1
|
Soukar J, Peppas NA, Gaharwar AK. Organelle-Targeting Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411720. [PMID: 39806939 DOI: 10.1002/advs.202411720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/05/2024] [Indexed: 01/16/2025]
Abstract
Organelles are specialized subunits within cells which carry out vital functions crucial to cellular survival and form a tightly regulated network. Dysfunctions in any of these organelles are linked to numerous diseases impacting virtually every organ system in the human body. Targeted delivery of therapeutics to specific organelles within the cell holds great promise for overcoming challenging diseases and improving treatment outcomes through the minimization of therapeutic dosage and off-target effects. Nanoparticles are versatile and effective tools for therapeutic delivery to specific organelles. Nanoparticles offer several advantageous characteristics, including a high surface area-to-volume ratio for efficient therapeutic loading and the ability to attach targeting moieties (tethers) that enhance delivery. The choice of nanoparticle shape, size, composition, surface properties, and targeting ligands depends on the desired target organelle and therapeutic effect. Various nanoparticle platforms have been explored for organelle targeting, such as liposomes, polymeric nanoparticles, dendrimers, and inorganic nanoparticles. In this review, current and emerging approaches to nanoparticle design are examined in the context of various diseases linked to organelle dysfunction. Specifically, advances in nanoparticle therapies targeting organelles such as the nucleus, mitochondria, lysosomes/endosomes, Golgi apparatus, and endoplasmic reticulum are comprehensively and critically discussed.
Collapse
Affiliation(s)
- John Soukar
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Institute of Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
| | - Akhilesh K Gaharwar
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
2
|
Sharma N, Kurmi BD, Singh D, Mehan S, Khanna K, Karwasra R, Kumar S, Chaudhary A, Jakhmola V, Sharma A, Singh SK, Dua K, Kakkar D. Nanoparticles toxicity: an overview of its mechanism and plausible mitigation strategies. J Drug Target 2024; 32:457-469. [PMID: 38328920 DOI: 10.1080/1061186x.2024.2316785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Over the last decade, nanoparticles have found great interest among scientists and researchers working in various fields within the realm of biomedicine including drug delivery, gene delivery, diagnostics, targeted therapy and biomarker mapping. While their physical and chemical properties are impressive, there is growing concern about the toxicological potential of nanoparticles and possible adverse health effects as enhanced exposure of biological systems to nanoparticles may result in toxic effects leading to serious contraindications. Toxicity associated with nanoparticles (nanotoxicity) may include the undesired response of several physiological mechanisms including the distressing of cells by external and internal interaction with nanoparticles. However, comprehensive knowledge of nanotoxicity mechanisms and mitigation strategies may be useful to overcome the hazardous situation while treating diseases with therapeutic nanoparticles. With the same objectives, this review discusses various mechanisms of nanotoxicity and provides an overview of the current state of knowledge on the impact of nanotoxicity on biological control systems and organs including liver, brain, kidneys and lungs. An attempt also been made to present various approaches of scientific research and strategies that could be useful to overcome the effect of nanotoxicity during the development of nanoparticle-based systems including coating, doping, grafting, ligation and addition of antioxidants.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Dilpreet Singh
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Sidharth Mehan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Kushagra Khanna
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Janakpuri, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, Uttar Pradesh, India
| | - Amit Chaudhary
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | | | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Dipti Kakkar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig SK Mazumdar Marg, Delhi, India
| |
Collapse
|
3
|
Zhao D, Gao L, Huang X, Chen G, Gao B, Wang J, Gu M, Wang F. Complementary imaging of nanoclusters interacting with mitochondria via stimulated emission depletion and scanning transmission electron microscopy. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133371. [PMID: 38185082 DOI: 10.1016/j.jhazmat.2023.133371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
The emerging stress caused by nanomaterials in the environment is of great concern because they can have toxic effects on organisms. However, thorough study of the interactions between cells and diverse nanoparticles (NPs) using a unified approach is challenging. Here, we present a novel approach combining stimulated emission depletion (STED) microscopy and scanning transmission electron microscopy (STEM) for quantitative assessment, real-time tracking, and in situ imaging of the intracellular behavior of gold-silver nanoclusters (AuAgNCs), based on their fluorescence and electron properties. The results revealed an aggregated state of AuAgNCs within the mitochondria and an increase in sulfur content in AuAgNCs, presumably owing to their reaction with thiol-containing molecules inside the mitochondria. Moreover, AuAgNCs (100 μg/mL) induced a 75% decline in mitochondrial membrane potential and a 12-fold increase of mitochondrial reactive oxygen species in comparison to control. This mitochondrial damage may be triggered by the reaction of AuAgNCs with thiol, which provides direct imaging evidence for uncovering the action mechanism of AuAgNCs on the mitochondria. The proposed dual-imaging strategy using STED and STEM is a potential tool to offer valuable insights into cytotoxicity between subcellular structures and diverse NPs, and can serve as a key strategy for nanomaterial biosafety assessment.
Collapse
Affiliation(s)
- Dan Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Huang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Chen
- School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Beibei Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Wang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Min Gu
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Behera A, Sa N, Pradhan SP, Swain S, Sahu PK. Metal Nanoparticles in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:791-810. [PMID: 37662608 PMCID: PMC10473155 DOI: 10.3233/adr-220112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Nanotechnology has emerged in different fields of biomedical application, including lifestyle diseases like diabetes, hypertension, and chronic kidney disease, neurodegenerative diseases like Alzheimer's disease (AD), Parkinson's disease, and different types of cancers. Metal nanoparticles are one of the most used drug delivery systems due to the benefits of their enhanced physicochemical properties as compared to bulk metals. Neurodegenerative diseases are the second most cause affecting mortality worldwide after cancer. Hence, they require the most specific and targeted drug delivery systems for maximum therapeutic benefits. Metal nanoparticles are the preferred drug delivery system, possessing greater blood-brain barrier permeability, biocompatibility, and enhanced bioavailability. But some metal nanoparticles exhibit neurotoxic activity owing to their shape, size, surface charge, or surface modification. This review article has discussed the pathophysiology of AD. The neuroprotective mechanism of gold, silver, selenium, ruthenium, cerium oxide, zinc oxide, and iron oxide nanoparticles are discussed. Again, the neurotoxic mechanisms of gold, iron oxide, titanium dioxide, and cobalt oxide are also included. The neuroprotective and neurotoxic effects of nanoparticles targeted for treating AD are discussed elaborately. The review also focusses on the biocompatibility of metal nanoparticles for targeting the brain in treating AD. The clinical trials and the requirement to develop new drug delivery systems are critically analyzed. This review can show a path for the researchers involved in the brain-targeted drug delivery for AD.
