1
|
Lu S, Zhou Q, Zhao R, Xie L, Cao WM, Feng YX. Unraveling UPR-mediated intercellular crosstalk: Implications for immunotherapy resistance mechanisms. Cancer Lett 2025; 617:217613. [PMID: 40054654 DOI: 10.1016/j.canlet.2025.217613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Endoplasmic reticulum (ER) is the critical organelle that regulates essential cellular processes, including protein synthesis, folding, and post-translational modification, as well as lipid metabolism and calcium homeostasis. Disruption in ER homeostasis leads to a condition known as ER stress, characterized by the accumulation of misfolded or unfolded proteins. This triggers the unfolded protein response (UPR), an adaptive pathway mediated by three ER-resident sensors: inositol-requiring enzyme 1α (IRE1α), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Increasing evidence highlights sustained UPR activation in malignant and immune cells within the tumor microenvironment (TME), which promotes tumor progression and metastasis while simultaneously impairing antitumor immunity. This review explores how UPR-driven intercellular signaling influences immunotherapy resistance, focusing on the alterations occurring in tumor cells as well as in the surrounding immune environment. By providing insights into these mechanisms, we aim to highlight the therapeutic potential of targeting the UPR pathways in modulating cancer immunity.
Collapse
Affiliation(s)
- Si Lu
- Department of Head and Neck Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongjie Zhao
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lei Xie
- Department of Head and Neck Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Yu-Xiong Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Zuazo-Gaztelu I, Lawrence D, Oikonomidi I, Marsters S, Pechuan-Jorge X, Gaspar CJ, Kan D, Segal E, Clark K, Beresini M, Braun MG, Rudolph J, Modrusan Z, Choi M, Sandoval W, Reichelt M, DeWitt DC, Kujala P, van Dijk S, Klumperman J, Ashkenazi A. A nonenzymatic dependency on inositol-requiring enzyme 1 controls cancer cell cycle progression and tumor growth. PLoS Biol 2025; 23:e3003086. [PMID: 40208872 DOI: 10.1371/journal.pbio.3003086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/26/2025] [Indexed: 04/12/2025] Open
Abstract
Endoplasmic-reticulum resident inositol-requiring enzyme 1α (IRE1) supports protein homeostasis via its cytoplasmic kinase-RNase module. Known cancer dependency on IRE1 entails its enzymatic activation of the transcription factor XBP1s and regulated RNA decay. We discovered that some cancer cells surprisingly require IRE1 but not its enzymatic activity. IRE1 knockdown but not enzymatic IRE1 inhibition or XBP1 disruption attenuated cell cycle progression and tumor growth. IRE1 silencing led to activation of TP53 and CDKN1A/p21 in conjunction with increased DNA damage and chromosome instability, while decreasing heterochromatin as well as DNA and histone H3K9me3 methylation. Immunoelectron microscopy detected endogenous IRE1 at the nuclear envelope. Thus, cancer cells co-opt IRE1 either enzymatically or nonenzymatically, which has significant implications for IRE1's biological role and therapeutic targeting.
Collapse
Affiliation(s)
- Iratxe Zuazo-Gaztelu
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - David Lawrence
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Ioanna Oikonomidi
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Scot Marsters
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Ximo Pechuan-Jorge
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Catarina J Gaspar
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - David Kan
- Department of In Vivo Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Ehud Segal
- Department of In Vivo Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Kevin Clark
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Maureen Beresini
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Marie-Gabrielle Braun
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Joachim Rudolph
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Meena Choi
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Wendy Sandoval
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Mike Reichelt
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - David C DeWitt
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Pekka Kujala
- Center for Molecular Medicine-Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Suzanne van Dijk
- Center for Molecular Medicine-Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine-Cell Biology, University Medical Center, Utrecht, The Netherlands
| | - Avi Ashkenazi
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| |
Collapse
|
3
|
Zhou X, Li Z, Ren F, Deng H, Wen J, Xiang Q, Zhou Z, Yang X, Rao C. Endoplasmic reticulum stress and unfolded protein response in renal lipid metabolism. Exp Cell Res 2025; 446:114463. [PMID: 39971174 DOI: 10.1016/j.yexcr.2025.114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
The endoplasmic reticulum (ER) is a crucial cellular organelle involved in protein synthesis, folding, modification, and transport. Exposure to internal and external stressors can induce endoplasmic reticulum stress (ERS), leading to abnormal protein folding and ER malfunction. This stress can disrupt lipid synthesis, metabolism, and transport processes. Fatty acid oxidation is the primary energy source for the renal system. When energy intake exceeds the storage capacity of adipose tissue, lipids accumulate abnormally in non-adipose tissues, including kidneys, liver, and pancreas. Lipids accumulate in the kidneys of nearly all cell types, including thylakoid membranous, pedunculated, and proximal renal tubular epithelial cells. Intracellular free fatty acids can significantly disrupt renal lipid metabolism, contributing to ischemia-reperfusion acute kidney injury, diabetic nephropathy, renal fibrosis, and lupus nephritis. Consequently, this study delineated the primary signaling pathways and mechanisms of the ERS-induced unfolded protein response, explored the mechanistic link between ERS and lipid metabolism, and elucidated its role in renal lipid metabolism. This study aimed to offer new perspectives on managing and treating renal disorders.
Collapse
Affiliation(s)
- Xinyi Zhou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Ziyi Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hua Deng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Zhihui Zhou
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xiyun Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
4
|
Wang X, Wang Q, Wang H, Cai G, An Y, Liu P, Zhou H, Chen HW, Ji S, Ye J, Wang J. Small protein ERSP encoded by LINC02870 promotes triple negative breast cancer progression via IRE1α/XBP1s activation. Cell Death Differ 2025:10.1038/s41418-025-01443-5. [PMID: 39799200 DOI: 10.1038/s41418-025-01443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Clinical treatment options for triple-negative breast cancer (TNBC) are currently limited to chemotherapy because of a lack of effective therapeutic targets. Recent evidence suggests that long noncoding RNAs (lncRNAs) encode bioactive peptides or proteins, thereby playing noncanonical yet significant roles in regulating cellular processes. However, the potential of lncRNA-translated products in cancer progression remains largely unknown. In this study, we identified a previously undocumented small protein encoded by the lncRNA LINC02870. This protein is localized at the endoplasmic reticulum (ER) and participates in ER stress, thus, we named it the endoplasmic reticulum stress protein (ERSP). ERSP was highly expressed in TNBC tissues, and elevated LINC02870 content was correlated with poor prognosis in TNBC patients. Loss of ERSP inhibited TNBC growth and metastasis both in vitro and in vivo. The pro-oncogenic effects of ERSP could be attributed to its selective activation of the IRE1α/XBP1s branch. ERSP enhances the unfolded protein response (UPR) by interacting with XBP1s, facilitating the nuclear accumulation of XBP1s, thereby promoting the expression of ER stress-related genes. These findings highlight the regulatory role of the lncRNA-encoded protein ERSP in ER stress and suggest that it is a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Xiaolu Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qianqian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Guodi Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yana An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Huihao Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Shufeng Ji
- Special Medical Service Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510006, China.
| | - Jiantao Ye
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
5
|
Urra H, Aravena R, González-Johnson L, Hetz C. The UPRising connection between endoplasmic reticulum stress and the tumor microenvironment. Trends Cancer 2024; 10:1161-1173. [PMID: 39472237 DOI: 10.1016/j.trecan.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 12/12/2024]
Abstract
The tumor microenvironment (TME) represents a dynamic network of cancer cells, stromal cells, immune mediators, and extracellular matrix components, crucial for cancer progression. Stress conditions such as oncogene activation, nutrient deprivation, and hypoxia disrupt the endoplasmic reticulum (ER), activating the unfolded protein response (UPR), the main adaptive mechanism to restore ER function. The UPR regulates cancer progression by engaging cell-autonomous and cell-non-autonomous mechanisms, reprogramming the stroma and promoting immune evasion, angiogenesis, and invasion. This review explores the role of UPR beyond cancer cells, focusing on how ER stress signaling reshapes the TME, supporting tumor growth. The therapeutic potential of targeting the UPR is also discussed.
Collapse
Affiliation(s)
- Hery Urra
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Raúl Aravena
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia (CEBICEM), Universidad San Sebastián, Santiago 7510602, Chile
| | - Lucas González-Johnson
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Claudio Hetz
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile; The Buck Institute for Research in Aging, Novato, CA, USA.
| |
Collapse
|
6
|
Unal B, Kuzu OF, Jin Y, Osorio D, Kildal W, Pradhan M, Kung SHY, Oo HZ, Daugaard M, Vendelbo M, Patterson JB, Thomsen MK, Kuijjer ML, Saatcioglu F. Targeting IRE1α reprograms the tumor microenvironment and enhances anti-tumor immunity in prostate cancer. Nat Commun 2024; 15:8895. [PMID: 39406723 PMCID: PMC11480464 DOI: 10.1038/s41467-024-53039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Unfolded protein response (UPR) is a central stress response pathway that is hijacked by tumor cells for their survival. Here, we find that IRE1α signaling, one of the canonical UPR arms, is increased in prostate cancer (PCa) patient tumors. Genetic or small molecule inhibition of IRE1α in syngeneic mouse PCa models and an orthotopic model decreases tumor growth. IRE1α ablation in cancer cells potentiates interferon responses and activates immune system related pathways in the tumor microenvironment (TME). Single-cell RNA-sequencing analysis reveals that targeting IRE1α in cancer cells reduces tumor-associated macrophage abundance. Consistently, the small molecule IRE1α inhibitor MKC8866, currently in clinical trials, reprograms the TME and enhances anti-PD-1 therapy. Our findings show that IRE1α signaling not only promotes cancer cell growth and survival but also interferes with anti-tumor immunity in the TME. Thus, targeting IRE1α can be a promising approach for improving anti-PD-1 immunotherapy in PCa.
Collapse
Affiliation(s)
- Bilal Unal
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Omer Faruk Kuzu
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Yang Jin
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Daniel Osorio
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Wanja Kildal
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Manohar Pradhan
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Sonia H Y Kung
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Mikkel Vendelbo
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Marieke Lydia Kuijjer
- Center for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway.
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
7
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
8
|
Simbilyabo LZ, Yang L, Wen J, Liu Z. The unfolded protein response machinery in glioblastoma genesis, chemoresistance and as a druggable target. CNS Neurosci Ther 2024; 30:e14839. [PMID: 39021040 PMCID: PMC11255034 DOI: 10.1111/cns.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The role of the unfolded protein response (UPR) has been progressively unveiled over the last decade and several studies have investigated its implication in glioblastoma (GB) development. The UPR restores cellular homeostasis by triggering the folding and clearance of accumulated misfolded proteins in the ER consecutive to endoplasmic reticulum stress. In case it is overwhelmed, it induces apoptotic cell death. Thus, holding a critical role in cell fate decisions. METHODS This article, reviews how the UPR is implicated in cell homeostasis maintenance, then surveils the evidence supporting the UPR involvement in GB genesis, progression, angiogenesis, GB stem cell biology, tumor microenvironment modulation, extracellular matrix remodeling, cell fate decision, invasiveness, and grading. Next, it concurs the evidence showing how the UPR mediates GB chemoresistance-related mechanisms. RESULTS The UPR stress sensors IRE1, PERK, and ATF6 with their regulator GRP78 are upregulated in GB compared to lower grade gliomas and normal brain tissue. They are activated in response to oncogenes and are implicated at different stages of GB progression, from its genesis to chemoresistance and relapse. The UPR arms can be effectors of apoptosis as mediators or targets. CONCLUSION Recent research has established the role of the UPR in GB pathophysiology and chemoresistance. Targeting its different sensors have shown promising in overcoming GB chomo- and radioresistance and inducing apoptosis.
