1
|
Jankowski K, Lemay SE, Lozano-Ojalvo D, Perez Rodriguez L, Sauvaget M, Breuils-Bonnet S, Formoso K, Jagana V, Zhang S, Milara J, Cortijo J, Turnbull IC, Provencher S, Bonnet S, Orchando J, Lezoualc'h F, Bisserier M, Hadri L. Pharmacological Inhibition of Epac1 Protects against Pulmonary Fibrosis by Blocking FoxO3a Neddylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612935. [PMID: 39345579 PMCID: PMC11429716 DOI: 10.1101/2024.09.13.612935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Idiopathic Pulmonary fibrosis (IPF) is characterized by progressive scarring and fibrosis within the lungs. There is currently no cure for IPF; therefore, there is an urgent need to identify novel therapeutic targets that can prevent the progression of IPF. Compelling evidence indicates that the second messenger, cyclic adenosine monophosphate (cAMP), inhibits lung fibroblast proliferation and differentiation through the classical PKA pathway. However, the contribution of the e xchange p rotein directly a ctivated by c AMP 1 (Epac1) to IPF pathophysiological processes is yet to be investigated. Objective To determine the role of the cAMP-binding protein Epac1 in the progression of IPF. Methods We used lung samples from IPF patients or healthy controls, mouse lung samples, or lung fibroblast isolated from a preclinical mouse model of PF induced by bleomycin intratracheal injection. The effect of bleomycin (BLM) treatment was determined in Epac1 knock-out mice or wild-type littermates. Epac1 expression was modulated in vitro by using lentiviral vectors or adenoviruses. The therapeutic potential of the Epac1-selective pharmacological inhibitor, AM-001, was tested in vivo and in vitro, using a bleomycin mouse model of PF and an ex vivo precision-cut lung slices (PCLs) model of human lung fibrosis. Results Epac1 expression was increased in the lung tissue of IPF patients, in IPF-diseased fibroblasts and in BLM-challenged mice. Furthermore, Epac1 genetic or pharmacological inhibition with AM-001 decreased normal and IPF fibroblast proliferation and the expression of profibrotic markers, αSMA, TGF-β/SMAD2/3, and interleukin-6 (IL-6)/STAT3 signaling pathways. Consistently, blocking Epac1 protected against BLM-induced lung injury and fibrosis, suggesting a therapeutic effect of Epac1 inhibition on PF pathogenesis and progression. Global gene expression profiling revealed a decrease in the key components of the profibrotic gene signature and neddylation pathway in Epac1-deficient lung fibroblasts and IPF human-derived PLCs. Mechanistically, the protective effect of Epac1 inhibition against PF development involves the inhibition of FoxO3a neddylation and its subsequent degradation by NEDD8, and in part, by limiting the proliferative capacity of lung-infiltrating monocytes. Conclusions We demonstrated that Epac1 is an important regulator of the pathological state of fibroblasts in PF and that small molecules targeting Epac1 can serve as novel therapeutic drugs against PF.
Collapse
|
2
|
Nguyen QC, Nguyen HA, Pham TA, Tran VTH, Nguyen TD, Pham DV. Mimosa pudica L. extract ameliorates pulmonary fibrosis via modulation of MAPK signaling pathways and FOXO3 stabilization. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118226. [PMID: 38670401 DOI: 10.1016/j.jep.2024.118226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing pulmonary disorder that has a poor prognosis and high mortality. Although there has been extensive effort to introduce several new anti-fibrotic agents in the past decade, IPF remains an incurable disease. Mimosa pudica L., an indigenous Vietnamese plant, has been empirically used to treat respiratory disorders. Nevertheless, the therapeutic effects of M. pudica (MP) on lung fibrosis and the mechanisms underlying those effects remain unclear. AIM OF THE STUDY This study investigated the protective effect of a crude ethanol extract of the above-ground parts of MP against pulmonary fibrogenesis. MATERIALS AND METHODS Inflammatory responses triggered by TNFα in structural lung cells were examined in normal human lung fibroblasts and A549 alveolar epithelial cells using Western blot analysis, reverse transcription-quantitative polymerase chain reaction assays, and immunocytochemistry. The epithelial-to-mesenchymal transition (EMT) was examined via cell morphology observations, F-actin fluorescent staining, gene and protein expression measurements, and a wound-healing assay. Anti-fibrotic assays including collagen release, differentiation, and measurements of fibrosis-related gene and protein expression levels were performed on TGFβ-stimulated human lung fibroblasts and lung fibroblasts derived from mice with fibrotic lungs. Finally, in vitro anti-fibrotic activities were validated using a mouse model of bleomycin-induced pulmonary fibrosis. RESULTS MP alleviated the inflammatory responses of A549 alveolar epithelial cells and lung fibroblasts, as revealed by inhibition of TNFα-induced chemotactic cytokine and chemokine expression, along with inactivation of the MAPK and NFκB signalling pathways. MP also partially reversed the TGFβ-promoted EMT via downregulation of mesenchymal markers in A549 cells. Importantly, MP decreased the expression levels of fibrosis-related genes/proteins including collagen I, fibronectin, and αSMA; moreover, it suppressed collagen secretion and prevented myofibroblast differentiation in lung fibroblasts. These effects were mediated by FOXO3 stabilization through suppression of TGFβ-induced ERK1/2 phosphorylation. MP consistently protected mice from the onset and progression of bleomycin-induced pulmonary fibrosis. CONCLUSION This study explored the multifaceted roles of MP in counteracting the pathobiological processes of lung fibrosis. The results suggest that further evaluation of MP could yield candidate therapies for IPF.
Collapse
Affiliation(s)
- Quynh-Chi Nguyen
- Department of Pharmacognosy, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Hoang-Anh Nguyen
- Department of Pharmacology, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Tuan-Anh Pham
- Department of Pharmacognosy, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Van Thi-Hong Tran
- Department of Pharmacology and Biochemistry, Vietnam National Institute of Medicinal Materials, Hanoi, Viet Nam
| | - Thuy-Duong Nguyen
- Department of Pharmacology, Hanoi University of Pharmacy, Hanoi, Viet Nam
| | - Duc-Vinh Pham
- Department of Pharmacology, Hanoi University of Pharmacy, Hanoi, Viet Nam.
| |
Collapse
|
3
|
Cheng WC, Chen PY, Zhang X, Chang YK, Tan KT, Lin TCC. 5,7,3',4'-Tetramethoxyflavone suppresses TGF-β1-induced activation of murine fibroblasts in vitro and ameliorates bleomycin-induced pulmonary fibrosis in mice. Immunopharmacol Immunotoxicol 2024:1-13. [PMID: 38951964 DOI: 10.1080/08923973.2024.2371150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE This study aimed to investigate the use of 5,7,3',4'-tetramethoxyflavone (TMF) to treat pulmonary fibrosis (PF), a chronic and fatal lung disease. In vitro and in vivo models were used to examine the impact of TMF on PF. METHODS NIH-3T3 (Mouse Embryonic Fibroblast) were exposed to transforming growth factor‑β1 (TGF-β1) and treated with or without TMF. Cell growth was assessed using the MTT method, and cell migration was evaluated with the scratch wound assay. Protein and messenger ribonucleic acid (mRNA) levels of extracellular matrix (ECM) genes were analyzed by western blotting and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Downstream molecules affected by TGF-β1 were examined by western blotting. In vivo, mice with bleomycin-induced PF were treated with TMF, and lung tissues were analyzed with staining techniques. RESULTS The in vitro results showed that TMF had no significant impact on cell growth or migration. However, it effectively inhibited myofibroblast activation and ECM production induced by TGF-β1 in NIH-3T3 cells. This inhibition was achieved by suppressing various signaling pathways, including Smad, mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/AKT (PI3K/AKT), and WNT/β-catenin. The in vivo experiments demonstrated the therapeutic potential of TMF in reducing PF induced by bleomycin in mice, and there was no significant liver or kidney toxicity observed. CONCLUSION These findings suggest that TMF has the potential to effectively inhibit myofibroblast activation and could be a promising treatment for PF. TMF achieves this inhibitory effect by targeting TGF-β1/Smad and non-Smad pathways.
Collapse
Affiliation(s)
- Wen-Chien Cheng
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Pei Ying Chen
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
| | - Xiang Zhang
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- Department of Postbaccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kok-Tong Tan
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tim C C Lin
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Dabral S, Noh M, Werner F, Krebes L, Völker K, Maier C, Aleksic I, Novoyatleva T, Hadzic S, Schermuly RT, Perez VADJ, Kuhn M. C-type natriuretic peptide/cGMP/FoxO3 signaling attenuates hyperproliferation of pericytes from patients with pulmonary arterial hypertension. Commun Biol 2024; 7:693. [PMID: 38844781 PMCID: PMC11156916 DOI: 10.1038/s42003-024-06375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Pericyte dysfunction, with excessive migration, hyperproliferation, and differentiation into smooth muscle-like cells contributes to vascular remodeling in Pulmonary Arterial Hypertension (PAH). Augmented expression and action of growth factors trigger these pathological changes. Endogenous factors opposing such alterations are barely known. Here, we examine whether and how the endothelial hormone C-type natriuretic peptide (CNP), signaling through the cyclic guanosine monophosphate (cGMP) -producing guanylyl cyclase B (GC-B) receptor, attenuates the pericyte dysfunction observed in PAH. The results demonstrate that CNP/GC-B/cGMP signaling is preserved in lung pericytes from patients with PAH and prevents their growth factor-induced proliferation, migration, and transdifferentiation. The anti-proliferative effect of CNP is mediated by cGMP-dependent protein kinase I and inhibition of the Phosphoinositide 3-kinase (PI3K)/AKT pathway, ultimately leading to the nuclear stabilization and activation of the Forkhead Box O 3 (FoxO3) transcription factor. Augmentation of the CNP/GC-B/cGMP/FoxO3 signaling pathway might be a target for novel therapeutics in the field of PAH.
Collapse
Affiliation(s)
- Swati Dabral
- Institute of Physiology, University of Würzburg, Würzburg, Germany.
| | - Minhee Noh
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Franziska Werner
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Lisa Krebes
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Katharina Völker
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Christopher Maier
- Department of Thoracic and Cardiovascular Surgery, University hospital Würzburg, Würzburg, Germany
| | - Ivan Aleksic
- Department of Thoracic and Cardiovascular Surgery, University hospital Würzburg, Würzburg, Germany
| | - Tatyana Novoyatleva
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Hadzic
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Justus-Liebig-University Giessen (JLU), Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Vinicio A de Jesus Perez
- Divisions of Pulmonary and Critical Care Medicine and Stanford Cardiovascular Institute, Stanford University, California, USA
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Yuan Y, Li J, Lu X, Chen M, Liang H, Chen XP, Long X, Zhang B, Gong S, Huang X, Zhao J, Chen Q. Autophagy in hepatic progenitor cells modulates exosomal miRNAs to inhibit liver fibrosis in schistosomiasis. Front Med 2024; 18:538-557. [PMID: 38769281 DOI: 10.1007/s11684-024-1079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024]
Abstract
Schistosoma infection is one of the major causes of liver fibrosis. Emerging roles of hepatic progenitor cells (HPCs) in the pathogenesis of liver fibrosis have been identified. Nevertheless, the precise mechanism underlying the role of HPCs in liver fibrosis in schistosomiasis remains unclear. This study examined how autophagy in HPCs affects schistosomiasis-induced liver fibrosis by modulating exosomal miRNAs. The activation of HPCs was verified by immunohistochemistry (IHC) and immunofluorescence (IF) staining in fibrotic liver from patients and mice with Schistosoma japonicum infection. By coculturing HPCs with hepatic stellate cells (HSCs) and assessing the autophagy level in HPCs by proteomic analysis and in vitro phenotypic assays, we found that impaired autophagy degradation in these activated HPCs was mediated by lysosomal dysfunction. Blocking autophagy by the autophagy inhibitor chloroquine (CQ) significantly diminished liver fibrosis and granuloma formation in S. japonicum-infected mice. HPC-secreted extracellular vehicles (EVs) were further isolated and studied by miRNA sequencing. miR-1306-3p, miR-493-3p, and miR-34a-5p were identified, and their distribution into EVs was inhibited due to impaired autophagy in HPCs, which contributed to suppressing HSC activation. In conclusion, we showed that the altered autophagy process upon HPC activation may prevent liver fibrosis by modulating exosomal miRNA release and inhibiting HSC activation in schistosomiasis. Targeting the autophagy degradation process may be a therapeutic strategy for liver fibrosis during Schistosoma infection.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xun Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Song Gong
- Department of Trauma Surgery, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaowei Huang
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Thangavelu L, Andreoli Pinto TDJ, Pathak S, Tiwari A, Tiwari V, Gupta G, Pant K, Gupta S, Shahwan M. Forkhead Box O (FOXO) signaling in NSCLC: pathways to targeted therapies. EXCLI JOURNAL 2024; 23:860-861. [PMID: 39165584 PMCID: PMC11333701 DOI: 10.17179/excli2024-7272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 08/22/2024]
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Professor Lineu Prestes Street, Sao Paulo 05508-000, Brazil
| | | | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, UP, 244102, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, UP, 244102, India
| | - Gaurav Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Chandigarh, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Kumud Pant
- Graphic Era (Deemed to be University) Clement Town Dehradun- 248002, India
- Graphic Era Hill University Clement Town Dehradun, 248002, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Indore, Madhya Pradesh, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
7
|
López-Martínez A, Santos-Álvarez JC, Velázquez-Enríquez JM, Ramírez-Hernández AA, Vásquez-Garzón VR, Baltierrez-Hoyos R. lncRNA-mRNA Co-Expression and Regulation Analysis in Lung Fibroblasts from Idiopathic Pulmonary Fibrosis. Noncoding RNA 2024; 10:26. [PMID: 38668384 PMCID: PMC11054336 DOI: 10.3390/ncrna10020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease marked by abnormal accumulation of extracellular matrix (ECM) due to dysregulated expression of various RNAs in pulmonary fibroblasts. This study utilized RNA-seq data meta-analysis to explore the regulatory network of hub long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in IPF fibroblasts. The meta-analysis unveiled 584 differentially expressed mRNAs (DEmRNA) and 75 differentially expressed lncRNAs (DElncRNA) in lung fibroblasts from IPF. Among these, BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA were identified as hub mRNAs, while AC008708.1, AC091806.1, AL442071.1, FAM111A-DT, and LINC01989 were designated as hub lncRNAs. Functional characterization revealed involvement in TGF-β, PI3K, FOXO, and MAPK signaling pathways. Additionally, this study identified regulatory interactions between sequences of hub mRNAs and lncRNAs. In summary, the findings suggest that AC008708.1, AC091806.1, FAM111A-DT, LINC01989, and AL442071.1 lncRNAs can regulate BCL6, EFNB1, EPHB2, FOXO1, FOXO3, GNAI1, IRF4, PIK3R1, and RXRA mRNAs in fibroblasts bearing IPF and contribute to fibrosis by modulating crucial signaling pathways such as FoxO signaling, chemical carcinogenesis, longevity regulatory pathways, non-small cell lung cancer, and AMPK signaling pathways.