Collapse
Affiliation(s)
- Anindita Behera
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Sunsita Swain
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Misra SK, Rosenholm JM, Pathak K. Functionalized and Nonfunctionalized Nanosystems for Mitochondrial Drug Delivery with Metallic Nanoparticles. Molecules 2023; 28:4701. [PMID: 37375256 DOI: 10.3390/molecules28124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The application of metallic nanoparticles as a novel therapeutic tool has significant potential to facilitate the treatment and diagnosis of mitochondria-based disorders. Recently, subcellular mitochondria have been trialed to cure pathologies that depend on their dysfunction. Nanoparticles made from metals and their oxides (including gold, iron, silver, platinum, zinc oxide, and titanium dioxide) have unique modi operandi that can competently rectify mitochondrial disorders. Materials: This review presents insight into the recent research reports on exposure to a myriad of metallic nanoparticles that can alter the dynamic ultrastructure of mitochondria (via altering metabolic homeostasis), as well as pause ATP production, and trigger oxidative stress. The facts and figures have been compiled from more than a hundred PubMed, Web of Science, and Scopus indexed articles that describe the essential functions of mitochondria for the management of human diseases. Result: Nanoengineered metals and their oxide nanoparticles are targeted at the mitochondrial architecture that partakes in the management of a myriad of health issues, including different cancers. These nanosystems not only act as antioxidants but are also fabricated for the delivery of chemotherapeutic agents. However, the biocompatibility, safety, and efficacy of using metal nanoparticles is contested among researchers, which will be discussed further in this review.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd Floor), Tykistökatu, 6A, 20520 Turku, Finland
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| |
Collapse
|
6
|
Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022; 7:379. [PMID: 36402753 PMCID: PMC9675787 DOI: 10.1038/s41392-022-01243-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.
Collapse
Affiliation(s)
- Jingjing Yang
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Zhe Qiang
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jie Ren
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| |
Collapse
|
7
|
NADPH and Mitochondrial Quality Control as Targets for a Circadian-Based Fasting and Exercise Therapy for the Treatment of Parkinson's Disease. Cells 2022; 11:cells11152416. [PMID: 35954260 PMCID: PMC9367803 DOI: 10.3390/cells11152416] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dysfunctional mitochondrial quality control (MQC) is implicated in the pathogenesis of Parkinson's disease (PD). The improper selection of mitochondria for mitophagy increases reactive oxygen species (ROS) levels and lowers ATP levels. The downstream effects include oxidative damage, failure to maintain proteostasis and ion gradients, and decreased NAD+ and NADPH levels, resulting in insufficient energy metabolism and neurotransmitter synthesis. A ketosis-based metabolic therapy that increases the levels of (R)-3-hydroxybutyrate (BHB) may reverse the dysfunctional MQC by partially replacing glucose as an energy source, by stimulating mitophagy, and by decreasing inflammation. Fasting can potentially raise cytoplasmic NADPH levels by increasing the mitochondrial export and cytoplasmic metabolism of ketone body-derived citrate that increases flux through isocitrate dehydrogenase 1 (IDH1). NADPH is an essential cofactor for nitric oxide synthase, and the nitric oxide synthesized can diffuse into the mitochondrial matrix and react with electron transport chain-synthesized superoxide to form peroxynitrite. Excessive superoxide and peroxynitrite production can cause the opening of the mitochondrial permeability transition pore (mPTP) to depolarize the mitochondria and activate PINK1-dependent mitophagy. Both fasting and exercise increase ketogenesis and increase the cellular NAD+/NADH ratio, both of which are beneficial for neuronal metabolism. In addition, both fasting and exercise engage the adaptive cellular stress response signaling pathways that protect neurons against the oxidative and proteotoxic stress implicated in PD. Here, we discuss how intermittent fasting from the evening meal through to the next-day lunch together with morning exercise, when circadian NAD+/NADH is most oxidized, circadian NADP+/NADPH is most reduced, and circadian mitophagy gene expression is high, may slow the progression of PD.
Collapse
|
8
|
Dai Z, Wang Q, Tang J, Qu R, Wu M, Li H, Yang Y, Zhen X, Yu C. A Sub-6 nm MnFe2O4-dichloroacetic acid nanocomposite modulates tumor metabolism and catabolism for reversing tumor immunosuppressive microenvironment and boosting immunotherapy. Biomaterials 2022; 284:121533. [DOI: 10.1016/j.biomaterials.2022.121533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
|
9
|
Shen X, Li D, Zhuang P, Yu Y, Shi Z, Mei X, Liu C. Negatively charged gold nanoclusters protect against diabetic cardiomyopathy by inhibiting mitophagy. NEW J CHEM 2022. [DOI: 10.1039/d2nj01536f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Negatively charged AuNCs were found to stabilize the membrane potential and inhibit mitophagy, thereby preventing diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xiaolei Shen
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dan Li
- Department of Basic Science, Jinzhou Medical University, Jinzhou, China
| | - Pengfei Zhuang
- Department of Basic Science, Jinzhou Medical University, Jinzhou, China
| | - Yang Yu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zuqiang Shi
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xifan Mei
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chang Liu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
10
|
Ji B, Wei M, Yang B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics 2022; 12:434-458. [PMID: 34987658 PMCID: PMC8690913 DOI: 10.7150/thno.67300] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has made tremendous clinical progress in advanced-stage malignancies. However, patients with various tumors exhibit a low response rate to immunotherapy because of a powerful immunosuppressive tumor microenvironment (TME) and insufficient immunogenicity of tumors. Photodynamic therapy (PDT) can not only directly kill tumor cells, but also elicit immunogenic cell death (ICD), providing antitumor immunity. Unfortunately, limitations from the inherent nature and complex TME significantly reduce the efficiency of PDT. Recently, smart nanomedicine-based strategies could subtly modulate the pharmacokinetics of therapeutic compounds and the TME to optimize both PDT and immunotherapy, resulting in an improved antitumor effect. Here, the emerging nanomedicines for PDT-driven cancer immunotherapy are reviewed, including hypoxia-reversed nanomedicines, nanosized metal-organic frameworks, and subcellular targeted nanoparticles (NPs). Moreover, we highlight the synergistic nanotherapeutics used to amplify immune responses combined with immunotherapy against tumors. Lastly, the challenges and future expectations in the field of PDT-driven cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Bin Ji
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Bin Yang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
11
|
Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021; 296:102509. [PMID: 34455211 DOI: 10.1016/j.cis.2021.102509] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/24/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022]
Abstract
One of the challenges in cancer chemotherapy is the low target to non-target ratio of therapeutic agents which incur severe adverse effect on the healthy tissues. In this regard, nanomaterials have tremendous potential for impacting cancer therapy by altering the toxicity profile of the drug. Some of the striking advantages provided by the nanocarriers mediated targeted drug delivery are relatively high build-up of drug concentration at the tumor site, improved drug content in the formulation and enhanced colloidal stability. Further, nanocarriers with tumor-specific moieties can be targeted to the cancer cell through cell surface receptors, tumor antigens and tumor vasculatures with high affinity and accuracy. Moreover, it overcomes the bottleneck of aimless drug biodistribution, undesired toxicity and heavy dosage of administration. This review discusses the recent developments in active targeting of nanomaterials for anticancer drug delivery through cancer cell surface targeting, organelle specific targeting and tumor microenvironment targeting strategies. Special emphasis has been given towards cancer cell surface and organelle specific targeting as delivery of anticancer drugs through these routes have made paradigm change in cancer management. Further, the current challenges and future prospects of nanocarriers mediated active drug targeting are also demonstrated.
