1
|
Kolczyńska-Matysiak K, Karwen T, Loeffler M, Hawro I, Kassouf T, Stegner D, Sumara G. Dense but not alpha granules of platelets are required for insulin secretion from pancreatic β cells. Biochem Biophys Res Commun 2024; 734:150753. [PMID: 39366180 DOI: 10.1016/j.bbrc.2024.150753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVES Platelets, originally described for their role in blood coagulation, are now also recognized as key players in modulating inflammation, tissue regeneration, angiogenesis, and carcinogenesis. Recent evidence suggests that platelets also influence insulin secretion from pancreatic β cells. The multifaceted functions of platelets are mediated by the factors stored in their alpha granules (AGs) and dense granules (DGs). AGs primarily contain proteins, while DGs are rich in small molecules, and both types of granules are released during blood coagulation. Specific components stored in AGs and DGs are implicated in various inflammatory, regenerative, and tumorigenic processes. However, the relative contributions of AGs and DGs to the regulation of pancreatic β cell function have not been previously explored. METHODS In this study, we utilized mouse models deficient in AG content (neurobeachin-like 2 (Nbeal2) -deficient mice) and models with defective DG release (Unc13d-deficiency in bone marrow-derived cells) to investigate the impact of platelet granules on insulin secretion from pancreatic β cells. RESULTS Our findings indicate that AG deficiency has little to no effect on pancreatic β cell function and glucose homeostasis. Conversely, mice with defective DG release exhibited glucose intolerance and reduced insulin secretion. Furthermore, Unc13d-deficiency in hematopoietic stem cells led to a reduction in adipose tissue gain in obese mice. CONCLUSIONS Obtained data suggest that DGs, but not AGs, mediate the influence of platelets on pancreatic β cells, thereby modulating glucose metabolism.
Collapse
Affiliation(s)
| | - Till Karwen
- Rudolf-Virchow-Zentrum. Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| | - Mona Loeffler
- Rudolf-Virchow-Zentrum. Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Toufic Kassouf
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - David Stegner
- Rudolf-Virchow-Zentrum. Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany; Institute of Experimental Biomedicine I, University Hospital Würzburg, 97080, Würzburg, Germany.
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
2
|
Rada P, Carceller-López E, Hitos AB, Gómez-Santos B, Fernández-Hernández C, Rey E, Pose-Utrilla J, García-Monzón C, González-Rodríguez Á, Sabio G, García A, Aspichueta P, Iglesias T, Valverde ÁM. Protein kinase D2 modulates hepatic insulin sensitivity in male mice. Mol Metab 2024; 90:102045. [PMID: 39401614 PMCID: PMC11535753 DOI: 10.1016/j.molmet.2024.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVES Protein kinase D (PKD) family is emerging as relevant regulator of metabolic homeostasis. However, the precise role of PKD2 in modulating hepatic insulin signaling has not been fully elucidated and it is the aim of this study. METHODS PKD inhibition was analyzed for insulin signaling in mouse and human hepatocytes. PKD2 was overexpressed in Huh7 hepatocytes and mouse liver, and insulin responses were evaluated. Mice with hepatocyte-specific PKD2 depletion (PKD2ΔHep) and PKD2fl/fl mice were fed a chow (CHD) or high fat diet (HFD) and glucose homeostasis and lipid metabolism were investigated. RESULTS PKD2 silencing enhanced insulin signaling in hepatocytes, an effect also found in primary hepatocytes from PKD2ΔHep mice. Conversely, a constitutively active PKD2 mutant reduced insulin-stimulated AKT phosphorylation. A more in-depth analysis revealed reduced IRS1 serine phosphorylation under basal conditions and increased IRS1 tyrosine phosphorylation in PKD2ΔHep primary hepatocytes upon insulin stimulation and, importantly PKD co-immunoprecipitates with IRS1. In vivo constitutively active PKD2 overexpression resulted in a moderate impairment of glucose homeostasis and reduced insulin signaling in the liver. On the contrary, HFD-fed PKD2ΔHep male mice displayed improved glucose and pyruvate tolerance, as well as higher peripheral insulin tolerance and enhanced hepatic insulin signaling compared to control PKD2fl/fl mice. Despite of a remodeling of hepatic lipid metabolism in HFD-fed PKD2ΔHep mice, similar steatosis grade was found in both genotypes. CONCLUSIONS Results herein have unveiled an unknown role of PKD2 in the control of insulin signaling in the liver at the level of IRS1 and point PKD2 as a therapeutic target for hepatic insulin resistance.