Collapse
Affiliation(s)
- Armando López-Martínez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Jovito Cesar Santos-Álvarez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Juan Manuel Velázquez-Enríquez
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Alma Aurora Ramírez-Hernández
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
| | - Verónica Rocío Vásquez-Garzón
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico
| | - Rafael Baltierrez-Hoyos
- Laboratorio de Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico; (A.L.-M.); (J.C.S.-Á.); (J.M.V.-E.); (A.A.R.-H.); (V.R.V.-G.)
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Ex Hacienda de Aguilera S/N, Sur, San Felipe del Agua, Oaxaca C.P. 68020, Mexico
| |
Collapse
|
8
|
Shin J, Miaskowski C, Wong ML, Yates P, Olshen AB, Roy R, Dokiparthi V, Cooper B, Paul S, Conley YP, Levine JD, Hammer MJ, Kober K. Perturbations in inflammatory pathways are associated with shortness of breath profiles in oncology patients receiving chemotherapy. Support Care Cancer 2024; 32:250. [PMID: 38532105 PMCID: PMC11484916 DOI: 10.1007/s00520-024-08446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE One plausible mechanistic hypothesis is the potential contribution of inflammatory mechanisms to shortness of breath. This study was aimed to evaluate for associations between the occurrence of shortness of breath and perturbations in inflammatory pathways. METHODS Patients with cancer reported the occurrence of shortness of breath six times over two cycles of chemotherapy. Latent class analysis was used to identify subgroups of patients with distinct shortness of breath occurrence profiles (i.e., none (70.5%), decreasing (8.2%), increasing (7.8%), high (13.5%)). Using an extreme phenotype approach, whole transcriptome differential gene expression and pathway impact analyses were performed to evaluate for perturbed signaling pathways associated with shortness of breath between the none and high classes. Two independent samples (RNA-sequencing (n = 293) and microarray (n = 295) methodologies) were evaluated. Fisher's combined probability method was used to combine these results to obtain a global test of the null hypothesis. In addition, an unweighted knowledge network was created using the specific pathway maps to evaluate for interconnections among these pathways. RESULTS Twenty-nine Kyoto Encyclopedia of Genes and Genomes inflammatory signaling pathways were perturbed. The mitogen-activated protein kinase signaling pathway node had the highest closeness, betweenness, and degree scores. In addition, five common respiratory disease-related pathways, that may share mechanisms with cancer-related shortness of breath, were perturbed. CONCLUSIONS Findings provide preliminary support for the hypothesis that inflammation contribute to the occurrence of shortness of breath in patients with cancer. In addition, the mechanisms that underlie shortness of breath in oncology patients may be similar to other respiratory diseases.
Collapse
Affiliation(s)
- Joosun Shin
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, 94143-0610, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christine Miaskowski
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, 94143-0610, USA
- School of Medicine, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Melisa L Wong
- School of Medicine, University of California, San Francisco, CA, USA
| | - Patsy Yates
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adam B Olshen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Vasuda Dokiparthi
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, 94143-0610, USA
| | - Bruce Cooper
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, 94143-0610, USA
| | - Steven Paul
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, 94143-0610, USA
| | - Yvette P Conley
- School of Nursing, Univeristy of Pittsburgh, 3500 Victoria St, Pittsburgh, 15213, PA, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, CA, USA
| | | | - Kord Kober
- School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, 94143-0610, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
9
|
Shorey-Kendrick LE, McEvoy CT, Milner K, Harris J, Brownsberger J, Tepper RS, Park B, Gao L, Vu A, Morris CD, Spindel ER. Improvements in lung function following vitamin C supplementation to pregnant smokers are associated with buccal DNA methylation at 5 years of age. Clin Epigenetics 2024; 16:35. [PMID: 38413986 PMCID: PMC10900729 DOI: 10.1186/s13148-024-01644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND We previously reported in the "Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function" randomized clinical trial (RCT) that vitamin C (500 mg/day) supplementation to pregnant smokers is associated with improved respiratory outcomes that persist through 5 years of age. The objective of this study was to assess whether buccal cell DNA methylation (DNAm), as a surrogate for airway epithelium, is associated with vitamin C supplementation, improved lung function, and decreased occurrence of wheeze. METHODS We conducted epigenome-wide association studies (EWAS) using Infinium MethylationEPIC arrays and buccal DNAm from 158 subjects (80 placebo; 78 vitamin C) with pulmonary function testing (PFT) performed at the 5-year visit. EWAS were performed on (1) vitamin C treatment, (2) forced expiratory flow between 25 and 75% of expired volume (FEF25-75), and (3) offspring wheeze. Models were adjusted for sex, race, study site, gestational age at randomization (≤ OR > 18 weeks), proportion of epithelial cells, and latent covariates in addition to child length at PFT in EWAS for FEF25-75. We considered FDR p < 0.05 as genome-wide significant and nominal p < 0.001 as candidates for downstream analyses. Buccal DNAm measured in a subset of subjects at birth and near 1 year of age was used to determine whether DNAm signatures originated in utero, or emerged with age. RESULTS Vitamin C treatment was associated with 457 FDR significant (q < 0.05) differentially methylated CpGs (DMCs; 236 hypermethylated; 221 hypomethylated) and 53 differentially methylated regions (DMRs; 26 hyper; 27 hypo) at 5 years of age. FEF25-75 was associated with one FDR significant DMC (cg05814800), 1,468 candidate DMCs (p < 0.001), and 44 DMRs. Current wheeze was associated with 0 FDR-DMCs, 782 candidate DMCs, and 19 DMRs (p < 0.001). In 365/457 vitamin C FDR significant DMCs at 5 years of age, there was no significant interaction between time and treatment. CONCLUSIONS Vitamin C supplementation to pregnant smokers is associated with buccal DNA methylation in offspring at 5 years of age, and most methylation signatures appear to be persistent from the prenatal period. Buccal methylation at 5 years was also associated with current lung function and occurrence of wheeze, and these functionally associated loci are enriched for vitamin C associated loci. Clinical trial registration ClinicalTrials.gov, NCT01723696 and NCT03203603.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
| | - Cindy T McEvoy
- Department of Pediatrics, Pape Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kristin Milner
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Julia Harris
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Julie Brownsberger
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Robert S Tepper
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Byung Park
- Biostatistics Shared Resources, Knight Cancer Institute, Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Portland State University School of Public Health, Portland, OR, USA
| | - Lina Gao
- Biostatistics Shared Resources, Knight Cancer Institute, Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Portland State University School of Public Health, Portland, OR, USA
| | - Annette Vu
- Oregon Clinical & Translational Research Institute, Oregon Health and Science; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Cynthia D Morris
- Oregon Clinical & Translational Research Institute, Oregon Health and Science; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| |
Collapse
|
10
|
Kole A, Bag AK, Pal AJ, De D. Generic model to unravel the deeper insights of viral infections: an empirical application of evolutionary graph coloring in computational network biology. BMC Bioinformatics 2024; 25:74. [PMID: 38365632 PMCID: PMC10874019 DOI: 10.1186/s12859-024-05690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE Graph coloring approach has emerged as a valuable problem-solving tool for both theoretical and practical aspects across various scientific disciplines, including biology. In this study, we demonstrate the graph coloring's effectiveness in computational network biology, more precisely in analyzing protein-protein interaction (PPI) networks to gain insights about the viral infections and its consequences on human health. Accordingly, we propose a generic model that can highlight important hub proteins of virus-associated disease manifestations, changes in disease-associated biological pathways, potential drug targets and respective drugs. We test our model on SARS-CoV-2 infection, a highly transmissible virus responsible for the COVID-19 pandemic. The pandemic took significant human lives, causing severe respiratory illnesses and exhibiting various symptoms ranging from fever and cough to gastrointestinal, cardiac, renal, neurological, and other manifestations. METHODS To investigate the underlying mechanisms of SARS-CoV-2 infection-induced dysregulation of human pathobiology, we construct a two-level PPI network and employed a differential evolution-based graph coloring (DEGCP) algorithm to identify critical hub proteins that might serve as potential targets for resolving the associated issues. Initially, we concentrate on the direct human interactors of SARS-CoV-2 proteins to construct the first-level PPI network and subsequently applied the DEGCP algorithm to identify essential hub proteins within this network. We then build a second-level PPI network by incorporating the next-level human interactors of the first-level hub proteins and use the DEGCP algorithm to predict the second level of hub proteins. RESULTS We first identify the potential crucial hub proteins associated with SARS-CoV-2 infection at different levels. Through comprehensive analysis, we then investigate the cellular localization, interactions with other viral families, involvement in biological pathways and processes, functional attributes, gene regulation capabilities as transcription factors, and their associations with disease-associated symptoms of these identified hub proteins. Our findings highlight the significance of these hub proteins and their intricate connections with disease pathophysiology. Furthermore, we predict potential drug targets among the hub proteins and identify specific drugs that hold promise in preventing or treating SARS-CoV-2 infection and its consequences. CONCLUSION Our generic model demonstrates the effectiveness of DEGCP algorithm in analyzing biological PPI networks, provides valuable insights into disease biology, and offers a basis for developing novel therapeutic strategies for other viral infections that may cause future pandemic.
Collapse
Affiliation(s)
- Arnab Kole
- Department of Computer Application, The Heritage Academy, Kolkata, W.B., 700107, India.
| | - Arup Kumar Bag
- Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | | | - Debashis De
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Nadia, W.B., 741249, India
| |
Collapse
|
11
|
Shuangshuang H, Mengmeng S, Lan Z, Fang Z, Yu L. Maimendong decoction regulates M2 macrophage polarization to suppress pulmonary fibrosis via PI3K/Akt/FOXO3a signalling pathway-mediated fibroblast activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117308. [PMID: 37865276 DOI: 10.1016/j.jep.2023.117308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mai Men Dong decoction (MMDD), a traditional Chinese medicine formula, is relevant to ethnopharmacology due to its constituents and therapeutic properties. The formula contains herbs like Ophiopogon japonicus (Thunb.) Ker Gawl., Pinellia ternata (Thunb.) Makino, Panax ginseng C.A.Mey, Glycyrrhiza uralensis Fisch, and Ziziphus jujuba Mill, Oryza sativa L., which have been used for centuries in Chinese medicine. These herbs provide a comprehensive approach to treating respiratory conditions by addressing dryness, cough, and phlegm. Ethnopharmacological studies have explored the scientific basis of these herbs and identified active compounds that contribute to their medicinal effects. The traditional usage of MMDD by different ethnic groups reflects their knowledge and experiences. Examining this formula contributes to the understanding and development of ethnopharmacology. AIM OF THE STUDY In the case of pulmonary fibrosis (PF), treating it can be challenging due to the limited treatment options available. This study aimed to assess the potential of MMDD as a treatment for PF by targeting macrophages and the PI3K/Akt/FOXO3a signaling pathway. MATERIALS AND METHODS In a mouse model of PF, we investigated the effects of MMDD on inflammation, fibrosis, and M2 macrophage infiltration in lung tissue. Additionally, we examined the modulation of pro-fibrotic factors and key proteins in the PI3K/Akt/FOXO3a pathway. In vitro experiments involved inducing M2-type macrophages and assessing the impact of MMDD on fibroblast activation and the PI3K/Akt/FOXO3a pathway. RESULTS Results demonstrated that MMDD improved weight, reduced inflammation, and inhibited M2 macrophage infiltration in mouse lung tissue. It downregulated pro-fibrotic factors, such as TGF-β1 and PDGF-RB, as well as markers of fibroblast activation. MMDD also exhibited regulatory effects on key proteins in the PI3K/Akt/FOXO3a signaling pathway. CONCLUSIONS MMDD inhibited M2 macrophage polarization and released profibrotic factors that inhibited pulmonary fibrosis. As a result, the PI3K/Akt/FOXO3a signaling pathway is suppressed. MMDD is proving to be a successful treatment for PF. However, further research is needed to validate its effectiveness in clinical practice.
