1
|
Chen C, Huang R, Wang N, Zheng Y, Zhou J, Yang B, Wang X, Zhang J, Pan B, Chen Z, Wang S, Wang Z, Xiang S. Fu-Zheng-Yi-Liu Formula inhibits the stem cells and metastasis of prostate cancer via tumor-associated macrophages/C-C motif chemokine ligand 5 pathway in tumor microenvironment. Chin J Nat Med 2024; 22:501-514. [PMID: 38906598 DOI: 10.1016/s1875-5364(24)60653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 06/23/2024]
Abstract
Prostate cancer (PCa) is the second most common malignancy among men globally. The Fu-Zheng-Yi-Liu (FZYL) Formula has been widely utilized in the treatment of PCa. This study investigates whether the FZYL Formula can inhibit PCa by targeting the TAMs/CCL5 pathway. We conducted in vitro co-cultures and in vivo co-injections of PCa cells and TAMs to mimic their interaction. Results showed that the FZYL Formula significantly reduced the proliferation, colony formation, subpopulations of PCSCs, and sphere-formation efficacy of PCa cells, even in the presence of TAM co-culture. Additionally, the Formula markedly decreased the migration, invasion, and epithelial-mesenchymal transition (EMT) of PCa cells induced by TAMs. The FZYL Formula also reversed M2 phenotype polarization in TAMs and dose-dependently reduced their CCL5 expression and secretion, with minimal cytotoxicity observed. Mechanistic studies confirmed that the TAMs/CCL5 axis is a critical target of the FZYL Formula, as the addition of exogenous CCL5 partially reversed the formula's inhibitory effects on PCSCs self-renewal in the co-culture system. Importantly, the Formula also significantly inhibited the growth of PCa xenografts, bone metastasis, and PCSCs activity in vivo by targeting the TAMs/CCL5 pathway. Overall, this study not only elucidates the immunomodulatory mechanism of the FZYL Formula in PCa therapy but also highlights the TAMs/CCL5 axis as a promising therapeutic target.
Collapse
Affiliation(s)
- Chiwei Chen
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510000, China
| | - Renlun Huang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510000, China
| | - Neng Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Yifeng Zheng
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510000, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Jianfu Zhou
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510000, China
| | - Bowen Yang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510000, China
| | - Xuan Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510000, China
| | - Juping Zhang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510000, China
| | - Bo Pan
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510000, China
| | - Zhiqiang Chen
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510000, China
| | - Shengqi Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510000, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Zhiyu Wang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510000, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Songtao Xiang
- The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510000, China.
| |
Collapse
|
2
|
Ye J, Liu W, Yu X, Wu L, Chen Z, Yu Y, Wang J, Bai S, Zhang M. TRAF7-targeted HOXA5 acts as a tumor suppressor in prostate cancer progression and stemness via transcriptionally activating SPRY2 and regulating MEK/ERK signaling. Cell Death Discov 2023; 9:378. [PMID: 37845209 PMCID: PMC10579307 DOI: 10.1038/s41420-023-01675-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Homeobox A5 (HOXA5), a homeodomain transcription factor, is considered a tumor suppressor in cancer progression; however, its function in prostate cancer (PCa) remains unclear. This study focused on the relevance of HOXA5 in PCa progression. We identified the downregulation of HOXA5 in PCa tissues based on the TCGA database and further verified in 30-paired PCa and adjacent normal tissues. Functional studies revealed that HOXA5 upregulation impaired the stem-like characteristics and malignant behaviors of PCa cells in vitro and in vivo. Mechanistically, HOXA5 was found to be regulated by tumor necrosis factor receptor-associated factor 7 (TRAF7), a putative E3-ubiquitin ligase. We observed that TRAF7 was overexpressed in PCa and subsequently enhanced the degradation of HOXA5 protein via its ubiquitin ligase activity, contributing to the acquisition of an aggressive PCa phenotype. For its downstream mechanism, we demonstrated that sprouty RTK signaling antagonist 2 (SPRY2) served as a downstream target of HOXA5. HOXA5 could directly bind to the SPRY2 promoter, thereby regulating the SPRY2-mediated MEK/ERK signaling pathway. Silencing SPRY2 largely compromised the tumor-suppressive effect of HOXA5 in PCa progression and cancer stemness. Our findings highlight the previously-underappreciated signaling axis of TRAF7-HOXA5-SPRY2, which provides a novel prognostic and therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Jianfeng Ye
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wangmin Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xueyang Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengjie Chen
- Department of Urology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yufei Yu
- Department of Urology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianfeng Wang
- Department of Urology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Song Bai
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Mo Zhang
- Department of Urology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Cheng B, Huang H. Expanding horizons in overcoming therapeutic resistance in castration-resistant prostate cancer: targeting the androgen receptor-regulated tumor immune microenvironment. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0256. [PMID: 37646236 PMCID: PMC10476470 DOI: 10.20892/j.issn.2095-3941.2023.0256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Affiliation(s)
- Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
4
|
Rushworth LK, Loveridge C, Salji M, MacLeod M, Mui E, Sumpton D, Neilson M, Hedley A, Alexander L, McCartney E, Patel R, Wallace J, Delles C, Jones R, Leung HY. Phase II proof-of-concept study of atorvastatin in castration-resistant prostate cancer. BJU Int 2023; 131:236-243. [PMID: 35844167 PMCID: PMC10087532 DOI: 10.1111/bju.15851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES To test for evidence of statin-mediated effects in patients with castration-resistant prostate cancer (CRPC) as post-diagnosis use of statins in patients with prostate cancer is associated with favourable survival outcome. PATIENTS AND METHODS The SPECTRE trial was a 6-weeks-long proof-of-concept single-arm Phase II treatment trial, combining atorvastatin and androgen deprivation therapy in patients with CRPC (regardless of metastatic status), designed to test for evidence of statin-mediated effects in patients with CRPC. The primary study endpoint was the proportion of patients achieving a ≥50% drop from baseline in prostate-specific antigen (PSA) levels at any time over the 6-week period of atorvastatin medication (PSA response). Exploratory endpoints include PSA velocity and serum metabolites identified by mass spectrometry . RESULTS At the scheduled interim analysis, one of 12 patients experienced a ≥50% drop in PSA levels (primary endpoint), with ≥2 patients satisfying the primary endpoint required for further recruitment. All 12 patients experienced substantial falls in serum cholesterol levels following statin treatment. While all patients had comparable pre-study PSA velocities, six of 12 patients showed decreased PSA velocities after statin treatment, suggestive of disease stabilization. Unbiased metabolomics analysis on serial weekly blood samples identified tryptophan to be the dominant metabolite associated with patient response to statin. CONCLUSIONS Data from the SPECTRE study provide the first evidence of statin-mediated effects on CRPC and early sign of disease stabilization. Our data also highlight the possibility of altered tryptophan metabolism being associated with tumour response.
