1
|
Hemedan AA, Satagopam V, Schneider R, Ostaszewski M. Cohort-specific boolean models highlight different regulatory modules during Parkinson's disease progression. iScience 2024; 27:110956. [PMID: 39429779 PMCID: PMC11489052 DOI: 10.1016/j.isci.2024.110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) involves complex molecular interactions and diverse comorbidities. To better understand its molecular mechanisms, we employed systems medicine approaches using the PD map, a detailed repository of PD-related interactions and applied Probabilistic Boolean Networks (PBNs) to capture the stochastic nature of molecular dynamics. By integrating cohort-level and real-world patient data, we modeled PD's subtype-specific pathway deregulations, providing a refined representation of its molecular landscape. Our study identifies key regulatory biomolecules and pathways that vary across PD subtypes, offering insights into the disease's progression and patient stratification. These findings have significant implications for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Abdelmonem Hemedan
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata Satagopam
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Reinhard Schneider
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
3
|
Hosseini SR, Zhou X. CCSynergy: an integrative deep-learning framework enabling context-aware prediction of anti-cancer drug synergy. Brief Bioinform 2023; 24:bbac588. [PMID: 36562722 PMCID: PMC9851301 DOI: 10.1093/bib/bbac588] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Combination therapy is a promising strategy for confronting the complexity of cancer. However, experimental exploration of the vast space of potential drug combinations is costly and unfeasible. Therefore, computational methods for predicting drug synergy are much needed for narrowing down this space, especially when examining new cellular contexts. Here, we thus introduce CCSynergy, a flexible, context aware and integrative deep-learning framework that we have established to unleash the potential of the Chemical Checker extended drug bioactivity profiles for the purpose of drug synergy prediction. We have shown that CCSynergy enables predictions of superior accuracy, remarkable robustness and improved context generalizability as compared to the state-of-the-art methods in the field. Having established the potential of CCSynergy for generating experimentally validated predictions, we next exhaustively explored the untested drug combination space. This resulted in a compendium of potentially synergistic drug combinations on hundreds of cancer cell lines, which can guide future experimental screens.
Collapse
Affiliation(s)
- Sayed-Rzgar Hosseini
- School of Biomedical Informatics, University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Xiaobo Zhou
- School of Biomedical Informatics, University of Texas Health Science Center (UTHealth), Houston, TX, USA
| |
Collapse
|
4
|
Kim M, Kim E. Mathematical model of the cell signaling pathway based on the extended Boolean network model with a stochastic process. BMC Bioinformatics 2022; 23:515. [PMID: 36451112 PMCID: PMC9710037 DOI: 10.1186/s12859-022-05077-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In cell signaling pathways, proteins interact with each other to determine cell fate in response to either cell-extrinsic (micro-environmental) or intrinsic cues. One of the well-studied pathways, the mitogen-activated protein kinase (MAPK) signaling pathway, regulates cell processes such as differentiation, proliferation, apoptosis, and survival in response to various micro-environmental stimuli in eukaryotes. Upon micro-environmental stimulus, receptors on the cell membrane become activated. Activated receptors initiate a cascade of protein activation in the MAPK pathway. This activation involves protein binding, creating scaffold proteins, which are known to facilitate effective MAPK signaling transduction. RESULTS This paper presents a novel mathematical model of a cell signaling pathway coordinated by protein scaffolding. The model is based on the extended Boolean network approach with stochastic processes. Protein production or decay in a cell was modeled considering the stochastic process, whereas the protein-protein interactions were modeled based on the extended Boolean network approach. Our model fills a gap in the binary set applied to previous models. The model simultaneously considers the stochastic process directly. Using the model, we simulated a simplified mitogen-activated protein kinase (MAPK) signaling pathway upon stimulation of both a single receptor at the initial time and multiple receptors at several time points. Our simulations showed that the signal is amplified as it travels down to the pathway from the receptor, generating substantially amplified downstream ERK activity. The noise generated by the stochastic process of protein self-activity in the model was also amplified as the signaling propagated through the pathway. CONCLUSIONS The signaling transduction in a simplified MAPK signaling pathway could be explained by a mathematical model based on the extended Boolean network model with a stochastic process. The model simulations demonstrated signaling amplifications when it travels downstream, which was already observed in experimental settings. We also highlight the importance of stochastic activity in regulating protein inactivation.
Collapse
Affiliation(s)
- Minsoo Kim
- grid.35541.360000000121053345Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - Eunjung Kim
- grid.35541.360000000121053345Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| |
Collapse
|
5
|
Lesage R, Ferrao Blanco MN, Narcisi R, Welting T, van Osch GJVM, Geris L. An integrated in silico-in vitro approach for identifying therapeutic targets against osteoarthritis. BMC Biol 2022; 20:253. [PMID: 36352408 PMCID: PMC9648005 DOI: 10.1186/s12915-022-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Without the availability of disease-modifying drugs, there is an unmet therapeutic need for osteoarthritic patients. During osteoarthritis, the homeostasis of articular chondrocytes is dysregulated and a phenotypical transition called hypertrophy occurs, leading to cartilage degeneration. Targeting this phenotypic transition has emerged as a potential therapeutic strategy. Chondrocyte phenotype maintenance and switch are controlled by an intricate network of intracellular factors, each influenced by a myriad of feedback mechanisms, making it challenging to intuitively predict treatment outcomes, while in silico modeling can help unravel that complexity. In this study, we aim to develop a virtual articular chondrocyte to guide experiments in order to rationalize the identification of potential drug targets via screening of combination therapies through computational modeling and simulations. RESULTS We developed a signal transduction network model using knowledge-based and data-driven (machine learning) modeling technologies. The in silico high-throughput screening of (pairwise) perturbations operated with that network model highlighted conditions potentially affecting the hypertrophic switch. A selection of promising combinations was further tested in a murine cell line and primary human chondrocytes, which notably highlighted a previously unreported synergistic effect between the protein kinase A and the fibroblast growth factor receptor 1. CONCLUSIONS Here, we provide a virtual articular chondrocyte in the form of a signal transduction interactive knowledge base and of an executable computational model. Our in silico-in vitro strategy opens new routes for developing osteoarthritis targeting therapies by refining the early stages of drug target discovery.