Collapse
|
12
|
Kolygina DV, Siek M, Borkowska M, Ahumada G, Barski P, Witt D, Jee AY, Miao H, Ahumada JC, Granick S, Kandere-Grzybowska K, Grzybowski BA. Mixed-Charge Nanocarriers Allow for Selective Targeting of Mitochondria by Otherwise Nonselective Dyes. ACS NANO 2021; 15:11470-11490. [PMID: 34142807 DOI: 10.1021/acsnano.1c01232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Targeted delivery of molecular cargos to specific organelles is of paramount importance for developing precise and effective therapeutics and imaging probes. This work describes a disulfide-based delivery method in which mixed-charged nanoparticles traveling through the endolysosomal tract deliver noncovalently bound dye molecules selectively into mitochondria. This system comprises three elements: (1) The nanoparticles deliver their payloads by a kiss-and-go mechanism - that is, they drop off their dye cargos proximate to mitochondria but do not localize therein; (2) the dye molecules are by themselves nonspecific to any cellular structures but become so with the help of mixed-charge nanocarriers; and (3) the dye is engineered in such a way as to remain in mitochondria for a long time, up to days, allowing for observing dynamic remodeling of mitochondrial networks and long-term tracking of mitochondria even in dividing cells. The selectivity of delivery and long-lasting staining derive from the ability to engineer charge-imbalanced, mixed [+/-] on-particle monolayers and from the structural features of the cargo. Regarding the former, the balance of [+] and [-] ligands can be adjusted to limit cytotoxicity and control the number of dye molecules adsorbed onto the particles' surfaces. Regarding the latter, comparative studies with multiple dye derivatives we synthesized rationalize the importance of polar groups, long alkyl chains, and disulfide moieties in the assembly of fluorescent nanoconstructs and long-lasting staining of mitochondria. Overall, this strategy could be useful for delivering hydrophilic and/or anionic small-molecule drugs difficult to target to mitochondria by classical approaches.
Collapse
Affiliation(s)
- Diana V Kolygina
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Marta Siek
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Magdalena Borkowska
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Guillermo Ahumada
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Piotr Barski
- ProChimia Surfaces Sp. z o.o., Al Zwycięstwa 96/98 F8, 81-451 Gdynia, Poland
| | - Dariusz Witt
- ProChimia Surfaces Sp. z o.o., Al Zwycięstwa 96/98 F8, 81-451 Gdynia, Poland
| | - Ah-Young Jee
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Han Miao
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Juan Carlos Ahumada
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Steve Granick
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kristiana Kandere-Grzybowska
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Bartosz A Grzybowski
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
13
|
Dihydrolipoic acid-coated gold nanocluster bioactivity against senescence and inflammation through the mitochondria-mediated JNK/AP-1 pathway. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102427. [PMID: 34174418 DOI: 10.1016/j.nano.2021.102427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022]
Abstract
Cellular senescence is the progressive impairment of function and proliferation in response to various regulators. Dihydrolipoic acid-coated gold nanoclusters (DHLA-Au NCs), which are molecular clusters with covalently linked dihydroxyl lipoic acid, preserve cellular activities for long-term incubation. DHLA-Au NC delivery was characterized, and we determined the role of growth supplements on internalization, allowing the optimization of DHLA-Au NC bioactivity. In the optimized medium, DHLA-Au NCs attenuated the levels of the senescence-associated phenotype. Molecular mechanism analysis further indicated that during DHLA-Au NC treatment, the activation of the stress signal JNK and its downstream c-Jun were impaired under LPS induction, which led to a decline in AP-1-mediated TNF-α transactivation. Confocal microscopy and subcellular fractionation analysis suggested that DHLA-Au NCs interacted with mitochondria through their lipid moiety and attenuated mitochondria-derived reactive oxygen species. With adequate treatment, DHLA-Au NCs show protection against cellular senescence and inflammation in vitro and in vivo.
Collapse
|
14
|
Zhao Y, Xiong S, Liu P, Liu W, Wang Q, Liu Y, Tan H, Chen X, Shi X, Wang Q, Chen T. Polymeric Nanoparticles-Based Brain Delivery with Improved Therapeutic Efficacy of Ginkgolide B in Parkinson's Disease. Int J Nanomedicine 2020; 15:10453-10467. [PMID: 33380795 PMCID: PMC7769078 DOI: 10.2147/ijn.s272831] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Ginkgolide B (GB) is a terpene lactone derivative of Ginkgo biloba that is believed to function in a neuroprotective manner ideal for treating Parkinson’s disease (PD). Despite its promising therapeutic properties, GB has poor bioavailability following oral administration and cannot readily achieve sufficient exposure in treated patients, limiting its clinical application for the treatment of PD. In an effort to improve its efficacy, we utilized poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-PCL) nanoparticles as a means of encapsulating GB (GB-NPs). These NPs facilitated the sustained release of GB into the blood, thereby improving its ability to accumulate in the brain and to treat PD. Methods and Results Using Madin-Darby canine kidney (MDCK) cells, we were able to confirm that these NPs could be taken into cells via multiple nonspecific mechanisms including micropinocytosis, clathrin-dependent endocytosis, and lipid raft/caveolae-mediated endocytosis. Once internalized, these NPs tended to accumulate in the endoplasmic reticulum and lysosomes. In zebrafish, we determined that these NPs were readily able to undergo transport across the chorion, gastrointestinal, blood–brain, and blood-retinal barriers. In a 1-methyl-4-phenylpyridinium ion (MPP+)-induced neuronal damage model system, we confirmed the neuroprotective potential of these NPs. Following oral administration to rats, GB-NPs exhibited more desirable pharmacokinetics than did free GB, achieving higher GB concentrations in both the brain and the blood. Using a murine PD model, we demonstrated that these GB-NPs achieved superior therapeutic efficacy and reduced toxicity relative to free GB. Conclusion In conclusion, these results indicate that NPs encapsulation of GB can significantly improve its oral bioavailability, cerebral accumulation, and bioactivity via mediating its sustained release in vivo.
Collapse
Affiliation(s)
- Yuying Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Sha Xiong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Piaoxue Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Qun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Hanxu Tan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, People's Republic of China
| | - Xuguang Shi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, People's Republic of China
| |
Collapse
|
15
|
Oladimeji O, Akinyelu J, Singh M. Nanomedicines for Subcellular Targeting: The Mitochondrial Perspective. Curr Med Chem 2020; 27:5480-5509. [PMID: 31763965 DOI: 10.2174/0929867326666191125092111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Over the past decade, there has been a surge in the number of mitochondrialactive therapeutics for conditions ranging from cancer to aging. Subcellular targeting interventions can modulate adverse intracellular processes unique to the compartments within the cell. However, there is a dearth of reviews focusing on mitochondrial nano-delivery, and this review seeks to fill this gap with regards to nanotherapeutics of the mitochondria. METHODS Besides its potential for a higher therapeutic index than targeting at the tissue and cell levels, subcellular targeting takes into account the limitations of systemic drug administration and significantly improves pharmacokinetics. Hence, an extensive literature review was undertaken and salient information was compiled in this review. RESULTS From literature, it was evident that nanoparticles with their tunable physicochemical properties have shown potential for efficient therapeutic delivery, with several nanomedicines already approved by the FDA and others in clinical trials. However, strategies for the development of nanomedicines for subcellular targeting are still emerging, with an increased understanding of dysfunctional molecular processes advancing the development of treatment modules. For optimal delivery, the design of an ideal carrier for subcellular delivery must consider the features of the diseased microenvironment. The functional and structural features of the mitochondria in the diseased state are highlighted and potential nano-delivery interventions for treatment and diagnosis are discussed. CONCLUSION This review provides an insight into recent advances in subcellular targeting, with a focus on en route barriers to subcellular targeting. The impact of mitochondrial dysfunction in the aetiology of certain diseases is highlighted, and potential therapeutic sites are identified.
