receiving bone marrow from Nhe1- or IgE receptor FcεR1-deficient mice, blunted foam cell formation and signaling in IgE-activated macrophages from Nhe1-deficient mice, immunocomplex formation of Nhe1 and FcεR1 in IgE-activated macrophages, and Nhe1-FcεR1 colocalization in atherosclerotic lesion macrophages support a role of IgE-mediated macrophage Nhe1 activation in atherosclerosis. Intravenous administration of a near-infrared fluorescent pH-sensitive probe LS662, followed by coregistered fluorescent molecular tomography-computed tomography imaging, identifies acidic regions in atherosclerotic lesions in live mice, ushering a non-invasive and radiation-free imaging approach to monitor atherosclerotic lesions in live subjects.
Collapse
Affiliation(s)
- Cong-Lin Liu
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Xian Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jing Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yunzhe Wang
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Galina K Sukhova
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Rui Tang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Junli Guo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, 571199,, Haikou, China.
| | - Jin-Ying Zhang
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guo-Ping Shi
- Department of Cardiology, Institute of Clinical Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, 571199,, Haikou, China.
| |
Collapse
|
46
|
Guo W, Gao R, Zhang W, Ge W, Ren M, Li B, Zhao H, Wang J. IgE Aggravates the Senescence of Smooth Muscle Cells in Abdominal Aortic Aneurysm by Upregulating LincRNA-p21. Aging Dis 2019; 10:699-710. [PMID: 31440377 PMCID: PMC6675527 DOI: 10.14336/ad.2018.1128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/28/2018] [Indexed: 02/01/2023] Open
Abstract
Immunoglobulin E (lgE) activates immunity by binding to mast cells and basophils. It is well-known that IgE and its receptor, FcɛR1, play a key role in the development of airway inflammation and remodeling in allergic asthma. Recent studies show that IgE also plays an important role in abdominal aortic aneurysm (AAA) pathogenesis. However, the mechanism by which IgE promotes AAA remains unclear. Here we report that in our mouse model, asthma-induced high level of IgE aggravated AAA, but IgE lost this effect on AAA in FcɛR1-/- mice. Our in vitro study revealed that IgE induced smooth muscle cell senescence via upregulating lincRNA-p21 against p21 without altering expression of p53. By this mechanism, IgE accelerated AAA in ApoE-/- mice, which was blocked by knockdown of lincRNA-p21 in both vitro and vivo. This study suggests that IgE actives the lincRNAp21-p21 pathway to induce SMC senescence, which contributes to the formation of AAA, and lincRNA-p21 is a potential therapeutic target for AAA aggravated by asthma.
Collapse
Affiliation(s)
- Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Meng Ren
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| |
Collapse
|
47
|
Zhang X, Huang Q, Wang X, Deng Z, Li J, Yan X, Jauhiainen M, Metso J, Libby P, Liu J, Shi GP. Dietary cholesterol is essential to mast cell activation and associated obesity and diabetes in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1690-1700. [PMID: 30978390 DOI: 10.1016/j.bbadis.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Mast cell (MC) deficiency in KitW-sh/W-sh mice and inhibition with disodium chromoglycate (DSCG) or ketotifen reduced obesity and diabetes in mice on a high-cholesterol (1.25%) Western diet. Yet, Kit-independent MC-deficient mice and mice treated with DSCG disproved MC function in obesity and diabetes when mice are fed a high-fat diet (HFD) that contains no cholesterol. This study reproduced the obesity and diabetes inhibitory activities of DSCG and ketotifen from mice on a Western diet. Yet, such inhibitory effects were diminished in mice on the HFD. DSCG and ketotifen MC inhibitory activities were recovered from mice on the HFD supplemented with the same amount of cholesterol (1.25%) as that in the Western diet. DSCG and ketotifen effectively blunted the high-cholesterol diet-induced elevations of blood histamine and adipose tissue MC degranulation. Pearson's correlation test demonstrated significant and positive correlations between plasma histamine and total cholesterol or low-density lipoprotein-cholesterol (LDL). In cultured bone marrow-derived MCs, plasma from mice following a Western diet or a cholesterol-supplemented HFD, but not those from HFD-fed mice, induced MC degranulation and the release of β-hexosaminidase, histamine, and serotonin. IgE, LDL, very low-density lipoprotein, and high-density lipoprotein also induced MC activation, which can be inhibited by DSCG and ketotifen depending on the doses and types of MC inhibitors and cholesterol, and also the MC granule molecules of interest. DSCG or ketotifen lost their activities in inhibiting LDL-induced activation of MCs from LDL receptor-deficient mice. These results indicate that dietary cholesterol critically influences the function of mouse MCs.