Collapse
Affiliation(s)
- Lucette Z. Simbilyabo
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liting Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
9
|
Obacz J, Archambeau J, Lafont E, Nivet M, Martin S, Aubry M, Voutetakis K, Pineau R, Boniface R, Sicari D, Pelizzari-Raymundo D, Ghukasyan G, McGrath E, Vlachavas EI, Le Gallo M, Le Reste PJ, Barroso K, Fainsod-Levi T, Obiedat A, Granot Z, Tirosh B, Samal J, Pandit A, Négroni L, Soriano N, Monnier A, Mosser J, Chatziioannou A, Quillien V, Chevet E, Avril T. IRE1 endoribonuclease signaling promotes myeloid cell infiltration in glioblastoma. Neuro Oncol 2024; 26:858-871. [PMID: 38153426 PMCID: PMC11066906 DOI: 10.1093/neuonc/noad256] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Intrinsic or environmental stresses trigger the accumulation of improperly folded proteins in the endoplasmic reticulum (ER), leading to ER stress. To cope with this, cells have evolved an adaptive mechanism named the unfolded protein response (UPR) which is hijacked by tumor cells to develop malignant features. Glioblastoma (GB), the most aggressive and lethal primary brain tumor, relies on UPR to sustain growth. We recently showed that IRE1 alpha (referred to IRE1 hereafter), 1 of the UPR transducers, promotes GB invasion, angiogenesis, and infiltration by macrophage. Hence, high tumor IRE1 activity in tumor cells predicts a worse outcome. Herein, we characterized the IRE1-dependent signaling that shapes the immune microenvironment toward monocytes/macrophages and neutrophils. METHODS We used human and mouse cellular models in which IRE1 was genetically or pharmacologically invalidated and which were tested in vivo. Publicly available datasets from GB patients were also analyzed to confirm our findings. RESULTS We showed that IRE1 signaling, through both the transcription factor XBP1s and the regulated IRE1-dependent decay controls the expression of the ubiquitin-conjugating E2 enzyme UBE2D3. In turn, UBE2D3 activates the NFκB pathway, resulting in chemokine production and myeloid infiltration in tumors. CONCLUSIONS Our work identifies a novel IRE1/UBE2D3 proinflammatory axis that plays an instrumental role in GB immune regulation.
Collapse
Affiliation(s)
- Joanna Obacz
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | | | - Elodie Lafont
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Manon Nivet
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Sophie Martin
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | | | | | - Raphael Pineau
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | | | - Daria Sicari
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | | | | | - Eoghan McGrath
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | | | | | - Pierre Jean Le Reste
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
- Hospital of St Malo, France
| | - Kim Barroso
- IGBMC, Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
| | - Tanya Fainsod-Levi
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Israel
| | | | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Israel
| | | | | | | | - Luc Négroni
- IGBMC, Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
| | | | | | | | - Aristotelis Chatziioannou
- ICB, NHRF, Athens, Greece
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Eric Chevet
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Tony Avril
- INSERM U1242, Rennes, France
- Centre Eugène Marquis, Rennes, France
| |
Collapse
|
10
|
Ahmed N, Preisinger C, Wilhelm T, Huber M. TurboID-Based IRE1 Interactome Reveals Participants of the Endoplasmic Reticulum-Associated Protein Degradation Machinery in the Human Mast Cell Leukemia Cell Line HMC-1.2. Cells 2024; 13:747. [PMID: 38727283 PMCID: PMC11082977 DOI: 10.3390/cells13090747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
The unfolded protein response is an intricate system of sensor proteins in the endoplasmic reticulum (ER) that recognizes misfolded proteins and transmits information via transcription factors to either regain proteostasis or, depending on the severity, to induce apoptosis. The main transmembrane sensor is IRE1α, which contains cytoplasmic kinase and RNase domains relevant for its activation and the mRNA splicing of the transcription factor XBP1. Mast cell leukemia (MCL) is a severe form of systemic mastocytosis. The inhibition of IRE1α in the MCL cell line HMC-1.2 has anti-proliferative and pro-apoptotic effects, motivating us to elucidate the IRE1α interactors/regulators in HMC-1.2 cells. Therefore, the TurboID proximity labeling technique combined with MS analysis was applied. Gene Ontology and pathway enrichment analyses revealed that the majority of the enriched proteins are involved in vesicle-mediated transport, protein stabilization, and ubiquitin-dependent ER-associated protein degradation pathways. In particular, the AAA ATPase VCP and the oncoprotein MTDH as IRE1α-interacting proteins caught our interest for further analyses. The pharmacological inhibition of VCP activity resulted in the increased stability of IRE1α and MTDH as well as the activation of IRE1α. The interaction of VCP with both IRE1α and MTDH was dependent on ubiquitination. Moreover, MTDH stability was reduced in IRE1α-knockout cells. Hence, pharmacological manipulation of IRE1α-MTDH-VCP complex(es) might enable the treatment of MCL.
Collapse
Affiliation(s)
- Nabil Ahmed
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany (T.W.)
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany;
| | - Thomas Wilhelm
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany (T.W.)
| | - Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany (T.W.)
| |
Collapse
|
11
|
Pelizzari-Raymundo D, Maltret V, Nivet M, Pineau R, Papaioannou A, Zhou X, Caradec F, Martin S, Le Gallo M, Avril T, Chevet E, Lafont E. IRE1 RNase controls CD95-mediated cell death. EMBO Rep 2024; 25:1792-1813. [PMID: 38383861 PMCID: PMC11014915 DOI: 10.1038/s44319-024-00095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/23/2024] Open
Abstract
Signalling by the Unfolded Protein Response (UPR) or by the Death Receptors (DR) are frequently activated towards pro-tumoral outputs in cancer. Herein, we demonstrate that the UPR sensor IRE1 controls the expression of the DR CD95/Fas, and its cell death-inducing ability. Both genetic and pharmacologic blunting of IRE1 activity increased CD95 expression and exacerbated CD95L-induced cell death in glioblastoma (GB) and Triple-Negative Breast Cancer (TNBC) cell lines. In accordance, CD95 mRNA was identified as a target of Regulated IRE1-Dependent Decay of RNA (RIDD). Whilst CD95 expression is elevated in TNBC and GB human tumours exhibiting low RIDD activity, it is surprisingly lower in XBP1s-low human tumour samples. We show that IRE1 RNase inhibition limited CD95 expression and reduced CD95-mediated hepatic toxicity in mice. In addition, overexpression of XBP1s increased CD95 expression and sensitized GB and TNBC cells to CD95L-induced cell death. Overall, these results demonstrate the tight IRE1-mediated control of CD95-dependent cell death in a dual manner through both RIDD and XBP1s, and they identify a novel link between IRE1 and CD95 signalling.
Collapse
Affiliation(s)
- Diana Pelizzari-Raymundo
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Victoria Maltret
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Manon Nivet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Raphael Pineau
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Alexandra Papaioannou
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Xingchen Zhou
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Flavie Caradec
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Sophie Martin
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Tony Avril
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- Inserm U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
12
|
Zhang T, Zhao F, Zhang Y, Shi JH, Cui F, Ma W, Wang K, Xu C, Zeng Q, Zhong R, Li N, Liu Y, Jin Y, Sheng X. Targeting the IRE1α-XBP1s axis confers selective vulnerability in hepatocellular carcinoma with activated Wnt signaling. Oncogene 2024; 43:1233-1248. [PMID: 38418544 DOI: 10.1038/s41388-024-02988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
Liver-specific Ern1 knockout impairs tumor progression in mouse models of hepatocellular carcinoma (HCC). However, the mechanistic role of IRE1α in human HCC remains unclear. In this study, we show that XBP1s, the major downstream effector of IRE1α, is required for HCC cell survival both in vitro and in vivo. Mechanistically, XBP1s transactivates LEF1, a key co-factor of β-catenin, by binding to its promoter. Moreover, XBP1s physically interacts with LEF1, forming a transcriptional complex that enhances classical Wnt signaling. Consistently, the activities of XBP1s and LEF1 are strongly correlated in human HCC and with disease prognosis. Notably, selective inhibition of XBP1 splicing using an IRE1α inhibitor significantly repressed the viability of tumor explants as well as the growth of tumor xenografts derived from patients with distinct Wnt/LEF1 activities. Finally, machine learning algorithms developed a powerful prognostic signature based on the activities of XBP1s/LEF1. In summary, our study uncovers a key mechanistic role for the IRE1α-XBP1s pathway in human HCC. Targeting this axis could provide a promising therapeutic strategy for HCC with hyperactivated Wnt/LEF1 signaling.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Faming Zhao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Fengzhen Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weixiang Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Wang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingping Zeng
- Fosun Orinove PharmaTech Inc., Suzhou Industrial Park, Suzhou, 215123, China
| | - Rong Zhong
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yong Liu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yang Jin
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Xia Sheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
13
|
Le Goupil S, Laprade H, Aubry M, Chevet E. Exploring the IRE1 interactome: From canonical signaling functions to unexpected roles. J Biol Chem 2024; 300:107169. [PMID: 38494075 PMCID: PMC11007444 DOI: 10.1016/j.jbc.2024.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
The unfolded protein response is a mechanism aiming at restoring endoplasmic reticulum (ER) homeostasis and is likely involved in other adaptive pathways. The unfolded protein response is transduced by three proteins acting as sensors and triggering downstream signaling pathways. Among them, inositol-requiring enzyme 1 alpha (IRE1α) (referred to as IRE1 hereafter), an endoplasmic reticulum-resident type I transmembrane protein, exerts its function through both kinase and endoribonuclease activities, resulting in both X-box binding protein 1 mRNA splicing and RNA degradation (regulated ire1 dependent decay). An increasing number of studies have reported protein-protein interactions as regulators of these signaling mechanisms, and additionally, driving other noncanonical functions. In this review, we deliver evolutive and structural insights on IRE1 and further describe how this protein interaction network (interactome) regulates IRE1 signaling abilities or mediates other cellular processes through catalytic-independent mechanisms. Moreover, we focus on newly discovered targets of IRE1 kinase activity and discuss potentially novel IRE1 functions based on the nature of the interactome, thereby identifying new fields to explore regarding this protein's biological roles.
Collapse
Affiliation(s)
- Simon Le Goupil
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France.