Collapse
Affiliation(s)
- Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Elena Carceller-López
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Ana B Hitos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Beatriz Gómez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Constanza Fernández-Hernández
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Esther Rey
- Liver Research Unit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Julia Pose-Utrilla
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Águeda González-Rodríguez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Liver Research Unit, Santa Cristina University Hospital, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Antonia García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; BioBizkaia Health Research Institute, Barakaldo, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
3
|
Renton MC, McGee SL, Howlett KF. The role of protein kinase D (PKD) in obesity: Lessons from the heart and other tissues. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119814. [PMID: 39128598 DOI: 10.1016/j.bbamcr.2024.119814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Obesity causes a range of tissue dysfunctions that increases the risk for morbidity and mortality. Protein kinase D (PKD) represents a family of stress-activated intracellular signalling proteins that regulate essential processes such as cell proliferation and differentiation, cell survival, and exocytosis. Evidence suggests that PKD regulates the cellular adaptations to the obese environment in metabolically important tissues and drives the development of a variety of diseases. This review explores the role that PKD plays in tissue dysfunction in obesity, with special consideration of the development of obesity-mediated cardiomyopathy, a distinct cardiovascular disease that occurs in the absence of common comorbidities and leads to eventual heart failure and death. The downstream mechanisms mediated by PKD that could contribute to dysfunctions observed in the heart and other metabolically important tissues in obesity, and the predicted cell types involved are discussed to suggest potential targets for the development of therapeutics against obesity-related disease.
Collapse
Affiliation(s)
- Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia; The Fralin Biomedical Research Institute at Virginia Tech Carilion, Centre for Vascular and Heart Research, Roanoke, VA, USA.
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia.
| |
Collapse
|
4
|
Sweetalana, Mooney JA, Szpiech ZA. Genotypic and phenotypic consequences of domestication in dogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592072. [PMID: 38746159 PMCID: PMC11092585 DOI: 10.1101/2024.05.01.592072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Runs of homozygosity (ROH) are genomic regions that arise when two copies of an identical ancestral haplotype are inherited from parents with a recent common ancestor. In this study, we performed a novel comprehensive analysis to infer genetic diversity among dogs and quantified the association between ROH and non-disease phenotypes. We found distinct patterns of genetic diversity across clades of breed dogs and elevated levels of long ROH, compared to non- domesticated dogs. These high levels of F ROH (inbreeding coefficient) are a consequence of recent inbreeding among domesticated dogs during breed establishment. We identified statistically significant associations between F ROH and height, weight, lifespan, muscled, white head, white chest, furnish, and length of fur. After correcting for population structure, we identified more than 45 genes across the three examined quantitative traits that exceeded the threshold for suggestive significance, indicating significant polygenic inheritance for the complex quantitative phenotypes in dogs.
Collapse
|
5
|
Wit M, Belykh A, Sumara G. Protein kinase D (PKD) on the crossroad of lipid absorption, synthesis and utilization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119653. [PMID: 38104800 DOI: 10.1016/j.bbamcr.2023.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Inappropriate lipid levels in the blood, as well as its content and composition in different organs, underlie multiple metabolic disorders including obesity, non-alcoholic fatty liver disease, type 2 diabetes, and atherosclerosis. Multiple processes contribute to the complex metabolism of triglycerides (TGs), fatty acids (FAs), and other lipid species. These consist of digestion and absorption of dietary lipids, de novo FAs synthesis (lipogenesis), uptake of TGs and FAs by peripheral tissues, TGs storage in the intracellular depots as well as lipid utilization for β-oxidation and their conversion to lipid-derivatives. A majority of the enzymatic reactions linked to lipogenesis, TGs synthesis, lipid absorption, and transport are happening at the endoplasmic reticulum, while β-oxidation takes place in mitochondria and peroxisomes. The Golgi apparatus is a central sorting, protein- and lipid-modifying organelle and hence is involved in lipid metabolism as well. However, the impact of the processes taking part in the Golgi apparatus are often overseen. The protein kinase D (PKD) family (composed of three members, PKD1, 2, and 3) is the master regulator of Golgi dynamics. PKDs are also a sensor of different lipid species in distinct cellular compartments. In this review, we discuss the roles of PKD family members in the regulation of lipid metabolism including the processes executed by PKDs at the Golgi apparatus. We also discuss the role of PKDs-dependent signaling in different cellular compartments and organs in the context of the development of metabolic disorders.