Collapse
Affiliation(s)
- Xian Zhang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qin Huang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhiyong Deng
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiang Yan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jian Liu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Aquila I, Frati G, Sciarretta S, Dellegrottaglie S, Torella D, Torella M. New imaging techniques project the cellular and molecular alterations underlying bicuspid aortic valve development. J Mol Cell Cardiol 2019; 129:197-207. [PMID: 30826295 DOI: 10.1016/j.yjmcc.2019.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/29/2022]
Abstract
Bicuspid aortic valve (BAV) disease is the most common congenital cardiac malformation associated with an increased lifetime risk and a high rate of surgically-relevant valve deterioration and aortic dilatation. Genomic data revealed that different genes are associated with BAV. A dominant genetic factor for the recent past was the basis to the recommendation for a more extensive aortic intervention. However very recent evidence that hemodynamic stressors and alterations of wall shear stress play an important role independent from the genetic trait led to more conservative treatment recommendations. Therefore, there is a current need to improve the ability to risk stratify BAV patients in order to obtain an early detection of valvulopathy and aortopathy while also to predict valve dysfunction and/or aortic disease development. Imaging studies based on new cutting-edge technologies, such us 4-dimensional (4D) flow magnetic resonance imaging (MRI), two-dimensional (2D) or three-dimensional (3D) speckle-tracking imaging (STI) and computation fluid dynamics, combined with studies demonstrating new gene mutations, specific signal pathways alterations, hemodynamic influences, circulating biomarkers modifications, endothelial progenitor cell impairment and immune/inflammatory response, all detected BAV valvulopathy progression and aortic wall abnormality. Overall, the main purpose of this review article is to merge the evidences of imaging and basic science studies in a coherent hypothesis that underlies and thus projects the development of both BAV during embryogenesis and BAV-associated aortopathy and its complications in the adult life, with the final goal to identifying aneurysm formation/rupture susceptibility to improve diagnosis and management of patients with BAV-related aortopathy.
Collapse
Affiliation(s)
- Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro 88100, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; IRCCS NEUROMED, Pozzilli, IS, Italy.
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; IRCCS NEUROMED, Pozzilli, IS, Italy
| | - Santo Dellegrottaglie
- Division of Cardiology, Ospedale Accreditato Villa dei Fiori, Acerra, Naples 80011, Italy; The Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro 88100, Italy.
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
49
|
Nie H, Wang HX, Tian C, Ren HL, Li FD, Wang CY, Li HH, Zheng YH. Chemokine (C-X-C motif) receptor 2 blockade by SB265610 inhibited angiotensin II-induced abdominal aortic aneurysm in Apo E -/- mice. Heart Vessels 2018; 34:875-882. [PMID: 30535755 DOI: 10.1007/s00380-018-1301-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/09/2018] [Indexed: 11/29/2022]
Abstract
Inflammation plays a critical role in the development of abdominal aortic aneurysm (AAA). Chemokine receptor CXCR2 mediates inflammatory cell chemotaxis in several diseases. However, the role of CXCR2 in AAA and the underlying mechanisms remain unknown. In this study, we found that the CXCR2 expressions in AAA tissues from human and angiotensin II (Ang II)-infused apolipoprotein E knockout (Apo E-/-) mice were significantly increased. The pharmacological inhibition of CXCR2 (SB265610) markedly reduced Ang II-induced AAA formation. Furthermore, SB265610 treatment significantly reduced collagen deposition, elastin degradation, the metal matrix metalloprotease expression and accumulation of macrophage cells. In conclusion, these results showed CXCR2 plays a pathogenic role in AAA formation. Inhibition of CXCR2 pathway may represent a novel therapeutic approach to treat AAA.
Collapse
Affiliation(s)
- Hao Nie
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, 100005, People's Republic of China
| | - Hong-Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Cui Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Hua-Liang Ren
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, 100005, People's Republic of China
| | - Fang-Da Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, 100005, People's Republic of China
| | - Chao-Yu Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, 100005, People's Republic of China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
| | - Yue-Hong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing, 100005, People's Republic of China.
| |
Collapse
|
50
|
De Biase D, Esposito F, De Martino M, Pirozzi C, Luciano A, Palma G, Raso GM, Iovane V, Marzocco S, Fusco A, Paciello O. Characterization of inflammatory infiltrate of ulcerative dermatitis in C57BL/6NCrl-Tg(HMGA1P6)1Pg mice. Lab Anim 2018; 53:447-458. [PMID: 30522404 DOI: 10.1177/0023677218815718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ulcerative dermatitis (UD) is an idiopathic, spontaneous and progressive disease typically affecting C57BL/6 aged mice with an unknown aetiopathogenesis. For this study, we evaluated 25 cases of UD in C57BL/6NCrl-Tg(HMGA1P6)1Pg mice. Formalin-fixed, paraffin-embedded skin samples were submitted to morphological investigations. Immunohistochemical analysis was performed to characterize and quantify inflammatory cells using CD3, CD45/B220, CD4, CD8 and IL-17 antibodies. Mast cell-bound IgE was investigated by immunofluorescence, whereas serum and cryopreserved skin samples were collected for molecular analysis. Student's t-test (two-tailed) was performed to assess significant differences between the two groups. Affected skin showed extensive areas of ulceration and diffuse, severe and mixed inflammatory infiltrates. No relevant changes were observed in control mice. Immunohistochemical analysis showed a predominant CD3 + CD4 + leukocyte population with fewer CD45/B220 and IL-17 immunolabelled cells and mast cell-bound IgE. Increases in TNFα, IL-1β and Il-6 mRNA expression were observed in the skin of affected animals compared to controls. Serum TNFα and IL-6 did not vary between affected and control mice. Inflammatory infiltrates and cytokine expression were consistent with both Th2/IgE and Th17 differentiation, a typical pattern of a type I hypersensitivity reaction. Overall, our data suggest an allergic-based aetiopathogenesis of UD in C57BL/6NCrl-Tg(HMGA1P6)1Pg mice.
Collapse
Affiliation(s)
- Davide De Biase
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Francesco Esposito
- CNR - Institute of Experimental Endocrinology and Oncology, c/o Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy
| | - Marco De Martino
- CNR - Institute of Experimental Endocrinology and Oncology, c/o Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Italy
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | | | | | | | - Alfredo Fusco
- CNR - Institute of Experimental Endocrinology and Oncology, c/o Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| |
Collapse
|