| | - Hadrien Laprade
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| | - Marc Aubry
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France; Centre de Lutte contre le cancer Eugène Marquis, Rennes, France
| |
Collapse
|
14
|
Yang Y, Wang S, Wang XX, Guo S, Wang H, Shi Q, Tian Y, Wang H, Zhao T, Zhang H, Zhang B, Gao T, Li C, Yi X, Guo W. Tumorous IRE1α facilitates CD8 +T cells-dependent anti-tumor immunity and improves immunotherapy efficacy in melanoma. Cell Commun Signal 2024; 22:83. [PMID: 38291473 PMCID: PMC10826282 DOI: 10.1186/s12964-024-01470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Tumor cells frequently suffer from endoplasmic reticulum (ER) stress. Previous studies have extensively elucidated the role of tumorous unfolded protein response in melanoma cells, whereas the effect on tumor immunology and the underlying mechanism remain elusive. METHODS Bioinformatics, biochemical assays and pre-clinical mice model were employed to demonstrate the role of tumorous inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) in anti-tumor immunity and the underlying mechanism. RESULTS We firstly found that IRE1α signaling activation was positively associated with the feature of tumor-infiltrating lymphocytes. Then, pharmacological ER stress induction by HA15 exerted prominent anti-tumor effect in immunocompetent mice and was highly dependent on CD8+T cells, paralleled with the reshape of immune cells in tumor microenvironment via tumorous IRE1α-XBP1 signal. Subsequently, tumorous IRE1α facilitated the expression and secretion of multiple chemokines and cytokines via XBP1-NF-κB axis, leading to increased infiltration and anti-tumor capacity of CD8+T cells. Ultimately, pharmacological induction of tumorous ER stress by HA15 brought potentiated therapeutic effect along with anti-PD-1 antibody on melanoma in vivo. CONCLUSIONS Tumorous IRE1α facilitates CD8+T cells-dependent anti-tumor immunity and improves immunotherapy efficacy by regulating chemokines and cytokines via XBP1-NF-κB axis. The combination of ER stress inducer and anti-PD-1 antibody could be promising for increasing the efficacy of melanoma immunotherapy.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sijia Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang-Xu Wang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Robinson CM, Duggan A, Forrester A. ER exit in physiology and disease. Front Mol Biosci 2024; 11:1352970. [PMID: 38314136 PMCID: PMC10835805 DOI: 10.3389/fmolb.2024.1352970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
The biosynthetic secretory pathway is comprised of multiple steps, modifications and interactions that form a highly precise pathway of protein trafficking and secretion, that is essential for eukaryotic life. The general outline of this pathway is understood, however the specific mechanisms are still unclear. In the last 15 years there have been vast advancements in technology that enable us to advance our understanding of this complex and subtle pathway. Therefore, based on the strong foundation of work performed over the last 40 years, we can now build another level of understanding, using the new technologies available. The biosynthetic secretory pathway is a high precision process, that involves a number of tightly regulated steps: Protein folding and quality control, cargo selection for Endoplasmic Reticulum (ER) exit, Golgi trafficking, sorting and secretion. When deregulated it causes severe diseases that here we categorise into three main groups of aberrant secretion: decreased, excess and altered secretion. Each of these categories disrupts organ homeostasis differently, effecting extracellular matrix composition, changing signalling events, or damaging the secretory cells due to aberrant intracellular accumulation of secretory proteins. Diseases of aberrant secretion are very common, but despite this, there are few effective therapies. Here we describe ER exit sites (ERES) as key hubs for regulation of the secretory pathway, protein quality control and an integratory hub for signalling within the cell. This review also describes the challenges that will be faced in developing effective therapies, due to the specificity required of potential drug candidates and the crucial need to respect the fine equilibrium of the pathway. The development of novel tools is moving forward, and we can also use these tools to build our understanding of the acute regulation of ERES and protein trafficking. Here we review ERES regulation in context as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire M Robinson
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aislinn Duggan
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alison Forrester
- Research Unit of Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
16
|
Mahdizadeh SJ, Grandén J, Pelizzari-Raymundo D, Guillory X, Carlesso A, Chevet E, Eriksson LA. Different binding modalities of quercetin to inositol-requiring enzyme 1 of S. cerevisiae and human lead to opposite regulation. Commun Chem 2024; 7:6. [PMID: 38177336 PMCID: PMC10767055 DOI: 10.1038/s42004-023-01092-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
The flavonoid Quercetin (Qe) was identified as an activator of Inositol-requiring enzyme 1 (IRE1) in S. cerevisiae (scIre1p), but its impact on human IRE1 (hIRE1) remains controversial due to the absence of a conserved Qe binding site. We have explored the binding modes and effect of Qe on both scIre1p and hIRE1 dimers using in silico and in vitro approaches. The activation site in scIre1p stably accommodates both Qe and its derivative Quercitrin (Qi), thus enhancing the stability of the RNase pocket. However, the corresponding region in hIRE1 does not bind any of the two molecules. Instead, we show that both Qe and Qi block the RNase activity of hIRE1 in vitro, with sub-micromolar IC50 values. Our results provide a rationale for why Qe is an activator in scIre1p but a potent inhibitor in hIRE1. The identification of a new allosteric site in hIRE1 opens a promising window for drug development and UPR modulation.
Collapse
Affiliation(s)
- S Jalil Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Johan Grandén
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Diana Pelizzari-Raymundo
- INSERM U1242, Université de Rennes, Rennes, France
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Xavier Guillory
- INSERM U1242, Université de Rennes, Rennes, France
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000, Rennes, France
| | - Antonio Carlesso
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, SE-405 31, Gothenburg, Sweden
| | - Eric Chevet
- INSERM U1242, Université de Rennes, Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France.
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden.
| |
Collapse
|
17
|
Kusaczuk M, Ambel ET, Naumowicz M, Velasco G. Cellular stress responses as modulators of drug cytotoxicity in pharmacotherapy of glioblastoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189054. [PMID: 38103622 DOI: 10.1016/j.bbcan.2023.189054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Despite the extensive efforts to find effective therapeutic strategies, glioblastoma (GBM) remains a therapeutic challenge with dismal prognosis of survival. Over the last decade the role of stress responses in GBM therapy has gained a great deal of attention, since depending on the duration and intensity of these cellular programs they can be cytoprotective or promote cancer cell death. As such, initiation of the UPR, autophagy or oxidative stress may either impede or facilitate drug-mediated cell killing. In this review, we summarize the mechanisms that regulate ER stress, autophagy, and oxidative stress during GBM development and progression to later discuss the involvement of these stress pathways in the response to different treatments. We also discuss how a precise understanding of the molecular mechanisms regulating stress responses evoked by different pharmacological agents could decisively contribute to the design of novel and more effective combinational treatments against brain malignancies.
Collapse
Affiliation(s)
- Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| | - Elena Tovar Ambel
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Instituto de Investigación Sanitaria San Carlos IdISSC, 28040 Madrid, Spain
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Instituto de Investigación Sanitaria San Carlos IdISSC, 28040 Madrid, Spain.
| |
Collapse
|
18
|
Zheng J, Guo Y, Shi C, Yang S, Xu W, Ma X. Differential Ire1 determines loser cell fate in tumor-suppressive cell competition. Cell Rep 2023; 42:113303. [PMID: 37924514 DOI: 10.1016/j.celrep.2023.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023] Open
Abstract
Tumor-suppressive cell competition (TSCC) is a conserved surveillance mechanism in which neighboring cells actively eliminate oncogenic cells. Despite overwhelming studies showing that the unfolded protein response (UPR) is dysregulated in various tumors, it remains debatable whether the UPR restrains or promotes tumorigenesis. Here, using Drosophila eye epithelium as a model, we uncover a surprising decisive role of the Ire1 branch of the UPR in regulating cell polarity gene scribble (scrib) loss-induced TSCC. Both mutation and hyperactivation of Ire1 accelerate elimination of scrib clones via inducing apoptosis and autophagy, respectively. Unexpectedly, relative Ire1 activity is also crucial for determining loser cell fate, as dysregulating Ire1 signaling in the surrounding healthy cells reversed the "loser" status of scrib clones by decreasing their apoptosis. Furthermore, we show that Ire1 is required for cell competition in mammalian cells. Together, these findings provide molecular insights into scrib-mediated TSCC and highlight Ire1 as a key determinant of loser cell fate.
Collapse
Affiliation(s)
- Jiadong Zheng
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Yifan Guo
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Changyi Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Shuai Yang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Wenyan Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Xianjue Ma
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
19
|
Liu L, Li S, Qu Y, Bai H, Pan X, Wang J, Wang Z, Duan J, Zhong J, Wan R, Fei K, Xu J, Yuan L, Wang C, Xue P, Zhang X, Ma Z, Wang J. Ablation of ERO1A induces lethal endoplasmic reticulum stress responses and immunogenic cell death to activate anti-tumor immunity. Cell Rep Med 2023; 4:101206. [PMID: 37769655 PMCID: PMC10591028 DOI: 10.1016/j.xcrm.2023.101206] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
Immunophenotyping of the tumor microenvironment (TME) is essential for enhancing immunotherapy efficacy. However, strategies for characterizing the TME exhibit significant heterogeneity. Here, we show that endoplasmic reticular oxidoreductase-1α (ERO1A) mediates an immune-suppressive TME and attenuates the response to PD-1 blockade. Ablation of ERO1A in tumor cells substantially incites anti-tumor T cell immunity and promotes the efficacy of aPD-1 in therapeutic models. Single-cell RNA-sequencing analyses confirm that ERO1A correlates with immunosuppression and dysfunction of CD8+ T cells along anti-PD-1 treatment. In human lung cancer, high ERO1A expression is associated with a higher risk of recurrence following neoadjuvant immunotherapy. Mechanistically, ERO1A ablation impairs the balance between IRE1α and PERK signaling activities and induces lethal unfolded protein responses in tumor cells undergoing endoplasmic reticulum stress, thereby enhancing anti-tumor immunity via immunogenic cell death. These findings reveal how tumor ERO1A induces immunosuppression, highlighting its potential as a therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Lihui Liu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Sini Li
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yan Qu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Department of Radiotherapy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiangyu Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jia Zhong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kailun Fei
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Li Yuan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chao Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pei Xue
- Department of Surgical Sciences, Sleep Science Laboratory (BMC), Uppsala University, Uppsala, Sweden
| | - Xue Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zixiao Ma
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
20
|
Lin YS, Huang WH, Hsu KF, Tang MJ, Chiu WT. Reversion of chemoresistance by endocannabinoid-induced ER stress and autophagy activation in ovarian cancer. Am J Cancer Res 2023; 13:4163-4178. [PMID: 37818056 PMCID: PMC10560944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 10/12/2023] Open
Abstract
The difficulty of detection at an early stage and the ease of developing resistance to chemotherapy render ovarian cancer (OVC) difficult to cure. Although several novel cancer therapies have been developed recently, drug resistance remains a concern since chemotherapy remains as the most commonly used treatment for cancer patients. Therefore, there is an urgent need to reclaim potential combination treatments for OVC. So far, there have been several research targeting the endocannabinoid system (ECS) in cancer. Among the various cannabinoid-based drugs, endocannabinoids, which are lipid molecules generated in the body, have been reported to produce many anti-tumor effects; however, research investigating the anti-chemoresistance effect of endocannabinoids in OVC remains unclear. In this study, we aimed to combine endocannabinoids, anandamide (AEA), and 2-arachidonoylglycerol (2-AG) with chemotherapeutic drugs as a combination approach to treat OVC. Our results showed that OVC cells expressed both cannabinoid receptors (CBR), CB1 and CB2, suggesting the possibility of endocannabinoid system (ECS) as a target. We found that the anti-chemoresistance effect mediated by endocannabinoids was caused by upregulation of ceramide levels, leading to severe endoplasmic reticulum (ER) stress and increased autophagy in chemoresistant cancer cells. Therefore, chemoresistant cancer cell growth was inhibited, and cell apoptosis was induced under combined treatments. Based on our results, endocannabinoids overcomed chemoresistance of OVC cells in vitro. Our findings suggest that drugs targeting ECS may have the potential to be adjuvants for chemotherapy by increasing the efficacy of chemotherapeutic drugs and decreasing their side effects.
Collapse
Affiliation(s)
- Yu-Shan Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
| | - Wen-Hou Huang
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung UniversityTainan 701, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan 704, Taiwan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan 704, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung UniversityTainan 701, Taiwan
| | - Wen-Tai Chiu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan 701, Taiwan
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung UniversityTainan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung UniversityTainan 701, Taiwan
| |
Collapse
|
21
|
Lv X, Lu X, Cao J, Luo Q, Ding Y, Peng F, Pataer A, Lu D, Han D, Malmberg E, Chan DW, Wang X, Savage SR, Mao S, Yu J, Peng F, Yan L, Meng H, Maneix L, Han Y, Chen Y, Yao W, Chang EC, Catic A, Lin X, Miles G, Huang P, Sun Z, Burt B, Wang H, Wang J, Yao QC, Zhang B, Roth JA, O’Malley BW, Ellis MJ, Rimawi MF, Ying H, Chen X. Modulation of the proteostasis network promotes tumor resistance to oncogenic KRAS inhibitors. Science 2023; 381:eabn4180. [PMID: 37676964 PMCID: PMC10720158 DOI: 10.1126/science.abn4180] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Despite substantial advances in targeting mutant KRAS, tumor resistance to KRAS inhibitors (KRASi) remains a major barrier to progress. Here, we report proteostasis reprogramming as a key convergence point of multiple KRASi-resistance mechanisms. Inactivation of oncogenic KRAS down-regulated both the heat shock response and the inositol-requiring enzyme 1α (IRE1α) branch of the unfolded protein response, causing severe proteostasis disturbances. However, IRE1α was selectively reactivated in an ER stress-independent manner in acquired KRASi-resistant tumors, restoring proteostasis. Oncogenic KRAS promoted IRE1α protein stability through extracellular signal-regulated kinase (ERK)-dependent phosphorylation of IRE1α, leading to IRE1α disassociation from 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) E3-ligase. In KRASi-resistant tumors, both reactivated ERK and hyperactivated AKT restored IRE1α phosphorylation and stability. Suppression of IRE1α overcame resistance to KRASi. This study reveals a druggable mechanism that leads to proteostasis reprogramming and facilitates KRASi resistance.