Collapse
Affiliation(s)
- Raphaëlle Lesage
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Mauricio N Ferrao Blanco
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Roberto Narcisi
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Tim Welting
- Orthopedic Surgery Department, UMC+, Maastricht, the Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
- Biomechanics Section, KU Leuven, Leuven, Belgium.
- GIGA In silico Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
6
|
Kolmar L, Autour A, Ma X, Vergier B, Eduati F, Merten CA. Technological and computational advances driving high-throughput oncology. Trends Cell Biol 2022; 32:947-961. [PMID: 35577671 DOI: 10.1016/j.tcb.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/21/2023]
Abstract
Engineering and computational advances have opened many new avenues in cancer research, particularly when being exploited in interdisciplinary approaches. For example, the combination of microfluidics, novel sequencing technologies, and computational analyses has been crucial to enable single-cell assays, giving a detailed picture of tumor heterogeneity for the very first time. In a similar way, these 'tech' disciplines have been elementary for generating large data sets in multidimensional cancer 'omics' approaches, cell-cell interaction screens, 3D tumor models, and tissue level analyses. In this review we summarize the most important technology and computational developments that have been or will be instrumental for transitioning classical cancer research to a large data-driven, high-throughput, high-content discipline across all biological scales.
Collapse
Affiliation(s)
- Leonie Kolmar
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexis Autour
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Xiaoli Ma
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Blandine Vergier
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.
| | - Christoph A Merten
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
7
|
Precision oncology using ex vivo technology: a step towards individualised cancer care? Expert Rev Mol Med 2022; 24:e39. [PMID: 36184897 PMCID: PMC9884776 DOI: 10.1017/erm.2022.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite advances in cancer genomics and the increased use of genomic medicine, metastatic cancer is still mostly an incurable and fatal disease. With diminishing returns from traditional drug discovery strategies, and high clinical failure rates, more emphasis is being placed on alternative drug discovery platforms, such as ex vivo approaches. Ex vivo approaches aim to embed biological relevance and inter-patient variability at an earlier stage of drug discovery, and to offer more precise treatment stratification for patients. However, these techniques also have a high potential to offer personalised therapies to patients, complementing and enhancing genomic medicine. Although an array of approaches are available to researchers, only a minority of techniques have made it through to direct patient treatment within robust clinical trials. Within this review, we discuss the current challenges to ex vivo approaches within clinical practice and summarise the contemporary literature which has directed patient treatment. Finally, we map out how ex vivo approaches could transition from a small-scale, predominantly research based technology to a robust and validated predictive tool. In future, these pre-clinical approaches may be integrated into clinical cancer pathways to assist in the personalisation of therapy choices and to hopefully improve patient experiences and outcomes.
Collapse
|
8
|
Flobak Å, Skånland SS, Hovig E, Taskén K, Russnes HG. Functional precision cancer medicine: drug sensitivity screening enabled by cell culture models. Trends Pharmacol Sci 2022; 43:973-985. [PMID: 36163057 DOI: 10.1016/j.tips.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 10/31/2022]
Abstract
Functional precision medicine is a new, emerging area that can guide cancer treatment by capturing information from direct perturbations of tumor-derived, living cells, such as by drug sensitivity screening. Precision cancer medicine as currently implemented in clinical practice has been driven by genomics, and current molecular tumor boards rely extensively on genomic characterization to advise on therapeutic interventions. However, genomic biomarkers can only guide treatment decisions for a fraction of the patients. In this review we provide an overview of the current state of functional precision medicine, highlight advances for drug-sensitivity screening enabled by cell culture models, and discuss how artificial intelligence (AI) can be coupled to functional precision medicine to guide patient stratification.
Collapse
Affiliation(s)
- Åsmund Flobak
- The Cancer Clinic, St. Olav University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigrid S Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Hege G Russnes
- Department of Pathology, Oslo University Hospital, Oslo, Norway; Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Bhavani GS, Palanisamy A. SNAIL driven by a feed forward loop motif promotes TGF βinduced epithelial to mesenchymal transition. Biomed Phys Eng Express 2022; 8. [PMID: 35700712 DOI: 10.1088/2057-1976/ac7896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022]
Abstract
Epithelial to Mesenchymal Transition (EMT) plays an important role in tissue regeneration, embryonic development, and cancer metastasis. Several signaling pathways are known to regulate EMT, among which the modulation of TGFβ(Transforming Growth Factor-β) induced EMT is crucial in several cancer types. Several mathematical models were built to explore the role of core regulatory circuit of ZEB/miR-200, SNAIL/miR-34 double negative feedback loops in modulating TGFβinduced EMT. Different emergent behavior including tristability, irreversible switching, existence of hybrid EMT states were inferred though these models. Some studies have explored the role of TGFβreceptor activation, SMADs nucleocytoplasmic shuttling and complex formation. Recent experiments have revealed that MDM2 along with SMAD complex regulates SNAIL expression driven EMT. Encouraged by this, in the present study we developed a mathematical model for p53/MDM2 dependent TGFβinduced EMT regulation. Inclusion of p53 brings in an additional mechanistic perspective in exploring the EM transition. The network formulated comprises a C1FFL moderating SNAIL expression involving MDM2 and SMAD complex, which functions as a noise filter and persistent detector. The C1FFL was also observed to operate as a coincidence detector driving the SNAIL dependent downstream signaling into phenotypic switching decision. Systems modelling and analysis of the devised network, displayed interesting dynamic behavior, systems response to various inputs stimulus, providing a better understanding of p53/MDM2 dependent TGF-βinduced Epithelial to Mesenchymal Transition.