Collapse
Affiliation(s)
- He Shuangshuang
- School of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Shen Mengmeng
- School of Chinese North China University of Science and Technology, China
| | - Zhang Lan
- School of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Zhang Fang
- School of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Li Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, China.
| |
Collapse
|
12
|
Wang B, Pan J, Liu Z. Unraveling FOXO3a and USP18 Functions in Idiopathic Pulmonary Fibrosis through Single-Cell RNA Sequencing of Mouse and Human Lungs. Glob Med Genet 2023; 10:301-310. [PMID: 38025194 PMCID: PMC10651367 DOI: 10.1055/s-0043-1776697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is identified as a chronic, progressive lung disease, predominantly marked by enhanced fibroblast proliferation and excessive deposition of extracellular matrix. The intricate interactions between diverse molecular pathways in fibroblasts play a crucial role in driving the pathogenesis of IPF. Methods This research is focused on elucidating the roles of FOXO3a, a transcription factor, and USP18, a ubiquitin-specific protease, in modulating fibroblast functionality in the context of IPF. FOXO3a is well-known for its regulatory effects on cellular responses, including apoptosis and oxidative stress, while USP18 is generally associated with protein deubiquitination. Results Our findings highlight that FOXO3a acts as a critical regulator in controlling fibroblast activation and differentiation, illustrating its vital role in the pathology of IPF. Conversely, USP18 seems to promote fibroblast proliferation and imparts resistance to apoptosis, thereby contributing to the exacerbation of fibrotic processes. The synergistic dysregulation of both FOXO3a and USP18 in fibroblasts was found to significantly contribute to the fibrotic alterations characteristic of IPF. Conclusion Deciphering the complex molecular interactions between FOXO3a and USP18 in fibroblasts provides a deeper understanding of IPF pathogenesis and unveils novel therapeutic avenues, offering a promising potential for not just halting but potentially reversing the progression of this debilitating disease.
Collapse
Affiliation(s)
- Ban Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Peoples' Republic of China
| | - Jichun Pan
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, Peoples' Republic of China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Peoples' Republic of China
| |
Collapse
|
13
|
Pillai M, Lafortune P, Dabo A, Yu H, Park SS, Taluru H, Ahmed H, Bobrow D, Sattar Z, Jundi B, Reece J, Ortega RR, Soto B, Yewedalsew S, Foronjy R, Wyman A, Geraghty P, Ohlmeyer M. Small-Molecule Activation of Protein Phosphatase 2A Counters Bleomycin-Induced Fibrosis in Mice. ACS Pharmacol Transl Sci 2023; 6:1659-1672. [PMID: 37974628 PMCID: PMC10644462 DOI: 10.1021/acsptsci.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 11/19/2023]
Abstract
The activity of protein phosphatase 2A (PP2A), a serine-threonine phosphatase, is reduced in the lung fibroblasts of idiopathic pulmonary fibrosis (IPF) patients. The objective of this study was to determine whether the reactivation of PP2A could reduce fibrosis and preserve the pulmonary function in a bleomycin (BLM) mouse model. Here, we present a new class of direct small-molecule PP2A activators, diarylmethyl-pyran-sulfonamide, exemplified by ATUX-1215. ATUX-1215 has improved metabolic stability and bioavailability compared to our previously described PP2A activators. Primary human lung fibroblasts were exposed to ATUX-1215 and an older generation PP2A activator in combination with TGFβ. ATUX-1215 treatment enhanced the PP2A activity, reduced the phosphorylation of ERK and JNK, and reduced the TGFβ-induced expression of ACTA2, FN1, COL1A1, and COL3A1. C57BL/6J mice were administered 5 mg/kg ATUX-1215 daily following intratracheal instillation of BLM. Three weeks later, forced oscillation and expiratory measurements were performed using the Scireq Flexivent System. ATUX-1215 prevented BLM-induced lung physiology changes, including the preservation of normal PV loop, compliance, tissue elastance, and forced vital capacity. PP2A activity was enhanced with ATUX-1215 and reduced collagen deposition within the lungs. ATUX-1215 also prevented the BLM induction of Acta2, Ccn2, and Fn1 gene expression. Treatment with ATUX-1215 reduced the phosphorylation of ERK, p38, JNK, and Akt and the secretion of IL-12p70, GM-CSF, and IL1α in BLM-treated animals. Delayed treatment with ATUX-1215 was also observed to slow the progression of lung fibrosis. In conclusion, our study indicates that the decrease in PP2A activity, which occurs in fibroblasts from the lungs of IPF subjects, could be restored with ATUX-1215 administration as an antifibrotic agent.
Collapse
Affiliation(s)
- Meshach Pillai
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Pascale Lafortune
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Abdoulaye Dabo
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Howard Yu
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Sangmi S. Park
- Department
of Cell Biology, The State University of
New York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Harsha Taluru
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Huma Ahmed
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Dylan Bobrow
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Zeeshan Sattar
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Bakr Jundi
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Joshua Reece
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Romy Rodriguez Ortega
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Brian Soto
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Selome Yewedalsew
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Robert Foronjy
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Anne Wyman
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Patrick Geraghty
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
- Department
of Cell Biology, The State University of
New York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | | |
Collapse
|
14
|
He M, Borlak J. A genomic perspective of the aging human and mouse lung with a focus on immune response and cellular senescence. Immun Ageing 2023; 20:58. [PMID: 37932771 PMCID: PMC10626779 DOI: 10.1186/s12979-023-00373-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The aging lung is a complex process and influenced by various stressors, especially airborne pathogens and xenobiotics. Additionally, a lifetime exposure to antigens results in structural and functional changes of the lung; yet an understanding of the cell type specific responses remains elusive. To gain insight into age-related changes in lung function and inflammaging, we evaluated 89 mouse and 414 individual human lung genomic data sets with a focus on genes mechanistically linked to extracellular matrix (ECM), cellular senescence, immune response and pulmonary surfactant, and we interrogated single cell RNAseq data to fingerprint cell type specific changes. RESULTS We identified 117 and 68 mouse and human genes linked to ECM remodeling which accounted for 46% and 27%, respectively of all ECM coding genes. Furthermore, we identified 73 and 31 mouse and human genes linked to cellular senescence, and the majority code for the senescence associated secretory phenotype. These cytokines, chemokines and growth factors are primarily secreted by macrophages and fibroblasts. Single-cell RNAseq data confirmed age-related induced expression of marker genes of macrophages, neutrophil, eosinophil, dendritic, NK-, CD4+, CD8+-T and B cells in the lung of aged mice. This included the highly significant regulation of 20 genes coding for the CD3-T-cell receptor complex. Conversely, for the human lung we primarily observed macrophage and CD4+ and CD8+ marker genes as changed with age. Additionally, we noted an age-related induced expression of marker genes for mouse basal, ciliated, club and goblet cells, while for the human lung, fibroblasts and myofibroblasts marker genes increased with age. Therefore, we infer a change in cellular activity of these cell types with age. Furthermore, we identified predominantly repressed expression of surfactant coding genes, especially the surfactant transporter Abca3, thus highlighting remodeling of surfactant lipids with implications for the production of inflammatory lipids and immune response. CONCLUSION We report the genomic landscape of the aging lung and provide a rationale for its growing stiffness and age-related inflammation. By comparing the mouse and human pulmonary genome, we identified important differences between the two species and highlight the complex interplay of inflammaging, senescence and the link to ECM remodeling in healthy but aged individuals.
Collapse
Affiliation(s)
- Meng He
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
15
|
Zhang M, Wang W, Liu K, Jia C, Hou Y, Bai G. Astragaloside IV protects against lung injury and pulmonary fibrosis in COPD by targeting GTP-GDP domain of RAS and downregulating the RAS/RAF/FoxO signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155066. [PMID: 37690229 DOI: 10.1016/j.phymed.2023.155066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Pulmonary fibrosis is a chronic progressive interstitial lung disease characterized by the replacement of lung parenchyma with fibrous scar tissue, usually as the final stage of lung injury like COPD. Astragaloside IV (AST), a bioactive compound found in the Astragalus membranaceus (Fisch.) used in traditional Chinese medicine, has been shown to improve pulmonary function and exhibit anti-pulmonary fibrosis effects. However, the exact molecular mechanisms through which it combats pulmonary fibrosis, especially in COPD, remain unclear. PURPOSE This study aimed to identify the potential therapeutic target and molecular mechanisms for AST in improving lung injury especially treating COPD type pulmonary fibrosis both in vivo and in vitro. METHODS Multi lung injury models were established in mice using lipopolysaccharide (LPS), cigarette smoke (CS), or LPS plus CS to simulate the processes of pulmonary fibrosis in COPD. The effect of AST on lung function protection was evaluated, and proteomic and metabolomic analysis were applied to identify the signaling pathway affected by AST and to find potential targets of AST. The interaction between AST and wild-type and mutant RAS proteins was studied. The RAS/RAF/FoxO signaling pathway was stimulated in BEAS-2B cells and in mice lung tissues by LPS plus CS to investigate the anti-pulmonary fibrosis mechanism of AST analyzed by western blotting. The regulatory effects of AST on the RAS/RAF/FoxO pathway dependent on RAS were further confirmed using RAS siRNA. RESULTS RAS was predicted and identified as the target protein of AST in anti-pulmonary fibrosis in COPD and improving lung function. The administration of AST was observed to impede the conversion of fibroblasts into myofibroblasts, reduce the manifestation of inflammatory factors and extracellular matrix, and hinder the activation of epithelial mesenchymal transition (EMT). Furthermore, AST significantly suppressed the RAS/RAF/FoxO signaling pathway in both in vitro and in vivo settings. CONCLUSION AST exhibited lung function protection and anti-pulmonary fibrosis effect by inhibiting the GTP-GDP domain of RAS, which downregulated the RAS/RAF/FoxO signaling pathway. This study revealed AST as a natural candidate molecule for the protection of pulmonary fibrosis in COPD.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Wenshuang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Kaixin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Chao Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| |
Collapse
|
16
|
Wu Z, Chen H, Ke S, Mo L, Qiu M, Zhu G, Zhu W, Liu L. Identifying potential biomarkers of idiopathic pulmonary fibrosis through machine learning analysis. Sci Rep 2023; 13:16559. [PMID: 37783761 PMCID: PMC10545744 DOI: 10.1038/s41598-023-43834-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and serious type of idiopathic interstitial pneumonia, characterized by chronic, progressive, and low survival rates, while unknown disease etiology. Until recently, patients with idiopathic pulmonary fibrosis have a poor prognosis, high mortality, and limited treatment options, due to the lack of effective early diagnostic and prognostic tools. Therefore, we aimed to identify biomarkers for idiopathic pulmonary fibrosis based on multiple machine-learning approaches and to evaluate the role of immune infiltration in the disease. The gene expression profile and its corresponding clinical data of idiopathic pulmonary fibrosis patients were downloaded from Gene Expression Omnibus (GEO) database. Next, the differentially expressed genes (DEGs) with the threshold of FDR < 0.05 and |log2 foldchange (FC)| > 0.585 were analyzed via R package "DESeq2" and GO enrichment and KEGG pathways were run in R software. Then, least absolute shrinkage and selection operator (LASSO) logistic regression, support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF) algorithms were combined to screen the key potential biomarkers of idiopathic pulmonary fibrosis. The diagnostic performance of these biomarkers was evaluated through receiver operating characteristic (ROC) curves. Moreover, the CIBERSORT algorithm was employed to assess the infiltration of immune cells and the relationship between the infiltrating immune cells and the biomarkers. Finally, we sought to understand the potential pathogenic role of the biomarker (SLAIN1) in idiopathic pulmonary fibrosis using a mouse model and cellular model. A total of 3658 differentially expressed genes of idiopathic pulmonary fibrosis were identified, including 2359 upregulated genes and 1299 downregulated genes. FHL2, HPCAL1, RNF182, and SLAIN1 were identified as biomarkers of idiopathic pulmonary fibrosis using LASSO logistic regression, RF, and SVM-RFE algorithms. The ROC curves confirmed the predictive accuracy of these biomarkers both in the training set and test set. Immune cell infiltration analysis suggested that patients with idiopathic pulmonary fibrosis had a higher level of B cells memory, Plasma cells, T cells CD8, T cells follicular helper, T cells regulatory (Tregs), Macrophages M0, and Mast cells resting compared with the control group. Correlation analysis demonstrated that FHL2 was significantly associated with the infiltrating immune cells. qPCR and western blotting analysis suggested that SLAIN1 might be a signature for the diagnosis of idiopathic pulmonary fibrosis. In this study, we identified four potential biomarkers (FHL2, HPCAL1, RNF182, and SLAIN1) and evaluated the potential pathogenic role of SLAIN1 in idiopathic pulmonary fibrosis. These findings may have great significance in guiding the understanding of disease mechanisms and potential therapeutic targets in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Zenan Wu
- The Clinical Medical School, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Huan Chen
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shiwen Ke
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lisha Mo