Collapse
Affiliation(s)
- Xiangdong Lv
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xuan Lu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jin Cao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qin Luo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yao Ding
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Apar Pataer
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, USA
| | - Dong Lu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, USA
- Center for Drug Discovery, Baylor College of Medicine, USA
| | - Dong Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Eric Malmberg
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Doug W. Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaoran Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sara R. Savage
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Sufeng Mao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jingjing Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fei Peng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, USA
| | - Liang Yan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, USA
| | - Huan Meng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Laure Maneix
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, USA
| | - Yumin Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, USA
| | - Wantong Yao
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, USA
| | - Eric C. Chang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andre Catic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, USA
| | - Xia Lin
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery
| | - George Miles
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Pengxiang Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zheng Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, USA
| | - Bryan Burt
- Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, USA
| | - Huamin Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, USA
- Center for Drug Discovery, Baylor College of Medicine, USA
| | - Qizhi Cathy Yao
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Matthew J. Ellis
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Early Oncology, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mothaffar F. Rimawi
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
22
|
Iovino M, Colonval M, Wilkin C, L’homme L, Lassence C, Campas M, Peulen O, de Tullio P, Piette J, Legrand-Poels S. Novel XBP1s-independent function of IRE1 RNase in HIF-1α-mediated glycolysis upregulation in human macrophages upon stimulation with LPS or saturated fatty acid. Front Immunol 2023; 14:1204126. [PMID: 37711626 PMCID: PMC10498766 DOI: 10.3389/fimmu.2023.1204126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
In obesity, adipose tissue infiltrating macrophages acquire a unique pro-inflammatory polarization, thereby playing a key role in the development of chronic inflammation and Type 2 diabetes. Increased saturated fatty acids (SFAs) levels have been proposed to drive this specific polarization. Accordingly, we investigated the immunometabolic reprogramming in SFA-treated human macrophages. As expected, RNA sequencing highlighted a pro-inflammatory profile but also metabolic signatures including glycolysis and hypoxia as well as a strong unfolded protein response. Glycolysis upregulation was confirmed in SFA-treated macrophages by measuring glycolytic gene expression, glucose uptake, lactate production and extracellular acidification rate. Like in LPS-stimulated macrophages, glycolysis activation in SFA-treated macrophages was dependent on HIF-1α activation and fueled the production of pro-inflammatory cytokines. SFAs and LPS both induced IRE1α endoribonuclease activity, as demonstrated by XBP1 mRNA splicing, but with different kinetics matching HIF-1α activation and the glycolytic gene expression. Interestingly, the knockdown of IRE1α and/or the pharmacological inhibition of its RNase activity prevented HIF-1α activation and significantly decreased glycolysis upregulation. Surprisingly, XBP1s appeared to be dispensable, as demonstrated by the lack of inhibiting effect of XBP1s knockdown on glycolytic genes expression, glucose uptake, lactate production and HIF-1α activation. These experiments demonstrate for the first time a key role of IRE1α in HIF-1α-mediated glycolysis upregulation in macrophages stimulated with pro-inflammatory triggers like LPS or SFAs through XBP1s-independent mechanism. IRE1 could mediate this novel function by targeting other transcripts (mRNA or pre-miRNA) through a mechanism called regulated IRE1-dependent decay or RIDD. Deciphering the underlying mechanisms of this novel IRE1 function might lead to novel therapeutic targets to curtail sterile obesity- or infection-linked inflammation.
Collapse
Affiliation(s)
- Margaud Iovino
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Megan Colonval
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Chloé Wilkin
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium
| | - Laurent L’homme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Cédric Lassence
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | - Manon Campas
- Clinical Metabolomics Group, CIRM, ULiège, Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA, ULiège, Liège, Belgium
| | | | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | | |
Collapse
|
23
|
Pelizzari-Raymundo D, Doultsinos D, Pineau R, Sauzay C, Koutsandreas T, Langlais T, Carlesso A, Gkotsi E, Negroni L, Avril T, Chatziioannou A, Chevet E, Eriksson LA, Guillory X. A novel IRE1 kinase inhibitor for adjuvant glioblastoma treatment. iScience 2023; 26:106687. [PMID: 37216120 PMCID: PMC10192531 DOI: 10.1016/j.isci.2023.106687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/27/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Inositol-requiring enzyme 1 (IRE1) is a major mediator of the unfolded protein response (UPR), which is activated upon endoplasmic reticulum (ER) stress. Tumor cells experience ER stress due to adverse microenvironmental cues, a stress overcome by relying on IRE1 signaling as an adaptive mechanism. Herein, we report the discovery of structurally new IRE1 inhibitors identified through the structural exploration of its kinase domain. Characterization in in vitro and in cellular models showed that they inhibit IRE1 signaling and sensitize glioblastoma (GB) cells to the standard chemotherapeutic, temozolomide (TMZ). Finally, we demonstrate that one of these inhibitors, Z4P, permeates the blood-brain barrier (BBB), inhibits GB growth, and prevents relapse in vivo when administered together with TMZ. The hit compound disclosed herein satisfies an unmet need for targeted, non-toxic IRE1 inhibitors and our results support the attractiveness of IRE1 as an adjuvant therapeutic target in GB.
Collapse
Affiliation(s)
- Diana Pelizzari-Raymundo
- INSERM U1242, Université de Rennes, Rennes, France
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Dimitrios Doultsinos
- INSERM U1242, Université de Rennes, Rennes, France
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Raphael Pineau
- INSERM U1242, Université de Rennes, Rennes, France
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Chloé Sauzay
- INSERM U1242, Université de Rennes, Rennes, France
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Thodoris Koutsandreas
- e-NIOS PC, Kallithea-Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Antonio Carlesso
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Elena Gkotsi
- e-NIOS PC, Kallithea-Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Luc Negroni
- Proteomics platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Tony Avril
- INSERM U1242, Université de Rennes, Rennes, France
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Aristotelis Chatziioannou
- e-NIOS PC, Kallithea-Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eric Chevet
- INSERM U1242, Université de Rennes, Rennes, France
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Leif A. Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xavier Guillory
- INSERM U1242, Université de Rennes, Rennes, France
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
- Univ Rennes, CNRS, ISCR – UMR 6226, 35000 Rennes, France
| |
Collapse
|
24
|
Dowdell A, Marsland M, Faulkner S, Gedye C, Lynam J, Griffin CP, Marsland J, Jiang CC, Hondermarck H. Targeting XBP1 mRNA splicing sensitizes glioblastoma to chemotherapy. FASEB Bioadv 2023; 5:211-220. [PMID: 37151848 PMCID: PMC10158625 DOI: 10.1096/fba.2022-00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent and deadly primary brain tumor in adults. Temozolomide (TMZ) is the standard systemic therapy in GBM but has limited and restricted efficacy. Better treatments are urgently needed. The role of endoplasmic reticulum stress (ER stress) is increasingly described in GBM pathophysiology. A key molecular mediator of ER stress, the spliced form of the transcription factor x-box binding protein 1 (XBP1s) may constitute a novel therapeutic target; here we report XBP1s expression and biological activity in GBM. Tumor samples from patients with GBM (n = 85) and low-grade glioma (n = 20) were analyzed by immunohistochemistry for XBP1s with digital quantification. XBP1s expression was significantly increased in GBM compared to low-grade gliomas. XBP1s mRNA showed upregulation by qPCR analysis in a panel of patient-derived GBM cell lines. Inhibition of XBP1 splicing using the small molecular inhibitor MKC-3946 significantly reduced GBM cell viability and potentiated the effect of TMZ in GBM cells, particularly in those with methylated O6-methylguanine-DNA methyl transferase gene promoter. GBM cells resistant to TMZ were also responsive to MKC-3946 and the long-term inhibitory effect of MKC-3946 was confirmed by colony formation assay. In conclusion, this data reveals that XBP1s is overexpressed in GBM and contributes to cancer cell growth. XBP1s warrants further investigation as a clinical biomarker and therapeutic target in GBM.
Collapse
Affiliation(s)
- Amiee Dowdell
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
| | - Mark Marsland
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
| | - Craig Gedye
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
- School of Medicine and Public Health, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Medical OncologyCalvary Mater hospitalNewcastleNew South WalesAustralia
| | - James Lynam
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
- School of Medicine and Public Health, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Department of Medical OncologyCalvary Mater hospitalNewcastleNew South WalesAustralia
| | - Cassandra P. Griffin
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
- School of Medicine and Public Health, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Cancer Biobank: NSW Regional Biospecimen and Research ServicesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Joanne Marsland
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
| | - Chen Chen Jiang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingUniversity of NewcastleCallaghanNew South WalesAustralia
- Hunter Medical Research InstituteUniversity of NewcastleNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
25
|
Sim N, Li Y. NF-κB/p52 augments ETS1 binding genome-wide to promote glioma progression. Commun Biol 2023; 6:445. [PMID: 37087499 PMCID: PMC10122670 DOI: 10.1038/s42003-023-04821-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/06/2023] [Indexed: 04/24/2023] Open
Abstract
Gliomas are highly invasive and chemoresistant cancers, making them challenging to treat. Chronic inflammation is a key driver of glioma progression as it promotes aberrant activation of inflammatory pathways such as NF-κB signalling, which drives cancer cell invasion and angiogenesis. NF-κB factors typically dimerise with its own family members, but emerging evidence of their promiscuous interactions with other oncogenic factors has been reported to promote transcription of new target genes and function. Here, we show that non-canonical NF-κB activation directly regulates p52 at the ETS1 promoter, activating its expression. This impacts the genomic and transcriptional landscape of ETS1 in a glioma-specific manner. We further show that enhanced non-canonical NF-κB signalling promotes the co-localisation of p52 and ETS1, resulting in transcriptional activation of non-κB and/or non-ETS glioma-promoting genes. We conclude that p52-induced ETS1 overexpression in glioma cells remodels the genome-wide regulatory network of p52 and ETS1 to transcriptionally drive cancer progression.
Collapse
Affiliation(s)
- Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138673, Singapore.
| |
Collapse
|
26
|
Divya S, Ravanan P. Cellular battle against endoplasmic reticulum stress and its adverse effect on health. Life Sci 2023; 323:121705. [PMID: 37075943 DOI: 10.1016/j.lfs.2023.121705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle and a reliable performer for precisely folded proteins. To maintain its function and integrity, arrays of sensory and quality control systems enhance protein folding fidelity and resolve the highest error-prone areas. Yet numerous internal and external factors disrupt its homeostasis and trigger ER stress responses. Cells try to reduce the number of misfolded proteins via the UPR mechanism, and ER-related garbage disposals systems like ER-associated degradation (ERAD), ER-lysosome-associated degradation (ERLAD), ER-Associated RNA Silencing (ERAS), extracellular chaperoning, and autophagy systems, which activates and increase the cell survival rate by degrading misfolded proteins, prevent the aggregated proteins and remove the dysfunctional organelles. Throughout life, organisms must confront environmental stress to survive and develop. Communication between the ER & other organelles, signaling events mediated by calcium, reactive oxygen species, and inflammation are linked to diverse stress signaling pathways and regulate cell survival or cell death mechanisms. Unresolved cellular damages can cross the threshold limit of their survival, resulting in cell death or driving for various diseases. The multifaceted ability of unfolded protein response facilitates the therapeutic target and a biomarker for various diseases, helping with early diagnosis and detecting the severity of diseases.