Collapse
Affiliation(s)
- Magdalena Wit
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Andrei Belykh
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warszawa, Poland.
| |
Collapse
|
6
|
Huang L, Xie S, Zhang Y, Du W, Liang X, Pan W, Yang F, Niu R, Chen H, Geng L, Xiang L, Gong S, Xu W. The novel mechanism of human norovirus induced diarrhea: Activation of PKD2 caused by HuNoVs destroyed AQP3 expression through AP2γ in intestinal epithelial cells. Life Sci 2024; 337:122348. [PMID: 38103725 DOI: 10.1016/j.lfs.2023.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Our previous work has demonstrated protein kinase D2 (PKD2) played a critical influence in experimental colitis in animal. However, the role of PKD2 in human norovirus (HuNoVs)-induced diarrhea remained unknown. Aquaporin 3 (AQP3) expression, a critical protein mediating diarrhea, was assessed by western blot, qRT-PCR in intestinal epithelial cells (IECs). Luciferase, IF, IP and ChIP assay were used to explore the mechanism through which HuNoVs regulated AQP3. Herein, we found that AQP3 expression was drastically decreased in IECs in response to VP1 transfection, the major capsid protein of HuNoVs, or HuNoVs infection. Mechanistically, HuNoVs triggered phosphorylation of PKD2 through TLR2/MyD88/IRAK4, which further inhibited AP2γ activation and nuclear translocation, leading to suppress AQP3 transactivation in IECs. Most importantly, PKD2 interacted with MyD88/IRAK4, and VP1 overexpression enhanced this complex form, which, in turn, to increase PKD2 phosphorylation. In addition, endogenous PKD2 interacted with AP2γ, and this interaction was enhanced in response to HuNoVs treatment, and subsequently resulting in AP2γ phosphorylation inhibition. Moreover, inhibition of PKD2 activation could reverse the inhibitory effect of HuNoVs on AQP3 expression. In summary, we established a novel mechanism that HuNoV inhibited AQP3 expression through TLR2/MyD88/IRAK4/PKD2 signaling pathway, targeting PKD2 activity could be a promising strategy for prevention of HuNoVs-induced gastroenteritis.
Collapse
Affiliation(s)
- Ling Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Shuping Xie
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Yuhua Zhang
- Department of Pediatrics, Putian Ninety-Five Hospital, Putian 351100, China
| | - Wenjun Du
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Xinhua Liang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Wenxu Pan
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Fangying Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Rongwei Niu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Li Xiang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China.
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China.
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China.
| |
Collapse
|
7
|
Engin AB, Engin A. The Checkpoints of Intestinal Fat Absorption in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:73-95. [PMID: 39287849 DOI: 10.1007/978-3-031-63657-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this chapter, intestinal lipid transport, which plays a central role in fat homeostasis and the development of obesity in addition to the mechanisms of fatty acids and monoacylglycerol absorption in the intestinal lumen and reassembly of these within the enterocyte was described. A part of the resynthesized triglycerides (triacylglycerols; TAG) is repackaged in the intestine to form the hydrophobic core of chylomicrons (CMs). These are delivered as metabolic fuels, essential fatty acids, and other lipid-soluble nutrients, from enterocytes to the peripheral tissues following detachment from the endoplasmic reticulum membrane. Moreover, the attitudes of multiple receptor functions in dietary lipid uptake, synthesis, and transport are highlighted. Additionally, intestinal fatty acid binding proteins (FABPs), which increase the cytosolic flux of fatty acids via intermembrane transfer in enterocytes, and the functions of checkpoints for receptor-mediated fatty acid signaling are debated. The importance of the balance between storage and secretion of dietary fat by enterocytes in determining the physiological fate of dietary fat, including regulation of blood lipid concentrations and energy balance, is mentioned. Consequently, promising checkpoints regarding how intestinal fat processing affects lipid homeostatic mechanisms and lipid stores in the body and the prevention of obesity-lipotoxicity due to excessive intestinal lipid absorption are evaluated. In this context, dietary TAG digestion, pharmacological inhibition of TAG hydrolysis, the regulation of long-chain fatty acid uptake traffic into adipocytes, intracellular TAG resynthesis, the enlargement of cytoplasmic lipid droplets in enterocytes and constitutional alteration of their proteome, CD36-mediated conversion of diet-derived fatty acid into cellular lipid messengers and their functions are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