Collapse
|
10
|
Hemedan AA, Niarakis A, Schneider R, Ostaszewski M. Boolean modelling as a logic-based dynamic approach in systems medicine. Comput Struct Biotechnol J 2022; 20:3161-3172. [PMID: 35782730 PMCID: PMC9234349 DOI: 10.1016/j.csbj.2022.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular mechanisms of health and disease are often represented as systems biology diagrams, and the coverage of such representation constantly increases. These static diagrams can be transformed into dynamic models, allowing for in silico simulations and predictions. Boolean modelling is an approach based on an abstract representation of the system. It emphasises the qualitative modelling of biological systems in which each biomolecule can take two possible values: zero for absent or inactive, one for present or active. Because of this approximation, Boolean modelling is applicable to large diagrams, allowing to capture their dynamic properties. We review Boolean models of disease mechanisms and compare a range of methods and tools used for analysis processes. We explain the methodology of Boolean analysis focusing on its application in disease modelling. Finally, we discuss its practical application in analysing signal transduction and gene regulatory pathways in health and disease.
Collapse
Affiliation(s)
- Ahmed Abdelmonem Hemedan
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna Niarakis
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde – Genhotel, Univ Evry, Evry, France
- Lifeware Group, Inria, Saclay-île de France, 91120 Palaiseau, France
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
11
|
Hassan M, Awan FM, Naz A, deAndrés-Galiana EJ, Alvarez O, Cernea A, Fernández-Brillet L, Fernández-Martínez JL, Kloczkowski A. Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review. Int J Mol Sci 2022; 23:4645. [PMID: 35563034 PMCID: PMC9104788 DOI: 10.3390/ijms23094645] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Big data in health care is a fast-growing field and a new paradigm that is transforming case-based studies to large-scale, data-driven research. As big data is dependent on the advancement of new data standards, technology, and relevant research, the future development of big data applications holds foreseeable promise in the modern day health care revolution. Enormously large, rapidly growing collections of biomedical omics-data (genomics, proteomics, transcriptomics, metabolomics, glycomics, etc.) and clinical data create major challenges and opportunities for their analysis and interpretation and open new computational gateways to address these issues. The design of new robust algorithms that are most suitable to properly analyze this big data by taking into account individual variability in genes has enabled the creation of precision (personalized) medicine. We reviewed and highlighted the significance of big data analytics for personalized medicine and health care by focusing mostly on machine learning perspectives on personalized medicine, genomic data models with respect to personalized medicine, the application of data mining algorithms for personalized medicine as well as the challenges we are facing right now in big data analytics.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore 54590, Pakistan;
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur, Haripur 22620, Pakistan;
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore 54590, Pakistan;
| | - Enrique J. deAndrés-Galiana
- Group of Inverse Problems, Optimization and Machine Learning, University of Oviedo, 33003 Oviedo, Spain; (E.J.d.-G.); (J.L.F.-M.)
| | - Oscar Alvarez
- DeepBioInsights, 38311 La Florida, Spain; (O.A.); (A.C.); (L.F.-B.)
| | - Ana Cernea
- DeepBioInsights, 38311 La Florida, Spain; (O.A.); (A.C.); (L.F.-B.)
| | | | - Juan Luis Fernández-Martínez
- Group of Inverse Problems, Optimization and Machine Learning, University of Oviedo, 33003 Oviedo, Spain; (E.J.d.-G.); (J.L.F.-M.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| |
Collapse
|
12
|
Collin CB, Gebhardt T, Golebiewski M, Karaderi T, Hillemanns M, Khan FM, Salehzadeh-Yazdi A, Kirschner M, Krobitsch S, Kuepfer L. Computational Models for Clinical Applications in Personalized Medicine—Guidelines and Recommendations for Data Integration and Model Validation. J Pers Med 2022; 12:jpm12020166. [PMID: 35207655 PMCID: PMC8879572 DOI: 10.3390/jpm12020166] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
The future development of personalized medicine depends on a vast exchange of data from different sources, as well as harmonized integrative analysis of large-scale clinical health and sample data. Computational-modelling approaches play a key role in the analysis of the underlying molecular processes and pathways that characterize human biology, but they also lead to a more profound understanding of the mechanisms and factors that drive diseases; hence, they allow personalized treatment strategies that are guided by central clinical questions. However, despite the growing popularity of computational-modelling approaches in different stakeholder communities, there are still many hurdles to overcome for their clinical routine implementation in the future. Especially the integration of heterogeneous data from multiple sources and types are challenging tasks that require clear guidelines that also have to comply with high ethical and legal standards. Here, we discuss the most relevant computational models for personalized medicine in detail that can be considered as best-practice guidelines for application in clinical care. We define specific challenges and provide applicable guidelines and recommendations for study design, data acquisition, and operation as well as for model validation and clinical translation and other research areas.
Collapse
Affiliation(s)
- Catherine Bjerre Collin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 N Copenhagen, Denmark; (C.B.C.); (T.K.)
| | - Tom Gebhardt
- Department of Systems Biology and Bioinformatics, University of Rostock, 18057 Rostock, Germany; (T.G.); (M.H.); (F.M.K.)
| | - Martin Golebiewski
- Heidelberg Institute for Theoretical Studies gGmbH, 69118 Heidelberg, Germany;
| | - Tugce Karaderi
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 N Copenhagen, Denmark; (C.B.C.); (T.K.)