Collapse
Affiliation(s)
- Subramaniyan Divya
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, Tamil Nadu, India.
| |
Collapse
|
27
|
Liu S, Gao Q, Li Y, Lun J, Yu M, Zhang H, Fang J. XBP1s acts as a transcription factor of IRE1α and promotes proliferation of colon cancer cells. Arch Biochem Biophys 2023; 737:109552. [PMID: 36828260 DOI: 10.1016/j.abb.2023.109552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Upon ER stress, IRE1α is activated to splice XBP1 mRNA to generate XBP1s, a transcription factor that induces the expression of genes to cope with the stress. Expression of IRE1α is elevated in cancers and the IRE1α-XBP1s axis plays an important role in proliferation of cancer cells. However, the underlying mechanism is not well known. We found that ER stressors induced the expression of IRE1α, which was inhibited by depletion of XBP1s. XBP1s bound IRE1α promoter and initiated the transcription of IRE1α. These data indicate that XBP1s acts as a transcription factor of IRE1α. Overexpression of XBP1s increased the phosphorylation of JNK, a substrate of IRE1α kinase, which was inhibited by IRE1α kinase inhibitor Kira8. Overexpression of XBP1s also activated the regulated IRE1-dependent decay of mRNAs, which was suppressed by IRE1α RNase inhibitor STF083010. Moreover, we found that expression of XBP1s promoted proliferation of colon cancer cells, which was abrogated by Kira8 and STF083010. The results suggest that XBP1s functions to induce IRE1α expression and promote cancer cell proliferation. Our findings reveal a previously unknown mechanism of IRE1α expression by XBP1s and highlight the role of this regulation in proliferation of colon cancer cells, suggesting that IRE1α-targeting is a potential therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Shuting Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao 266061, China
| | - Qiang Gao
- Shanghai Institute of Nutrition and Health, CAS, Shanghai, 200031, China
| | - Yuyao Li
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao 266061, China
| | - Jie Lun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao 266061, China
| | - Mengchao Yu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, School of Basic Medicine, Qingdao University, Qingdao 266061, China.
| |
Collapse
|
28
|
Ricordel C, Chaillot L, Vlachavas EI, Logotheti M, Jouannic A, Desvallees T, Lecuyer G, Aubry M, Kontogianni G, Mastrokalou C, Jouan F, Jarry U, Corre R, Le Guen Y, Guillaudeux T, Lena H, Chatziioannou A, Pedeux R. Genomic characteristics and clinical significance of CD56+ circulating tumor cells in small cell lung cancer. Sci Rep 2023; 13:3626. [PMID: 36869231 PMCID: PMC9984363 DOI: 10.1038/s41598-023-30536-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Circulating tumor cells (CTC) have been studied in various solid tumors but clinical utility of CTC in small cell lung cancer (SCLC) remains unclear. The aim of the CTC-CPC study was to develop an EpCAM-independent CTC isolation method allowing isolation of a broader range of living CTC from SCLC and decipher their genomic and biological characteristics. CTC-CPC is a monocentric prospective non-interventional study including treatment-naïve newly diagnosed SCLC. CD56+ CTC were isolated from whole blood samples, at diagnosis and relapse after first-line treatment and submitted to whole-exome-sequencing (WES). Phenotypic study confirms tumor lineage and tumorigenic properties of isolated cells for the 4 patients analyzed with WES. WES of CD56+ CTC and matched tumor biopsy reveal genomic alteration frequently impaired in SCLC. At diagnosis CD56+ CTC were characterized by a high mutation load, a distinct mutational profile and a unique genomic signature, compared to match tumors biopsies. In addition to classical pathways altered in SCLC, we found new biological processes specifically affected in CD56+ CTC at diagnosis. High numeration of CD56+ CTC (> 7/ml) at diagnosis was associated with ES-SCLC. Comparing CD56+ CTC isolated at diagnosis and relapse, we identify differentially altered oncogenic pathways (e.g. DLL3 or MAPK pathway). We report a versatile method of CD56+ CTC detection in SCLC. Numeration of CD56+ CTC at diagnosis is correlated with disease extension. Isolated CD56+ CTC are tumorigenic and show a distinct mutational profile. We report a minimal gene set as a unique signature of CD56+ CTC and identify new affected biological pathways enriched in EpCAM-independent isolated CTC in SCLC.
Collapse
Affiliation(s)
- Charles Ricordel
- INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, Univ Rennes 1, 35000, Rennes, France.
- Service de Pneumologie, Hôpital Pontchaillou, CHU Rennes, 2 Rue Henri Le Guilloux, 35033, Rennes, France.
| | - L Chaillot
- INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, Univ Rennes 1, 35000, Rennes, France
| | - E I Vlachavas
- e-NIOS PC, Kallithea-Athens, Greece
- Division of Molecular Genome Analysis (B050), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | - A Jouannic
- INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, Univ Rennes 1, 35000, Rennes, France
| | - T Desvallees
- CNRS, INSERM, BIOSIT UAR 3480, US_S 018, Oncotrial, Univ Rennes, 35000, Rennes, France
- Unité De Pharmacologie Préclinique, Biotrial Pharmacology, Rennes, France
| | - G Lecuyer
- INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, Univ Rennes 1, 35000, Rennes, France
| | - M Aubry
- INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, Univ Rennes 1, 35000, Rennes, France
| | - G Kontogianni
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, 11527, Athens, Greece
| | | | - F Jouan
- INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, Univ Rennes 1, 35000, Rennes, France
| | - U Jarry
- CNRS, INSERM, BIOSIT UAR 3480, US_S 018, Oncotrial, Univ Rennes, 35000, Rennes, France
- Unité De Pharmacologie Préclinique, Biotrial Pharmacology, Rennes, France
| | - R Corre
- Service de Pneumologie, Hôpital Pontchaillou, CHU Rennes, 2 Rue Henri Le Guilloux, 35033, Rennes, France
| | - Y Le Guen
- Service de Pneumologie, Hôpital Pontchaillou, CHU Rennes, 2 Rue Henri Le Guilloux, 35033, Rennes, France
| | - T Guillaudeux
- INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, Univ Rennes 1, 35000, Rennes, France
- CNRS, INSERM, BIOSIT UAR 3480, US_S 018, Oncotrial, Univ Rennes, 35000, Rennes, France
| | - H Lena
- INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, Univ Rennes 1, 35000, Rennes, France
- Service de Pneumologie, Hôpital Pontchaillou, CHU Rennes, 2 Rue Henri Le Guilloux, 35033, Rennes, France
| | - A Chatziioannou
- e-NIOS PC, Kallithea-Athens, Greece
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, 11527, Athens, Greece
| | - Rémy Pedeux
- INSERM, OSS (Oncogenesis Stress Signaling), UMR_S 1242, CLCC Eugene Marquis, Univ Rennes 1, 35000, Rennes, France.
- CNRS, INSERM, BIOSIT UAR 3480, US_S 018, Oncotrial, Univ Rennes, 35000, Rennes, France.
- CLCC Eugène Marquis, INSERM U1242-OSS, Université Rennes 1, Rue Bataille Flandres Dunkerque, 35042, Rennes, France.
| |
Collapse
|
29
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
30
|
Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, Cartron PF, Castel H, Chevet E, Chneiweiss H, Clavreul A, Constantin B, Coronas V, Daubon T, Dontenwill M, Ducray F, Enz-Werle N, Figarella-Branger D, Fournier I, Frenel JS, Gabut M, Galli T, Gavard J, Huberfeld G, Hugnot JP, Idbaih A, Junier MP, Mathivet T, Menei P, Meyronet D, Mirjolet C, Morin F, Mosser J, Moyal ECJ, Rousseau V, Salzet M, Sanson M, Seano G, Tabouret E, Tchoghandjian A, Turchi L, Vallette FM, Vats S, Verreault M, Virolle T. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer 2023; 9:9-27. [PMID: 36400694 DOI: 10.1016/j.trecan.2022.09.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France.
| | - Cristine Alves da Costa
- Côte d'Azur University, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Team "Laboratory of Excellence (LABEX) Distalz", F-06560 Nice, France
| | - Tony Avril
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Jean-Vianney Barnier
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Luc Bauchet
- Montpellier University Medical Center, Department of Neurosurgery, INSERM U1191, F-34090 Montpellier, France
| | - Lucie Brisson
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | | | - Hélène Castel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Eric Chevet
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Hervé Chneiweiss
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Anne Clavreul
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - Bruno Constantin
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Valérie Coronas
- Poitiers University, CNRS UMR 6041, Laboratory Channels & Connexins in Cancers and Cell Stemness, F-86000 Poitiers, France
| | - Thomas Daubon
- Bordeaux University, CNRS, IBGC, UMR 5095, F-33 077 Bordeaux, France
| | - Monique Dontenwill
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Francois Ducray
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Natacha Enz-Werle
- Strasbourg University, Laboratoire de Bioimagerie et Pathologie, UMR7021 CNRS, F-67401 Illkirch-Graffenstaden, France
| | - Dominique Figarella-Branger
- Aix-Marseille University, Service d'Anatomie Pathologique et de Neuropathologie, Hôpital de la Timone, F-13385 Marseille, France
| | - Isabelle Fournier
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Jean-Sébastien Frenel
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Mathieu Gabut
- Lyon I University, Cancer Research Centre of Lyon (CRCL) INSERM 1052&CNRS UMR5286, Centre Léon Bérard, Lyon 69008, France., F-69622 Villeurbanne, France
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Julie Gavard
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Gilles Huberfeld
- College de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS, INSERM, Université PSL, Paris 75005, France
| | - Jean-Philippe Hugnot
- Montpellier University, Institut de Génomique Fonctionnelle, CNRS, INSERM, F-34094 Montpellier, France
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Marie-Pierre Junier
- Sorbonne University, CNRS UMR8246, Inserm U1130, IBPS-Neuroscience Paris Seine, F- 75005 Paris, France
| | - Thomas Mathivet
- Bordeaux University, INSERM, U1312 BRIC, Tumor and Vascular Biology Laboratory, F-33600, Pessac, France
| | - Philippe Menei
- Angers University, CHU d'Angers, CRCINA, F-49000 Angers, France
| | - David Meyronet
- Institute of Neuropathology, Hospices Civils de Lyon, F-69008, Lyon, France
| | - Céline Mirjolet
- Centre Georges-François Leclerc, UNICANCER, Dijon, France. Inserm U1231, Equipe Cadir, F-21000 Dijon, France
| | - Fabrice Morin
- Normandie University, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), F-76000 Rouen, France
| | - Jean Mosser
- Rennes University, Inserm U1242, Centre de Lutte contre le Cancer Eugène Marquis, F- 35000 Rennes, France
| | - Elisabeth Cohen-Jonathan Moyal
- Institut Claudius Regaud, NSERM 1037, CRCT Team RADOPT, Département de Radiothérapie, IUCT-Oncopole, F-31100 Toulouse, France
| | - Véronique Rousseau
- Institute of Neuroscience Paris-Saclay, UMR9197, CNRS, Univ. Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Michel Salzet
- Lille University, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marc Sanson
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Giorgio Seano
- Curie Institute Research Center, Tumor Microenvironment Laboratory, PSL Research University, Inserm U1021, CNRS UMR3347, F-91898 Orsay, France
| | - Emeline Tabouret
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Aurélie Tchoghandjian
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, F-13005 Marseille, France
| | - Laurent Turchi
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| | - Francois M Vallette
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes Universite, 44007 Nantes, France
| | - Somya Vats
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, GHU PARIS Psychiatrie & Neurosciences, F-75014 Paris, France
| | - Maité Verreault
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Thierry Virolle
- Côte D'Azur University, CNRS, INSERM, Institut de Biologie Valrose, Team INSERM "Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity", F-06108 Nice, France
| |
Collapse
|
31
|
Martinez-Turtos A, Paul R, Grima-Reyes M, Issaoui H, Krug A, Mhaidly R, Bossowski JP, Chiche J, Marchetti S, Verhoeyen E, Chevet E, Ricci JE. IRE1α overexpression in malignant cells limits tumor progression by inducing an anti-cancer immune response. Oncoimmunology 2022; 11:2116844. [PMID: 36046811 PMCID: PMC9423862 DOI: 10.1080/2162402x.2022.2116844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
IRE1α is one of the three ER transmembrane transducers of the Unfolded Protein Response (UPR) activated under endoplasmic reticulum (ER) stress. IRE1α activation has a dual role in cancer as it may be either pro- or anti-tumoral depending on the studied models. Here, we describe the discovery that exogenous expression of IRE1α, resulting in IRE1α auto-activation, did not affect cancer cell proliferation in vitro but resulted in a tumor-suppressive phenotype in syngeneic immunocompetent mice. We found that exogenous expression of IRE1α in murine colorectal and Lewis lung carcinoma cells impaired tumor growth when syngeneic tumor cells were subcutaneously implanted in immunocompetent mice but not in immunodeficient mice. Mechanistically, the in vivo tumor-suppressive effect of overexpressing IRE1α in tumor cells was associated with IRE1α RNAse activity driving both XBP1 mRNA splicing and regulated IRE1-dependent decay of RNA (RIDD). We showed that the tumor-suppressive phenotype upon IRE1α overexpression was characterized by the induction of apoptosis in tumor cells along with an enhanced adaptive anti-cancer immunosurveillance. Hence, our work indicates that IRE1α overexpression and/or activation in tumor cells can limit tumor growth in immunocompetent mice. This finding might point toward the need of adjusting the use of IRE1α inhibitors in cancer treatments based on the predominant outcome of the RNAse activity of IRE1α.