8
|
Karwen T, Kolczynska‐Matysiak K, Gross C, Löffler MC, Friedrich M, Loza‐Valdes A, Schmitz W, Wit M, Dziaczkowski F, Belykh A, Trujillo‐Viera J, El‐Merahbi R, Deppermann C, Nawaz S, Hastoy B, Demczuk A, Erk M, Wieckowski MR, Rorsman P, Heinze KG, Stegner D, Nieswandt B, Sumara G. Platelet-derived lipids promote insulin secretion of pancreatic β cells. EMBO Mol Med 2023; 15:e16858. [PMID: 37490001 PMCID: PMC10493578 DOI: 10.15252/emmm.202216858] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic β cells are the central regulators of systemic glucose homeostasis. Here, we show that factor(s) derived from β cells stimulate platelet activity and platelets selectively localize to the vascular endothelium of pancreatic islets. Both depletion of platelets and ablation of major platelet adhesion or activation pathways consistently resulted in impaired glucose tolerance and decreased circulating insulin levels. Furthermore, we found platelet-derived lipid classes to promote insulin secretion and identified 20-Hydroxyeicosatetraenoic acid (20-HETE) as the main factor promoting β cells function. Finally, we demonstrate that the levels of platelet-derived 20-HETE decline with age and that this parallels with reduced impact of platelets on β cell function. Our findings identify an unexpected function of platelets in the regulation of insulin secretion and glucose metabolism, which promotes metabolic fitness in young individuals.
Collapse
Affiliation(s)
- Till Karwen
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | | | - Carina Gross
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Mona C Löffler
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Mike Friedrich
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Angel Loza‐Valdes
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Werner Schmitz
- Theodor Boveri Institute, BiocenterUniversity of WürzburgWürzburgGermany
| | - Magdalena Wit
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Filip Dziaczkowski
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Andrei Belykh
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Jonathan Trujillo‐Viera
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Rabih El‐Merahbi
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Carsten Deppermann
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Center for Thrombosis and HemostasisUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
| | - Sameena Nawaz
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
| | - Benoit Hastoy
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
| | - Agnieszka Demczuk
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Manuela Erk
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Mariusz R Wieckowski
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Patrik Rorsman
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
- Department of Physiology, Institute of Neuroscience and PhysiologyUniversity of GöteborgGöteborgSweden
- Oxford National Institute for Health Research, Biomedical Research CentreChurchill HospitalOxfordUK
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - David Stegner
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| |
Collapse
|
9
|
Kozan DW, Derrick JT, Ludington WB, Farber SA. From worms to humans: Understanding intestinal lipid metabolism via model organisms. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159290. [PMID: 36738984 PMCID: PMC9974936 DOI: 10.1016/j.bbalip.2023.159290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
The intestine is responsible for efficient absorption and packaging of dietary lipids before they enter the circulatory system. This review provides a comprehensive overview of how intestinal enterocytes from diverse model organisms absorb dietary lipid and subsequently secrete the largest class of lipoproteins (chylomicrons) to meet the unique needs of each animal. We discuss the putative relationship between diet and metabolic disease progression, specifically Type 2 Diabetes Mellitus. Understanding the molecular response of intestinal cells to dietary lipid has the potential to undercover novel therapies to combat metabolic syndrome.
Collapse
Affiliation(s)
- Darby W Kozan
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States
| | - Joshua T Derrick
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States
| | - William B Ludington
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States
| | - Steven A Farber
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States.