Collapse
Affiliation(s)
- Linda K. Rushworth
- Institute of Cancer Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- CRUK Beatson InstituteGlasgowUK
| | - Carolyn Loveridge
- Institute of Cancer Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- CRUK Beatson InstituteGlasgowUK
| | - Mark Salji
- Institute of Cancer Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- CRUK Beatson InstituteGlasgowUK
| | - Martin MacLeod
- Beatson West of Scotland Cancer CentreGlasgowUK
- CRUK West of Scotland Clinical Trials UnitGlasgowUK
| | - Ernest Mui
- Institute of Cancer Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- CRUK Beatson InstituteGlasgowUK
| | | | | | | | - Laura Alexander
- Institute of Cancer Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- CRUK West of Scotland Clinical Trials UnitGlasgowUK
| | - Elaine McCartney
- Institute of Cancer Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- CRUK West of Scotland Clinical Trials UnitGlasgowUK
| | | | - Jan Wallace
- Beatson West of Scotland Cancer CentreGlasgowUK
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Rob Jones
- Institute of Cancer Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Beatson West of Scotland Cancer CentreGlasgowUK
- CRUK West of Scotland Clinical Trials UnitGlasgowUK
| | - Hing Y. Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- CRUK Beatson InstituteGlasgowUK
| |
Collapse
|
5
|
Patel R, Ford CA, Rodgers L, Rushworth LK, Fleming J, Mui E, Zhang T, Watson D, Lynch V, Mackay G, Sumpton D, Sansom OJ, Vande Voorde J, Leung HY. Cyclocreatine Suppresses Creatine Metabolism and Impairs Prostate Cancer Progression. Cancer Res 2022; 82:2565-2575. [PMID: 35675421 PMCID: PMC9381098 DOI: 10.1158/0008-5472.can-21-1301] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/16/2022] [Accepted: 05/18/2022] [Indexed: 01/07/2023]
Abstract
Prostate cancer is the second most common cause of cancer mortality in men worldwide. Applying a novel genetically engineered mouse model (GEMM) of aggressive prostate cancer driven by deficiency of the tumor suppressors PTEN and Sprouty2 (SPRY2), we identified enhanced creatine metabolism as a central component of progressive disease. Creatine treatment was associated with enhanced cellular basal respiration in vitro and increased tumor cell proliferation in vivo. Stable isotope tracing revealed that intracellular levels of creatine in prostate cancer cells are predominantly dictated by exogenous availability rather than by de novo synthesis from arginine. Genetic silencing of creatine transporter SLC6A8 depleted intracellular creatine levels and reduced the colony-forming capacity of human prostate cancer cells. Accordingly, in vitro treatment of prostate cancer cells with cyclocreatine, a creatine analog, dramatically reduced intracellular levels of creatine and its derivatives phosphocreatine and creatinine and suppressed proliferation. Supplementation with cyclocreatine impaired cancer progression in the PTEN- and SPRY2-deficient prostate cancer GEMMs and in a xenograft liver metastasis model. Collectively, these results identify a metabolic vulnerability in prostate cancer and demonstrate a rational therapeutic strategy to exploit this vulnerability to impede tumor progression. SIGNIFICANCE Enhanced creatine uptake drives prostate cancer progression and confers a metabolic vulnerability to treatment with the creatine analog cyclocreatine.