Collapse
Affiliation(s)
- Adriana Martinez-Turtos
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rachel Paul
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Manuel Grima-Reyes
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Hussein Issaoui
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Adrien Krug
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rana Mhaidly
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Jozef P. Bossowski
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Johanna Chiche
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Sandrine Marchetti
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Els Verhoeyen
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
- CIRIINSERM U1111, Université de Lyon, Lyon, France
| | - Eric Chevet
- Inserm U1242, Université de Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Jean-Ehrland Ricci
- C3M, INSERM, Université Côte d’Azur, Nice, France
- Equipe labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
32
|
Yang Z, Huo Y, Zhou S, Guo J, Ma X, Li T, Fan C, Wang L. Cancer cell-intrinsic XBP1 drives immunosuppressive reprogramming of intratumoral myeloid cells by promoting cholesterol production. Cell Metab 2022; 34:2018-2035.e8. [PMID: 36351432 DOI: 10.1016/j.cmet.2022.10.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/24/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
A hostile microenvironment in tumor tissues disrupts endoplasmic reticulum homeostasis and induces the unfolded protein response (UPR). A chronic UPR in both cancer cells and tumor-infiltrating leukocytes could facilitate the evasion of immune surveillance. However, how the UPR in cancer cells cripples the anti-tumor immune response is unclear. Here, we demonstrate that, in cancer cells, the UPR component X-box binding protein 1 (XBP1) favors the synthesis and secretion of cholesterol, which activates myeloid-derived suppressor cells (MDSCs) and causes immunosuppression. Cholesterol is delivered in the form of small extracellular vesicles and internalized by MDSCs through macropinocytosis. Genetic or pharmacological depletion of XBP1 or reducing the tumor cholesterol content remarkably decreases MDSC abundance and triggers robust anti-tumor responses. Thus, our data unravel the cell-non-autonomous role of XBP1/cholesterol signaling in the regulation of tumor growth and suggest its inhibition as a useful strategy for improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Zaili Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhen Huo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shixin Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingya Guo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaotu Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congli Fan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
33
|
Salvagno C, Mandula JK, Rodriguez PC, Cubillos-Ruiz JR. Decoding endoplasmic reticulum stress signals in cancer cells and antitumor immunity. Trends Cancer 2022; 8:930-943. [PMID: 35817701 PMCID: PMC9588488 DOI: 10.1016/j.trecan.2022.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment (TME) provokes endoplasmic reticulum (ER) stress in malignant cells and infiltrating immune populations. Sensing and responding to ER stress is coordinated by the unfolded protein response (UPR), an integrated signaling pathway governed by three ER stress sensors: activating transcription factor (ATF6), inositol-requiring enzyme 1α (IRE1α), and protein kinase R (PKR)-like ER kinase (PERK). Persistent UPR activation modulates malignant progression, tumor growth, metastasis, and protective antitumor immunity. Hence, therapies targeting ER stress signaling can be harnessed to elicit direct tumor killing and concomitant anticancer immunity. We highlight recent findings on the role of the ER stress responses in onco-immunology, with an emphasis on genetic vulnerabilities that render tumors highly sensitive to therapeutic UPR modulation.
Collapse
Affiliation(s)
- Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jessica K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA.
| |
Collapse
|
34
|
Mogre S, Blazanin N, Walsh H, Ibinson J, Minnich C, Andrew Hu CC, Glick AB. TGFβ1 regulates HRas-mediated activation of IRE1α through the PERK-RPAP2 axis in keratinocytes. Mol Carcinog 2022; 61:958-971. [PMID: 35975910 PMCID: PMC9486931 DOI: 10.1002/mc.23453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Abstract
Transforming Growth Factor β1 (TGFβ1) is a critical regulator of tumor progression in response to HRas. Recently, TGFβ1 has been shown to trigger ER stress in many disease models; however, its role in oncogene-induced ER stress is unclear. Oncogenic HRas induces the unfolded protein response (UPR) predominantly via the Inositol-requiring enzyme 1α (IRE1α) pathway to initiate the adaptative responses to ER stress, with importance for both proliferation and senescence. Here, we show a role of the UPR sensor proteins IRE1α and (PKR)-like endoplasmic reticulum kinase (PERK) to mediate the tumor-suppressive roles of TGFβ1 in mouse keratinocytes expressing mutant forms of HRas. TGFβ1 suppressed IRE1α phosphorylation and activation by HRas both in in vitro and in vivo models while simultaneously activating the PERK pathway. However, the increase in ER stress indicated an uncoupling of ER stress and IRE1α activation by TGFβ1. Pharmacological and genetic approaches demonstrated that TGFβ1-dependent dephosphorylation of IRE1α was mediated by PERK through RNA Polymerase II Associated Protein 2 (RPAP2), a PERK-dependent IRE1α phosphatase. In addition, TGFβ1-mediated growth arrest in oncogenic HRas keratinocytes was partially dependent on PERK-induced IRE1α dephosphorylation and inactivation. Together, these results demonstrate a critical cross-talk between UPR proteins that is important for TGFβ1-mediated tumor suppressive responses.
Collapse
Affiliation(s)
- Saie Mogre
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, USA
| | - Nicholas Blazanin
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, USA
| | - Hailey Walsh
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, USA
| | - Jack Ibinson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, USA
| | - Chase Minnich
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, USA
| | - Chih-Chi Andrew Hu
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, Pennsylvania, USA
| |
Collapse
|
35
|
Rufo N, Yang Y, De Vleeschouwer S, Agostinis P. The "Yin and Yang" of Unfolded Protein Response in Cancer and Immunogenic Cell Death. Cells 2022; 11:2899. [PMID: 36139473 PMCID: PMC9497201 DOI: 10.3390/cells11182899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Physiological and pathological burdens that perturb endoplasmic reticulum homeostasis activate the unfolded protein response (UPR), a conserved cytosol-to-nucleus signaling pathway that aims to reinstate the vital biosynthetic and secretory capacity of the ER. Disrupted ER homeostasis, causing maladaptive UPR signaling, is an emerging trait of cancer cells. Maladaptive UPR sustains oncogene-driven reprogramming of proteostasis and metabolism and fosters proinflammatory pathways promoting tissue repair and protumorigenic immune responses. However, when cancer cells are exposed to conditions causing irreparable ER homeostasis, such as those elicited by anticancer therapies, the UPR switches from a survival to a cell death program. This lethal ER stress response can elicit immunogenic cell death (ICD), a form of cell death with proinflammatory traits favoring antitumor immune responses. How UPR-driven pathways transit from a protective to a killing modality with favorable immunogenic and proinflammatory output remains unresolved. Here, we discuss key aspects of the functional dichotomy of UPR in cancer cells and how this signal can be harnessed for therapeutic benefit in the context of ICD, especially from the aspect of inflammation aroused by the UPR.
Collapse
Affiliation(s)
- Nicole Rufo
- Laboratory of Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology Research, 3000 Leuven, Belgium
| | - Yihan Yang
- Laboratory of Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology Research, 3000 Leuven, Belgium
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
- VIB Center for Cancer Biology Research, 3000 Leuven, Belgium
| |
Collapse
|
36
|
Fu F, Doroudgar S. IRE1/XBP1 and endoplasmic reticulum signaling - from basic to translational research for cardiovascular disease. CURRENT OPINION IN PHYSIOLOGY 2022; 28:100552. [PMID: 37207249 PMCID: PMC10195104 DOI: 10.1016/j.cophys.2022.100552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Most cellular protein synthesis, including synthesis of membrane-targeted and secreted proteins, which are critical for cellular and organ crosstalk, takes place at the endoplasmic reticulum (ER), placing the ER at the nexus of cellular signaling, growth, metabolism, and stress sensing. Ample evidence has established the dysregulation of protein homeostasis and the ER unfolded protein response (UPR) in cardiovascular disease. However, the mechanisms of stress sensing and signaling in the ER are incompletely defined. Recent studies have defined notable functions for the inositol-requiring kinase 1 (IRE1)/X-box- binding protein-1 (XBP1) branch of the UPR in regulation of cardiac function. This review highlights the mechanisms underlying IRE1 activation and the IRE1 interactome, which reveals unexpected functions for the UPR and summarizes our current understanding of the functions of IRE1 in cardiovascular disease.
Collapse
Affiliation(s)
- Fangyi Fu
- Department of Cardiology, Angiology, and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Internal Medicine and the Translational Cardiovascular Research Center, University of Arizona - College of Medicine - Phoenix, Phoenix, AZ, United States
| |
Collapse
|
37
|
Construction and Validation of a UPR-Associated Gene Prognostic Model for Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8677309. [PMID: 35707371 PMCID: PMC9192238 DOI: 10.1155/2022/8677309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022]
Abstract
Our study is aimed at constructing and validating a UPR-associated gene signature to predict HNSCC prognosis. We obtained 544 samples of RNA sequencing data and clinical characteristics from TCGA database and randomly grouped the samples into training and testing cohorts (1 : 1 ratio). After identifying 14 UPR-associated genes with LASSO and univariate Cox regression analysis, HNSCC samples were categorized into low-risk (LR) and high-risk (HR) subgroups depending on the risk score. Our analyses indicated that low-risk patients had a much better prognosis in the training and testing cohorts. To predict the HNSCC prognosis with the 14 UPR-associated gene signatures, we incorporated the UPR gene risk score, N stage, M stage, and age into a nomogram model. We further explored the sensitivity to anticancer drugs by using the IC50 analysis in two subgroups from the Cancer Genome Project database. The outcomes showed that the AKT inhibitor III and sorafenib were sensitive anticancer drugs in HR and LR patients, respectively. The immune cell infiltration analysis and GSEA provided strong evidence for elucidating the molecular mechanisms of UPR-associated genes affecting HNSCC. In conclusion, the UPR-associated gene risk score, N stage, M stage, and age can serve as a robust model for predicting prognosis and can improve decision-making at the individual patient level.