| |
Collapse
|
10
|
Qin S, Su Q, Li X, Shao M, Zhang Y, Yu F, Ni Y, Zhong J. Curcumin suppresses cell proliferation and reduces cholesterol absorption in Caco-2 cells by activating the TRPA1 channel. Lipids Health Dis 2023; 22:6. [PMID: 36641489 PMCID: PMC9840307 DOI: 10.1186/s12944-022-01750-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Curcumin (Cur) is a bioactive dietary polyphenol of turmeric with various biological activities against several cancers. Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Intestinal cholesterol homeostasis is associated with CRC. Chemotherapy for CRC is related to varied adverse effects. Therefore, natural products with anti-cancer properties represent a potential strategy for primary prevention of CRC. METHODS The present study used Cur as a therapeutic approach against CRC using the Caco-2 cell line. The cells were treated with different concentrations of Cur for different duration of time and then the proliferation ability of cells was assessed using Cell Counting Kit-8 and 5-Ethynyl-2'-deoxyuridine assays. Oil red O staining and cholesterol assay kit were used to evaluate cellular lipid content and cholesterol outward transportation. Finally, the protein expressions of cholesterol transport-related protein and signal transduction molecules were assessed using Western blot assay. RESULTS Cur inhibited cell proliferation in Caco-2 cells in a dose- and time-dependent manner by activating the transient receptor potential cation channel subfamily A member 1 (TRPA1) channel. Activation of the TRPA1 channel led to increased intracellular calcium, peroxisome proliferator-activated receptor gamma (PPARγ) upregulation, and the subsequent downregulation of the specificity protein-1 (SP-1)/sterol regulatory element-binding protein-2 (SREBP-2)/Niemann-Pick C1-like 1 (NPC1L1) signaling pathway-related proteins, and finally reduced cholesterol absorption in Caco-2 cells. CONCLUSIONS Cur inhibits cell proliferation and reduces cholesterol absorption in Caco-2 cells through the Ca2+/PPARγ/SP-1/SREBP-2/NPC1L1 signaling by activating the TRPA1 channel, suggesting that Cur can be used as a dietary supplement for the primary prevention of CRC. In Caco-2 cells, Cur first stimulates calcium influx by activating the TRPA1 channel, further upregulates PPARγ and downregulates SP-1/SREBP-2/NPC1L1 signaling pathway, and finally inhibits the absorption of cholesterol. TRPA1, transient receptor potential cation channel subfamily A member 1; NPC1L1, Niemann-Pick C1-like 1; PPARγ, peroxisome proliferator-activated receptor gamma; SP-1, specificity protein-1; SREBP-2, sterol regulatory element-binding protein-2; Cur, curcumin.
Collapse
Affiliation(s)
- Si Qin
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Qian Su
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Xiang Li
- grid.11135.370000 0001 2256 9319College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Muqing Shao
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Yindi Zhang
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Fadong Yu
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Yinxing Ni
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| | - Jian Zhong
- grid.203458.80000 0000 8653 0555Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, No.1, Shuanghu Branch Road, Chongqing, 401120 China
| |
Collapse
|
11
|
Wang QJ, Wipf P. Small Molecule Inhibitors of Protein Kinase D: Early Development, Current Approaches, and Future Directions. J Med Chem 2023; 66:122-139. [PMID: 36538005 DOI: 10.1021/acs.jmedchem.2c01599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Now entering its fourth decade, research on the biological function, small molecule inhibition, and disease relevance of the three known isoforms of protein kinase D, PKD1, PKD2, and PKD3, has entered a mature development stage. This mini-perspective focuses on the medicinal chemistry that provided a structurally diverse set of mainly active site inhibitors, which, for a brief time period, moved through preclinical development stages but have yet to be tested in clinical trials. In particular, between 2006 and 2012, a rapid expansion of synthetic efforts led to several moderately to highly PKD-selective chemotypes but did not yet achieve PKD subtype selectivity or resolve general toxicity and pharmacokinetic challenges. In addition to cancer, other unresolved medical needs in cardiovascular, inflammatory, and metabolic diseases would, however, benefit from a renewed focus on potent and selective PKD modulators.
Collapse
Affiliation(s)
- Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
12
|
Data-Independent Acquisition-Based Serum Proteomic Profiling of Adult Moyamoya Disease Patients Reveals the Potential Pathogenesis of Vascular Changes. J Mol Neurosci 2022; 72:2473-2485. [PMID: 36520382 DOI: 10.1007/s12031-022-02092-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Moyamoya disease (MMD) is a chronic cerebrovascular disease with unknown etiology. The pathogenesis of vascular changes remains unclear. Ischemic and hemorrhagic adult MMD patients and healthy volunteers were enrolled to collect serum for data-independent acquisition (DIA)-based proteomic analysis and ELISA validation. DIA serum proteomic revealed that apolipoprotein C-I (APOC1), apolipoprotein D (APOD), and apolipoprotein A-IV (APOA4) were decreased. The reductases glutathione S-transferase omega-1 (GSTO1) and peptidyl-prolyl cis-trans isomerase A (PPIA) were upregulated, and ADAMTS-like protein 4 (ADAMTSL4) was downregulated in both ischemic and hemorrhagic MMD. Afamin (AFM) and transforming growth factor-beta-induced protein ig-h3 (TGFBI) increased in ischemic patients but decreased in hemorrhagic patients. Serum ELISA results confirmed that APOA4, APOC1, and APOD were decreased compared to controls. Then, we retrospectively analyzed biochemical indexes of 200 MMD patients. A total of 54 enrolled MMD patients showed decreased total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-c). APOA4, APOC1, and APOD were vital factors in the HDL decrease in MMD patients. Lipoprotein dysfunction in MMD patients is involved in MMD. Intimal thickening by enhanced adhesion, middle layer vascular smooth muscle cell migration, and decreased lipid antioxidant function represented by HDL are potential pathogeneses of vascular changes in MMD.