Collapse
Affiliation(s)
- Olakunle Oladimeji
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal, Private Bag X54001, Durban, South Africa
| | - Jude Akinyelu
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal, Private Bag X54001, Durban, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal, Private Bag X54001, Durban, South Africa
| |
Collapse
|
16
|
Charles C, Cohen-Erez I, Kazaoka B, Melnikov O, Stein DE, Sensenig R, Rapaport H, Orynbayeva Z. Mitochondrial responses to organelle-specific drug delivering nanoparticles composed of polypeptide and peptide complexes. Nanomedicine (Lond) 2020; 15:2917-2932. [PMID: 33241963 DOI: 10.2217/nnm-2020-0266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: The mechanistic study of the drug carrier-target interactions of mitochondria-unique nanoparticles composed of polypeptide-peptide complexes (mPoP-NPs). Materials & methods: The isolated organelles were employed to address the direct effects of mPoP-NPs on dynamic structure and functional wellbeing of mitochondria. Mitochondria morphology, respiration, membrane potential, reactive oxygen species generation, were examined by confocal microscopy, flow cytometry and oxygraphy. Lonidamine-encapsulated formulation was assessed to evaluate the drug delivery capacity of the naive nanoparticles. Results: The mPoP-NPs do not alter mitochondria structure and performance upon docking to organelles, while successfully delivering drug that causes organelle dysfunction. Conclusion: The study gives insight into interactions of mPoP-NPs with mitochondria and provides substantial support for consideration of designed nanoparticles as biocompatible and efficient mitochondria-targeted platforms.
Collapse
Affiliation(s)
- Carleigh Charles
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Ifat Cohen-Erez
- Avram & Stella Goldstein-Goren Department of Biotechnology Engineering & Ilse Katz Institute for Nanoscience & technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Blake Kazaoka
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Olga Melnikov
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - David E Stein
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Richard Sensenig
- Department of Surgery, Cooper University Hospital, Camden, NJ 08103, USA
| | - Hanna Rapaport
- Avram & Stella Goldstein-Goren Department of Biotechnology Engineering & Ilse Katz Institute for Nanoscience & technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Zulfiya Orynbayeva
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
17
|
Zhang X, Li Y, Hu Y. Green synthesis of silver nanoparticles and their preventive effect in deficits in recognition and spatial memory in sporadic Alzheimer's rat model. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Shaymardanova GF, Salnikov VV. Localization of Annexin V and Agrin in the Intact Sciatic Nerve of Mice. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420030095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, Wu C, Mao Z, Luo G, Chen X, Deng J. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun 2020; 11:2788. [PMID: 32493916 PMCID: PMC7270130 DOI: 10.1038/s41467-020-16544-7] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/06/2020] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is associated with many acute and chronic inflammatory diseases, yet limited treatment is currently available clinically. The development of enzyme-mimicking nanomaterials (nanozymes) with good reactive oxygen species (ROS) scavenging ability and biocompatibility is a promising way for the treatment of ROS-related inflammation. Herein we report a simple and efficient one-step development of ultrasmall Cu5.4O nanoparticles (Cu5.4O USNPs) with multiple enzyme-mimicking and broad-spectrum ROS scavenging ability for the treatment of ROS-related diseases. Cu5.4O USNPs simultaneously possessing catalase-, superoxide dismutase-, and glutathione peroxidase-mimicking enzyme properties exhibit cytoprotective effects against ROS-mediated damage at extremely low dosage and significantly improve treatment outcomes in acute kidney injury, acute liver injury and wound healing. Meanwhile, the ultrasmall size of Cu5.4O USNPs enables rapid renal clearance of the nanomaterial, guaranteeing the biocompatibility. The protective effect and good biocompatibility of Cu5.4O USNPs will facilitate clinical treatment of ROS-related diseases and enable the development of next-generation nanozymes.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Bowen Xiao
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Fei Xiang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Jianglin Tan
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Zhuo Chen
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chengzhou Wu
- Department of Respiratory Care, Wuxi County People's Hospital, 405800, Chongqing, China
| | - Zhengwei Mao
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| |
Collapse
|
20
|
Gong XT, Xie W, Cao JJ, Zhang S, Pu K, Zhang HL. NIR-emitting semiconducting polymer nanoparticles for in vivo two-photon vascular imaging. Biomater Sci 2020; 8:2666-2672. [PMID: 32253399 DOI: 10.1039/c9bm02063b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two-photon fluorescence (TPF) imaging holds great promise for real-time monitoring of cerebral ischemia-reperfusion injury, which is important for the clinical diagnosis of stroke. However, biocompatible and photostable NIR-emitting probes for TPF imaging of ischemic stroke are lacking. Herein, we report the first NIR-emitting TPF probe (named NESPN) prepared using semiconducting polymers for TPF imaging of cerebral ischemia. By virtue of its excellent biocompatibility with the nervous system and bright fluorescence NIR emission, NESPN enables the real-time imaging of mouse brain vasculature with micrometer-scale spatial resolution, realizing clear visualization of ultrafine capillaries (∼3.16 μm). Moreover, NESPN can be utilized in the dynamic monitoring of cerebral blood flow velocity. Microangiography using NESPN was successfully used to indicate the openness of the penumbra area in the mouse brain stroke model. More importantly, this technique allows us to continuously monitor the whole process of ischemic stroke and subsequent reperfusion. This work provides a new and versatile tool for vascular research and diagnosis of vascular diseases.
Collapse
Affiliation(s)
- Xiao-Ting Gong
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Wenguang Xie
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Jing-Jing Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Kanyi Pu
- Chemical and Biomedical Engineering, Nanyang Technological University of Singapore, 637457, Singapore.