Collapse
Affiliation(s)
| | | | - Lisa Rodgers
- CRUK Beatson Institute, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Linda K. Rushworth
- CRUK Beatson Institute, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Ernest Mui
- CRUK Beatson Institute, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - David Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Victoria Lynch
- Department of Histopathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | | | | | - Owen J. Sansom
- CRUK Beatson Institute, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Johan Vande Voorde
- CRUK Beatson Institute, Glasgow, United Kingdom.,Corresponding Authors: Hing Y. Leung and Johan Vande Voorde, CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, United Kingdom. Phone: 44-0-141-330-3953; E-mail: and
| | - Hing Y. Leung
- CRUK Beatson Institute, Glasgow, United Kingdom.,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,Corresponding Authors: Hing Y. Leung and Johan Vande Voorde, CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, United Kingdom. Phone: 44-0-141-330-3953; E-mail: and
| |
Collapse
|
6
|
Salji MJ, Blomme A, Däbritz JHM, Repiscak P, Lilla S, Patel R, Sumpton D, van den Broek NJ, Daly R, Zanivan S, Leung HY. Multi-omics & pathway analysis identify potential roles for tumor N-acetyl aspartate accumulation in murine models of castration-resistant prostate cancer. iScience 2022; 25:104056. [PMID: 35345457 PMCID: PMC8957019 DOI: 10.1016/j.isci.2022.104056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 11/10/2021] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is incurable and remains a significant worldwide challenge (Oakes and Papa, 2015). Matched untargeted multi-level omic datasets may reveal biological changes driving CRPC, identifying novel biomarkers and/or therapeutic targets. Untargeted RNA sequencing, proteomics, and metabolomics were performed on xenografts derived from three independent sets of hormone naive and matched CRPC human cell line models of local, lymph node, and bone metastasis grown as murine orthografts. Collectively, we tested the feasibility of muti-omics analysis on models of CRPC in revealing pathways of interest for future validation investigation. Untargeted metabolomics revealed NAA and NAAG commonly accumulating in CRPC across three independent models and proteomics showed upregulation of related enzymes, namely N-acetylated alpha-linked acidic dipeptidases (FOLH1/NAALADL2). Based on pathway analysis integrating multiple omic levels, we hypothesize that increased NAA in CRPC may be due to upregulation of NAAG hydrolysis via NAALADLases providing a pool of acetyl Co-A for upregulated sphingolipid metabolism and a pool of glutamate and aspartate for nucleotide synthesis during tumor growth.
Collapse
Affiliation(s)
- Mark J. Salji
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Arnaud Blomme
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - J. Henry M. Däbritz
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Peter Repiscak
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Sergio Lilla
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Rachana Patel
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - David Sumpton
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Niels J.F. van den Broek
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Ronan Daly
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Sara Zanivan
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Hing Y. Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| |
Collapse
|
7
|
Gaba F, Tipping WJ, Salji M, Faulds K, Graham D, Leung HY. Raman Spectroscopy in Prostate Cancer: Techniques, Applications and Advancements. Cancers (Basel) 2022; 14:1535. [PMID: 35326686 PMCID: PMC8946151 DOI: 10.3390/cancers14061535] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Optical techniques are widely used tools in the visualisation of biological species within complex matrices, including biopsies, tissue resections and biofluids. Raman spectroscopy is an emerging analytical approach that probes the molecular signature of endogenous cellular biomolecules under biocompatible conditions with high spatial resolution. Applications of Raman spectroscopy in prostate cancer include biopsy analysis, assessment of surgical margins and monitoring of treatment efficacy. The advent of advanced Raman imaging techniques, such as stimulated Raman scattering, is creating opportunities for real-time in situ evaluation of prostate cancer. This review provides a focus on the recent preclinical and clinical achievements in implementing Raman-based techniques, highlighting remaining challenges for clinical applications. The research and clinical results achieved through in vivo and ex vivo Raman spectroscopy illustrate areas where these evolving technologies can be best translated into clinical practice.
Collapse
Affiliation(s)
- Fortis Gaba
- Department of Urology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- School of Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - William J Tipping
- Department for Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Mark Salji
- Department of Urology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Karen Faulds
- Department for Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Duncan Graham
- Department for Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Hing Y Leung
- Department of Urology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| |
Collapse
|
8
|
Blomme A, Peter C, Mui E, Rodriguez Blanco G, An N, Mason LM, Jamieson LE, McGregor GH, Lilla S, Ntala C, Patel R, Thiry M, Kung SHY, Leclercq M, Ford CA, Rushworth LK, McGarry DJ, Mason S, Repiscak P, Nixon C, Salji MJ, Markert E, MacKay GM, Kamphorst JJ, Graham D, Faulds K, Fazli L, Gleave ME, Avezov E, Edwards J, Yin H, Sumpton D, Blyth K, Close P, Murphy DJ, Zanivan S, Leung HY. THEM6-mediated reprogramming of lipid metabolism supports treatment resistance in prostate cancer. EMBO Mol Med 2022; 14:e14764. [PMID: 35014179 PMCID: PMC8899912 DOI: 10.15252/emmm.202114764] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the clinical benefit of androgen-deprivation therapy (ADT), the majority of patients with advanced prostate cancer (PCa) ultimately develop lethal castration-resistant prostate cancer (CRPC). In this study, we identified thioesterase superfamily member 6 (THEM6) as a marker of ADT resistance in PCa. THEM6 deletion reduces in vivo tumour growth and restores castration sensitivity in orthograft models of CRPC. Mechanistically, we show that the ER membrane-associated protein THEM6 regulates intracellular levels of ether lipids and is essential to trigger the induction of the ER stress response (UPR). Consequently, THEM6 loss in CRPC cells significantly alters ER function, reducing de novo sterol biosynthesis and preventing lipid-mediated activation of ATF4. Finally, we demonstrate that high THEM6 expression is associated with poor survival and correlates with high levels of UPR activation in PCa patients. Altogether, our results highlight THEM6 as a novel driver of therapy resistance in PCa as well as a promising target for the treatment of CRPC.