Collapse
|
13
|
Sabotta CM, Kwan SY, Petty LE, Below JE, Joon A, Wei P, Fisher-Hoch SP, McCormick JB, Beretta L. Genetic variants associated with circulating liver injury markers in Mexican Americans, a population at risk for non-alcoholic fatty liver disease. Front Genet 2022; 13:995488. [PMID: 36386790 PMCID: PMC9644071 DOI: 10.3389/fgene.2022.995488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/10/2022] [Indexed: 02/03/2023] Open
Abstract
Objective: Mexican Americans are disproportionally affected by non-alcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma. Noninvasive means to identify those in this population at high risk for these diseases are urgently needed. Approach: The Cameron County Hispanic Cohort (CCHC) is a population-based cohort with high rates of obesity (51%), type 2 diabetes (28%) and NAFLD (49%). In a subgroup of 564 CCHC subjects, we evaluated 339 genetic variants previously reported to be associated with liver injury markers aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in United Kingdom and Japanese cohorts. Results: Association was confirmed for 86 variants. Among them, 27 had higher effect allele frequency in the CCHC than in the United Kingdom and Japanese cohorts, and 16 had stronger associations with AST and ALT than rs738409 (PNPLA3). These included rs17710008 (MYCT1), rs2519093 (ABO), rs1801690 (APOH), rs10409243 (S1PR2), rs1800759 (LOC100507053) and rs2491441 (RGL1), which were also associated with steatosis and/or liver fibrosis measured by vibration-controlled transient elastography. Main contributors to advanced fibrosis risk were rs11240351 (CNTN2), rs1800759 (LOC100507053), rs738409 (PNPLA3) and rs1801690 (APOH), with advanced fibrosis detected in 37.5% of subjects with 3 of these 4 variants [AOR = 11.6 (95% CI) = 3.8-35.3]. AST- and ALT-associated variants implicated distinct pathways (ethanol and galactose degradation versus antigen presentation and B cell development). Finally, 8 variants, including rs62292950 (DNAJC13), were associated with gut microbiome changes. Conclusion: These genotype-phenotype findings may have utility in risk modeling and disease prevention in this high-risk population.
Collapse
Affiliation(s)
- Caroline M. Sabotta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Suet-Ying Kwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lauren E. Petty
- Vanderbilt Genetics Institute and Department of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer E. Below
- Vanderbilt Genetics Institute and Department of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Aron Joon
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Fisher-Hoch
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, TX, United States
| | - Joseph B. McCormick
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, TX, United States
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
14
|
Loza-Valdes A, El-Merahbi R, Kassouf T, Demczuk A, Reuter S, Viera JT, Karwen T, Noh M, Löffler MC, Romero-Becerra R, Torres JL, Marcos M, Sabio G, Wojda U, Sumara G. Targeting ERK3/MK5 complex for treatment of obesity and diabetes. Biochem Biophys Res Commun 2022; 612:119-125. [PMID: 35523049 DOI: 10.1016/j.bbrc.2022.04.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
Abstract
Kinases represent one of the largest druggable families of proteins. Importantly, many kinases are aberrantly activated/de-activated in multiple organs during obesity, which contributes to the development of diabetes and associated diseases. Previous results indicate that the complex between Extracellular-regulated kinase 3 (ERK3) and Mitogen-Activated Protein Kinase (MAPK)-activated protein kinase 5 (MK5) suppresses energy dissipation and promotes fatty acids (FAs) output in adipose tissue and, therefore promotes obesity and diabetes. However, the therapeutic potential of targeting this complex at the systemic level has not been fully explored. Here we applied a translational approach to target the ERK3/MK5 complex in mice. Importantly, deletion of ERK3 in the whole body or administration of MK5-specific inhibitor protects against obesity and promotes insulin sensitivity. Finally, we show that the expression of ERK3 and MK5 correlates with the degree of obesity and that ERK3/MK5 complex regulates energy dissipation in human adipocytes. Altogether, we demonstrate that ERK3/MK5 complex can be targeted in vivo to preserve metabolic health and combat obesity and diabetes.