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mingliang Qiu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Guoshuang Zhu
- The Clinical Medical School, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Wei Zhu
- The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liangji Liu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| |
Collapse
|
17
|
Zhang P, Li H, Zhang A, Wang X, Song Q, Li Z, Wang W, Xu J, Hou Y, Zhang Y. Mechanism of myocardial fibrosis regulation by IGF-1R in atrial fibrillation through the PI3K/Akt/FoxO3a pathway. Biochem Cell Biol 2023; 101:432-442. [PMID: 37018819 DOI: 10.1139/bcb-2022-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Atrial structural remodeling takes on a critical significance to the occurrence and maintenance of atrial fibrillation (AF). As revealed by recent data, insulin-like growth factor-1 receptor (IGF-1R) plays a certain role in tissue fibrosis. In this study, the mechanism of IGF-1R in atrial structural remodeling was examined based on in vivo and in vitro experiments. First, cluster analysis of AF hub genes was conducted, and then the molecular mechanism was proposed by which IGF-1R regulates myocardial fibrosis via the PI3K/Akt/FoxO3a pathway. Subsequently, the mentioned mechanism was verified in human cardiac fibroblasts (HCFs) and rats transduced with IGF-1 overexpression type 9 adeno-associated viruses. The results indicated that IGF-1R activation up-regulated collagen Ⅰ protein expression and Akt phosphorylation in HCFs and rat atrium. The administration of LY294002 reversed the above phenomenon, improved the shortening of atrial effective refractory period, and reduced the increased incidence of AF and atrial fibrosis in rats. The transfection of FoxO3a siRNA reduced the anti-fibrotic effect of LY294002 in HCFs. The above data revealed that activation of IGF-1R takes on a vital significance to atrial structural remodeling by facilitating myocardial fibrosis and expediting the occurrence and maintenance of AF through the regulation of the PI3K/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Huilin Li
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University. Ji'nan City, Shandong Province, China
| | - An Zhang
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University. Ji'nan City, Shandong Province, China
| | - Xiao Wang
- Department of Health Management Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Qiyuan Song
- Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University. Ji'nan City, Shandong Province, China
| | - Zhan Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Weizong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Jingwen Xu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Yong Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| |
Collapse
|
18
|
Burgy O, Mailleux AA. ATAC-ing single nucleus in idiopathic pulmonary fibrosis: TWIST1 strives back for myofibroblasts. Eur Respir J 2023; 62:2300881. [PMID: 37419523 DOI: 10.1183/13993003.00881-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Affiliation(s)
- Olivier Burgy
- INSERM U1231, Faculty of Medicine and Pharmacy, University of Bourgogne-Franche Comté, Dijon, France
- Constitutive Reference Center for Rare Pulmonary Diseases - OrphaLung, Dijon-Bourgogne University Hospital, Dijon, France
| | - Arnaud A Mailleux
- Université Paris Cité, Inserm, Physiopathologie et épidémiologie des maladies respiratoires, F-75018 Paris, France
| |
Collapse
|
19
|
Li H, Li J, Hu Y, Zhang R, Gu X, Wei Y, Zhang S, Chen X, Wei L, Li X, Gu S, Jin J, Huang H, Zhou H, Yang C. FOXO3 regulates Smad3 and Smad7 through SPON1 circular RNA to inhibit idiopathic pulmonary fibrosis. Int J Biol Sci 2023; 19:3042-3056. [PMID: 37416778 PMCID: PMC10321294 DOI: 10.7150/ijbs.80140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
Forkhead box protein O3 (FOXO3) has good inhibition ability toward fibroblast activation and extracellular matrix, especially for the treatment of idiopathic pulmonary fibrosis. How FOXO3 regulates pulmonary fibrosis remains unclear. In this study, we reported that FOXO3 had binding sequences with F-spondin 1 (SPON1) promoter, which can activate its transcription and selectively promote the expression of SPON1 circRNA (circSPON1) but not mRNA expression. We further demonstrated that circSPON1 was involved in the extracellular matrix deposition of HFL1. In the cytoplasm, circSPON1 directly interacted with TGF-β1-induced Smad3 and inhibited the activation of fibroblasts by inhibiting nuclear translocation. Moreover, circSPON1 bound to miR-942-5p and miR-520f-3p that interfered with Smad7 mRNA and promoted Smad7 expression. This study revealed the mechanism of FOXO3-regulated circSPON1 in the development of pulmonary fibrosis. Potential therapeutic targets and new insights into the diagnosis and treatment of idiopathic pulmonary fibrosis based on circRNA were also provided.
Collapse
Affiliation(s)
- Hailong Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University
| | - Jinhe Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yayue Hu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ruotong Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaoting Gu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University
| | - Yiying Wei
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shanshan Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xuefen Chen
- Department of Respiratory Medicine, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Luqing Wei
- Department of Respiratory and Critical Care Medicine, Tianjin Beichen Hospital, No. 7 Beiyi Road, Beichen District, Tianjin 300400, China
| | - Xiaohe Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Songtao Gu
- Department of Respiratory & Critical Care Medicine,Tianjin Chest Hospital,No.261,Taierzhuang South Road, Jinnan District,Tianjin 300222,China
| | - Jin Jin
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Beijing 100730, People's Republic of China
| | - Hui Huang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University
- High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
20
|
Tirunavalli SK, Kuncha M, Sistla R, Andugulapati SB. Targeting TGF-β/periostin signaling by sesamol ameliorates pulmonary fibrosis and improves lung function and survival. J Nutr Biochem 2023; 116:109294. [PMID: 36948431 DOI: 10.1016/j.jnutbio.2023.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disorder that severely impairs lung function, by increasing lung stiffness. Sesamol, a phenolic Phyto-molecule isolated from sesame seeds, possess a rich source of protein and is known to have extensive nutritional and health effects. Here we investigated the effect of sesamol on TGF-β/periostin-induced fibroblast differentiation in in vitro and bleomycin-induced pulmonary fibrosis in an in vivo model. Our results demonstrated that activation of (DHLF, LL29, NHLF and A549) cells with TGF-β, elevates the epithelial to mesenchymal, extracellular matrix, and collagen deposition and periostin signaling marker's expression, further treatment with sesamol attenuated these markers significantly. In addition, sesamol treatment improved the TGF-β-induced contraction and migration of cells. Mechanistic studies showed that activation of IPF cells with periostin increased the TGF-β signaling and treatment with sesamol significantly abrogated the periostin-induced TGF-β activation and its downstream fibrotic marker's expression. In in vivo, sesamol treatment attenuated the lung inflammation, infiltration of cells, wall thickening and the formation of fibrous bands significantly in BLM-induced fibrosis rats. Molecular studies revealed that sesamol treatment reduced the bleomycin-induced fibrotic, inflammatory, apoptotic marker's expression by modulating the TGF-β/periostin crosstalk signaling in a dose-dependent manner. Further, treatment with sesamol dramatically improved lung function and decreased mortality. Our study first time reports the sesamol's inhibitory effects on periostin signalling. Collectively, our study demonstrated that periostin and TGF-β seem to work in a positive-feedback loop, inducing the other, therefore, targeting TGF-β/periostin signaling may provide a better therapeutic approach against IPF and other fibrotic disorders.
Collapse
Affiliation(s)
- Satya Krishna Tirunavalli
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India
| | - Madhusudhana Kuncha
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
| | - Ramakrishna Sistla
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India
| | - Sai Balaji Andugulapati
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.
| |
Collapse
|
21
|
Su M, Liu J, Wu X, Chen X, Xiao Q, Jiang N. Construction of a TFs-miRNA-mRNA network related to idiopathic pulmonary fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:78. [PMID: 36819574 PMCID: PMC9929790 DOI: 10.21037/atm-22-6161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/07/2023] [Indexed: 01/18/2023]
Abstract
Background The transcription factors (TFs)-microRNA (miRNA)-messenger RNA (mRNA) network plays an important role in a variety of diseases. However, the relationship between the TFs-miRNA-mRNA network and idiopathic pulmonary fibrosis (IPF) remains unclear. Methods The GSE110147 and GSE53845 datasets from the Gene Expression Omnibus (GEO) database were used to process differentially expressed genes (DEGs) analysis, gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), as well as Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The GSE13316 dataset was used to perform differentially expressed miRNAs (DEMs) analysis and TFs prediction. Finally, a TFs-miRNA-mRNA network related to IPF was constructed, and its function was evaluated by Gene Ontology (GO) and KEGG analyses. Also, 19 TFs in the network were verified by quantitative real time polymerase chain reaction (qRT-PCR). Results Through our analysis, 53 DEMs and 2,630 DEGs were screened. The GSEA results suggested these genes were mainly related to protein digestion and absorption. The WGCNA results showed that these DEGs were divided into eight modules, and the GO and KEGG analyses results of blue module genes showed that these 86 blue module genes were mainly enriched in cilium assembly and cilium organization. Moreover, a TFs-miRNA-mRNA network comprising 25 TFs, 11 miRNAs, and 60 mRNAs was constructed. Ultimately, the functional enrichment analysis showed that the TFs-miRNA-mRNA network was mainly related to the cell cycle and the phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling pathway. Furthermore, experimental verification of the TFs showed that ARNTL, TRIM28, EZH2, BCOR, and ASXL1 were sufficiently up-regulated in the transforming growth factor (TGF)-β1 treatment groups, while BCL6, BHLHE40, FOXA1, and EGR1 were significantly down-regulated. Conclusions The novel TFs-miRNA-mRNA network that we constructed could provide new insights into the underlying molecular mechanisms of IPF. ARNTL, TRIM28, EZH2, BCOR, ASXL1, BCL6, BHLHE40, FOXA1, and EGR1 may play important roles in IPF and become effective biomarkers for diagnosis and treatment.
Collapse
Affiliation(s)
- Minhong Su
- Department of Respiratory and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junfang Liu
- Department of Respiratory and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiping Wu
- Department of Respiratory and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Respiratory and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Xiao
- Department of Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University, Foshan, China
| | - Ning Jiang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Chang ZS, He ZM, Xia JB. FoxO3 Regulates the Progress and Development of Aging and Aging-Related Diseases. Curr Mol Med 2023; 23:991-1006. [PMID: 36239722 DOI: 10.2174/1566524023666221014140817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Aging is an inevitable risk factor for many diseases, including cardiovascular diseases, neurodegenerative diseases, cancer, and diabetes. Investigation into the molecular mechanisms involved in aging and longevity will benefit the treatment of age-dependent diseases and the development of preventative medicine for agingrelated diseases. Current evidence has revealed that FoxO3, encoding the transcription factor (FoxO)3, a key transcription factor that integrates different stimuli in the intrinsic and extrinsic pathways and is involved in cell differentiation, protein homeostasis, stress resistance and stem cell status, plays a regulatory role in longevity and in age-related diseases. However, the precise mechanisms by which the FoxO3 transcription factor modulates aging and promotes longevity have been unclear until now. Here, we provide a brief overview of the mechanisms by which FoxO3 mediates signaling in pathways involved in aging and aging-related diseases, as well as the current knowledge on the role of the FoxO3 transcription factor in the human lifespan and its clinical prospects. Ultimately, we conclude that FoxO3 signaling pathways, including upstream and downstream molecules, may be underlying therapeutic targets in aging and age-related diseases.
Collapse
Affiliation(s)
- Zao-Shang Chang
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Zhi-Ming He
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Jing-Bo Xia
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, Guangdong, China
| |
Collapse
|
23
|
Ye Q, Taleb SJ, Wang H, Parinandi NL, Kass DJ, Rojas M, Wang C, Ma Q, Zhao J, Zhao Y. Molecular Regulation of Heme Oxygenase-1 Expression by E2F Transcription Factor 2 in Lung Fibroblast Cells: Relevance to Idiopathic Pulmonary Fibrosis. Biomolecules 2022; 12:biom12101531. [PMID: 36291740 PMCID: PMC9599643 DOI: 10.3390/biom12101531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 01/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease. Heme oxygenase-1 (HMOX1/HO-1) is an enzyme that catalyzes the degradation of heme. The role of HO-1 in the pathogenesis of IPF has been studied; however, the molecular regulation of HO-1 and its role in IPF are still unclear. In this study, we found that HO-1 protein levels significantly increased in lung myofibroblasts in IPF patients and in lungs in a murine model of bleomycin-induced lung fibrosis. In addition, we observed that administration of a E2F transcription factor inhibitor elevated HO-1 mRNA and protein levels in lung fibroblasts. Downregulation of E2F2 by siRNA transfection increased HO-1 mRNA and protein levels, while overexpression of E2F2 reduced HO-1 levels. However, overexpression of E2F2 did not alter hemin-induced HO-1 protein levels. Furthermore, modulation of HO-1 levels regulated TGF-β1-induced myofibroblast differentiation without altering the phosphorylation of Smad2/3 in lung fibroblast cells. Moreover, the phosphorylation of protein kinase B (Akt) was significantly upregulated in HO-1-depleted lung fibroblast cells. In summary, this study demonstrated that E2F2 regulates the baseline expression of HO-1, but has no effect on modulating HO-1 expression by hemin. Finally, elevated HO-1 expression contributes to the TGF-β1-induced lung myofibroblast differentiation through the activation of the serine/threonine kinase AKT pathway. Overall, our findings suggest that targeting E2F2/HO-1 might be a new therapeutic strategy to treat fibrotic diseases such as IPF.