- Center for Health Data Science, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 N Copenhagen, Denmark
| | - Maximilian Hillemanns
- Department of Systems Biology and Bioinformatics, University of Rostock, 18057 Rostock, Germany; (T.G.); (M.H.); (F.M.K.)
| | - Faiz Muhammad Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, 18057 Rostock, Germany; (T.G.); (M.H.); (F.M.K.)
| | | | - Marc Kirschner
- Forschungszentrum Jülich GmbH, Project Management Jülich, 52425 Jülich, Germany; (M.K.); (S.K.)
| | - Sylvia Krobitsch
- Forschungszentrum Jülich GmbH, Project Management Jülich, 52425 Jülich, Germany; (M.K.); (S.K.)
| | | | - Lars Kuepfer
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Correspondence: ; Tel.: +49-241-8085900
| |
Collapse
|
13
|
López-Sánchez M, Loucera C, Peña-Chilet M, Dopazo J. Discovering potential interactions between rare diseases and COVID-19 by combining mechanistic models of viral infection with statistical modeling. Hum Mol Genet 2022; 31:2078-2089. [PMID: 35022696 PMCID: PMC9239744 DOI: 10.1093/hmg/ddac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies have demonstrated a relevant role of the host genetics in the coronavirus disease 2019 (COVID-19) prognosis. Most of the 7000 rare diseases described to date have a genetic component, typically highly penetrant. However, this vast spectrum of genetic variability remains yet unexplored with respect to possible interactions with COVID-19. Here, a mathematical mechanistic model of the COVID-19 molecular disease mechanism has been used to detect potential interactions between rare disease genes and the COVID-19 infection process and downstream consequences. Out of the 2518 disease genes analyzed, causative of 3854 rare diseases, a total of 254 genes have a direct effect on the COVID-19 molecular disease mechanism and 207 have an indirect effect revealed by a significant strong correlation. This remarkable potential of interaction occurs for >300 rare diseases. Mechanistic modeling of COVID-19 disease map has allowed a holistic systematic analysis of the potential interactions between the loss of function in known rare disease genes and the pathological consequences of COVID-19 infection. The results identify links between disease genes and COVID-19 hallmarks and demonstrate the usefulness of the proposed approach for future preventive measures in some rare diseases.
Collapse
Affiliation(s)
- Macarena López-Sánchez
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain
| | - María Peña-Chilet
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío. 41013. Sevilla, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio. 41013. Sevilla. Spain.,Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío. 41013. Sevilla, Spain.,FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, 42013, Spain
| |
Collapse
|
14
|
Athanasiadis P, Ianevski A, Skånland SS, Aittokallio T. Computational Pipeline for Rational Drug Combination Screening in Patient-Derived Cells. Methods Mol Biol 2022; 2449:327-348. [PMID: 35507270 DOI: 10.1007/978-1-0716-2095-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In many complex diseases, such as cancers, resistance to monotherapies easily occurs, and longer-term treatment responses often require combinatorial therapies as next-line regimens. However, due to a massive number of possible drug combinations to test, there is a need for systematic and rational approaches to finding safe and effective drug combinations for each individual patient. This protocol describes an ecosystem of computational methods to guide high-throughput combinatorial screening that help experimental researchers to identify optimal drug combinations in terms of synergy, efficacy, and/or selectivity for further preclinical and clinical investigation. The methods are demonstrated in the context of combinatorial screening in primary cells of leukemia patients, where the translational aim is to identify drug combinations that show not only high synergy but also maximal cancer-selectivity. The mechanism-agnostic and cost-effective computational methods are widely applicable to various cancer types, which are amenable to drug testing, as the computational methods take as input only the phenotypic measurements of a subset of drug combinations, without requiring target information or genomic profiles of the patient samples.
Collapse
Affiliation(s)
- Paschalis Athanasiadis
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Sigrid S Skånland
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tero Aittokallio
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway.
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
15
|
Kong W, Midena G, Chen Y, Athanasiadis P, Wang T, Rousu J, He L, Aittokallio T. Systematic review of computational methods for drug combination prediction. Comput Struct Biotechnol J 2022; 20:2807-2814. [PMID: 35685365 PMCID: PMC9168078 DOI: 10.1016/j.csbj.2022.05.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/26/2022] Open
Abstract
Synergistic effects between drugs are rare and highly context-dependent and patient-specific. Hence, there is a need to develop novel approaches to stratify patients for optimal therapy regimens, especially in the context of personalized design of combinatorial treatments. Computational methods enable systematic in-silico screening of combination effects, and can thereby prioritize most potent combinations for further testing, among the massive number of potential combinations. To help researchers to choose a prediction method that best fits for various real-world applications, we carried out a systematic literature review of 117 computational methods developed to date for drug combination prediction, and classified the methods in terms of their combination prediction tasks and input data requirements. Most current methods focus on prediction or classification of combination synergy, and only a few methods consider the efficacy and potential toxicity of the combinations, which are the key determinants of therapeutic success of drug treatments. Furthermore, there is a need to further develop methods that enable dose-specific predictions of combination effects across multiple doses, which is important for clinical translation of the predictions, as well as model-based identification of biomarkers predictive of heterogeneous drug combination responses. Even if most of the computational methods reviewed focus on anticancer applications, many of the modelling approaches are also applicable to antiviral and other diseases or indications.