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China. and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
21
|
Peng N, Yu H, Yu W, Yang M, Chen H, Zou T, Deng K, Huang S, Liu Y. Sequential-targeting nanocarriers with pH-controlled charge reversal for enhanced mitochondria-located photodynamic-immunotherapy of cancer. Acta Biomater 2020; 105:223-238. [PMID: 31926335 DOI: 10.1016/j.actbio.2020.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/08/2019] [Accepted: 01/06/2020] [Indexed: 01/28/2023]
Abstract
Targeting delivery of photosensitizers to mitochondria as the most sensitive cellular organelles to reactive oxygen species (ROS) by positively charged polymeric nanocarriers (NCs) is one of the useful methods for efficient photodynamic therapy (PDT). However, the NCs with positively charged mitochondria-targeting moieties are easily cleaned during circulation, restricting their in vivo applications. Herein, to address this issue and enhance in vivo PDT efficacy, we developed a sequential-targeting delivery system consisting of mitochondria-targeting micelles as the core prepared from the cationic amphiphilic copolymer for loading chlorin e6 (Ce6) and a tumor-targeting pH-dependent charge transformational layer as the shell obtained from 2,3-dimethylmaleic anhydride modified Biotin-PEG4000-NH2 (BioPEGDMA) via electrostatic interaction. Concealed by the anionic shell, the as-prepared NCs showed longer retention within the first stage of tumor-targeting. Then, the accumulated NCs conversed to positive charge in tumor extracellular microenvironment (pH ∼ 6.5), which could be more effectively internalized by tumor cells, and the re-exposed triphenylphosphonium (TPP) groups endowed their second-stage targetability to the mitochondria. In vivo experiments revealed that the Ce6-loaded NCs exhibited remarkable tumor inhibition rates of 84.1% and 93.2% on BALB/c nude mice and Kunming mice, respectively, under 660 nm NIR irradiation, and stimulated immune responses with upregulated expression of IFN-γ, TNF-α and CD3+ in tumor tissues, and enhanced activation of CD3+/CD4+, CD3+/CD8+ T lymphocytes and DCs in both tumor tissues and lymph glands. This work provided a new pathway for the development of smart drug delivery system with advanced PDT efficacy. STATEMENT OF SIGNIFICANCE: Although the existing targeting delivery of photosensitizers to mitochondria by positively charged nanocarriers (NCs) have efficiently enhanced photodynamic therapy (PDT), their positive charges caused rapid clearance during circulation, which has restricted their in vivo applications. Therefore, we fabricated a novel sequential-targeting NC to solve the problem. The tumor accumulated NCs conversed to positive charge in tumor extracellular microenvironment, and the re-exposed triphenylphosphonium groups initiated second-stage targetability to mitochondria. This system exhibited remarkable tumor inhibition efficiency both in vitro and in vivo. Moreover, as we hypothesized, mitochondria-located PDT could promote immune response, resulting in improvement of PDT. The strategy of sequential targeting-based PDT in combination with augmented immune response showed a novel pathway for the development of smart drug delivery system with advanced PDT.
Collapse
|
22
|
Liu CG, Han YH, Kankala RK, Wang SB, Chen AZ. Subcellular Performance of Nanoparticles in Cancer Therapy. Int J Nanomedicine 2020; 15:675-704. [PMID: 32103936 PMCID: PMC7008395 DOI: 10.2147/ijn.s226186] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
With the advent of nanotechnology, various modes of traditional treatment strategies have been transformed extensively owing to the advantageous morphological, physiochemical, and functional attributes of nano-sized materials, which are of particular interest in diverse biomedical applications, such as diagnostics, sensing, imaging, and drug delivery. Despite their success in delivering therapeutic agents, several traditional nanocarriers often end up with deprived selectivity and undesired therapeutic outcome, which significantly limit their clinical applicability. Further advancements in terms of improved selectivity to exhibit desired therapeutic outcome toward ablating cancer cells have been predominantly made focusing on the precise entry of nanoparticles into tumor cells via targeting ligands, and subsequent delivery of therapeutic cargo in response to specific biological or external stimuli. However, there is enough room intracellularly, where diverse small-sized nanomaterials can accumulate and significantly exert potentially specific mechanisms of antitumor effects toward activation of precise cancer cell death pathways that can be explored. In this review, we aim to summarize the intracellular pathways of nanoparticles, highlighting the principles and state of their destructive effects in the subcellular structures as well as the current limitations of conventional therapeutic approaches. Next, we give an overview of subcellular performances and the fate of internalized nanoparticles under various organelle circumstances, particularly endosome or lysosome, mitochondria, nucleus, endoplasmic reticulum, and Golgi apparatus, by comprehensively emphasizing the unique mechanisms with a series of interesting reports. Moreover, intracellular transformation of the internalized nanoparticles, prominent outcome and potential affluence of these interdependent subcellular components in cancer therapy are emphasized. Finally, we conclude with perspectives with a focus on the contemporary challenges in their clinical applicability.
Collapse
Affiliation(s)
- Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
| | - Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian361021, People’s Republic of China
| |
Collapse
|
23
|
Osman NM, Sexton DW, Saleem IY. Toxicological assessment of nanoparticle interactions with the pulmonary system. Nanotoxicology 2019; 14:21-58. [PMID: 31502904 DOI: 10.1080/17435390.2019.1661043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticle(NP)-based materials have breakthrough applications in many fields of life, such as in engineering, communications and textiles industries; food and bioenvironmental applications; medicines and cosmetics, etc. Biomedical applications of NPs are very active areas of research with successful translation to pharmaceutical and clinical uses overcoming both pharmaceutical and clinical challenges. Although the attractiveness and enhanced applications of these NPs stem from their exceptional properties at the nanoscale size, i.e. 1-1000 nm, they exhibit completely different physicochemical profiles and, subsequently, toxicological profiles from their parent bulk materials. Hence, the clinical evaluation and toxicological assessment of NPs interactions within biological systems are continuously evolving to ensure their safety at the nanoscale. The pulmonary system is one of the primary routes of exposure to airborne NPs either intentionally, via aerosolized nanomedicines targeting pulmonary pathologies such as cancer or asthma, or unintentionally, via natural NPs and anthropogenic (man-made) NPs. This review presents the state-of-the-art, contemporary challenges, and knowledge gaps in the toxicological assessment of NPs interactions with the pulmonary system. It highlights the main mechanisms of NP toxicity, factors influencing their toxicity, the different toxicological assessment methods and their drawbacks, and the recent NP regulatory guidelines based on literature collected from the research pool of NPs interactions with lung cell lines, in vivo inhalation studies, and clinical trials.
Collapse
Affiliation(s)
- Nashwa M Osman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Imran Y Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
24
|
Nunes ÁM, da Silva KRM, Calado CMS, Saraiva KLA, Q Figueiredo RCB, Leite ACR, Meneghetti MR. Evaluation of gold nanorods toxicity on isolated mitochondria. Toxicology 2018; 413:24-32. [PMID: 30528861 DOI: 10.1016/j.tox.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 01/30/2023]
Abstract
Gold nanorods (AuNRs) have been studied extensively in biomedicine due to their biocompatibility and their unique properties. Some studies reported that AuNRs selectively accumulate on cancer cell mitochondria causing its death. However, the immediate effects of this accumulation needed further investigations. In this context, we evaluated the effect of AuNRs on the mitochondrial integrity of isolated rat liver mitochondria. We verified that AuNRs decreased the mitochondrial respiratory ratio by decreasing the phosphorylation and maximal states. Additionally, AuNRs caused a decrease in the production of mitochondrial ROS and a delay in mitochondrial swelling. Moreover, even with cyclosporine A treatment, AuNRs disrupted the mitochondrial potential. With the highest concentration of AuNRs studied, disorganized mitochondrial crests and intermembrane separation were observed in TEM images. These results indicate that AuNRs can interact with mitochondria, disrupting the electron transport chain. This study provides new evidence of the immediate effects of AuNRs on mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Ábner M Nunes
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, CEP, 57072-970, Maceió, Alagoas, Brazil
| | - Kleyton R M da Silva
- Laboratório de Bioenergética, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, CEP, 57072-970, Maceió, Alagoas, Brazil
| | - Claudia M S Calado
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, CEP, 57072-970, Maceió, Alagoas, Brazil
| | - Karina L A Saraiva
- Laboratório de Biologia Celular de Patógenos, Departamento de Microbiologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Cidade Universitária, CEP, 50670-420, Recife, Pernambuco, Brazil
| | - Regina C B Q Figueiredo
- Laboratório de Biologia Celular de Patógenos, Departamento de Microbiologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Cidade Universitária, CEP, 50670-420, Recife, Pernambuco, Brazil
| | - Ana Catarina R Leite
- Laboratório de Bioenergética, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, CEP, 57072-970, Maceió, Alagoas, Brazil.