Collapse
Affiliation(s)
- Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah J. Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Heather Wang
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Narasimham L. Parinandi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J. Kass
- Department of Medicine, The University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mauricio Rojas
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Cankun Wang
- Department of Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Bioinformatics, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-685-0360
| |
Collapse
|
24
|
Fibrocytes boost tumor-supportive phenotypic switches in the lung cancer niche via the endothelin system. Nat Commun 2022; 13:6078. [PMID: 36241617 PMCID: PMC9568595 DOI: 10.1038/s41467-022-33458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Fibrocytes are bone marrow-derived monocytic cells implicated in wound healing. Here, we identify their role in lung cancer progression/ metastasis. Selective manipulation of fibrocytes in mouse lung tumor models documents the central role of fibrocytes in boosting niche features and enhancing metastasis. Importantly, lung cancer patients show increased number of circulating fibrocytes and marked fibrocyte accumulation in the cancer niche. Using double and triple co-culture systems with human lung cancer cells, fibrocytes, macrophages and endothelial cells, we substantiate the central features of cancer-supporting niche: enhanced cancer cell proliferation and migration, macrophage activation, augmented endothelial cell sprouting and fibrocyte maturation. Upregulation of endothelin and its receptors are noted, and dual endothelin receptor blockade suppresses all cancer-supportive phenotypic alterations via acting on fibrocyte interaction with the cancer niche. We thus provide evidence for a crucial role of fibrocytes in lung cancer progression and metastasis, suggesting targets for treatment strategies.
Collapse
|
25
|
Guo W, Hu Z. SRPK1 promotes sepsis-induced acute lung injury via regulating PI3K/AKT/FOXO3 signaling. Immunopharmacol Immunotoxicol 2022; 45:203-212. [PMID: 36226860 DOI: 10.1080/08923973.2022.2134789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Sepsis is the most common cause of death in intensive care unit. Moreover, sepsis is the leading cause of acute lung injury (ALI). Serine-arginine protein kinase 1 (SRPK1) was demonstrated to promote the development of ALI. However, the potentials of SRPK1 in sepsis-induced ALI are still unknown. This study aimed to investigate the potentials of SRPK1 in sepsis-induced ALI and the underlying mechanisms. METHODS Cecal ligation and puncture (CLP) was performed to establish sepsis-induced ALI model in vivo. Primary human pulmonary microvascular endothelial cells (HPMECs) were exposed to lipopolysaccharide (LPS) to construct sepsis-induced ALI model in vitro. Gene expression was detected using western blot and qRT-PCR. The interaction between forkhead box O3 (FOXO3) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was detected using luciferase and Chromatin immunoprecipitation (ChIP) assay. Cellular functions were CCK-8, colony formation, PI staining, and flow cytometry assay. RESULTS SRPK1 was downregulated in patients with sepsis-induced ALI. Overexpression of SRPK1 suppressed the pyroptosis of HPMECs as well as promoted cell proliferation. Additionally, SRPK1 overexpression alleviated sepsis-induced ALI in vivo. SRPK1 activated phosphatidylinositol3-kinase (PI3K) signaling pathways. Blocking the activation of PI3K degraded the cellular functions of HPMECs. Moreover, FOXO3 transcriptionally inactivated NLRP3 and suppressed its mRNA and protein expression. CONCLUSION Taken together, SRPK1 suppressed sepsis-induced ALI via regulating PI3K/AKT/FOXO3/NLRP3 signaling. SRPK1 may be the potential biomarker for sepsis-induced ALI.
Collapse
Affiliation(s)
- Wei Guo
- Department of Medicine, Soochow University, Shizi Street, Gusu District, Suzhou, Jiangsu 215006, China.,Emergency Department, The first affiliated hospital of JinZhou Medical University, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning 121000, China
| | - Zhansheng Hu
- Critical Care Medicine Department, The first affiliated hospital of JinZhou Medical University, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning 121000, China
| |
Collapse
|
26
|
Ehrhardt B, El-Merhie N, Kovacevic D, Schramm J, Bossen J, Roeder T, Krauss-Etschmann S. Airway remodeling: The Drosophila model permits a purely epithelial perspective. FRONTIERS IN ALLERGY 2022; 3:876673. [PMID: 36187164 PMCID: PMC9520053 DOI: 10.3389/falgy.2022.876673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Airway remodeling is an umbrella term for structural changes in the conducting airways that occur in chronic inflammatory lung diseases such as asthma or chronic obstructive pulmonary disease (COPD). The pathobiology of remodeling involves multiple mesenchymal and lymphoid cell types and finally leads to a variety of hardly reversible changes such as hyperplasia of goblet cells, thickening of the reticular basement membrane, deposition of collagen, peribronchial fibrosis, angiogenesis and hyperplasia of bronchial smooth muscle cells. In order to develop solutions for prevention or innovative therapies, these complex processes must be understood in detail which requires their deconstruction into individual building blocks. In the present manuscript we therefore focus on the role of the airway epithelium and introduce Drosophila melanogaster as a model. The simple architecture of the flies’ airways as well as the lack of adaptive immunity allows to focus exclusively on the importance of the epithelium for the remodeling processes. We will review and discuss genetic and environmentally induced changes in epithelial structures and molecular responses and propose an integrated framework of research for the future.
Collapse
Affiliation(s)
- Birte Ehrhardt
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Natalia El-Merhie
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Draginja Kovacevic
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Juliana Schramm
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Judith Bossen
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Correspondence: Susanne Krauss-Etschmann
| |
Collapse
|
27
|
Research Progress of Fibroblast Growth Factor 21 in Fibrotic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5042762. [PMID: 35677107 PMCID: PMC9168133 DOI: 10.1155/2022/5042762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Fibrosis is a common pathological outcome of chronic injuries, characterized by excessive deposition of extracellular matrix components in organs, as seen in most chronic inflammatory diseases. At present, there is an increasing tendency of the morbidity and mortality of diseases caused by fibrosis, but the treatment measures for fibrosis are still limited. Fibroblast growth factor 21 (FGF21) belongs to the FGF19 subfamily, which also has the name endocrine FGFs because of their endocrine manner. In recent years, it has been found that plasma FGF21 level is significantly correlated with fibrosis progression. Furthermore, there is evidence that FGF21 has a pronounced antifibrotic effect in a variety of fibrotic diseases. This review summarizes the biological effects of FGF21 and discusses what is currently known about this factor and fibrosis disease, highlighting emerging insights that warrant further research.
Collapse
|
28
|
Luo Y, Liu L, Zhao J, Jiao Y, Zhang M, Xu G, Jiang Y. PI3K/AKT1 Signaling Pathway Mediates Sinomenine-Induced Hepatocellular Carcinoma Cells Apoptosis: An <i>in Vitro</i> and <i>in Vivo</i> Study. Biol Pharm Bull 2022; 45:614-624. [DOI: 10.1248/bpb.b21-01063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yan Luo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| | - Liwei Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences
| | - Jihua Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences
| | - Meiyu Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences
| | - Guangli Xu
- The First Affiliated Hospital of Henan University of Chinese Medicine
| | - Yumao Jiang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
| |
Collapse
|
29
|
MicroRNA Cross-Involvement in Acne Vulgaris and Hidradenitis Suppurativa: A Literature Review. Int J Mol Sci 2022; 23:ijms23063241. [PMID: 35328662 PMCID: PMC8955726 DOI: 10.3390/ijms23063241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acne Vulgaris (AV) and Hidradenitis suppurativa (HS) are common chronic inflammatory skin conditions that affect the follicular units that often coexist or are involved in differential diagnoses. Inflammation in both these diseases may result from shared pathways, which may partially explain their frequent coexistence. MicroRNAs (miRNAs) are a class of endogenous, short, non-protein coding, gene-silencing or promoting RNAs that may promote various inflammatory diseases. This narrative review investigates the current knowledge regarding miRNAs and their link to AV and HS. The aim is to examine the role of these molecules in the pathogenesis of AV and HS and to identify possible common miRNAs that could explain the similar characteristics of these two diseases. Five miRNA (miR-155 miR-223-, miR-21, and miRNA-146a) levels were found to be altered in both HS and AV. These miRNAs are related to pathogenetic aspects common to both pathologies, such as the regulation of the innate immune response, regulation of the Th1/Th17 axis, and fibrosis processes that induce scar formation. This review provides a starting point for further studies aimed at investigating the role of miRNAs in AV and HS for their possible use as diagnostic-therapeutic targets.
Collapse
|
30
|
Lee SY, Lee CM, Ma B, Kamle S, Elias JA, Zhou Y, Lee CG. Targeting Chitinase 1 and Chitinase 3-Like 1 as Novel Therapeutic Strategy of Pulmonary Fibrosis. Front Pharmacol 2022; 13:826471. [PMID: 35370755 PMCID: PMC8969576 DOI: 10.3389/fphar.2022.826471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Chitinase 1 (CHIT1) and chitinase 3-like-1 (CHI3L1), two representative members of 18-Glycosyl hydrolases family, are significantly implicated in the pathogenesis of various human diseases characterized by inflammation and remodeling. Notably, dysregulated expression of CHIT1 and CHI3L1 was noted in the patients with pulmonary fibrosis and their levels were inversely correlated with clinical outcome of the patients. CHIT1 and CHI3L1, mainly expressed in alveolar macrophages, regulate profibrotic macrophage activation, fibroblast proliferation and myofibroblast transformation, and TGF-β signaling and effector function. Although the mechanism or the pathways that CHIT1 and CHI3L1 use to regulate pulmonary fibrosis have not been fully understood yet, these studies identify CHIT1 and CHI3L1 as significant modulators of fibroproliferative responses leading to persistent and progressive pulmonary fibrosis. These studies suggest a possibility that CHIT1 and CHI3L1 could be reasonable therapeutic targets to intervene or reverse established pulmonary fibrosis. In this review, we will discuss specific roles and regulatory mechanisms of CHIT1 and CHI3L1 in profibrotic cell and tissue responses as novel therapeutic targets of pulmonary fibrosis.
Collapse
Affiliation(s)
- Suh-Young Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
- Devision of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Bing Ma
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Suchitra Kamle
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Jack A. Elias
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Yang Zhou
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, 185 Meeting St., Providence, RI, United States
| |
Collapse
|
31
|
Kudryashova TV, Dabral S, Nayakanti S, Ray A, Goncharov DA, Avolio T, Shen Y, Rode A, Pena A, Jiang L, Lin D, Baust J, Bachman TN, Graumann J, Ruppert C, Guenther A, Schmoranzer M, Grobs Y, Lemay SE, Tremblay E, Breuils-Bonnet S, Boucherat O, Mora AL, DeLisser H, Zhao J, Zhao Y, Bonnet S, Seeger W, Pullamsetti SS, Goncharova EA. Noncanonical HIPPO/MST Signaling via BUB3 and FOXO Drives Pulmonary Vascular Cell Growth and Survival. Circ Res 2022; 130:760-778. [PMID: 35124974 PMCID: PMC8897250 DOI: 10.1161/circresaha.121.319100] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
RATIONALE The MSTs (mammalian Ste20-like kinases) 1/2 are members of the HIPPO pathway that act as growth suppressors in adult proliferative diseases. Pulmonary arterial hypertension (PAH) manifests by increased proliferation and survival of pulmonary vascular cells in small PAs, pulmonary vascular remodeling, and the rise of pulmonary arterial pressure. The role of MST1/2 in PAH is currently unknown. OBJECTIVE To investigate the roles and mechanisms of the action of MST1 and MST2 in PAH. METHODS AND RESULTS Using early-passage pulmonary vascular cells from PAH and nondiseased lungs and mice with smooth muscle-specific tamoxifen-inducible Mst1/2 knockdown, we found that, in contrast to canonical antiproliferative/proapoptotic roles, MST1/2 act as proproliferative/prosurvival molecules in human PAH pulmonary arterial vascular smooth muscle cells and pulmonary arterial adventitial fibroblasts and support established pulmonary vascular remodeling and pulmonary hypertension in mice with SU5416/hypoxia-induced pulmonary hypertension. By using unbiased proteomic analysis, gain- and loss-of function approaches, and pharmacological inhibition of MST1/2 kinase activity by XMU-MP-1, we next evaluated mechanisms of regulation and function of MST1/2 in PAH pulmonary vascular cells. We found that, in PAH pulmonary arterial adventitial fibroblasts, the proproliferative function of MST1/2 is caused by IL-6-dependent MST1/2 overexpression, which induces PSMC6-dependent downregulation of forkhead homeobox type O 3 and hyperproliferation. In PAH pulmonary arterial vascular smooth muscle cells, MST1/2 acted via forming a disease-specific interaction with BUB3 and supported ECM (extracellular matrix)- and USP10-dependent BUB3 accumulation, upregulation of Akt-mTORC1, cell proliferation, and survival. Supporting our in vitro observations, smooth muscle-specific Mst1/2 knockdown halted upregulation of Akt-mTORC1 in small muscular PAs of mice with SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS Together, this study describes a novel proproliferative/prosurvival role of MST1/2 in PAH pulmonary vasculature, provides a novel mechanistic link from MST1/2 via BUB3 and forkhead homeobox type O to the abnormal proliferation and survival of pulmonary arterial vascular smooth muscle cells and pulmonary arterial adventitial fibroblasts, remodeling and pulmonary hypertension, and suggests new target pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Tatiana V. Kudryashova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Swati Dabral
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Sreenath Nayakanti
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Arnab Ray
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dmitry A. Goncharov
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theodore Avolio
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuanjun Shen
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Analise Rode
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andressa Pena
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lifeng Jiang
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
| | - Derek Lin
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
| | - Jeffrey Baust
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy N. Bachman
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35392, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35392, Germany
| | - Mario Schmoranzer
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Yann Grobs
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Sarah Eve Lemay
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Eve Tremblay
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | | | - Olivier Boucherat
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Ana L. Mora
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Horace DeLisser
- Department of Pathology and Laboratory Medicine, Pulmonary Vascular Disease Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jing Zhao
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yutong Zhao
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sébastien Bonnet
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the DZL, Justus Liebig University, Giessen, Germany
| | - Soni S. Pullamsetti
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the DZL, Justus Liebig University, Giessen, Germany
| | - Elena A. Goncharova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Zhao Y, Liu YS. Longevity Factor FOXO3: A Key Regulator in Aging-Related Vascular Diseases. Front Cardiovasc Med 2022; 8:778674. [PMID: 35004893 PMCID: PMC8733402 DOI: 10.3389/fcvm.2021.778674] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Forkhead box O3 (FOXO3) has been proposed as a homeostasis regulator, capable of integrating multiple upstream signaling pathways that are sensitive to environmental changes and counteracting their adverse effects due to external changes, such as oxidative stress, metabolic stress and growth factor deprivation. FOXO3 polymorphisms are associated with extreme human longevity. Intriguingly, longevity-associated single nucleotide polymorphisms (SNPs) in human FOXO3 correlate with lower-than-average morbidity from cardiovascular diseases in long-lived people. Emerging evidence indicates that FOXO3 plays a critical role in vascular aging. FOXO3 inactivation is implicated in several aging-related vascular diseases. In experimental studies, FOXO3-engineered human ESC-derived vascular cells improve vascular homeostasis and delay vascular aging. The purpose of this review is to explore how FOXO3 regulates vascular aging and its crucial role in aging-related vascular diseases.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| |
Collapse
|
33
|
Kim SK, Jung SM, Park KS, Kim KJ. Integrative analysis of lung molecular signatures reveals key drivers of idiopathic pulmonary fibrosis. BMC Pulm Med 2021; 21:404. [PMID: 34876074 PMCID: PMC8650281 DOI: 10.1186/s12890-021-01749-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a devastating disease with a high clinical burden. The molecular signatures of IPF were analyzed to distinguish molecular subgroups and identify key driver genes and therapeutic targets. Methods Thirteen datasets of lung tissue transcriptomics including 585 IPF patients and 362 normal controls were obtained from the databases and subjected to filtration of differentially expressed genes (DEGs). A functional enrichment analysis, agglomerative hierarchical clustering, network-based key driver analysis, and diffusion scoring were performed, and the association of enriched pathways and clinical parameters was evaluated. Results A total of 2,967 upregulated DEGs was filtered during the comparison of gene expression profiles of lung tissues between IPF patients and healthy controls. The core molecular network of IPF featured p53 signaling pathway and cellular senescence. IPF patients were classified into two molecular subgroups (C1, C2) via unsupervised clustering. C1 was more enriched in the p53 signaling pathway and ciliated cells and presented a worse prognostic score, while C2 was more enriched for cellular senescence, profibrosing pathways, and alveolar epithelial cells. The p53 signaling pathway was closely correlated with a decline in forced vital capacity and carbon monoxide diffusion capacity and with the activation of cellular senescence. CDK1/2, CKDNA1A, CSNK1A1, HDAC1/2, FN1, VCAM1, and ITGA4 were the key regulators as evidence by high diffusion scores in the disease module. Currently available and investigational drugs showed differential diffusion scores in terms of their target molecules. Conclusions An integrative molecular analysis of IPF lungs identified two molecular subgroups with distinct pathobiological characteristics and clinical prognostic scores. Inhibition against CDKs or HDACs showed great promise for controlling lung fibrosis. This approach provided molecular insights to support the prediction of clinical outcomes and the selection of therapeutic targets in IPF patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01749-3.