Collapse
Affiliation(s)
- Angel Loza-Valdes
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Rabih El-Merahbi
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Toufic Kassouf
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Agnieszka Demczuk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Saskia Reuter
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Jonathan Trujillo Viera
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Till Karwen
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Minhe Noh
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Mona C Löffler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Rafael Romero-Becerra
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jorge L Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Salamanca, Spain; Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Urszula Wojda
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland; Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
15
|
Wit M, Trujillo-Viera J, Strohmeyer A, Klingenspor M, Hankir M, Sumara G. When fat meets the gut-focus on intestinal lipid handling in metabolic health and disease. EMBO Mol Med 2022; 14:e14742. [PMID: 35437952 PMCID: PMC9081902 DOI: 10.15252/emmm.202114742] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The regular overconsumption of energy‐dense foods (rich in lipids and sugars) results in elevated intestinal nutrient absorption and consequently excessive accumulation of lipids in the liver, adipose tissue, skeletal muscles, and other organs. This can eventually lead to obesity and obesity‐associated diseases such as type 2 diabetes (T2D), non‐alcoholic fatty liver disease (NAFLD), cardiovascular disease, and certain types of cancer, as well as aggravate inflammatory bowel disease (IBD). Therefore, targeting the pathways that regulate intestinal nutrient absorption holds significant therapeutic potential. In this review, we discuss the molecular and cellular mechanisms controlling intestinal lipid handling, their relevance to the development of metabolic diseases, and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Magdalena Wit
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Jonathan Trujillo-Viera
- Rudolf-Virchow-Zentrum, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Akim Strohmeyer
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Freising, Germany.,EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Technical University of Munich, Munich, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Freising, Germany.,EKFZ - Else Kröner-Fresenius-Center for Nutritional Medicine, Technical University of Munich, Munich, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Mohammed Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
16
|
Loza-Valdes A, Mayer AE, Kassouf T, Trujillo-Viera J, Schmitz W, Dziaczkowski F, Leitges M, Schlosser A, Sumara G. A phosphoproteomic approach reveals that PKD3 controls PKA-mediated glucose and tyrosine metabolism. Life Sci Alliance 2021; 4:4/8/e202000863. [PMID: 34145024 PMCID: PMC8321662 DOI: 10.26508/lsa.202000863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Protein kinase D3 (PKD3) regulates hepatic metabolism in a PKA-dependent manner and reveals many other putative PKD3 targets in the liver. Members of the protein kinase D (PKD) family (PKD1, 2, and 3) integrate hormonal and nutritional inputs to regulate complex cellular metabolism. Despite the fact that a number of functions have been annotated to particular PKDs, their molecular targets are relatively poorly explored. PKD3 promotes insulin sensitivity and suppresses lipogenesis in the liver of animals fed a high-fat diet. However, its substrates are largely unknown. Here we applied proteomic approaches to determine PKD3 targets. We identified more than 300 putative targets of PKD3. Furthermore, biochemical analysis revealed that PKD3 regulates cAMP-dependent PKA activity, a master regulator of the hepatic response to glucagon and fasting. PKA regulates glucose, lipid, and amino acid metabolism in the liver, by targeting key enzymes in the respective processes. Among them the PKA targets phenylalanine hydroxylase (PAH) catalyzes the conversion of phenylalanine to tyrosine. Consistently, we showed that PKD3 is activated by glucagon and promotes glucose and tyrosine levels in hepatocytes. Therefore, our data indicate that PKD3 might play a role in the hepatic response to glucagon.