| | - Mario R Meneghetti
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, CEP, 57072-970, Maceió, Alagoas, Brazil.
| |
Collapse
|
25
|
Chen L, Wu LY, Yang WX. Nanoparticles induce apoptosis via mediating diverse cellular pathways. Nanomedicine (Lond) 2018; 13:2939-2955. [DOI: 10.2217/nnm-2018-0167] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With a special size and structure, nanoparticles (NPs) have excellent application prospects in various fields and are widely used in the biomedicine, cosmetics and chemical industries nowadays. However, there have been some reports on the biosafety of this new type of material, pointing out its cytotoxicity in inducing apoptosis. With different physicochemical properties in size, shape, surface charge, and ligand, NPs exhibit different biocompatibilities when interacting with different cells. Therefore, a comprehensive and deep study into the proapoptotic mechanism of NPs is necessary. In the present review, we summarize the NP-triggered apoptotic signal pathways in detail and highlight some important functional molecules involved. We hope our findings and perspectives provide a new direction for the sound development of nanotechnology in the future.
Collapse
Affiliation(s)
- Liang Chen
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liu-Yun Wu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Strategies in the design of gold nanoparticles for intracellular targeting: opportunities and challenges. Ther Deliv 2017; 8:879-897. [DOI: 10.4155/tde-2017-0049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
With unique physicochemical properties, gold nanoparticles (Au NPs) have demonstrated their potential as drug carriers or therapeutic agents. Effective guidance of Au NPs into specific intracellular destinations becomes increasingly important as we strive to further improve the efficiency of drug delivery and modulate controllable cellular responses. In this review, we summarized recent advances in designing Au NPs with the capabilities of cellular penetration and internalization, endosomal escape, intracellular trafficking and subcellular localization via various approaches including physical injection, tuning the physiochemical parameters of Au NPs, and surface modification with targeting ligands. Strategies for delivering Au NPs to specific subcellular destinations including the nucleus, mitochondria, endoplasmic reticulum, lysosomes are also discussed. Moreover, current challenges associated with intracellular targeting of Au NPs are discussed with future perspectives proposed.
Collapse
|
27
|
Savla R, Minko T. Nanoparticle design considerations for molecular imaging of apoptosis: Diagnostic, prognostic, and therapeutic value. Adv Drug Deliv Rev 2017; 113:122-140. [PMID: 27374457 DOI: 10.1016/j.addr.2016.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
Abstract
The present review analyzes various approaches for the design and synthesis of different nanoparticles for imaging and therapy. Nanoparticles for computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and optical imaging are discussed. The influence of nanoparticle size, shape, surface charge, composition, surface functionalization, active targeting and other factors on imaging and therapeutic efficacy is analyzed. Cyto- and genotoxicity of nanoparticles are also discussed. Special attention in the review is paid to the imaging of apoptotic tissues and cells in different diseases.
Collapse
Affiliation(s)
- Ronak Savla
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States; Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854, United States.
| |
Collapse
|
28
|
Muller AP, Ferreira GK, Pires AJ, de Bem Silveira G, de Souza DL, Brandolfi JDA, de Souza CT, Paula MMS, Silveira PCL. Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer's type. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:476-483. [PMID: 28532055 DOI: 10.1016/j.msec.2017.03.283] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/23/2016] [Accepted: 03/21/2017] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia in the aged brain. Even though its etiology is unknown, factors such as neuroinflammation, mitochondrial dysfunction, formation of reactive oxygen species (ROS), and impaired insulin signaling may play a role. We used a sporadic AD model in rats generated by intracerebroventricular-streptozotocin (i.c.v.-STZ) injection to test the therapeutic effect of gold nanoparticles (GNPs). We tested the null hypothesis that there would be no difference between the STZ+GNPs group and the STZ group in the analyzed markers. We observed that STZ-induced impairment in mitochondrial ATP production, neuroinflammation, and oxidative stress were all prevented by GNP treatment. Moreover, while STZ induced deficits in both spatial and recognition memory, GNPs prevented this effect. These results suggest that GNPs may be considered as a potential treatment for dementias.
Collapse
Affiliation(s)
- Alexandre Pastoris Muller
- Laboratório de Fisiologia e Bioquímica do Exercício, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-00 Criciúma, SC, Brazil
| | - Gabriela K Ferreira
- Laboratório de Farmacologia e Fisiopatologia da Pele, Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Allison José Pires
- Laboratório de Fisiologia e Bioquímica do Exercício, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-00 Criciúma, SC, Brazil
| | - Gustavo de Bem Silveira
- Laboratório de Fisiologia e Bioquímica do Exercício, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-00 Criciúma, SC, Brazil
| | - Débora Laureano de Souza
- Laboratório de Fisiologia e Bioquímica do Exercício, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-00 Criciúma, SC, Brazil
| | - Joice de Abreu Brandolfi
- Laboratório de Fisiologia e Bioquímica do Exercício, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-00 Criciúma, SC, Brazil
| | - Claudio Teodoro de Souza
- Laboratório de Fisiologia e Bioquímica do Exercício, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-00 Criciúma, SC, Brazil
| | - Marcos M S Paula
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Amazonas, Faculdade de Tecnologia, 69077-000 Manaus, Amazonas, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratório de Fisiologia e Bioquímica do Exercício, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-00 Criciúma, SC, Brazil.
| |
Collapse
|
29
|
Sapkota B, Benabbas A, Lin HYG, Liang W, Champion P, Wanunu M. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9378-9387. [PMID: 28252932 DOI: 10.1021/acsami.6b16364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.
Collapse
Affiliation(s)
- Bedanga Sapkota
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - Abdelkrim Benabbas
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - Hao-Yu Greg Lin
- Center for Nanoscale Systems, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Wentao Liang
- Department of Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Paul Champion
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| |
Collapse
|
30
|
Ma X, Gong N, Zhong L, Sun J, Liang XJ. Future of nanotherapeutics: Targeting the cellular sub-organelles. Biomaterials 2016; 97:10-21. [DOI: 10.1016/j.biomaterials.2016.04.026] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/02/2016] [Accepted: 04/20/2016] [Indexed: 11/25/2022]
|
31
|
|
32
|
Wen R, Banik B, Pathak RK, Kumar A, Kolishetti N, Dhar S. Nanotechnology inspired tools for mitochondrial dysfunction related diseases. Adv Drug Deliv Rev 2016; 99:52-69. [PMID: 26776231 PMCID: PMC4798867 DOI: 10.1016/j.addr.2015.12.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/29/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunctions are recognized as major factors for various diseases including cancer, cardiovascular diseases, diabetes, neurological disorders, and a group of diseases so called "mitochondrial dysfunction related diseases". One of the major hurdles to gain therapeutic efficiency in diseases where the targets are located in the mitochondria is the accessibility of the targets in this compartmentalized organelle that imposes barriers toward internalization of ions and molecules. Over the time, different tools and techniques were developed to improve therapeutic index for mitochondria acting drugs. Nanotechnology has unfolded as one of the logical and encouraging tools for delivery of therapeutics in controlled and targeted manner simultaneously reducing side effects from drug overdose. Tailor-made nanomedicine based therapeutics can be an excellent tool in the toolbox for diseases associated with mitochondrial dysfunctions. In this review, we present an extensive coverage of possible therapeutic targets in different compartments of mitochondria for cancer, cardiovascular, and mitochondrial dysfunction related diseases.