Collapse
Affiliation(s)
- Sung Kyoung Kim
- Division of Pulmonology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Gyeonggi-do, 16247, Republic of Korea.
| |
Collapse
|
34
|
Wu KK. Control of Tissue Fibrosis by 5-Methoxytryptophan, an Innate Anti-Inflammatory Metabolite. Front Pharmacol 2021; 12:759199. [PMID: 34858185 PMCID: PMC8632247 DOI: 10.3389/fphar.2021.759199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue fibrosis causes debilitating human diseases such as liver cirrhosis, heart failure, chronic kidney disease and pulmonary insufficiency. It is a dynamic process orchestrated by specific subsets of monocyte-macrophages, fibroblasts, pericytes and hepatic stellate cells. Fibrosis is linked to tissue inflammation. Pro-inflammatory macrophages promote fibrosis by driving myofibroblast differentiation and macrophage myofibroblast transition. Myofibroblasts express α-smooth muscle cell actin (α-SMA) and secrete extracellular matrix (ECM) proteins notably collagen I and III. Deposition of ECM proteins at injury sites and interstitial tissues distorts normal structure and impairs vital functions. Despite advances in the mechanisms of fibrosis at cellular, molecular and genetic levels, prevention and treatment of fibrotic diseases remain poorly developed. Recent reports suggest that 5-methoxytryptophan (5-MTP) is effective in attenuating injury-induced liver, kidney, cardiac and pulmonary fibrosis. It inhibits macrophage activation and blocks fibroblast differentiation to myofibroblasts. Furthermore, it inhibits hepatic stellate cell differentiation into myofibroblasts. As 5-MTP is an endogenous molecule derived from tryptophan catabolism via tryptophan hydroxylase pathway, it is well-suited as a lead compound for developing new anti-fibrotic drugs. This article provides an overview of 5-MTP synthesis, and a critical review of its anti-fibrotic activities. Its mechanisms of actions and potential therapeutic value will be discussed.
Collapse
Affiliation(s)
- Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.,Institute of Biotechnology, College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|
35
|
Wang S, Yao X, Ma S, Ping Y, Fan Y, Sun S, He Z, Shi Y, Sun L, Xiao S, Song M, Cai J, Li J, Tang R, Zhao L, Wang C, Wang Q, Zhao L, Hu H, Liu X, Sun G, Chen L, Pan G, Chen H, Li Q, Zhang P, Xu Y, Feng H, Zhao GG, Wen T, Yang Y, Huang X, Li W, Liu Z, Wang H, Wu H, Hu B, Ren Y, Zhou Q, Qu J, Zhang W, Liu GH, Bian XW. A single-cell transcriptomic landscape of the lungs of patients with COVID-19. Nat Cell Biol 2021; 23:1314-1328. [PMID: 34876692 PMCID: PMC8650955 DOI: 10.1038/s41556-021-00796-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
The lung is the primary organ targeted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), making respiratory failure a leading coronavirus disease 2019 (COVID-19)-related mortality. However, our cellular and molecular understanding of how SARS-CoV-2 infection drives lung pathology is limited. Here we constructed multi-omics and single-nucleus transcriptomic atlases of the lungs of patients with COVID-19, which integrate histological, transcriptomic and proteomic analyses. Our work reveals the molecular basis of pathological hallmarks associated with SARS-CoV-2 infection in different lung and infiltrating immune cell populations. We report molecular fingerprints of hyperinflammation, alveolar epithelial cell exhaustion, vascular changes and fibrosis, and identify parenchymal lung senescence as a molecular state of COVID-19 pathology. Moreover, our data suggest that FOXO3A suppression is a potential mechanism underlying the fibroblast-to-myofibroblast transition associated with COVID-19 pulmonary fibrosis. Our work depicts a comprehensive cellular and molecular atlas of the lungs of patients with COVID-19 and provides insights into SARS-CoV-2-related pulmonary injury, facilitating the identification of biomarkers and development of symptomatic treatments.
Collapse
Affiliation(s)
- Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xiaohong Yao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yifang Ping
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhicheng He
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yu Shi
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Liang Sun
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatric, Beijing Hospital, National Center of Gerontology, National Health Commission, Beijing, China
| | - Shiqi Xiao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Cai
- Department of Pathology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Tang
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Liyun Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- Department of Pathology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huifang Hu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xindong Liu
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Guoqiang Sun
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lu Chen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Guoqing Pan
- The NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Huaiyong Chen
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin Institute of Respiratory Diseases, Haihe Hospital, Tianjin University, Tianjin, China
| | - Qingrui Li
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Peipei Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Intelligent Pathology Institute, The First Hospital Affiliated to University of Science and Technology of China, Hefei, China
| | - Yuanyuan Xu
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Huyi Feng
- Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Guo-Guang Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianzi Wen
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yungui Yang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuequan Huang
- Center of Minimally Invasive Intervention, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Li
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Liu
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongmei Wang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Haibo Wu
- Intelligent Pathology Institute, The First Hospital Affiliated to University of Science and Technology of China, Hefei, China
| | - Baoyang Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of PLA, Wuhan, China
| | - Qi Zhou
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China.
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatric, Beijing Hospital, National Center of Gerontology, National Health Commission, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, International Center for Aging and Cancer, Xuanwu Hospital Capital Medical University, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xiu-Wu Bian
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| |
Collapse
|
36
|
Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance. Cell Death Discov 2021; 7:359. [PMID: 34795217 PMCID: PMC8602346 DOI: 10.1038/s41420-021-00747-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Lenvatinib is the first target drug approved for advanced hepatocellular carcinoma (HCC). However, the development of drug resistance is common, and the mechanisms of lenvatinib resistance and resistant targets in HCC are poorly understood. By using CRISPR/Cas9 library screening, we screened out two key resistance genes, neurofibromin 1(NF1), and dual specificity phosphatase 9 (DUSP9), as critical drivers for lenvatinib resistance in HCC. With RNAi knockdown and CRISPR/Cas9 knockout models, we further clarified the mechanisms by which NF1 loss reactivates the PI3K/AKT and MAPK/ERK signaling pathways, while DUSP9 loss activates the MAPK/ERK signaling pathways, thereby inactivating FOXO3, followed by degradation of FOXO3, finally induced lenvatinib resistance. We also screened out trametinib, a small molecule pathway inhibitor for MEK, that can be used to reverse resistance induced by NF1 and DUSP9 loss in HCC cells. Trametinib was still able to halt HCC growth even when NF1 was knocked out in mice. Collectively, the findings indicate that NF1 and DUSP9 takes critical role in lenvatinib resistance and may be novel specific targets and predictive markers for lenvatinib resistance in HCC.
Collapse
|
37
|
Up-regulation of miR-34b/c by JNK and FOXO3 protects from liver fibrosis. Proc Natl Acad Sci U S A 2021; 118:2025242118. [PMID: 33649241 DOI: 10.1073/pnas.2025242118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
α1-Antitrypsin (AAT) deficiency is a common genetic disease presenting with lung and liver diseases. AAT deficiency results from pathogenic variants in the SERPINA1 gene encoding AAT and the common mutant Z allele of SERPINA1 encodes for Z α1-antitrypsin (ATZ), a protein forming hepatotoxic polymers retained in the endoplasmic reticulum of hepatocytes. PiZ mice express the human ATZ and are a valuable model to investigate the human liver disease of AAT deficiency. In this study, we investigated differential expression of microRNAs (miRNAs) between PiZ and control mice and found that miR-34b/c was up-regulated and its levels correlated with intrahepatic ATZ. Furthermore, in PiZ mouse livers, we found that Forkhead Box O3 (FOXO3) driving microRNA-34b/c (miR-34b/c) expression was activated and miR-34b/c expression was dependent upon c-Jun N-terminal kinase (JNK) phosphorylation on Ser574 Deletion of miR-34b/c in PiZ mice resulted in early development of liver fibrosis and increased signaling of platelet-derived growth factor (PDGF), a target of miR-34b/c. Activation of FOXO3 and increased miR-34c were confirmed in livers of humans with AAT deficiency. In addition, JNK-activated FOXO3 and miR-34b/c up-regulation were detected in several mouse models of liver fibrosis. This study reveals a pathway involved in liver fibrosis and potentially implicated in both genetic and acquired causes of hepatic fibrosis.
Collapse
|
38
|
Jung SM, Park KS, Kim KJ. Integrative analysis of lung molecular signatures reveals key drivers of systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis 2021; 81:108-116. [PMID: 34380701 DOI: 10.1136/annrheumdis-2021-220493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/25/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Interstitial lung disease is a significant comorbidity and the leading cause of mortality in patients with systemic sclerosis. Transcriptomic data of systemic sclerosis-associated interstitial lung disease (SSc-ILD) were analysed to evaluate the salient molecular and cellular signatures in comparison with those in related pulmonary diseases and to identify the key driver genes and target molecules in the disease module. METHODS A transcriptomic dataset of lung tissues from patients with SSc-ILD (n=52), idiopathic pulmonary fibrosis (IPF) (n=549), non-specific interstitial pneumonia (n=49) and pulmonary arterial hypertension (n=81) and from normal healthy controls (n=331) was subjected to filtration of differentially expressed genes, functional enrichment analysis, network-based key driver analysis and kernel-based diffusion scoring. The association of enriched pathways with clinical parameters was evaluated in patients with SSc-ILD. RESULTS SSc-ILD shared key pathogenic pathways with other fibrosing pulmonary diseases but was distinguishable in some pathological processes. SSc-ILD showed general similarity with IPF in molecular and cellular signatures but stronger signals for myofibroblasts, which in SSc-ILD were in a senescent and apoptosis-resistant state. The p53 signalling pathway was the most enriched signature in lung tissues and lung fibroblasts of SSc-ILD, and was significantly correlated with carbon monoxide diffusing capacity of lung, cellular senescence and apoptosis. EEF2, EFF2K, PHKG2, VCAM1, PRKACB, ITGA4, CDK1, CDK2, FN1 and HDAC1 were key regulators with high diffusion scores in the disease module. CONCLUSIONS Integrative transcriptomic analysis of lung tissues revealed key signatures of fibrosis in SSc-ILD. A network-based Bayesian approach provides deep insights into key regulatory genes and molecular targets applicable to treating SSc-ILD.