Collapse
Affiliation(s)
| | | | - Ernest Mui
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Ning An
- Laboratory of Cancer SignalingGIGA‐InstituteUniversity of LiègeLiègeBelgium
| | | | - Lauren E Jamieson
- Centre for Molecular NanometrologyDepartment of Pure and Applied ChemistryTechnology and Innovation CentreUniversity of StrathclydeGlasgowUK
| | - Grace H McGregor
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Chara Ntala
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Marc Thiry
- GIGA‐NeurosciencesUnit of Cell and Tissue BiologyUniversity of LiègeLiègeBelgium
| | - Sonia H Y Kung
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Vancouver Prostate CentreVancouverBCCanada
| | - Marine Leclercq
- Laboratory of Cancer SignalingGIGA‐InstituteUniversity of LiègeLiègeBelgium
| | | | - Linda K Rushworth
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Susan Mason
- CRUK Beatson InstituteGarscube EstateGlasgowUK
| | | | - Colin Nixon
- CRUK Beatson InstituteGarscube EstateGlasgowUK
| | - Mark J Salji
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Elke Markert
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | | | - Jurre J Kamphorst
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Duncan Graham
- Centre for Molecular NanometrologyDepartment of Pure and Applied ChemistryTechnology and Innovation CentreUniversity of StrathclydeGlasgowUK
| | - Karen Faulds
- Centre for Molecular NanometrologyDepartment of Pure and Applied ChemistryTechnology and Innovation CentreUniversity of StrathclydeGlasgowUK
| | - Ladan Fazli
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Vancouver Prostate CentreVancouverBCCanada
| | - Martin E Gleave
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Vancouver Prostate CentreVancouverBCCanada
| | - Edward Avezov
- UK Dementia Research Institute at University of CambridgeDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Joanne Edwards
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Huabing Yin
- School of EngineeringUniversity of GlasgowGlasgowUK
| | | | - Karen Blyth
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Pierre Close
- Laboratory of Cancer SignalingGIGA‐InstituteUniversity of LiègeLiègeBelgium
| | - Daniel J Murphy
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Sara Zanivan
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| | - Hing Y Leung
- CRUK Beatson InstituteGarscube EstateGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGarscube EstateGlasgowUK
| |
Collapse
|
9
|
Culig Z. Response to Androgens and Androgen Receptor Antagonists in the Presence of Cytokines in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13122944. [PMID: 34204596 PMCID: PMC8231240 DOI: 10.3390/cancers13122944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Prostate cancer is the most frequently diagnosed non-cutaneous tumor in men in the Western world. Therapy for non-organ confined prostate cancer includes anti-androgens such as bicalutamide, enzalutamide and darolutamide. The androgen receptor is expressed during tumor initiation and progression. Androgen receptor could be activated by interleukins, which are produced by blood cells and adjacent stroma. These cytokines may affect response of tumor cells to anti-androgenic drugs, which are commonly used in prostate cancer therapy. There are several experimental studies showing an effect of anti-cytokine therapies in prostate cancer. However, the clinical translation is limited and more clinical trials are needed to improve action of anti-androgens in prostate cells which are stimulated by cytokines. Abstract Non-steroidal anti-androgens have a major role in the treatment of non-localized prostate cancer. Interleukins are involved in the regulation of many cellular functions in prostate cancer and also modify cellular response to anti-androgens. A specific role of selected IL is presented in this review. IL-8 is a cytokine expressed in prostate cancer tissue and microenvironment and promotes proliferation and androgen receptor-mediated transcription. In contrast, IL-1 displays negative effects on expression of androgen receptor and its target genes. A subgroup of prostate cancers show neuroendocrine differentiation, which may be in part stimulated by androgen ablation. A similar effect was observed after treatment of cells with IL-10. Another cytokine which is implicated in regulation of androgenic response is IL-23, secreted by myeloid cells. Most studies on androgens and IL were carried out with IL-6, which acts through the signal transducer and activator of the transcription (STAT) factor pathway. IL-6 is implicated in resistance to enzalutamide. Activation of the STAT-3 pathway is associated with increased cellular stemness. IL-6 activation of the androgen receptor in some prostate cancers is associated with increased growth in vitro and in vivo. Molecules such as galiellalactone or niclosamide have an inhibitory effect on both androgen receptor and STAT-3 pathways.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Wang S, Yang Y, Cao YD, Tang XX, Du P. Androgen downregulation of miR-760 promotes prostate cancer cell growth by regulating IL6. Asian J Androl 2021; 23:85-90. [PMID: 32415054 PMCID: PMC7831841 DOI: 10.4103/aja.aja_20_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies in Western countries. Studies have shown that androgen contributes to the progression of PCa, but how androgen promotes PCa remains largely unknown. Here, we demonstrated that androgen suppressed the expression of miR-760 depending on the interaction between androgen and androgen receptor (AR). miR-760 was downregulated in prostate cancer tissues compared with normal tissues. Functional experiments showed that miR-760 downregulation promoted the proliferation and growth of LNCaP and 22rv1 cells. In contrast, miR-760 ectopic expression inhibited the proliferation of LNCaP and 22rv1 cells. DNA synthesis was suppressed by miR-760. Mechanistically, miR-760 bound to the 3'UTR of interleukin 6 (IL6). A mutation in the binding site disrupted their interaction. In addition, silencing of IL6 suppressed the proliferation of LNCaP and 22rv1 cells. IL6 was upregulated in PCa tissues. Our study reveals that androgen downregulates miR-760 to promote the growth of PCa cells by regulating IL6.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Urology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yong Yang
- Department of Urology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142,, China
| | - Yu-Dong Cao
- Department of Urology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142,, China
| | - Xing-Xing Tang
- Department of Urology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142,, China
| | - Peng Du
- Department of Urology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142,, China
| |
Collapse
|
11
|
Rushworth LK, Harle V, Repiscak P, Clark W, Shaw R, Hall H, Bushell M, Leung HY, Patel R. In vivo CRISPR/Cas9 knockout screen: TCEAL1 silencing enhances docetaxel efficacy in prostate cancer. Life Sci Alliance 2020; 3:e202000770. [PMID: 33033111 PMCID: PMC7556750 DOI: 10.26508/lsa.202000770] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 01/03/2023] Open
Abstract
Docetaxel chemotherapy in metastatic prostate cancer offers only a modest survival benefit because of emerging resistance. To identify candidate therapeutic gene targets, we applied a murine prostate cancer orthograft model that recapitulates clinical invasive prostate cancer in a genome-wide CRISPR/Cas9 screen under docetaxel treatment pressure. We identified 17 candidate genes whose suppression may enhance the efficacy of docetaxel, with transcription elongation factor A-like 1 (Tceal1) as the top candidate. TCEAL1 function is not fully characterised; it may modulate transcription in a promoter dependent fashion. Suppressed TCEAL1 expression in multiple human prostate cancer cell lines enhanced therapeutic response to docetaxel. Based on gene set enrichment analysis from transcriptomic data and flow cytometry, we confirmed that loss of TCEAL1 in combination with docetaxel leads to an altered cell cycle profile compared with docetaxel alone, with increased subG1 cell death and increased polyploidy. Here, we report the first in vivo genome-wide treatment sensitisation CRISPR screen in prostate cancer, and present proof of concept data on TCEAL1 as a candidate for a combinational strategy with the use of docetaxel.