Collapse
Affiliation(s)
- Ru Wen
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Bhabatosh Banik
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Rakesh K Pathak
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Anil Kumar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Nagesh Kolishetti
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, United States; Partikula LLC, Sunrise, FL 33326, United States
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
33
|
Nanostructured materials functionalized with metal complexes: In search of alternatives for administering anticancer metallodrugs. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.01.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Role of Physicochemical Properties in Nanoparticle Toxicity. NANOMATERIALS 2015; 5:1351-1365. [PMID: 28347068 PMCID: PMC5304630 DOI: 10.3390/nano5031351] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 02/01/2023]
Abstract
With the recent rapid growth of technological comprehension in nanoscience, researchers have aimed to adapt this knowledge to various research fields within engineering and applied science. Dramatic advances in nanomaterials marked a new epoch in biomedical engineering with the expectation that they would have huge contributions to healthcare. However, several questions regarding their safety and toxicity have arisen due to numerous novel properties. Here, recent studies of nanomaterial toxicology will be reviewed from several physiochemical perspectives. A variety of physiochemical properties such as size distribution, electrostatics, surface area, general morphology and aggregation may significantly affect physiological interactions between nanomaterials and target biological areas. Accordingly, it is very important to finely tune these properties in order to safely fulfill a bio-user's purpose.
Collapse
|
35
|
Mitochondrial biology, targets, and drug delivery. J Control Release 2015; 207:40-58. [PMID: 25841699 DOI: 10.1016/j.jconrel.2015.03.036] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, mitochondrial medicine has emerged as a new discipline resting at the intersection of mitochondrial biology, pathology, and pharmaceutics. The central role of mitochondria in critical cellular processes such as metabolism and apoptosis has placed mitochondria at the forefront of cell science. Advances in mitochondrial biology have revealed that these organelles continually undergo fusion and fission while functioning independently and in complex cellular networks, establishing direct membrane contacts with each other and with other organelles. Understanding the diverse cellular functions of mitochondria has contributed to understanding mitochondrial dysfunction in disease states. Polyplasmy and heteroplasmy contribute to mitochondrial phenotypes and associated dysfunction. Residing at the center of cell biology, cellular functions, and disease pathology and being laden with receptors and targets, mitochondria are beacons for pharmaceutical modification. This review presents the current state of mitochondrial medicine with a focus on mitochondrial function, dysfunction, and common disease; mitochondrial receptors, targets, and substrates; and mitochondrial drug design and drug delivery with a focus on the application of nanotechnology to mitochondrial medicine. Mitochondrial medicine is at the precipice of clinical translation; the objective of this review is to aid in the advancement of mitochondrial medicine from infancy to application.
Collapse
|
36
|
Kodiha M, Wang YM, Hutter E, Maysinger D, Stochaj U. Off to the organelles - killing cancer cells with targeted gold nanoparticles. Am J Cancer Res 2015; 5:357-70. [PMID: 25699096 PMCID: PMC4329500 DOI: 10.7150/thno.10657] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022] Open
Abstract
Gold nanoparticles (AuNPs) are excellent tools for cancer cell imaging and basic research. However, they have yet to reach their full potential in the clinic. At present, we are only beginning to understand the molecular mechanisms that underlie the biological effects of AuNPs, including the structural and functional changes of cancer cells. This knowledge is critical for two aspects of nanomedicine. First, it will define the AuNP-induced events at the subcellular and molecular level, thereby possibly identifying new targets for cancer treatment. Second, it could provide new strategies to improve AuNP-dependent cancer diagnosis and treatment. Our review summarizes the impact of AuNPs on selected subcellular organelles that are relevant to cancer therapy. We focus on the nucleus, its subcompartments, and mitochondria, because they are intimately linked to cancer cell survival, growth, proliferation and death. While non-targeted AuNPs can damage tumor cells, concentrating AuNPs in particular subcellular locations will likely improve tumor cell killing. Thus, it will increase cancer cell damage by photothermal ablation, mechanical injury or localized drug delivery. This concept is promising, but AuNPs have to overcome multiple hurdles to perform these tasks. AuNP size, morphology and surface modification are critical parameters for their delivery to organelles. Recent strategies explored all of these variables, and surface functionalization has become crucial to concentrate AuNPs in subcellular compartments. Here, we highlight the use of AuNPs to damage cancer cells and their organelles. We discuss current limitations of AuNP-based cancer research and conclude with future directions for AuNP-dependent cancer treatment.
Collapse
|
37
|
Agrawal U, Sharma R, Vyas SP. Targeted Drug Delivery to the Mitochondria. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
|
39
|
Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, Yan B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 2014; 114:7740-81. [PMID: 24927254 PMCID: PMC4578874 DOI: 10.1021/cr400295a] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qingxin Mu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
- Present address: Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas, 66047
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lingxin Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hongyu Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, 30322, U.S.A
| | | | - Alexander Tropsha
- Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China, 250100
| |
Collapse
|
40
|
Disruption of mitochondrial complexes in cancer stem cells through nano-based drug delivery: a promising mitochondrial medicine. Cell Biochem Biophys 2014; 67:1075-9. [PMID: 23605456 DOI: 10.1007/s12013-013-9607-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondria are the fulcrum for regulating cellular metabolism as well as apoptosis. The multi-lamellar vesicles (MLVs) liposome targeted against mitochondria can be formulated to disrupt mitochondrial integrity to attain programmed cell death of cancer stem cells (CSCs). The gold nanoparticles (GNPs) and a steroid nucleus (cyclopentanoperhydrophenanthrene ring) are encapsulated within MLV liposome that targets specifically to the CD44 receptor of the CSCs. Entering cytosol, it would bind distinctively to the malate-aspartate shuttle through a specifically designed ligand. Liposome fuses with the mito-membrane after associating with shuttle, thereby releasing both the components. The steroid disrupts mito-membrane's integrity facilitating release of cytochrome c. Thus, GNPs enter into the mitosol and interact with the mitochondrial complexes to cease cellular respiration. Since the solid nano-based pharmaceutics has shown a lot of promises as a potent anticancer therapy, the role of MLV liposome can be proved to be a better weapon to terminate malignancy.