Collapse
Affiliation(s)
- Angel Loza-Valdes
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alexander E Mayer
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Toufic Kassouf
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jonathan Trujillo-Viera
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Filip Dziaczkowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michael Leitges
- Tier 1, Canada Research Chair in Cell Signaling and Translational Medicine, Division of BioMedical Sciences/Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University of Newfoundland, Health Science Centre, St. Johns, Canada
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany .,Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Trujillo‐Viera J, El‐Merahbi R, Schmidt V, Karwen T, Loza‐Valdes A, Strohmeyer A, Reuter S, Noh M, Wit M, Hawro I, Mocek S, Fey C, Mayer AE, Löffler MC, Wilhelmi I, Metzger M, Ishikawa E, Yamasaki S, Rau M, Geier A, Hankir M, Seyfried F, Klingenspor M, Sumara G. Protein Kinase D2 drives chylomicron-mediated lipid transport in the intestine and promotes obesity. EMBO Mol Med 2021; 13:e13548. [PMID: 33949105 PMCID: PMC8103097 DOI: 10.15252/emmm.202013548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are the most energy-dense components of the diet, and their overconsumption promotes obesity and diabetes. Dietary fat content has been linked to the lipid processing activity by the intestine and its overall capacity to absorb triglycerides (TG). However, the signaling cascades driving intestinal lipid absorption in response to elevated dietary fat are largely unknown. Here, we describe an unexpected role of the protein kinase D2 (PKD2) in lipid homeostasis. We demonstrate that PKD2 activity promotes chylomicron-mediated TG transfer in enterocytes. PKD2 increases chylomicron size to enhance the TG secretion on the basolateral side of the mouse and human enterocytes, which is associated with decreased abundance of APOA4. PKD2 activation in intestine also correlates positively with circulating TG in obese human patients. Importantly, deletion, inactivation, or inhibition of PKD2 ameliorates high-fat diet-induced obesity and diabetes and improves gut microbiota profile in mice. Taken together, our findings suggest that PKD2 represents a key signaling node promoting dietary fat absorption and may serve as an attractive target for the treatment of obesity.
Collapse
Affiliation(s)
- Jonathan Trujillo‐Viera
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Rabih El‐Merahbi
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Vanessa Schmidt
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Till Karwen
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Angel Loza‐Valdes
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Akim Strohmeyer
- Chair for Molecular Nutritional MedicineTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
- EKFZ ‐ Else Kröner‐Fresenius‐Center for Nutritional MedicineTechnical University of MunichMunichGermany
- ZIEL ‐ Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Saskia Reuter
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Minhee Noh
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Magdalena Wit
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Izabela Hawro
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Sabine Mocek
- Chair for Molecular Nutritional MedicineTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
- EKFZ ‐ Else Kröner‐Fresenius‐Center for Nutritional MedicineTechnical University of MunichMunichGermany
- ZIEL ‐ Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Christina Fey
- Fraunhofer Institute for Silicate Research (ISC)Translational Center Regenerative Therapies (TLC‐RT)WürzburgGermany
| | - Alexander E Mayer
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Mona C Löffler
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
| | - Ilka Wilhelmi
- Department of Experimental DiabetologyGerman Institute of Human Nutrition Potsdam‐RehbrueckeNuthetalGermany
- German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Marco Metzger
- Fraunhofer Institute for Silicate Research (ISC)Translational Center Regenerative Therapies (TLC‐RT)WürzburgGermany
| | - Eri Ishikawa
- Molecular ImmunologyResearch Institute for Microbial Diseases (RIMD)Osaka UniversitySuitaJapan
- Molecular ImmunologyImmunology Frontier Research Center (IFReC)Osaka UniversitySuitaJapan
| | - Sho Yamasaki
- Molecular ImmunologyResearch Institute for Microbial Diseases (RIMD)Osaka UniversitySuitaJapan
- Molecular ImmunologyImmunology Frontier Research Center (IFReC)Osaka UniversitySuitaJapan
| | - Monika Rau
- Division of HepatologyUniversity Hospital WürzburgWürzburgGermany
| | - Andreas Geier
- Division of HepatologyUniversity Hospital WürzburgWürzburgGermany
| | - Mohammed Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric SurgeryUniversity Hospital WürzburgWürzburgGermany
| | - Florian Seyfried
- Department of General, Visceral, Transplant, Vascular and Pediatric SurgeryUniversity Hospital WürzburgWürzburgGermany
| | - Martin Klingenspor
- Chair for Molecular Nutritional MedicineTechnical University of MunichTUM School of Life Sciences WeihenstephanFreisingGermany
- EKFZ ‐ Else Kröner‐Fresenius‐Center for Nutritional MedicineTechnical University of MunichMunichGermany
- ZIEL ‐ Institute for Food & HealthTechnical University of MunichFreisingGermany
| | - Grzegorz Sumara
- Rudolf‐Virchow‐ZentrumCenter for Integrative and Translational BioimagingUniversity of WürzburgWürzburgGermany
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| |
Collapse
|