Collapse
Affiliation(s)
- Linda K Rushworth
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Victoria Harle
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Peter Repiscak
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Robin Shaw
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Holly Hall
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Martin Bushell
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Hing Y Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | |
Collapse
|
12
|
Malviya G, Patel R, Salji M, Martinez RS, Repiscak P, Mui E, Champion S, Mrowinska A, Johnson E, AlRasheedi M, Pimlott S, Lewis D, Leung HY. 18F-Fluciclovine PET metabolic imaging reveals prostate cancer tumour heterogeneity associated with disease resistance to androgen deprivation therapy. EJNMMI Res 2020; 10:143. [PMID: 33237350 PMCID: PMC7688773 DOI: 10.1186/s13550-020-00728-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostate cancer is highly prevalent worldwide. Androgen deprivation therapy (ADT) remains the treatment of choice for incurable prostate cancer, but majority of patients develop disease recurrence following ADT. There is therefore an urgent need for early detection of treatment resistance. METHODS Isogenic androgen-responsive (CWR22Res) and castration-resistant (22Rv1) human prostate cancer cells were implanted into the anterior lobes of the prostate in CD-1 Nu mice to generate prostate orthografts. Castrated mice bearing CWR22Res and 22Rv1 orthografts mimic clinical prostate cancer following acute and chronic ADT, respectively. 18F-Fluciclovine (1-amino-3-fluorocyclobutane-1-carboxylic acid) with a radiochemical purity of > 99% was produced on a FASTlab synthesiser. Ki67 staining in endpoint orthografts was studied. Western blot, quantitative RT-PCR and next-generation sequencing transcriptomic analyses were performed to assess the expression levels of amino acid transporters (including LAT1 and ASCT2, which have been implicated for Fluciclovine uptake). Longitudinal metabolic imaging with 18F-Fluciclovine-based positron emission tomography (PET) was performed to study tumour response following acute and chronic ADT. RESULTS Both immunohistochemistry analysis of endpoint prostate tumours and longitudinal 18F-Fluciclovine imaging revealed tumour heterogeneity, particularly following ADT, with in vivo 18F-Fluciclovine uptake correlating to viable cancer cells in both androgen-proficient and castrated environment. Highlighting tumour subpopulation following ADT, both SUVpeak and coefficient of variation (CoV) values of 18F-Fluciclovine uptake are consistent with tumour heterogeneity revealed by immunohistochemistry. We studied the expression of amino acid transporters (AATs) for 18F-Fluciclovine, namely LAT1 (SLC7A5 and SLC3A2) and ASCT2 (SLC1A5). SLC7A5 and SLC3A2 were expressed at relatively high levels in 22Rv1 castration-resistant orthografts following chronic ADT (modelling clinical castration-resistant disease), while SLC1A5 was preferentially expression in CWR22Res tumours following acute ADT. Additional AATs such as SLC43A2 (LAT4) were shown to be upregulated following chronic ADT by transcriptomic analysis; their role in Fluciclovine uptake warrants investigation. CONCLUSION We studied in vivo 18F-Fluciclovine uptake in human prostate cancer orthograft models following acute and chronic ADT. 18F-Fluciclovine uptakes highlight tumour heterogeneity that may explain castration resistance and can be exploited as a clinical biomarker.
Collapse
Affiliation(s)
- Gaurav Malviya
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rachana Patel
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Mark Salji
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Urology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Rafael S Martinez
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Peter Repiscak
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Ernest Mui
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Susan Champion
- West of Scotland PET Centre, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Agata Mrowinska
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Emma Johnson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Maha AlRasheedi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Sally Pimlott
- West of Scotland PET Centre, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - David Lewis
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Hing Y Leung
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Department of Urology, NHS Greater Glasgow and Clyde, Glasgow, UK.