Collapse
|
41
|
Ischemic Postconditioning Reduces Infarct Size Through the α1-Adrenergic Receptor Pathway. J Cardiovasc Pharmacol 2014; 63:504-11. [DOI: 10.1097/fjc.0000000000000074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Bhattacharjee S, Ershov D, Islam MA, Kämpfer AM, Maslowska KA, van der Gucht J, Alink GM, Marcelis ATM, Zuilhof H, Rietjens IMCM. Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles. RSC Adv 2014. [DOI: 10.1039/c3ra46869k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Positively charged polystyrene nanoparticles show are cytotoxic, induce oxidative stress and create holes/pores in cell membranes.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- Laboratory of Organic Chemistry
- Wageningen University
- 6703 HB Wageningen, The Netherlands
- Division of Toxicology
- Wageningen University
| | - Dmitry Ershov
- Laboratory of Physical Chemistry and Colloid Science
- Wageningen University
- 6703 HB Wageningen, The Netherlands
| | - Mohammed A. Islam
- Division of Toxicology
- Wageningen University
- 6703 HE Wageningen, The Netherlands
| | - Angela M. Kämpfer
- Division of Toxicology
- Wageningen University
- 6703 HE Wageningen, The Netherlands
| | | | - Jasper van der Gucht
- Laboratory of Physical Chemistry and Colloid Science
- Wageningen University
- 6703 HB Wageningen, The Netherlands
| | - Gerrit M. Alink
- Division of Toxicology
- Wageningen University
- 6703 HE Wageningen, The Netherlands
| | | | - Han Zuilhof
- Laboratory of Organic Chemistry
- Wageningen University
- 6703 HB Wageningen, The Netherlands
| | | |
Collapse
|
43
|
Kredics L, Szekeres A, Czifra D, Vágvölgyi C, Leitgeb B. Recent results in alamethicin research. Chem Biodivers 2013; 10:744-71. [PMID: 23681724 DOI: 10.1002/cbdv.201200390] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Indexed: 12/20/2022]
Affiliation(s)
- László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged.
| | | | | | | | | |
Collapse
|
44
|
Baratli Y, Charles AL, Wolff V, Ben Tahar L, Smiri L, Bouitbir J, Zoll J, Piquard F, Tebourbi O, Sakly M, Abdelmelek H, Geny B. Impact of iron oxide nanoparticles on brain, heart, lung, liver and kidneys mitochondrial respiratory chain complexes activities and coupling. Toxicol In Vitro 2013; 27:2142-8. [PMID: 24055893 DOI: 10.1016/j.tiv.2013.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 08/02/2013] [Accepted: 09/09/2013] [Indexed: 11/17/2022]
Abstract
The present study evaluates the effects of iron oxide nanoparticles (ION) on mitochondrial respiratory chain complexes activities in five organs characterized by different oxidative capacities and strongly involved in body detoxification. Isolated mitochondria were extracted from brain, heart, lung, liver and kidneys in twelve Wistar rats (8 weeks) using differential centrifugations. Maximal oxidative capacities (Vmax), mitochondrial respiratory chain complexes activity using succinate (Vsucc, complexes II, III, and IV activities) or N, N, N', N'-tetramethyl-p-phenylenediaminedihydrochloride (tmpd)/ascorbate (Vtmpd, complex IV activity) and, mitochondrial coupling (Vmax/Vo) were determined in controls and after exposure to 100, 200, 300 and 500μg/ml Fe3O4. Data showed that baseline maximal oxidative capacities were 26.3±4.7, 48.9±4.6, 11.3±1.3, 27.0±2.5 and 13.4±1.7μmol O2/min/g protein in brain, heart, lung, liver, and kidneys mitochondria, respectively. Complexes II, III, and IV activities also significantly differed between the five organs. Interestingly, as compared to baseline values and in all tissues examined, exposure to ION did not alter mitochondrial respiratory chain complexes activities whatever the nanoparticles (NPs) concentration used. Thus, ION did not show any toxicity on mitochondrial coupling and respiratory chain complexes I, II, III, and IV activities in these five major organs.
Collapse
Affiliation(s)
- Yosra Baratli
- Université de Strasbourg, Fédération de Médecine Translationnelle, EA 3072: Mitochondries, Stress oxydant et Protection musculaire, Faculté de Médecine, 67000 Strasbourg, France; Laboratoire de Physiologie Intégrée, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna, Tunisia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
He B, Lin P, Jia Z, Du W, Qu W, Yuan L, Dai W, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials 2013; 34:6082-98. [DOI: 10.1016/j.biomaterials.2013.04.053] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/26/2013] [Indexed: 01/22/2023]
|
46
|
Gold nanoparticle as a marker for precise localization of nano-objects within intracellular sub-domains. Methods Mol Biol 2013. [PMID: 23546656 DOI: 10.1007/978-1-62703-336-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Delivery of nano-objects to certain intracellular sub-domains is crucial for nanomedicine. Therefore delivery of nano-object to desirable cellular compartment has to be confirmed. The most valuable confirmation of the delivery comes from direct visualization of the nano-object. This visualization usually requires use of microscope and corresponding probe which has to be conjugated with the nano-object. There are two most popular methods of the visualization: confocal and electron microscopy. The former has significant limitations due to diffraction limited resolution of confocal systems and three-dimensional convolution of fluorescence. The latter should be significantly modified for needs of the visualization. Here we describe the method for precise localization of nano-object within the cell using electron microscopy and 1-2 nm gold particles as a nanomarker.
Collapse
|
47
|
Permeabilization of cell membrane for delivery of nano-objects to cellular sub-domains. Methods Mol Biol 2013; 991:57-63. [PMID: 23546659 DOI: 10.1007/978-1-62703-336-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Delivery of nano-objects to specific cellular sub-domains is a challenging but intriguing task. There are two major barriers on the way of a nano-object to its intracellular target: (1) the cell membrane and (2) the intracellular barriers. The former is a common issue for all nanomedicine and a matter of very intense research. The latter is the primary problem for targeted delivery of nano-objects to specific cellular sub-domains and can be studied more easily using permeabilized cells. Membrane permeabilization for nanomedical research requires (1) perforation of the outer membrane, (2) development of a solution that will keep cellular sub-domains in the functional state, and (3) modification of the perimembrane cytoskeleton. We developed a very successful model of saponin membrane permeabilization of cardiomyocytes. This allowed us to deliver particles up to 20 nm in size to perinuclear and perimitochondrial space. Here we describe the method.
Collapse
|
48
|
Heller A, Brockhoff G, Goepferich A. Targeting drugs to mitochondria. Eur J Pharm Biopharm 2012; 82:1-18. [DOI: 10.1016/j.ejpb.2012.05.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 12/20/2022]
|
49
|
Malhi SS, Murthy RSR. Delivery to mitochondria: a narrower approach for broader therapeutics. Expert Opin Drug Deliv 2012; 9:909-35. [DOI: 10.1517/17425247.2012.694864] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Durazo SA, Kompella UB. Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion 2011; 12:190-201. [PMID: 22138492 DOI: 10.1016/j.mito.2011.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/04/2011] [Accepted: 11/11/2011] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction including oxidative stress and DNA mutations underlies the pathology of various diseases including Alzheimer's disease and diabetes, necessitating the development of mitochondria targeted therapeutic agents. Nanotechnology offers unique tools and materials to target therapeutic agents to mitochondria. As discussed in this paper, a variety of functionalized nanosystems including polymeric and metallic nanoparticles as well as liposomes are more effective than plain drug and non-functionalized nanosystems in delivering therapeutic agents to mitochondria. Although the field is in its infancy, studies to date suggest the superior therapeutic activity of functionalized nanosystems for treating mitochondrial defects.
Collapse
Affiliation(s)
- Shelley A Durazo
- Nanomedicine and Drug Delivery Laboratory, Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | |
Collapse
|