Collapse
|
16
|
Rocca A, Kholodenko BN. Can Systems Biology Advance Clinical Precision Oncology? Cancers (Basel) 2021; 13:6312. [PMID: 34944932 PMCID: PMC8699328 DOI: 10.3390/cancers13246312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Precision oncology is perceived as a way forward to treat individual cancer patients. However, knowing particular cancer mutations is not enough for optimal therapeutic treatment, because cancer genotype-phenotype relationships are nonlinear and dynamic. Systems biology studies the biological processes at the systems' level, using an array of techniques, ranging from statistical methods to network reconstruction and analysis, to mathematical modeling. Its goal is to reconstruct the complex and often counterintuitive dynamic behavior of biological systems and quantitatively predict their responses to environmental perturbations. In this paper, we review the impact of systems biology on precision oncology. We show examples of how the analysis of signal transduction networks allows to dissect resistance to targeted therapies and inform the choice of combinations of targeted drugs based on tumor molecular alterations. Patient-specific biomarkers based on dynamical models of signaling networks can have a greater prognostic value than conventional biomarkers. These examples support systems biology models as valuable tools to advance clinical and translational oncological research.
Collapse
Affiliation(s)
- Andrea Rocca
- Hygiene and Public Health, Local Health Unit of Romagna, 47121 Forlì, Italy
| | - Boris N. Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
17
|
Thobe K, Konrath F, Chapuy B, Wolf J. Patient-Specific Modeling of Diffuse Large B-Cell Lymphoma. Biomedicines 2021; 9:biomedicines9111655. [PMID: 34829885 PMCID: PMC8615565 DOI: 10.3390/biomedicines9111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Personalized medicine aims to tailor treatment to patients based on their individual genetic or molecular background. Especially in diseases with a large molecular heterogeneity, such as diffuse large B-cell lymphoma (DLBCL), personalized medicine has the potential to improve outcome and/or to reduce resistance towards treatment. However, integration of patient-specific information into a computational model is challenging and has not been achieved for DLBCL. Here, we developed a computational model describing signaling pathways and expression of critical germinal center markers. The model integrates the regulatory mechanism of the signaling and gene expression network and covers more than 50 components, many carrying genetic lesions common in DLBCL. Using clinical and genomic data of 164 primary DLBCL patients, we implemented mutations, structural variants and copy number alterations as perturbations in the model using the CoLoMoTo notebook. Leveraging patient-specific genotypes and simulation of the expression of marker genes in specific germinal center conditions allows us to predict the consequence of the modeled pathways for each patient. Finally, besides modeling how genetic perturbations alter physiological signaling, we also predicted for each patient model the effect of rational inhibitors, such as Ibrutinib, that are currently discussed as possible DLBCL treatments, showing patient-dependent variations in effectiveness and synergies.
Collapse
Affiliation(s)
- Kirsten Thobe
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany; (K.T.); (F.K.)
| | - Fabian Konrath
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany; (K.T.); (F.K.)
| | - Björn Chapuy
- Department of Hematology and Medical Oncology, University of Göttingen, 37075 Göttingen, Germany;
- Department of Hematology, Oncology and Cancer Immunology, Berlin Medical Center Charité, 12203 Berlin, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany; (K.T.); (F.K.)
- Department of Mathematics and Computer Science, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
- Correspondence:
| |
Collapse
|
18
|
He L, Bulanova D, Oikkonen J, Häkkinen A, Zhang K, Zheng S, Wang W, Erkan EP, Carpén O, Joutsiniemi T, Hietanen S, Hynninen J, Huhtinen K, Hautaniemi S, Vähärautio A, Tang J, Wennerberg K, Aittokallio T. Network-guided identification of cancer-selective combinatorial therapies in ovarian cancer. Brief Bioinform 2021; 22:bbab272. [PMID: 34343245 PMCID: PMC8574973 DOI: 10.1093/bib/bbab272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 02/05/2023] Open
Abstract
Each patient's cancer consists of multiple cell subpopulations that are inherently heterogeneous and may develop differing phenotypes such as drug sensitivity or resistance. A personalized treatment regimen should therefore target multiple oncoproteins in the cancer cell populations that are driving the treatment resistance or disease progression in a given patient to provide maximal therapeutic effect, while avoiding severe co-inhibition of non-malignant cells that would lead to toxic side effects. To address the intra- and inter-tumoral heterogeneity when designing combinatorial treatment regimens for cancer patients, we have implemented a machine learning-based platform to guide identification of safe and effective combinatorial treatments that selectively inhibit cancer-related dysfunctions or resistance mechanisms in individual patients. In this case study, we show how the platform enables prediction of cancer-selective drug combinations for patients with high-grade serous ovarian cancer using single-cell imaging cytometry drug response assay, combined with genome-wide transcriptomic and genetic profiles. The platform makes use of drug-target interaction networks to prioritize those combinations that warrant further preclinical testing in scarce patient-derived primary cells. During the case study in ovarian cancer patients, we investigated (i) the relative performance of various ensemble learning algorithms for drug response prediction, (ii) the use of matched single-cell RNA-sequencing data to deconvolute cell population-specific transcriptome profiles from bulk RNA-seq data, (iii) and whether multi-patient or patient-specific predictive models lead to better predictive accuracy. The general platform and the comparison results are expected to become useful for future studies that use similar predictive approaches also in other cancer types.