Collapse
|
38
|
Iglesia RP, Prado MB, Alves RN, Escobar MIM, Fernandes CFDL, Fortes ACDS, Souza MCDS, Boccacino JM, Cangiano G, Soares SR, de Araújo JPA, Tiek DM, Goenka A, Song X, Keady JR, Hu B, Cheng SY, Lopes MH. Unconventional Protein Secretion in Brain Tumors Biology: Enlightening the Mechanisms for Tumor Survival and Progression. Front Cell Dev Biol 2022; 10:907423. [PMID: 35784465 PMCID: PMC9242006 DOI: 10.3389/fcell.2022.907423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022] Open
Abstract
Non-canonical secretion pathways, collectively known as unconventional protein secretion (UPS), are alternative secretory mechanisms usually associated with stress-inducing conditions. UPS allows proteins that lack a signal peptide to be secreted, avoiding the conventional endoplasmic reticulum-Golgi complex secretory pathway. Molecules that generally rely on the canonical pathway to be secreted may also use the Golgi bypass, one of the unconventional routes, to reach the extracellular space. UPS studies have been increasingly growing in the literature, including its implication in the biology of several diseases. Intercellular communication between brain tumor cells and the tumor microenvironment is orchestrated by various molecules, including canonical and non-canonical secreted proteins that modulate tumor growth, proliferation, and invasion. Adult brain tumors such as gliomas, which are aggressive and fatal cancers with a dismal prognosis, could exploit UPS mechanisms to communicate with their microenvironment. Herein, we provide functional insights into the UPS machinery in the context of tumor biology, with a particular focus on the secreted proteins by alternative routes as key regulators in the maintenance of brain tumors.
Collapse
Affiliation(s)
- Rebeca Piatniczka Iglesia
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Mariana Brandão Prado
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Nunes Alves
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Isabel Melo Escobar
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila Felix de Lima Fernandes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ailine Cibele dos Santos Fortes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Clara da Silva Souza
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jacqueline Marcia Boccacino
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giovanni Cangiano
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Samuel Ribeiro Soares
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Pedro Alves de Araújo
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Deanna Marie Tiek
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Anshika Goenka
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xiao Song
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jack Ryan Keady
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bo Hu
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Shi Yuan Cheng
- The Robert H. Lurie Comprehensive Cancer Center, The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute at Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Marilene Hohmuth Lopes
- Laboratory of Neurobiology and Stem Cells, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil,*Correspondence: Marilene Hohmuth Lopes,
| |
Collapse
|
39
|
Guttman O, Le Thomas A, Marsters S, Lawrence DA, Gutgesell L, Zuazo-Gaztelu I, Harnoss JM, Haag SM, Murthy A, Strasser G, Modrusan Z, Wu T, Mellman I, Ashkenazi A. Antigen-derived peptides engage the ER stress sensor IRE1α to curb dendritic cell cross-presentation. J Biophys Biochem Cytol 2022; 221:213173. [PMID: 35446348 PMCID: PMC9036094 DOI: 10.1083/jcb.202111068] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) promote adaptive immunity by cross-presenting antigen-based epitopes to CD8+ T cells. DCs process internalized protein antigens into peptides that enter the endoplasmic reticulum (ER), bind to major histocompatibility type I (MHC-I) protein complexes, and are transported to the cell surface for cross-presentation. DCs can exhibit activation of the ER stress sensor IRE1α without ER stress, but the underlying mechanism remains obscure. Here, we show that antigen-derived hydrophobic peptides can directly engage ER-resident IRE1α, masquerading as unfolded proteins. IRE1α activation depletes MHC-I heavy-chain mRNAs through regulated IRE1α-dependent decay (RIDD), curtailing antigen cross-presentation. In tumor-bearing mice, IRE1α disruption increased MHC-I expression on tumor-infiltrating DCs and enhanced recruitment and activation of CD8+ T cells. Moreover, IRE1α inhibition synergized with anti–PD-L1 antibody treatment to cause tumor regression. Our findings identify an unexpected cell-biological mechanism of antigen-driven IRE1α activation in DCs, revealing translational potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Ofer Guttman
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Adrien Le Thomas
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Scot Marsters
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - David A Lawrence
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Lauren Gutgesell
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | | | | | - Simone M Haag
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Aditya Murthy
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | | | - Zora Modrusan
- Departments of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA
| | - Thomas Wu
- Departments of Oncology Bioinformatics, Genentech, South San Francisco, CA
| | - Ira Mellman
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Avi Ashkenazi
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| |
Collapse
|
40
|
Almanza A, Mnich K, Blomme A, Robinson CM, Rodriguez-Blanco G, Kierszniowska S, McGrath EP, Le Gallo M, Pilalis E, Swinnen JV, Chatziioannou A, Chevet E, Gorman AM, Samali A. Regulated IRE1α-dependent decay (RIDD)-mediated reprograming of lipid metabolism in cancer. Nat Commun 2022; 13:2493. [PMID: 35524156 PMCID: PMC9076827 DOI: 10.1038/s41467-022-30159-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
IRE1α is constitutively active in several cancers and can contribute to cancer progression. Activated IRE1α cleaves XBP1 mRNA, a key step in production of the transcription factor XBP1s. In addition, IRE1α cleaves select mRNAs through regulated IRE1α-dependent decay (RIDD). Accumulating evidence implicates IRE1α in the regulation of lipid metabolism. However, the roles of XBP1s and RIDD in this process remain ill-defined. In this study, transcriptome and lipidome profiling of triple negative breast cancer cells subjected to pharmacological inhibition of IRE1α reveals changes in lipid metabolism genes associated with accumulation of triacylglycerols (TAGs). We identify DGAT2 mRNA, encoding the rate-limiting enzyme in TAG biosynthesis, as a RIDD target. Inhibition of IRE1α, leads to DGAT2-dependent accumulation of TAGs in lipid droplets and sensitizes cells to nutritional stress, which is rescued by treatment with the DGAT2 inhibitor PF-06424439. Our results highlight the importance of IRE1α RIDD activity in reprograming cellular lipid metabolism. IRE1α cleaves several mRNAs upon accumulation of misfolded proteins. Here the authors show that active IRE1α cleaves DGAT2 mRNA encoding the rate-limiting enzyme in the synthesis of triacylglycerols, suggesting a role of IRE1α in reprogramming lipid metabolism in cancer cells.
Collapse
Affiliation(s)
- Aitor Almanza
- Apoptosis Research Centre, National University of Ireland, Galway, H91 W2TY, Ireland.,School of Biological and Chemical Sciences, National University of Ireland, Galway, H91 W2TY, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, National University of Ireland, Galway, H91 W2TY, Ireland.,School of Biological and Chemical Sciences, National University of Ireland, Galway, H91 W2TY, Ireland
| | - Arnaud Blomme
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Claire M Robinson
- Apoptosis Research Centre, National University of Ireland, Galway, H91 W2TY, Ireland.,School of Biological and Chemical Sciences, National University of Ireland, Galway, H91 W2TY, Ireland
| | | | | | - Eoghan P McGrath
- Apoptosis Research Centre, National University of Ireland, Galway, H91 W2TY, Ireland.,School of Biological and Chemical Sciences, National University of Ireland, Galway, H91 W2TY, Ireland
| | - Matthieu Le Gallo
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | | | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, Leuven, Belgium
| | - Aristotelis Chatziioannou
- e-NIOS Applications PC, 25 Alexandros Pantou str., 17671, Kallithea, Greece.,Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou str, 11527, Athens, GR, Greece
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Adrienne M Gorman
- Apoptosis Research Centre, National University of Ireland, Galway, H91 W2TY, Ireland.,School of Biological and Chemical Sciences, National University of Ireland, Galway, H91 W2TY, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland, Galway, H91 W2TY, Ireland. .,School of Biological and Chemical Sciences, National University of Ireland, Galway, H91 W2TY, Ireland.
| |
Collapse
|
41
|
Papaioannou A, Centonze F, Metais A, Maurel M, Negroni L, Gonzalez-Quiroz M, Mahdizadeh SJ, Svensson G, Zare E, Blondel A, Koong AC, Hetz C, Pedeux R, Tremblay ML, Eriksson LA, Chevet E. Stress-induced tyrosine phosphorylation of RtcB modulates IRE1 activity and signaling outputs. Life Sci Alliance 2022; 5:e202201379. [PMID: 35193953 PMCID: PMC8899846 DOI: 10.26508/lsa.202201379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
ER stress is mediated by three sensors and the most evolutionary conserved IRE1α signals through its cytosolic kinase and endoribonuclease (RNase) activities. IRE1α RNase activity can either catalyze the initial step of XBP1 mRNA unconventional splicing or degrade a number of RNAs through regulated IRE1-dependent decay. Until now, the biochemical and biological outputs of IRE1α RNase activity have been well documented; however, the precise mechanisms controlling whether IRE1α signaling is adaptive or pro-death (terminal) remain unclear. We investigated those mechanisms and hypothesized that XBP1 mRNA splicing and regulated IRE1-dependent decay activity could be co-regulated by the IRE1α RNase regulatory network. We identified that RtcB, the tRNA ligase responsible for XBP1 mRNA splicing, is tyrosine-phosphorylated by c-Abl and dephosphorylated by PTP1B. Moreover, we show that the phosphorylation of RtcB at Y306 perturbs RtcB interaction with IRE1α, thereby attenuating XBP1 mRNA splicing. Our results demonstrate that the IRE1α RNase regulatory network is dynamically fine-tuned by tyrosine kinases and phosphatases upon various stresses and that the extent of RtcB tyrosine phosphorylation determines cell adaptive or death outputs.
Collapse
Affiliation(s)
- Alexandra Papaioannou
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Federica Centonze
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Alice Metais
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Marion Maurel
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Luc Negroni
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Matías Gonzalez-Quiroz
- INSERM U1242, University of Rennes, Rennes, France
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | | | - Gabriella Svensson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Ensieh Zare
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Alice Blondel
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Rémy Pedeux
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| |
Collapse
|
42
|
Tetralol derivative NNC-55-0396 induces glioblastoma cell death by activating IRE1α, JNK1 and calcium signaling. Biomed Pharmacother 2022; 149:112881. [PMID: 35367758 DOI: 10.1016/j.biopha.2022.112881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
Mibefradil and NNC-55-0396, tetralol derivatives with a proven -ability to block T-type calcium channels in excitable cells, reduce cancer cell viability in vitro, causing cell death. Furthermore, they reduce tumor growth in preclinical models of Glioblastoma multiforme (GBM), a brain tumor of poor prognosis. Here we found that GBM cells treated with cytotoxic concentrations of NNC-55-0396 paradoxically increased cytosolic calcium levels through the activation of inositol triphosphate receptors (IP3R) and ER stress. We used pharmacological inhibitors and gene silencing to dissect the cell death pathway stimulated by NNC-55-0396 in GBM cell lines and biopsy-derived cultures. Calcium chelation or IP3R inhibition prevented NNC-55-0396-mediated cytotoxicity, indicating that ER calcium efflux is the cause of cell death. Upstream of calcium mobilization, NNC-55-0396 activated the IRE1α arm of the Unfolded Protein Response (UPR) resulting in the nuclear translocation of pro-apoptotic CHOP. Consistent with these findings, silencing IRE1α or JNK1 rescued the cell death elicited by NNC-55-0396. Therefore, we demonstrate that activation of IRE1α and calcium signaling accounts for the cytotoxicity of NNC-55-0396 in GBM cells. The delineation of the signaling pathway that mediates the abrupt cell death triggered by this compound can help the development of new therapies for GBM.