Collapse
Affiliation(s)
- Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
39
|
Wang Z, Chen L, Huang Y, Luo M, Wang H, Jiang Z, Zheng J, Yang Z, Chen Z, Zhang C, Long L, Wang Y, Li X, Liao F, Gan Y, Luo P, Liu Y, Wang Y, XuTan, Zhou Z, Zhang A, Shi C. Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis. Redox Biol 2021; 46:102082. [PMID: 34343908 PMCID: PMC8342973 DOI: 10.1016/j.redox.2021.102082] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive deposition of extracellular matrix in the lung with fibroblast-to-myofibroblast transition, leading to chronically compromising lung function and death. However, very little is known about the metabolic alterations of fibroblasts in IPF, and there is still a lack of pharmaceutical agents to target the metabolic dysregulation. Here we show a glycolysis upregulation and fatty acid oxidation (FAO) downregulation in fibroblasts from fibrotic lung, and perturbation of glycolysis and FAO affects fibroblasts transdifferentiation. In addition, there is a significant accumulation of succinate both in fibrotic lung tissues and myofibroblasts, where succinate dehydrogenase (SDH) operates in reverse by reducing fumarate to succinate. Then succinate contributes to glycolysis upregulation and FAO downregulation by stabilizing HIF-1α, which promotes the development of lung fibrosis. In addition, we identify a near-infrared small molecule dye, IR-780, as a targeting agent which stimulates mild inhibition of succinate dehydrogenase subunit A (SDHA) in fibroblasts, and which inhibits TGF-β1 induced SDH and succinate elevation, then to prevent fibrosis formation and respiratory dysfunction. Further, enhanced cell retention of IR-780 is shown to promote severe inhibition of SDHA in myofibroblasts, which may contribute to excessive ROS generation and selectively induces myofibroblasts to apoptosis, and then therapeutically improves established lung fibrosis in vivo. These findings indicate that targeting metabolic dysregulation has significant implications for therapies aimed at lung fibrosis and succinate dehydrogenase is an exciting new therapeutic target to treat IPF. Glycolysis upregulation and fatty acid oxidation (FAO) downregulation in fibroblasts lead to lung fibrosis. Succinate contributes to metabolic dysregulation of fibroblasts by stabilizing HIF-1α. Succinate dehydrogenase is an exciting new therapeutic target to treat IPF. IR-780 can be a promising agent to control lung fibrosis by targeting succinate dehydrogenase.
Collapse
Affiliation(s)
- Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Cardiology, Geriatric Cardiovascular Disease Research and Treatment Center, The 82nd Group Army Hospital of PLA (252 Hospital of PLA), Baoding, Hebei, 071000, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu Huang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, 550025, China
| | - Min Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, 550025, China
| | - Huilan Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Institute of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zeyu Yang
- Breast and Thyroid Surgical Department, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401147, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chi Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xueru Li
- Department of Ophthalmology, Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, 401120, China
| | - Fengying Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yibo Gan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yunsheng Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - XuTan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, 550025, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
40
|
Qi H, Liu H, Pullamsetti SS, Günther S, Kuenne C, Atzberger A, Sommer N, Hadzic S, Günther A, Weissmann N, Zhou Y, Yuan X, Braun T. Epigenetic Regulation by Suv4-20h1 in Cardiopulmonary Progenitor Cells is Required to Prevent Pulmonary Hypertension and COPD. Circulation 2021; 144:1042-1058. [PMID: 34247492 DOI: 10.1161/circulationaha.120.051680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The etiology of life-threatening cardiopulmonary diseases such as Pulmonary Hypertension (PH) and Chronic Obstructive Pulmonary Disease (COPD) originates from a complex interplay of environmental factors and genetic predispositions, which is not fully understood. Likewise, little is known about developmental abnormalities or epigenetic dysregulations that might predispose for PH or COPD in adult individuals. Methods: To identify pathology-associated epigenetic alteration in diseased lung tissues, we screened a cohort of human PH and COPD patients for changes of histone modifications by immunofluorescence staining. To analyze the function of H4K20me2/3 in lung pathogenesis, we developed a series of Suv4-20h1 knockout mouse lines targeting cardiopulmonary progenitor cells (CPPs) and different heart and lung cell types, followed by hemodynamic studies and morphometric assessment of tissue samples. Molecular, cellular and biochemical techniques were applied to analyze the function of Suv4-20h1-dependent epigenetic processes in cardiopulmonary progenitor cells and their derivatives. Results: We discovered a strong reduction of the histone modifications H4K20me2/3 in human COPD but not PH patients, which depend on the activity of the H4K20 di-methyltransferase SUV4-20H1. Loss of Suv4-20h1 in CPPs caused a COPD-like/PH phenotype in mice including formation of perivascular tertiary lymphoid tissue and goblet cell hyperplasia, hyper-proliferation of smooth muscle cells/myofibroblasts, impaired alveolarization and maturation defects of the microvasculature leading to massive right ventricular dilatation and premature death. Mechanistically, SUV4-20H1 binds directly to the 5'-upstream regulatory element of superoxide dismutase 3 (Sod3) gene to repress its expression. Increased levels of the extracellular SOD3 enzyme in Suv4-20h1 mutants increases hydrogen peroxide (H2O2) concentrations, causing vascular defects and impairing alveolarization. Conclusions: Our findings reveal a pivotal role of the histone modifier SUV4-20H1 in cardiopulmonary co-development and uncover developmental origins of cardiopulmonary diseases. We assume that the study will facilitate the understanding of pathogenic events causing PH and COPD, and aid the development of epigenetic drugs for treatment of cardiopulmonary diseases.
Collapse
Affiliation(s)
- Hui Qi
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Hang Liu
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Soni Savai Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Carsten Kuenne
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Ann Atzberger
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Natascha Sommer
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Stefan Hadzic
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Andreas Günther
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Yonggang Zhou
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Xuejun Yuan
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany; Member, German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| |
Collapse
|
41
|
Liu X, Chen W, Zeng Q, Ma B, Li Z, Meng T, Chen J, Yu N, Zhou Z, Long X. Single-cell RNA-seq reveals lineage-specific regulatory changes of fibroblasts and vascular endothelial cells in keloids. J Invest Dermatol 2021; 142:124-135.e11. [PMID: 34242659 DOI: 10.1016/j.jid.2021.06.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 10/20/2022]
Abstract
Keloids are a benign dermal fibrotic disorder with features similar to malignant tumors. keloids remain a therapeutic challenge and lack medical therapies, which is partially due to the incomplete understanding of the pathogenesis mechanism. We performed single-cell RNA-seq of 28,064 cells from keloid skin tissue and adjacent relatively normal tissue. Unbiased clustering revealed substantial cellular heterogeneity of keloid tissue, which included 21 clusters assigned to 11 cell lineages. We observed significant expansion of fibroblast and vascular endothelial cell subpopulations in keloids, reflecting their strong association with keloid pathogenesis. Comparative analyses were performed to identify the dysregulated pathways, regulators and ligand-receptor interactions in keloid fibroblasts and vascular endothelial cells. Our results highlight the roles of transforming growth factor beta and Eph-ephrin signaling pathways in both the aberrant fibrogenesis and angiogenesis of keloids. Critical regulators probably involved in the fibrogenesis of keloid fibroblasts, such as TWIST1, FOXO3 and SMAD3, were identified. TWIST1 inhibitor harmine could significantly suppress the fibrogenesis of keloid fibroblasts. In addition, tumor-related pathways were activated in keloid fibroblasts and vascular endothelial cells, which may be responsible for the malignant features of keloids. Our study put insights into the pathogenesis of keloids and provides potential targets for medical therapies.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qingyi Zeng
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Baihui Ma
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhujun Li
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Tian Meng
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jie Chen
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Nanze Yu
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
42
|
Wu WH, Bonnet S, Shimauchi T, Toro V, Grobs Y, Romanet C, Bourgeois A, Vitry G, Omura J, Tremblay E, Nadeau V, Orcholski M, Breuils-Bonnet S, Martineau S, Ferraro P, Potus F, Paulin R, Provencher S, Boucherat O. Potential for inhibition of checkpoint kinases 1/2 in pulmonary fibrosis and secondary pulmonary hypertension. Thorax 2021; 77:247-258. [PMID: 34226205 DOI: 10.1136/thoraxjnl-2021-217377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterised by exuberant tissue remodelling and associated with high unmet medical needs. Outcomes are even worse when IPF results in secondary pulmonary hypertension (PH). Importantly, exaggerated resistance to cell death, excessive proliferation and enhanced synthetic capacity are key endophenotypes of both fibroblasts and pulmonary artery smooth muscle cells, suggesting shared molecular pathways. Under persistent injury, sustained activation of the DNA damage response (DDR) is integral to the preservation of cells survival and their capacity to proliferate. Checkpoint kinases 1 and 2 (CHK1/2) are key components of the DDR. The objective of this study was to assess the role of CHK1/2 in the development and progression of IPF and IPF+PH. METHODS AND RESULTS Increased expression of DNA damage markers and CHK1/2 were observed in lungs, remodelled pulmonary arteries and isolated fibroblasts from IPF patients and animal models. Blockade of CHK1/2 expression or activity-induced DNA damage overload and reverted the apoptosis-resistant and fibroproliferative phenotype of disease cells. Moreover, inhibition of CHK1/2 was sufficient to interfere with transforming growth factor beta 1-mediated fibroblast activation. Importantly, pharmacological inhibition of CHK1/2 using LY2606368 attenuated fibrosis and pulmonary vascular remodelling leading to improvement in respiratory mechanics and haemodynamic parameters in two animal models mimicking IPF and IPF+PH. CONCLUSION This study identifies CHK1/2 as key regulators of lung fibrosis and provides a proof of principle for CHK1/2 inhibition as a potential novel therapeutic option for IPF and IPF+PH.
Collapse
Affiliation(s)
- Wen-Hui Wu
- Department of Cardio-Pulmonary Circulation, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Victoria Toro
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Yann Grobs
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Charlotte Romanet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Alice Bourgeois
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Geraldine Vitry
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Junichi Omura
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Valerie Nadeau
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Mark Orcholski
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Pasquale Ferraro
- Department of Surgery, University of Montreal, Montreal, Quebec, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Roxane Paulin
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre (IUCPQ), Quebec, Quebec, Canada
| |
Collapse
|
43
|
Cheema PS, Nandi D, Nag A. Exploring the therapeutic potential of forkhead box O for outfoxing COVID-19. Open Biol 2021; 11:210069. [PMID: 34102081 PMCID: PMC8187014 DOI: 10.1098/rsob.210069] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has wreaked unprecedented societal havoc worldwide. The infected individuals may present mild to severe symptoms, with nearly 20% of the confirmed patients impaired with significant complications, including multi-organ failure. Acute respiratory distress imposed by SARS-CoV-2 largely results from an aggravated cytokine storm and deregulated immune response. The forkhead box O (FoxO) transcription factors are reported to play a significant role in maintaining normal cell physiology by regulating survival, apoptosis, oxidative stress, development and maturation of T and B lymphocytes, secretion of inflammatory cytokines, etc. We propose a potent anti-inflammatory approach based on activation of the FoxO as an attractive strategy against the novel coronavirus. This regime will be focused on restoring redox and inflammatory homeostasis along with repair of the damaged tissue, activation of lymphocyte effector and memory cells. Repurposing FoxO activators as a means to alleviate the inflammatory burst following SARS-CoV-2 infection can prove immensely valuable in the ongoing pandemic and provide a reliable groundwork for enriching our repertoire of antiviral modalities for any such complication in the future. Altogether, our review highlights the possible efficacy of FoxO activation as a novel arsenal for clinical management of COVID-19.
Collapse
Affiliation(s)
- Pradeep Singh Cheema
- Department of Biochemistry, University of Delhi, South Campus, Biotech Building, 2nd Floor, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Deeptashree Nandi
- Department of Biochemistry, University of Delhi, South Campus, Biotech Building, 2nd Floor, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi, South Campus, Biotech Building, 2nd Floor, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| |
Collapse
|
44
|
Ianni A, Hofmann M, Kumari P, Tarighi S, Al-Tamari HM, Görgens A, Giebel B, Nolte H, Krüger M, Salwig I, Pullamsetti SS, Günther A, Schneider A, Braun T. Depletion of Numb and Numblike in Murine Lung Epithelial Cells Ameliorates Bleomycin-Induced Lung Fibrosis by Inhibiting the β-Catenin Signaling Pathway. Front Cell Dev Biol 2021; 9:639162. [PMID: 34124033 PMCID: PMC8187792 DOI: 10.3389/fcell.2021.639162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) represents the most aggressive form of pulmonary fibrosis (PF) and is a highly debilitating disorder with a poorly understood etiology. The lung epithelium seems to play a critical role in the initiation and progression of the disease. A repeated injury of lung epithelial cells prompts type II alveolar cells to secrete pro-fibrotic cytokines, which induces differentiation of resident mesenchymal stem cells into myofibroblasts, thus promoting aberrant deposition of extracellular matrix (ECM) and formation of fibrotic lesions. Reactivation of developmental pathways such as the Wnt-β-catenin signaling cascade in lung epithelial cells plays a critical role in this process, but the underlying mechanisms are still enigmatic. Here, we demonstrate that the membrane-associated protein NUMB is required for pathological activation of β-catenin signaling in lung epithelial cells following bleomycin-induced injury. Importantly, depletion of Numb and Numblike reduces accumulation of fibrotic lesions, preserves lung functions, and increases survival rates after bleomycin treatment of mice. Mechanistically, we demonstrate that NUMB interacts with casein kinase 2 (CK2) and relies on CK2 to activate β-catenin signaling. We propose that pharmacological inhibition of NUMB signaling may represent an effective strategy for the development of novel therapeutic approaches against PF.