Collapse
Affiliation(s)
- Liye He
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Daria Bulanova
- Biotech Research & Innovation Centre (BRIC) at the University of Copenhagen (UC), Helsinki, Finland
| | | | | | | | - Shuyu Zheng
- ONCOSYS Research Program in UH, Helsinki, Finland
| | - Wenyu Wang
- ONCOSYS Research Program in UH, Helsinki, Finland
| | | | - Olli Carpén
- ONCOSYS Research Program in UH, Helsinki, Finland
| | - Titta Joutsiniemi
- Gynecologic oncology in Turku University Hospital, Helsinki, Finland
| | - Sakari Hietanen
- ONCOSYS Research Program in UH and in University of Turku (UTU), Helsinki, Finland
| | | | | | | | | | - Jing Tang
- ONCOSYS Research Programme in UH, Helsinki, Finland
| | | | | |
Collapse
|
19
|
Kuiper M, Bonello J, Fernández-Breis JT, Bucher P, Futschik ME, Gaudet P, Kulakovskiy IV, Licata L, Logie C, Lovering RC, Makeev VJ, Orchard S, Panni S, Perfetto L, Sant D, Schulz S, Zerbino DR, Lægreid A. The Gene Regulation Knowledge Commons: The action area of GREEKC. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1865:194768. [PMID: 34757206 DOI: 10.1016/j.bbagrm.2021.194768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
The COST Action Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC, CA15205, www.greekc.org) organized nine workshops in a four-year period, starting September 2016. The workshops brought together a wide range of experts from all over the world working on various parts of the knowledge cycle that is central to understanding gene regulatory mechanisms. The discussions between ontologists, curators, text miners, biologists, bioinformaticians, philosophers and computational scientists spawned a host of activities aimed to update and standardise existing knowledge management workflows, encourage new experimental approaches and thoroughly involve end-users in the process to design the Gene Regulation Knowledge Commons (GRKC). The GREEKC consortium describes its main achievements, contextualised in a state-of-the-art of current tools and resources that today represent the GRKC.
Collapse
Affiliation(s)
- Martin Kuiper
- Systems Biology Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Joseph Bonello
- Faculty of Information & Communication Technology, University of Malta, Msida, Malta
| | | | - Philipp Bucher
- Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, 1015 Lausanne, Switzerland
| | - Matthias E Futschik
- Systems Biology and Bioinformatics Laboratory (SysBioLab), Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
| | - Pascale Gaudet
- SIB Swiss Institute of Bioinformatics, 1 Rue Michel-Servet, 1204 Geneva, Switzerland
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Russia
| | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Colin Logie
- Department of Molecular Biology, Faculty of Science, Radboud University, PO Box 9101, Nijmegen 6500HG, the Netherlands
| | - Ruth C Lovering
- Functional Gene Annotation, Pre-clinical and Fundamental Science, Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, UK
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina 3, 119991 Moscow, Russia
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Simona Panni
- Department DIBEST, University of Calabria, Rende, Italy
| | - Livia Perfetto
- Fondazione Human Technopole, Department of Biology, Via Cristina Belgioioso, 171, 20157 Milan, Italy
| | - David Sant
- Department of Biomedical Informatics, University of Utah, 421 Wakara Way #140, Salt Lake City, UT 84108, United States
| | - Stefan Schulz
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerpl. 2, Graz, Austria
| | - Daniel R Zerbino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Astrid Lægreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | |
Collapse
|
20
|
Alveolar Regeneration in COVID-19 Patients: A Network Perspective. Int J Mol Sci 2021; 22:ijms222011279. [PMID: 34681944 PMCID: PMC8538208 DOI: 10.3390/ijms222011279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.
Collapse
|
21
|
Abstract
This perspective article gathers the latest developments in mathematical and computational oncology tools that exploit network approaches for the mathematical modelling, analysis, and simulation of cancer development and therapy design. It instigates the community to explore new paths and synergies under the umbrella of the Special Issue “Networks in Cancer: From Symmetry Breaking to Targeted Therapy”. The focus of the perspective is to demonstrate how networks can model the physics, analyse the interactions, and predict the evolution of the multiple processes behind tumour-host encounters across multiple scales. From agent-based modelling and mechano-biology to machine learning and predictive modelling, the perspective motivates a methodology well suited to mathematical and computational oncology and suggests approaches that mark a viable path towards adoption in the clinic.
Collapse
|
22
|
Bērziņa S, Harrison A, Taly V, Xiao W. Technological Advances in Tumor-On-Chip Technology: From Bench to Bedside. Cancers (Basel) 2021; 13:cancers13164192. [PMID: 34439345 PMCID: PMC8394443 DOI: 10.3390/cancers13164192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Various 3D in vitro tumor models are rapidly advancing cancer research. Unlike animal models, they can be produced quickly and are amenable to high-throughput studies. Growing tumor spheroids in microfluidic tumor-on-chip platforms has particularly elevated the capabilities of such models. Tumor-on-chip devices can mimic multiple aspects of the dynamic in vivo tumor microenvironment in a precisely controlled manner. Moreover, new technologies for the on- and off-chip analysis of these tumor mimics are continuously emerging. There is thus an urgent need to review the latest developments in this rapidly progressing field. Here, we present an overview of the technological advances in tumor-on-chip technology by reviewing state-of-the-art tools for on-chip analysis. In particular, we evaluate the potential for tumor-on-chip technology to guide personalized cancer therapies. We strive to appeal to cancer researchers and biomedical engineers alike, informing on current progress, while provoking thought on the outstanding developments needed to achieve clinical-stage research. Abstract Tumor-on-chip technology has cemented its importance as an in vitro tumor model for cancer research. Its ability to recapitulate different elements of the in vivo tumor microenvironment makes it promising for translational medicine, with potential application in enabling personalized anti-cancer therapies. Here, we provide an overview of the current technological advances for tumor-on-chip generation. To further elevate the functionalities of the technology, these approaches need to be coupled with effective analysis tools. This aspect of tumor-on-chip technology is often neglected in the current literature. We address this shortcoming by reviewing state-of-the-art on-chip analysis tools for microfluidic tumor models. Lastly, we focus on the current progress in tumor-on-chip devices using patient-derived samples and evaluate their potential for clinical research and personalized medicine applications.