Collapse
|
43
|
Mallick P, Maity S, Chakrabarti O, Chakrabarti S. Role of systems biology and multi-omics analyses in delineating spatial interconnectivity and temporal dynamicity of ER stress mediated cellular responses. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119210. [PMID: 35032474 DOI: 10.1016/j.bbamcr.2022.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous organelle involved in calcium storage, lipid biosynthesis, protein folding and processing. Many patho-physiological conditions and pharmacological agents are known to perturb normal ER function and can lead to ER stress, which severely compromise protein folding mechanism and hence poses high risk of proteotoxicity. Upon sensing ER stress, the different stress signaling pathways interconnect with each other and work together to preserve cellular homeostasis. ER stress response is a part of the integrative stress response (ISR) and might play an important role in the pathogenesis of chronic neurodegenerative diseases, where misfolded protein accumulation and cell death are common. The initiation, manifestation and progression of ER stress mediated unfolded protein response (UPR) is a complex procedure involving multiple proteins, pathways and cellular organelles. To understand the cause and consequences of such complex processes, implementation of an integrative holistic approach is required to identify novel players and regulators of ER stress. As multi-omics data-based systems analyses have shown potential to unravel the underneath molecular mechanism of complex biological systems, it is important to emphasize the utility of this approach in understanding the ER stress biology. In this review we first discuss the ER stress signaling pathways and regulatory players, along with their inter-connectivity. We next highlight the importance of systems and network biology approaches using multi-omics data in understanding ER stress mediated cellular responses. This report would help advance our current understanding of the multivariate spatial interconnectivity and temporal dynamicity of ER stress.
Collapse
Affiliation(s)
- Priyanka Mallick
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata Pin 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata Pin 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
44
|
Buocikova V, Longhin EM, Pilalis E, Mastrokalou C, Miklikova S, Cihova M, Poturnayova A, Mackova K, Babelova A, Trnkova L, El Yamani N, Zheng C, Rios-Mondragon I, Labudova M, Csaderova L, Kuracinova KM, Makovicky P, Kucerova L, Matuskova M, Cimpan MR, Dusinska M, Babal P, Chatziioannou A, Gabelova A, Rundén-Pran E, Smolkova B. Decitabine potentiates efficacy of doxorubicin in a preclinical trastuzumab-resistant HER2-positive breast cancer models. Biomed Pharmacother 2022; 147:112662. [DOI: 10.1016/j.biopha.2022.112662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/22/2022] Open
|
45
|
Jiang H, Jiang Q, He Y, Li X, Xu Y, Liu X. XBP1s promotes the development of lung adenocarcinoma via the p‑JNK MAPK pathway. Int J Mol Med 2022; 49:34. [PMID: 35059734 PMCID: PMC8815418 DOI: 10.3892/ijmm.2022.5089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
Spliced X-box binding protein 1 (XBP1s) has been reported to participate in the pathogenesis of numerous types of cancer; however, whether XBP1s plays a role in lung cancer remains to be elucidated. In the present study, bioinformatics analysis was performed to determine the mRNA expression level of XBP1 in lung cancer and adjacent normal tissues. Gene Ontology terms, pathway enrichment and Pearson's correlation analysis were performed to investigate the possible mechanism involved. Western blot and reverse transcription-quantitative PCR were performed to quantify the protein and mRNA expression level of target proteins, respectively. Small interfering RNA or overexpression plasmid were used to knockdown or overexpress the expression level of XBP1s. EdU staining, colony formation, Cell Counting Kit-8, Transwell and wound healing assays, and flow cytometry were performed to detect the proliferation, colony forming ability, cell viability, migration and invasion ability, and the apoptosis rate. The results showed that the mRNA and protein expression level of XBP1 was higher in tumor tissues compared with that in adjacent normal tissues using data from the TIMER2.0, ONCOMINE and UALCAN online databases. In addition, the mRNA expression level of XBP1 was also associated with clinical features, including age, smoking habit, individual cancer stage and nodal metastasis status. In the in vitro experiments, the mRNA and protein expression level of XBP1s was increased in the A549 cell line compared with that in the human bronchial epithelial (HBE), H1299, PC9 and H460 cell lines. Hypoxia further increased the protein expression level of XBP1s in the A549 cell line. Knockdown of XBP1s expression in the A549 cell line resulted in decreased proliferation, colony formation, cell viability, migration and invasion, and increased apoptosis. By contrast, overexpressing XBP1s in the HBE cell line led to the opposite results. To investigate the mechanism involved, proteins associated with XBP1 were analyzed using the LinkedOmics database. Pathway enrichment revealed the MAPK pathway to be the possible XBP1 downstream target. Furthermore, Pearson's correlation and western blot analyses verified that phosphorylated (p)-JNK rather than p-ERK or p-p38 was the downstream effector of XBP1s. Phosphorylation of JNK was decreased when XBP1s expression was knocked down in the A549 cell line under normoxic and hypoxic conditions. Inhibiting p-JNK with SP600125 reversed the increased prosurvival effects caused by XBP1s overexpression. The results from the present study suggest that XBP1s/p-JNK function as a prosurvival factors in the A549 cell line and could be a potential target for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hongxia Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qianqian Jiang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
46
|
Zhang S, Wang K, Zhu X, Cherepanoff S, Conway RM, Madigan MC, Zhu L, Murray M, Zhou F. The unfolded protein response and the biology of uveal melanoma. Biochimie 2022; 197:9-18. [DOI: 10.1016/j.biochi.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
|
47
|
Pelizzari Raymundo D, Eriksson LA, Chevet E, Guillory X. Structure-Based Drug Discovery of IRE1 Modulators. Methods Mol Biol 2022; 2378:293-315. [PMID: 34985708 DOI: 10.1007/978-1-0716-1732-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
IRE1α (inositol-requiring enzyme 1 alpha, referred to IRE1 hereafter) is an Endoplasmic Reticulum (ER) resident transmembrane enzyme with cytosolic kinase/RNAse activities. Upon ER stress IRE1 is activated through trans-autophosphorylation and oligomerization, resulting in a conformational change of the RNase domain, thereby promoting two signaling pathways: i) the non-conventional splicing of XBP1 mRNA and ii) the regulated IRE1-dependent decay of RNA (RIDD). IRE1 RNase activity has been linked to diverse pathologies such as cancer or inflammatory, metabolic, and degenerative diseases and the modulation of IRE1 activity is emerging as an appealing therapeutic strategy against these diseases. Several modulators of IRE1 activity have been reported in the past, but none have successfully translated into the clinics as yet. Based on our expertise in the field, we describe in this chapter the approaches and protocols we used to discover novel IRE1 modulators and characterize their effect on IRE1 activity.
Collapse
Affiliation(s)
- Diana Pelizzari Raymundo
- INSERM U1242, Université de Rennes, Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France.
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Eric Chevet
- INSERM U1242, Université de Rennes, Rennes, France
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Xavier Guillory
- INSERM U1242, Université de Rennes, Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France.
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France.
| |
Collapse
|
48
|
Decoding non-canonical mRNA decay by the endoplasmic-reticulum stress sensor IRE1α. Nat Commun 2021; 12:7310. [PMID: 34911951 PMCID: PMC8674358 DOI: 10.1038/s41467-021-27597-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Inositol requiring enzyme 1 (IRE1) mitigates endoplasmic-reticulum (ER) stress by orchestrating the unfolded-protein response (UPR). IRE1 spans the ER membrane, and signals through a cytosolic kinase-endoribonuclease module. The endoribonuclease generates the transcription factor XBP1s by intron excision between similar RNA stem-loop endomotifs, and depletes select cellular mRNAs through regulated IRE1-dependent decay (RIDD). Paradoxically, in mammals RIDD seems to target only mRNAs with XBP1-like endomotifs, while in flies RIDD exhibits little sequence restriction. By comparing nascent and total IRE1α-controlled mRNAs in human cells, we identify not only canonical endomotif-containing RIDD substrates, but also targets without such motifs-degraded by a process we coin RIDDLE, for RIDD lacking endomotif. IRE1α displays two basic endoribonuclease modalities: highly specific, endomotif-directed cleavage, minimally requiring dimers; and more promiscuous, endomotif-independent processing, requiring phospho-oligomers. An oligomer-deficient IRE1α mutant fails to support RIDDLE in vitro and in cells. Our results advance current mechanistic understanding of the UPR.
Collapse
|
49
|
Li G, Wu Z, Gu J, Zhu Y, Zhang T, Wang F, Huang K, Gu C, Xu K, Zhan R, Shen J. Metabolic Signature-Based Subtypes May Pave Novel Ways for Low-Grade Glioma Prognosis and Therapy. Front Cell Dev Biol 2021; 9:755776. [PMID: 34888308 PMCID: PMC8650219 DOI: 10.3389/fcell.2021.755776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
Metabolic signatures are frequently observed in cancer and are starting to be recognized as important regulators for tumor progression and therapy. Because metabolism genes are involved in tumor initiation and progression, little is known about the metabolic genomic profiles in low-grade glioma (LGG). Here, we applied bioinformatics analysis to determine the metabolic characteristics of patients with LGG from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). We also performed the ConsensusClusterPlus, the CIBERSORT algorithm, the Estimate software, the R package "GSVA," and TIDE to comprehensively describe and compare the characteristic difference between three metabolic subtypes. The R package WGCNA helped us to identify co-expression modules with associated metabolic subtypes. We found that LGG patients were classified into three subtypes based on 113 metabolic characteristics. MC1 patients had poor prognoses and MC3 patients obtained longer survival times. The different metabolic subtypes had different metabolic and immune characteristics, and may have different response patterns to immunotherapy. Based on the metabolic subtype, different patterns were exhibited that reflected the characteristics of each subtype. We also identified eight potential genetic markers associated with the characteristic index of metabolic subtypes. In conclusion, a comprehensive understanding of metabolism associated characteristics and classifications may improve clinical outcomes for LGG.
Collapse
Affiliation(s)
- Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhanxiong Wu
- School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Jun Gu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tiesong Zhang
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenjie Gu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kangli Xu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Shen
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Le Reste P, Pilalis E, Aubry M, McMahon M, Cano L, Etcheverry A, Chatziioannou A, Chevet E, Fautrel A. Integration of Raman spectra with transcriptome data in glioblastoma multiforme defines tumour subtypes and predicts patient outcome. J Cell Mol Med 2021; 25:10846-10856. [PMID: 34773369 PMCID: PMC8642677 DOI: 10.1111/jcmm.16902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Raman spectroscopy is an imaging technique that has been applied to assess molecular compositions of living cells to characterize cell types and states. However, owing to the diverse molecular species in cells and challenges of assigning peaks to specific molecules, it has not been clear how to interpret cellular Raman spectra. Here, we provide firm evidence that cellular Raman spectra (RS) and transcriptomic profiles of glioblastoma can be computationally connected and thus interpreted. We find that the dimensions of high-dimensional RS and transcriptomes can be reduced and connected linearly through a shared low-dimensional subspace. Accordingly, we were able to predict global gene expression profiles by applying the calculated transformation matrix to Raman spectra and vice versa. From these analyses, we extract a minimal gene expression signature associated with specific RS profiles and predictive of disease outcome.
Collapse
Affiliation(s)
- Pierre‐Jean Le Reste
- Department of NeurosurgeryUniversity HospitalRennesFrance
- INSERM U1242University of RennesRennesFrance
- REACT – Rennes Brain Cancer TeamRennesFrance
| | | | - Marc Aubry
- REACT – Rennes Brain Cancer TeamRennesFrance
- IGDR CNRSUniversity of RennesRennesFrance
| | - Mari McMahon
- INSERM U1242University of RennesRennesFrance
- REACT – Rennes Brain Cancer TeamRennesFrance
- Centre de Lutte Contre le Cancer Eugene MarquisRennesFrance
| | - Luis Cano
- H2P2 PlatformUMS CNRS 3480 – INSERM 018University of RennesRennesFrance
| | - Amandine Etcheverry
- REACT – Rennes Brain Cancer TeamRennesFrance
- IGDR CNRSUniversity of RennesRennesFrance
| | | | - Eric Chevet
- INSERM U1242University of RennesRennesFrance
- REACT – Rennes Brain Cancer TeamRennesFrance
- Centre de Lutte Contre le Cancer Eugene MarquisRennesFrance
| | - Alain Fautrel
- H2P2 PlatformUMS CNRS 3480 – INSERM 018University of RennesRennesFrance
| |
Collapse
|