Collapse
Affiliation(s)
- Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michael Hofmann
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Poonam Kumari
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Shahriar Tarighi
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hamza M Al-Tamari
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Hendrik Nolte
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD)-Cluster of Excellence, Köln, Germany
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD)-Cluster of Excellence, Köln, Germany
| | - Isabelle Salwig
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Andreas Günther
- Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Giessen, Germany
| | - André Schneider
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| |
Collapse
|
45
|
Tan Q, Link PA, Meridew JA, Pham TX, Caporarello N, Ligresti G, Tschumperlin DJ. Spontaneous Lung Fibrosis Resolution Reveals Novel Antifibrotic Regulators. Am J Respir Cell Mol Biol 2021; 64:453-464. [PMID: 33493091 DOI: 10.1165/rcmb.2020-0396oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fibroblast activation is transient in successful wound repair but persistent in fibrotic pathologies. Understanding fibroblast deactivation during successful wound healing may provide new approaches to therapeutically reverse fibroblast activation. To characterize the gene programs that accompany fibroblast activation and reversal during lung fibrosis resolution, we used RNA sequencing analysis of flow sorted Col1α1-GFP-positive and CD45-, CD31-, and CD326-negative cells isolated from the lungs of young mice exposed to bleomycin. We compared fibroblasts isolated from control mice with those isolated at Days 14 and 30 after bleomycin exposure, representing the peak of extracellular matrix deposition and an early stage of fibrosis resolution, respectively. Bleomycin exposure dramatically altered fibroblast gene programs at Day 14. Principal component and differential gene expression analyses demonstrated the predominant reversal of these trends at Day 30. Upstream regulator and pathway analyses of reversing "resolution" genes identified novel candidate antifibrotic genes and pathways. Two genes from these analyses that were decreased in expression at Day 14 and reversed at Day 30, Aldh2 and Nr3c1, were selected for further analysis. Enhancement of endogenous expression of either gene by CRISPR activation in cultured human idiopathic pulmonary fibrosis fibroblasts was sufficient to reduce profibrotic gene expression, fibronectin deposition, and collagen gel compaction, consistent with roles for these genes in fibroblast deactivation. This combination of RNA sequencing analysis of freshly sorted fibroblasts and hypothesis testing in cultured idiopathic pulmonary fibrosis fibroblasts offers a path toward identification of novel regulators of lung fibroblast deactivation, with potential relevance to understanding fibrosis resolution and its failure in human disease.
Collapse
Affiliation(s)
- Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Patrick A Link
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Jeffrey A Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Tho X Pham
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Giovanni Ligresti
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and.,Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Pulmonary fibrosis is a chronic and progressive lung disease involving unclear pathological mechanisms. The present review presents and discusses the major and recent advances in our knowledge of the pathogenesis of lung fibrosis. RECENT FINDINGS The past months have deepened our understanding on the cellular actors of fibrosis with a better characterization of the abnormal lung epithelial cells observed during lung fibrosis. Better insight has been gained into fibroblast biology and the role of immune cells during fibrosis. Mechanistically, senescence appears as a key driver of the fibrotic process. Extracellular vesicles have been discovered as participating in the impaired cellular cross-talk during fibrosis and deeper understanding has been made on developmental signaling in lung fibrosis. SUMMARY This review emphasizes the contribution of different cell types and mechanisms during pulmonary fibrosis, highlights new insights for identification of potential therapeutic strategies, and underlines where future research is needed to answer remaining open questions.
Collapse
|
47
|
Wagner C, Uliczka K, Bossen J, Niu X, Fink C, Thiedmann M, Knop M, Vock C, Abdelsadik A, Zissler UM, Isermann K, Garn H, Pieper M, Wegmann M, Koczulla AR, Vogelmeier CF, Schmidt-Weber CB, Fehrenbach H, König P, Silverman N, Renz H, Pfefferle P, Heine H, Roeder T. Constitutive immune activity promotes JNK- and FoxO-dependent remodeling of Drosophila airways. Cell Rep 2021; 35:108956. [PMID: 33826881 DOI: 10.1016/j.celrep.2021.108956] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/29/2020] [Accepted: 03/17/2021] [Indexed: 01/07/2023] Open
Abstract
Extensive remodeling of the airways is a major characteristic of chronic inflammatory lung diseases such as asthma or chronic obstructive pulmonary disease (COPD). To elucidate the importance of a deregulated immune response in the airways for remodeling processes, we established a matching Drosophila model. Here, triggering the Imd (immune deficiency) pathway in tracheal cells induced organ-wide remodeling. This structural remodeling comprises disorganization of epithelial structures and comprehensive epithelial thickening. We show that these structural changes do not depend on the Imd pathway's canonical branch terminating on nuclear factor κB (NF-κB) activation. Instead, activation of a different segment of the Imd pathway that branches off downstream of Tak1 and comprises activation of c-Jun N-terminal kinase (JNK) and forkhead transcription factor of the O subgroup (FoxO) signaling is necessary and sufficient to mediate the observed structural changes of the airways. Our findings imply that targeting JNK and FoxO signaling in the airways could be a promising strategy to interfere with disease-associated airway remodeling processes.
Collapse
Affiliation(s)
- Christina Wagner
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany
| | - Karin Uliczka
- Division of Invertebrate Models, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Division of Innate Immunity, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany
| | - Judith Bossen
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Xiao Niu
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Christine Fink
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Marcus Thiedmann
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Mirjam Knop
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Christina Vock
- Division of Experimental Pneumology, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany
| | - Ahmed Abdelsadik
- Zoology, Aswan University, Aswan 81528, Egypt; Molecular Biotechnology Program, Faculty of Advanced Basic Sciences, Galala University, 43552 New Galala, Egypt
| | - Ulrich M Zissler
- Center of Allergy and Environment (ZAUM), Technical University Munich and Helmholtz Center Munich, German Research Center for Environmental Health, 80802 Munich, Germany; CPC-M, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kerstin Isermann
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Mario Pieper
- University Lübeck, Anatomical Institute, 23538 Lübeck, Germany
| | - Michael Wegmann
- Division of Asthma Exacerbation & Regulation, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Andreas R Koczulla
- Pulmonary and Critical Care Medicine, Department of Medicine, Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Claus F Vogelmeier
- Pulmonary and Critical Care Medicine, Department of Medicine, Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University Munich and Helmholtz Center Munich, German Research Center for Environmental Health, 80802 Munich, Germany; CPC-M, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Heinz Fehrenbach
- Division of Experimental Pneumology, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Peter König
- University Lübeck, Anatomical Institute, 23538 Lübeck, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Neil Silverman
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Harald Renz
- Molecular Diagnostics, Institute of Laboratory Medicine and Pathobiochemistry, Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Petra Pfefferle
- Comprehensive Biobank Marburg, University Medical Center Giessen and Marburg, Medical Faculty, Philipps University Marburg, 35043 Marburg, Germany; UGMLC, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Holger Heine
- Division of Innate Immunity, Priority Research Area Asthma and Allergy, Research Center Borstel, 23845 Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Thomas Roeder
- Zoology, Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany.
| |
Collapse
|
48
|
Fu Z, Xu YS, Cai CQ. Ginsenoside Rg3 inhibits pulmonary fibrosis by preventing HIF-1α nuclear localisation. BMC Pulm Med 2021; 21:70. [PMID: 33639908 PMCID: PMC7912494 DOI: 10.1186/s12890-021-01426-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background Excessive fibroblast proliferation during pulmonary fibrosis leads to structural abnormalities in lung tissue and causes hypoxia and cell injury. However, the mechanisms and effective treatment are still limited. Methods In vivo, we used bleomycin to induce pulmonary fibrosis in mice. IHC and Masson staining were used to evaluate the inhibitory effect of ginsenoside Rg3 in pulmonary fibrosis. In vitro, scanning electron microscopy, transwell and wound healing were used to evaluate the cell phenotype of LL 29 cells. In addition, biacore was used to detect the binding between ginsenoside Rg3 and HIF-1α. Results Here, we found that bleomycin induces the activation of the HIF-1α/TGFβ1 signalling pathway and further enhances the migration and proliferation of fibroblasts through the epithelial mesenchymal transition (EMT). In addition, molecular docking and biacore results indicated that ginsenoside Rg3 can bind HIF-1α. Therefore, Ginsenoside Rg3 can slow down the progression of pulmonary fibrosis by inhibiting the nuclear localisation of HIF-1α. Conclusions This finding suggests that early targeted treatment of hypoxia may have potential value in the treatment of pulmonary fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01426-5.
Collapse
Affiliation(s)
- Zhuo Fu
- Tianjin Medical University, Tianjin, China.,Department of Respiratory, Tianjin Children's Hospital, Tianjin, China
| | - Yong-Sheng Xu
- Department of Respiratory, Tianjin Children's Hospital, Tianjin, China
| | - Chun-Quan Cai
- Department of Neurosurgery, Tianjin Institute of Pediatrics, The Children's Hospital of Tianjin, No.238 Longyan Road, Beichen District, Tianjin, 300400, China.
| |
Collapse
|
49
|
Rehan M, Kurundkar D, Kurundkar AR, Logsdon NJ, Smith SR, Chanda D, Bernard K, Sanders YY, Deshane JS, Dsouza KG, Rangarajan S, Zmijewski JW, Thannickal VJ. Restoration of SIRT3 gene expression by airway delivery resolves age-associated persistent lung fibrosis in mice. ACTA ACUST UNITED AC 2021; 1:205-217. [PMID: 34386777 PMCID: PMC8357317 DOI: 10.1038/s43587-021-00027-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aging is a risk factor for progressive fibrotic disorders involving diverse organ systems, including the lung. Idiopathic pulmonary fibrosis, an age-associated degenerative lung disorder, is characterized by persistence of apoptosis-resistant myofibroblasts. In this report, we demonstrate that sirtuin-3 (SIRT3), a mitochondrial deacetylase, is downregulated in lungs of IPF human subjects and in mice subjected to lung injury. Over-expression of the SIRT3 cDNA via airway delivery restored capacity for fibrosis resolution in aged mice, in association with activation of the forkhead box transcription factor, FoxO3a, in fibroblasts, upregulation of pro-apoptotic members of the Bcl-2 family, and recovery of apoptosis susceptibility. While transforming growth factor-β1 reduced levels of SIRT3 and FoxO3a in lung fibroblasts, cell non-autonomous effects involving macrophage secreted products were necessary for SIRT3-mediated activation of FoxO3a. Together, these findings reveal a novel role of SIRT3 in pro-resolution macrophage functions that restore susceptibility to apoptosis in fibroblasts via a FoxO3a-dependent mechanism.
Collapse
Affiliation(s)
- Mohammad Rehan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Deepali Kurundkar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ashish R Kurundkar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Naomi J Logsdon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samuel R Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Diptiman Chanda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessy S Deshane
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin G Dsouza
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sunad Rangarajan
- Division of Pulmonary Sciences and Critical Care, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jaroslaw W Zmijewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
50
|
Kim SJ, Kim KM, Yang JH, Cho SS, Jeong EH, Kim JH, Lee JH, Seo KH, Park EY, Ki SH. Transforming Growth Factor Beta-Induced Foxo3a Acts as a Profibrotic Mediator in Hepatic Stellate Cells. Toxicol Sci 2021; 179:241-250. [PMID: 33372984 DOI: 10.1093/toxsci/kfaa185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hepatic stellate cells (HSCs) are major contributors to hepatic fibrogenesis facilitating liver fibrosis. Forkhead box O 3a (FoxO3a) is a member of the forkhead transcription factor family, which mediates cell proliferation and differentiation. However, the expression and function of FoxO3a during HSC activation remain largely unknown. FoxO3a overexpression was related to fibrosis in patients, and its expression was colocalized with desmin or α-smooth muscle actin, representative HSC markers. We also observed upregulated FoxO3a levels in two animal hepatic fibrosis models, a carbon tetrachloride-injected model and a bile duct ligation model. In addition, transforming growth factor beta (TGF-β) treatment in mouse primary HSCs or LX-2 cells elevated FoxO3a expression. When FoxO3a was upregulated by TGF-β in LX-2 cells, both the cytosolic and nuclear levels of FoxO3a increased. In addition, we found that the induction of FoxO3a by TGF-β was due to both transcriptional and proteasome-dependent mechanisms. Moreover, FoxO3a overexpression promoted TGF-β-mediated Smad activation. Furthermore, FoxO3a increased fibrogenic gene expression, which was reversed by FoxO3a knockdown. TGF-β-mediated FoxO3a overexpression in HSCs facilitated hepatic fibrogenesis, suggesting that FoxO3a may be a novel target for liver fibrosis prevention and treatment.
Collapse
Affiliation(s)
- Seung Jung Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Kyu Min Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-do 58245, Republic of Korea
| | - Sam Seok Cho
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Eun Hee Jeong
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Jae Hoon Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Ji Hyun Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Kyu Hwa Seo
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Eun Young Park
- College of Pharmacy, Mokpo National University, Muan-gun, Jeollanam-do 58554, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|