| |
Collapse
|
13
|
Chen X, Wei L, Yang L, Guo W, Guo Q, Zhou Y. Glycolysis inhibition and apoptosis induction in human prostate cancer cells by FV-429-mediated regulation of AR-AKT-HK2 signaling network. Food Chem Toxicol 2020; 143:111517. [PMID: 32619556 DOI: 10.1016/j.fct.2020.111517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023]
Abstract
Prostate cancer (PCa) depends on androgen receptor (AR) signaling to regulate cell metabolism, including glycolysis, and thereby promotes tumor growth. Glycolysis is overactive in PCa and associated with poor prognosis, but the therapeutic efficacy of glycolysis inhibitors has thus far been limited by their inability to induce cell death. FV-429, a flavonoid derivative of Wogonin, is a glycolysis inhibitor that has shown anti-cancer promise. In this study, we used FV-429 as an anti-PCa agent and investigated its mechanisms of action. In vitro, both the glycolytic ability and the viability of PCa cells were inhibited by FV-429. We found that FV-429 could induce mitochondrial dysfunction and apoptosis, with AKT-HK2 signaling pathway playing a key role. In addition, FV-429 had a pro-apoptotic effect on human prostate cancer cells that relied on the inhibition of AR expression and activity. In vivo, FV-429 exerted significant tumor-repressing activity with high safety in the xenograft model using LNCaP cells. In summary, we demonstrated that FV-429 induced glycolysis inhibition and apoptosis in human prostate cancer cells by downregulating the AR-AKT-HK2 signaling network, making FV-429 a promising candidate as one therapeutic agent for advanced PCa.
Collapse
Affiliation(s)
- Xian Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Liliang Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Wenjing Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
14
|
Blomme A, Ford CA, Mui E, Patel R, Ntala C, Jamieson LE, Planque M, McGregor GH, Peixoto P, Hervouet E, Nixon C, Salji M, Gaughan L, Markert E, Repiscak P, Sumpton D, Blanco GR, Lilla S, Kamphorst JJ, Graham D, Faulds K, MacKay GM, Fendt SM, Zanivan S, Leung HY. 2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer. Nat Commun 2020; 11:2508. [PMID: 32427840 PMCID: PMC7237503 DOI: 10.1038/s41467-020-16126-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Despite the clinical success of Androgen Receptor (AR)-targeted therapies, reactivation of AR signalling remains the main driver of castration-resistant prostate cancer (CRPC) progression. In this study, we perform a comprehensive unbiased characterisation of LNCaP cells chronically exposed to multiple AR inhibitors (ARI). Combined proteomics and metabolomics analyses implicate an acquired metabolic phenotype common in ARI-resistant cells and associated with perturbed glucose and lipid metabolism. To exploit this phenotype, we delineate a subset of proteins consistently associated with ARI resistance and highlight mitochondrial 2,4-dienoyl-CoA reductase (DECR1), an auxiliary enzyme of beta-oxidation, as a clinically relevant biomarker for CRPC. Mechanistically, DECR1 participates in redox homeostasis by controlling the balance between saturated and unsaturated phospholipids. DECR1 knockout induces ER stress and sensitises CRPC cells to ferroptosis. In vivo, DECR1 deletion impairs lipid metabolism and reduces CRPC tumour growth, emphasizing the importance of DECR1 in the development of treatment resistance.
Collapse
Affiliation(s)
- Arnaud Blomme
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Catriona A Ford
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Ernest Mui
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Rachana Patel
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Chara Ntala
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Lauren E Jamieson
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Grace H McGregor
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Paul Peixoto
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
- DIMACELL Dispositif Interrégional d'Imagerie Cellulaire, Dijon, France
| | - Eric Hervouet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
- DIMACELL Dispositif Interrégional d'Imagerie Cellulaire, Dijon, France
| | - Colin Nixon
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Mark Salji
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Luke Gaughan
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Elke Markert
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Peter Repiscak
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David Sumpton
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | | | - Sergio Lilla
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jurre J Kamphorst
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Duncan Graham
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Karen Faulds
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Gillian M MacKay
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Sara Zanivan
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Hing Y Leung
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
15
|
Patel R, Brzezinska EA, Repiscak P, Ahmad I, Mui E, Gao M, Blomme A, Harle V, Tan EH, Malviya G, Mrowinska A, Loveridge CJ, Rushworth LK, Edwards J, Ntala C, Nixon C, Hedley A, Mackay G, Tardito S, Sansom OJ, Leung HY. Activation of β-Catenin Cooperates with Loss of Pten to Drive AR-Independent Castration-Resistant Prostate Cancer. Cancer Res 2020; 80:576-590. [PMID: 31719098 DOI: 10.1158/0008-5472.can-19-1684] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/04/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022]
Abstract
Inhibition of the androgen receptor (AR) is the main strategy to treat advanced prostate cancers. AR-independent treatment-resistant prostate cancer is a major unresolved clinical problem. Patients with prostate cancer with alterations in canonical WNT pathway genes, which lead to β-catenin activation, are refractory to AR-targeted therapies. Here, using clinically relevant murine prostate cancer models, we investigated the significance of β-catenin activation in prostate cancer progression and treatment resistance. β-Catenin activation, independent of the cell of origin, cooperated with Pten loss to drive AR-independent castration-resistant prostate cancer. Prostate tumors with β-catenin activation relied on the noncanonical WNT ligand WNT5a for sustained growth. WNT5a repressed AR expression and maintained the expression of c-Myc, an oncogenic effector of β-catenin activation, by mediating nuclear localization of NFκBp65 and β-catenin. Overall, WNT/β-catenin and AR signaling are reciprocally inhibited. Therefore, inhibiting WNT/β-catenin signaling by limiting WNT secretion in concert with AR inhibition may be useful for treating prostate cancers with alterations in WNT pathway genes. SIGNIFICANCE: Targeting of both AR and WNT/β-catenin signaling may be required to treat prostate cancers that exhibit alterations of the WNT pathway.