Collapse
|
23
|
Rozum JC, Gómez Tejeda Zañudo J, Gan X, Deritei D, Albert R. Parity and time reversal elucidate both decision-making in empirical models and attractor scaling in critical Boolean networks. SCIENCE ADVANCES 2021; 7:eabf8124. [PMID: 34272246 PMCID: PMC8284893 DOI: 10.1126/sciadv.abf8124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/03/2021] [Indexed: 05/14/2023]
Abstract
We present new applications of parity inversion and time reversal to the emergence of complex behavior from simple dynamical rules in stochastic discrete models. Our parity-based encoding of causal relationships and time-reversal construction efficiently reveal discrete analogs of stable and unstable manifolds. We demonstrate their predictive power by studying decision-making in systems biology and statistical physics models. These applications underpin a novel attractor identification algorithm implemented for Boolean networks under stochastic dynamics. Its speed enables resolving a long-standing open question of how attractor count in critical random Boolean networks scales with network size and whether the scaling matches biological observations. Via 80-fold improvement in probed network size (N = 16,384), we find the unexpectedly low scaling exponent of 0.12 ± 0.05, approximately one-tenth the analytical upper bound. We demonstrate a general principle: A system's relationship to its time reversal and state-space inversion constrains its repertoire of emergent behaviors.
Collapse
Affiliation(s)
- Jordan C Rozum
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Jorge Gómez Tejeda Zañudo
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Xiao Gan
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dávid Deritei
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Réka Albert
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
24
|
Cesareni G, Sacco F, Perfetto L. Assembling Disease Networks From Causal Interaction Resources. Front Genet 2021; 12:694468. [PMID: 34178043 PMCID: PMC8226215 DOI: 10.3389/fgene.2021.694468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
The development of high-throughput high-content technologies and the increased ease in their application in clinical settings has raised the expectation of an important impact of these technologies on diagnosis and personalized therapy. Patient genomic and expression profiles yield lists of genes that are mutated or whose expression is modulated in specific disease conditions. The challenge remains of extracting from these lists functional information that may help to shed light on the mechanisms that are perturbed in the disease, thus setting a rational framework that may help clinical decisions. Network approaches are playing an increasing role in the organization and interpretation of patients' data. Biological networks are generated by connecting genes or gene products according to experimental evidence that demonstrates their interactions. Till recently most approaches have relied on networks based on physical interactions between proteins. Such networks miss an important piece of information as they lack details on the functional consequences of the interactions. Over the past few years, a number of resources have started collecting causal information of the type protein A activates/inactivates protein B, in a structured format. This information may be represented as signed directed graphs where physiological and pathological signaling can be conveniently inspected. In this review we will (i) present and compare these resources and discuss the different scope in comparison with pathway resources; (ii) compare resources that explicitly capture causality in terms of data content and proteome coverage (iii) review how causal-graphs can be used to extract disease-specific Boolean networks.
Collapse
Affiliation(s)
- Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Livia Perfetto
- Department of Biology, Fondazione Human Technopole, Milan, Italy
| |
Collapse
|
25
|
Han JZR, Hastings JF, Phimmachanh M, Fey D, Kolch W, Croucher DR. Personalized Medicine for Neuroblastoma: Moving from Static Genotypes to Dynamic Simulations of Drug Response. J Pers Med 2021; 11:395. [PMID: 34064704 PMCID: PMC8151552 DOI: 10.3390/jpm11050395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
High-risk neuroblastoma is an aggressive childhood cancer that is characterized by high rates of chemoresistance and frequent metastatic relapse. A number of studies have characterized the genetic and epigenetic landscape of neuroblastoma, but due to a generally low mutational burden and paucity of actionable mutations, there are few options for applying a comprehensive personalized medicine approach through the use of targeted therapies. Therefore, the use of multi-agent chemotherapy remains the current standard of care for neuroblastoma, which also conceptually limits the opportunities for developing an effective and widely applicable personalized medicine approach for this disease. However, in this review we outline potential approaches for tailoring the use of chemotherapy agents to the specific molecular characteristics of individual tumours by performing patient-specific simulations of drug-induced apoptotic signalling. By incorporating multiple layers of information about tumour-specific aberrations, including expression as well as mutation data, these models have the potential to rationalize the selection of chemotherapeutics contained within multi-agent treatment regimens and ensure the optimum response is achieved for each individual patient.
Collapse
Affiliation(s)
- Jeremy Z. R. Han
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
| | - Jordan F. Hastings
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
| | - Monica Phimmachanh
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
| | - Dirk Fey
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (D.F.); (W.K.)
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (D.F.); (W.K.)
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David R. Croucher
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
- St Vincent’s Hospital Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Ebata K, Yamashiro S, Iida K, Okada M. Building patient-specific models for receptor tyrosine kinase signaling networks. FEBS J 2021; 289:90-101. [PMID: 33755310 DOI: 10.1111/febs.15831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022]
Abstract
Cancer progresses due to changes in the dynamic interactions of multidimensional factors associated with gene mutations. Cancer research has actively adopted computational methods, including data-driven and mathematical model-driven approaches, to identify causative factors and regulatory rules that can explain the complexity and diversity of cancers. A data-driven, statistics-based approach revealed correlations between gene alterations and clinical outcomes in many types of cancers. A model-driven mathematical approach has elucidated the dynamic features of cancer networks and identified the mechanisms of drug efficacy and resistance. More recently, machine learning methods have emerged that can be used for mining omics data and classifying patient. However, as the strengths and weaknesses of each method becoming apparent, new analytical tools are emerging to combine and improve the methodologies and maximize their predictive power for classifying cancer subtypes and prognosis. Here, we introduce recent advances in cancer systems biology aimed at personalized medicine, with focus on the receptor tyrosine kinase signaling network.