Collapse
MESH Headings
- Androgen Receptor Antagonists/pharmacology
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- PTEN Phosphohydrolase/deficiency
- Prognosis
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Wnt-5a Protein/genetics
- Wnt-5a Protein/metabolism
- Xenograft Model Antitumor Assays
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Rachana Patel
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom.
| | | | - Peter Repiscak
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Imran Ahmad
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Ernest Mui
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Meiling Gao
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Arnaud Blomme
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Victoria Harle
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Ee Hong Tan
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Agata Mrowinska
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Carolyn J Loveridge
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Linda K Rushworth
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Joanne Edwards
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Chara Ntala
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Gillian Mackay
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| | - Hing Y Leung
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom.
- Institute of Cancer Sciences, Glasgow, Scotland, United Kingdom
| |
Collapse
|
16
|
Neuwirt H, Bouchal J, Kharaishvili G, Ploner C, Jöhrer K, Pitterl F, Weber A, Klocker H, Eder IE. Cancer-associated fibroblasts promote prostate tumor growth and progression through upregulation of cholesterol and steroid biosynthesis. Cell Commun Signal 2020; 18:11. [PMID: 31980029 PMCID: PMC6979368 DOI: 10.1186/s12964-019-0505-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Androgen receptor targeted therapies have emerged as an effective tool to manage advanced prostate cancer (PCa). Nevertheless, frequent occurrence of therapy resistance represents a major challenge in the clinical management of patients, also because the molecular mechanisms behind therapy resistance are not yet fully understood. In the present study, we therefore aimed to identify novel targets to intervene with therapy resistance using gene expression analysis of PCa co-culture spheroids where PCa cells are grown in the presence of cancer-associated fibroblasts (CAFs) and which have been previously shown to be a reliable model for antiandrogen resistance. Methods Gene expression changes of co-culture spheroids (LNCaP and DuCaP seeded together with CAFs) were identified by Illumina microarray profiling. Real-time PCR, Western blotting, immunohistochemistry and cell viability assays in 2D and 3D culture were performed to validate the expression of selected targets in vitro and in vivo. Cytokine profiling was conducted to analyze CAF-conditioned medium. Results Gene expression analysis of co-culture spheroids revealed that CAFs induced a significant upregulation of cholesterol and steroid biosynthesis pathways in PCa cells. Cytokine profiling revealed high amounts of pro-inflammatory, pro-migratory and pro-angiogenic factors in the CAF supernatant. In particular, two genes, 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (HMGCS2) and aldo-keto reductase family 1 member C3 (AKR1C3), were significantly upregulated in PCa cells upon co-culture with CAFs. Both enzymes were also significantly increased in human PCa compared to benign tissue with AKR1C3 expression even being associated with Gleason score and metastatic status. Inhibiting HMGCS2 and AKR1C3 resulted in significant growth retardation of co-culture spheroids as well as of various castration and enzalutamide resistant cell lines in 2D and 3D culture, underscoring their putative role in PCa. Importantly, dual targeting of cholesterol and steroid biosynthesis with simvastatin, a commonly prescribed cholesterol synthesis inhibitor, and an inhibitor against AKR1C3 had the strongest growth inhibitory effect. Conclusions From our results we conclude that CAFs induce an upregulation of cholesterol and steroid biosynthesis in PCa cells, driving them into AR targeted therapy resistance. Blocking both pathways with simvastatin and an AKR1C3 inhibitor may therefore be a promising approach to overcome resistances to AR targeted therapies in PCa. Video abstract
Collapse
Affiliation(s)
- Hannes Neuwirt
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University of Innsbruck, Innsbruck, Austria
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Karin Jöhrer
- Tyrolean Cancer Research Institute, Innsbruck, Austria.,Salzburg Cancer Research Institute, Laboratory for Immunological and Molecular Cancer Research, Salzburg, Austria
| | - Florian Pitterl
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja Weber
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Iris E Eder
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
17
|
Sharma B, Agnihotri N. Role of cholesterol homeostasis and its efflux pathways in cancer progression. J Steroid Biochem Mol Biol 2019; 191:105377. [PMID: 31063804 DOI: 10.1016/j.jsbmb.2019.105377] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/09/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022]
Abstract
Tumor cells show high avidity for cholesterol in order to support their inherent nature to divide and proliferate. This results in the rewiring of cholesterol homeostatic pathways by influencing not only de novo synthesis but also uptake or efflux pathways of cholesterol. Recent findings have pointed towards the importance of cholesterol efflux in tumor pathogenesis. Cholesterol efflux is the first and foremost step in reverse cholesterol transport and any perturbation in this pathway may lead to the accumulation of intracellular cholesterol, thereby altering the cellular equilibrium. This review addresses the different mechanisms of cholesterol efflux from the cell and highlights their role and regulation in context to tumor development. There are four different routes by which cholesterol can be effluxed from the cell namely, 1) passive diffusion of cholesterol to mature HDL particles, 2) SR-B1 mediated facilitated diffusion, 3) Active efflux to apo A1 via ABCA1 and 4) ABCG1 mediated efflux to mature HDL. These molecular players facilitating cholesterol efflux are engaged in a complex interplay with different signaling pathways. Thus, an understanding of the efflux pathways, their regulation and cross-talk with signaling molecules may provide novel prognostic markers and therapeutic targets to combat the onset of carcinogenesis.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biochemistry, BMS-Block II, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Navneet Agnihotri
- Department of Biochemistry, BMS-Block II, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
18
|
Liu YN, Niu S, Chen WY, Zhang Q, Tao Y, Chen WH, Jiang KC, Chen X, Shi H, Liu A, Li J, Li Y, Lee YC, Zhang X, Huang J. Leukemia Inhibitory Factor Promotes Castration-resistant Prostate Cancer and Neuroendocrine Differentiation by Activated ZBTB46. Clin Cancer Res 2019; 25:4128-4140. [PMID: 30962287 PMCID: PMC7168873 DOI: 10.1158/1078-0432.ccr-18-3239] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/22/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The molecular targets for castration-resistant prostate cancer (CRPC) are unknown because the disease inevitably recurs, and therapeutic approaches for patients with CRPC remain less well understood. We sought to investigate regulatory mechanisms that result in increased therapeutic resistance, which is associated with neuroendocrine differentiation of prostate cancer and linked to dysregulation of the androgen-responsive pathway. EXPERIMENTAL DESIGN The underlying intracellular mechanism that sustains the oncogenic network involved in neuroendocrine differentiation and therapeutic resistance of prostate cancer was evaluated to investigate and identify effectors. Multiple sets of samples with prostate adenocarcinomas and CRPC were assessed via IHC and other assays. RESULTS We demonstrated that leukemia inhibitory factor (LIF) was induced by androgen deprivation therapy (ADT) and was upregulated by ZBTB46 in prostate cancer to promote CRPC and neuroendocrine differentiation. LIF was found to be induced in patients with prostate cancer after ADT and was associated with enriched nuclear ZBTB46 staining in high-grade prostate tumors. In prostate cancer cells, high ZBTB46 output was responsible for the activation of LIF-STAT3 signaling and neuroendocrine-like features. The abundance of LIF was mediated by ADT-induced ZBTB46 through a physical interaction with the regulatory sequence of LIF. Analysis of serum from patients showed that cases of higher tumor grade and metastatic prostate cancer exhibited higher LIF titers. CONCLUSIONS Our findings suggest that LIF is a potent serum biomarker for diagnosing advanced prostate cancer and that targeting the ZBTB46-LIF axis may therefore inhibit CRPC development and neuroendocrine differentiation after ADT.
Collapse
Affiliation(s)
- Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shaoxi Niu
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Medical Academy, Beijing, China
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Qingfu Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yulei Tao
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Xufeng Chen
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Huaiyin Shi
- Department of Pathology, The PLA General Hospital, Beijing, China
| | - Aijun Liu
- Department of Pathology, The PLA General Hospital, Beijing, China
| | - Jinhang Li
- Department of Pathology, The PLA General Hospital, Beijing, China
| | - Yanjing Li
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Yi-Chao Lee
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Xu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Chinese PLA Medical Academy, Beijing, China.
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
19
|
Bray TL, Salji M, Brombin A, Pérez-López AM, Rubio-Ruiz B, Galbraith LCA, Patton EE, Leung HY, Unciti-Broceta A. Bright insights into palladium-triggered local chemotherapy. Chem Sci 2018; 9:7354-7361. [PMID: 30542538 PMCID: PMC6237126 DOI: 10.1039/c8sc02291g] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022] Open
Abstract
The incorporation of transition metal catalysts to the bioorthogonal toolbox has opened the possibility of producing supra-stoichiometric amounts of xenobiotics in living systems in a non-enzymatic fashion. For medical use, such metals could be embedded in implantable devices (i.e. heterogeneous catalyst) to "synthesize" drugs in desired locations (e.g. in a tumour) with high specificity and for extended periods of time, overcoming the useful life limitations of current local therapy modalities directed to specific organ sites (e.g. brachytherapy, controlled release systems). To translate this approach into a bona fide therapeutic option, it is essential to develop clinically-accessible implantation procedures and to understand and validate the activation process in relevant preclinical models. Herein we report the development of a novel Pd-activatable precursor of the red-fluorescent drug doxorubicin and Pd devices of optimized size and activity. Screening in state-of-the-art cancer models provided fundamental insights into the insertion protocols, safety and stability of the devices and into the prodrug distribution profile before and after activation.
Collapse
Affiliation(s)
- Thomas L Bray
- Cancer Research UK Edinburgh Centre , Institute of Genetics and Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , UK .
| | - Mark Salji
- Institute of Cancer Sciences , University of Glasgow , Bearsden , Glasgow G61 1QH , UK .
- CRUK Beatson Institute , Bearsden , Glasgow G61 1BD , UK
| | - Alessandro Brombin
- Cancer Research UK Edinburgh Centre , Institute of Genetics and Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , UK .
- MRC Human Genetics Unit , Institute of Genetics & Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , UK
| | - Ana M Pérez-López
- Cancer Research UK Edinburgh Centre , Institute of Genetics and Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , UK .
| | - Belén Rubio-Ruiz
- Cancer Research UK Edinburgh Centre , Institute of Genetics and Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , UK .
| | - Laura C A Galbraith
- Institute of Cancer Sciences , University of Glasgow , Bearsden , Glasgow G61 1QH , UK .
- CRUK Beatson Institute , Bearsden , Glasgow G61 1BD , UK
| | - E Elizabeth Patton
- Cancer Research UK Edinburgh Centre , Institute of Genetics and Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , UK .
- MRC Human Genetics Unit , Institute of Genetics & Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , UK
| | - Hing Y Leung
- Institute of Cancer Sciences , University of Glasgow , Bearsden , Glasgow G61 1QH , UK .
- CRUK Beatson Institute , Bearsden , Glasgow G61 1BD , UK
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre , Institute of Genetics and Molecular Medicine , University of Edinburgh , Crewe Road South , Edinburgh EH4 2XR , UK .
| |
Collapse
|