Collapse
Affiliation(s)
- Kyoichi Ebata
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Sawa Yamashiro
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Keita Iida
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Japan.,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Institute for Chemical Research, Kyoto University, Japan
| |
Collapse
|
27
|
Abstract
MOTIVATION Cells regulate themselves via dizzyingly complex biochemical processes called signaling pathways. These are usually depicted as a network, where nodes represent proteins and edges indicate their influence on each other. In order to understand diseases and therapies at the cellular level, it is crucial to have an accurate understanding of the signaling pathways at work. Since signaling pathways can be modified by disease, the ability to infer signaling pathways from condition- or patient-specific data is highly valuable. A variety of techniques exist for inferring signaling pathways. We build on past works that formulate signaling pathway inference as a Dynamic Bayesian Network structure estimation problem on phosphoproteomic time course data. We take a Bayesian approach, using Markov Chain Monte Carlo to estimate a posterior distribution over possible Dynamic Bayesian Network structures. Our primary contributions are (i) a novel proposal distribution that efficiently samples sparse graphs and (ii) the relaxation of common restrictive modeling assumptions. RESULTS We implement our method, named Sparse Signaling Pathway Sampling, in Julia using the Gen probabilistic programming language. Probabilistic programming is a powerful methodology for building statistical models. The resulting code is modular, extensible and legible. The Gen language, in particular, allows us to customize our inference procedure for biological graphs and ensure efficient sampling. We evaluate our algorithm on simulated data and the HPN-DREAM pathway reconstruction challenge, comparing our performance against a variety of baseline methods. Our results demonstrate the vast potential for probabilistic programming, and Gen specifically, for biological network inference. AVAILABILITY AND IMPLEMENTATION Find the full codebase at https://github.com/gitter-lab/ssps. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David Merrell
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Anthony Gitter
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI 53726, USA
| |
Collapse
|
28
|
Niarakis A, Helikar T. A practical guide to mechanistic systems modeling in biology using a logic-based approach. Brief Bioinform 2020; 22:5925256. [PMID: 33064138 DOI: 10.1093/bib/bbaa236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Mechanistic computational models enable the study of regulatory mechanisms implicated in various biological processes. These models provide a means to analyze the dynamics of the systems they describe, and to study and interrogate their properties, and provide insights about the emerging behavior of the system in the presence of single or combined perturbations. Aimed at those who are new to computational modeling, we present here a practical hands-on protocol breaking down the process of mechanistic modeling of biological systems in a succession of precise steps. The protocol provides a framework that includes defining the model scope, choosing validation criteria, selecting the appropriate modeling approach, constructing a model and simulating the model. To ensure broad accessibility of the protocol, we use a logical modeling framework, which presents a lower mathematical barrier of entry, and two easy-to-use and popular modeling software tools: Cell Collective and GINsim. The complete modeling workflow is applied to a well-studied and familiar biological process-the lac operon regulatory system. The protocol can be completed by users with little to no prior computational modeling experience approximately within 3 h.
Collapse
Affiliation(s)
- Anna Niarakis
- GenHotel, Univ Evry, University of Paris-Saclay, Genopole, 91025 Evry, France and Lifeware Group, Inria Saclay-île de France, Palaiseau 91120, France
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
29
|
Tsirvouli E, Touré V, Niederdorfer B, Vázquez M, Flobak Å, Kuiper M. A Middle-Out Modeling Strategy to Extend a Colon Cancer Logical Model Improves Drug Synergy Predictions in Epithelial-Derived Cancer Cell Lines. Front Mol Biosci 2020; 7:502573. [PMID: 33195403 PMCID: PMC7581946 DOI: 10.3389/fmolb.2020.502573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 09/22/2020] [Indexed: 11/23/2022] Open
Abstract
Cancer is a heterogeneous and complex disease and one of the leading causes of death worldwide. The high tumor heterogeneity between individuals affected by the same cancer type is accompanied by distinct molecular and phenotypic tumor profiles and variation in drug treatment response. In silico modeling of cancer as an aberrantly regulated system of interacting signaling molecules provides a basis to enhance our biological understanding of disease progression, and it offers the means to use computer simulations to test and optimize drug therapy designs on particular cancer types and subtypes. This sets the stage for precision medicine: the design of treatments tailored to individuals or groups of patients based on their tumor-specific molecular cancer profiles. Here, we show how a relatively large manually curated logical model can be efficiently enhanced further by including components highlighted by a multi-omics data analysis of data from Consensus Molecular Subtypes covering colorectal cancer. The model expansion was performed in a pathway-centric manner, following a partitioning of the model into functional subsystems, named modules. The resulting approach constitutes a middle-out modeling strategy enabling a data-driven expansion of a model from a generic and intermediate level of molecular detail to a model better covering relevant processes that are affected in specific cancer subtypes, comprising 183 biological entities and 603 interactions between them, partitioned in 25 functional modules of varying size and structure. We tested this model for its ability to correctly predict drug combination synergies, against a dataset of experimentally determined cell growth responses with 18 drugs in all combinations, on eight cancer cell lines. The results indicate that the extended model had an improved accuracy for drug synergy prediction for the majority of the experimentally tested cancer cell lines, although significant improvements of the model's predictive performance are still needed. Our study demonstrates how a tumor-data driven middle-out approach toward refining a logical model of a biological system can further customize a computer model to represent specific cancer cell lines and provide a basis for identifying synergistic effects of drugs targeting specific regulatory proteins. This approach bridges between preclinical cancer model data and clinical patient data and may thereby ultimately be of help to develop patient-specific in silico models that can steer treatment decisions in the clinic.
Collapse
Affiliation(s)
- Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vasundra Touré
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Barbara Niederdorfer
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miguel Vázquez
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Åsmund Flobak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Cancer Clinic, St. Olav’s University Hospital, Trondheim, Norway
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|