1
|
Obeidy P, Sobey T, Nicovich PR, Coster ACF, Pandzic E. Tropomyosin Isoforms Segregate into Distinct Clusters on Single Actin Filaments. Biomolecules 2024; 14:1240. [PMID: 39456172 PMCID: PMC11506546 DOI: 10.3390/biom14101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/28/2024] Open
Abstract
Tropomyosins (Tpms) are rod-shaped proteins that interact head-to-tail to form a continuous polymer along both sides of most cellular actin filaments. Head-to-tail interaction between adjacent Tpm molecules and the formation of an overlap complex between them leads to the assembly of actin filaments with one type of Tpm isoform in time and space. Variations in the affinity of tropomyosin isoforms for different actin structures are proposed as a potential sorting mechanism. However, the detailed mechanisms of the spatio-temporal sorting of Tpms remain elusive. In this study, we investigated the early intermediates during actin-tropomyosin filament assembly, using a skeletal/cardiac Tpm isoform (Tpm1.1) and a cytoskeletal isoform (Tpm1.6) that differ only in the last 27 amino acids. We investigated how the muscle isoform Tpm1.1 and the cytoskeletal isoform Tpm1.6 nucleate domains on the actin filament, and tested whether (1) recruitment is affected by the actin isoform (muscle vs. cytoskeletal) and (2) whether there is specificity in recruiting the same isoform to a domain at these early stages. To address these questions, actin filaments were exposed to low concentrations of fluorescent tropomyosins in solution. The filaments were immobilized onto glass coverslips and the pattern of decoration was visualized by TIRF microscopy. We show that at the early assembly stage, tropomyosins formed multiple distinct fluorescent domains (here termed "cluster") on the actin filaments. An automated image analysis algorithm was developed and validated to identify clusters and estimate the number of tropomyosins in each cluster. The analysis showed that tropomyosin isoform sorting onto an actin filament is unlikely to be driven by a preference for nucleating on the corresponding muscle or cytoskeletal actin isoforms, but rather is facilitated by a higher probability of incorporating the same tropomyosin isoforms into an early assembly intermediate. We showed that the 27 amino acids at the end of each tropomyosin seem to provide enough molecular information for the attachment of the same tropomyosin isoforms adjacent to each other on an actin filament. This results in the formation of homogeneous clusters composed of the same isoform rather than clusters with mixed isoforms.
Collapse
Affiliation(s)
- Peyman Obeidy
- Discipline of Medical Imaging Science, School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Thomas Sobey
- Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
| | | | - Adelle C. F. Coster
- School of Mathematics & Statistics, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Holmes V, Ricci MMC, Weckerly CC, Worcester M, Hammond GRV. Single molecule Lipid Biosensors Mitigate Inhibition of Endogenous Effector Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612480. [PMID: 39345595 PMCID: PMC11429874 DOI: 10.1101/2024.09.11.612480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Genetically encoded lipid biosensors are essential cell biological tools. They are the only technique that provide real time, spatially resolved kinetic data for lipid dynamics in living cells. Despite clear strengths, these tools also carry significant drawbacks; most notably, lipid molecules bound to biosensors cannot engage with their effectors, causing inhibition. Here, we show that although PI 3-kinase (PI3K)-mediated activation of Akt is not significantly reduced in a cell population transfected with a PH-Akt1 PIP3/PI(3,4)P2 biosensor, single cells expressing the PH-Akt at visible levels (used for live-cell imaging) have no activated Akt at all. Tagging endogenous AKT1 with neonGreen at its genomic locus reveals its EGF-mediated translocation to the plasma membrane, accumulating at densities of ~0.3 molecules/μm2. Co-transfection with the PH-Akt biosensor or other PIP3 biosensors completely blocks this translocation, despite robust recruitment of the biosensors. A partial inhibition is even observed with PI(3,4)P2-selective biosensor. However, we found that expressing lipid biosensors at low levels, comparable with those of endogenous AKT, produced no such inhibition. Helpfully, these single-molecule biosensors revealed improved dynamic range and kinetic fidelity compared with over-expressed biosensor. This approach represents a less invasive way to probe spatiotemporal dynamics of the PI3K pathway in living cells.
Collapse
Affiliation(s)
- Victoria Holmes
- Department of Cell Biology, University of Pittsburgh school of Medicine, Pittsburgh, PA, USA
| | - Morgan M C Ricci
- Department of Cell Biology, University of Pittsburgh school of Medicine, Pittsburgh, PA, USA
| | - Claire C Weckerly
- Department of Cell Biology, University of Pittsburgh school of Medicine, Pittsburgh, PA, USA
| | - Michael Worcester
- Department of Cell Biology, University of Pittsburgh school of Medicine, Pittsburgh, PA, USA
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh school of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Kim CS, Cairns J, Quarantotti V, Kaczkowski B, Wang Y, Konings P, Zhang X. A statistical simulation model to guide the choices of analytical methods in arrayed CRISPR screen experiments. PLoS One 2024; 19:e0307445. [PMID: 39163294 PMCID: PMC11335118 DOI: 10.1371/journal.pone.0307445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
An arrayed CRISPR screen is a high-throughput functional genomic screening method, which typically uses 384 well plates and has different gene knockouts in different wells. Despite various computational workflows, there is currently no systematic way to find what is a good workflow for arrayed CRISPR screening data analysis. To guide this choice, we developed a statistical simulation model that mimics the data generating process of arrayed CRISPR screening experiments. Our model is flexible and can simulate effects on phenotypic readouts of various experimental factors, such as the effect size of gene editing, as well as biological and technical variations. With two examples, we showed that the simulation model can assist making principled choice of normalization and hit calling method for the arrayed CRISPR data analysis. This simulation model is implemented in an R package and can be downloaded from Github.
Collapse
Affiliation(s)
- Chang Sik Kim
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Jonathan Cairns
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Valentina Quarantotti
- Functional Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Bogumil Kaczkowski
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Yinhai Wang
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Peter Konings
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| | - Xiang Zhang
- Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England
| |
Collapse
|
4
|
Kim J, Xu S, Jung S, Nguyen A, Cheng Y, Zhao M, Fujimoto BS, Nelson W, Schiro P, Franklin JL, Higginbotham JN, Coffey RJ, Shi M, Vojtech LN, Hladik F, Tewari M, Tigges J, Ghiran I, Jovanovic‐Talisman T, Laurent LC, Das S, Gololobova O, Witwer KW, Xu T, Charest A, Jensen KVK, Raffai RL, Jones JC, Welsh JA, Nolan JP, Chiu DT. Comparison of EV characterization by commercial high-sensitivity flow cytometers and a custom single-molecule flow cytometer. J Extracell Vesicles 2024; 13:e12498. [PMID: 39140467 PMCID: PMC11322860 DOI: 10.1002/jev2.12498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
High-sensitivity flow cytometers have been developed for multi-parameter characterization of single extracellular vesicles (EVs), but performance varies among instruments and calibration methods. Here we compare the characterization of identical (split) EV samples derived from human colorectal cancer (DiFi) cells by three high-sensitivity flow cytometers, two commercial instruments, CytoFLEX/CellStream, and a custom single-molecule flow cytometer (SMFC). DiFi EVs were stained with the membrane dye di-8-ANEPPS and with PE-conjugated anti-EGFR or anti-tetraspanin (CD9/CD63/CD81) antibodies for estimation of EV size and surface protein copy numbers. The limits of detection (LODs) for immunofluorescence and vesicle size based on calibration using cross-calibrated, hard-dyed beads were ∼10 PE/∼80 nm EV diameter for CytoFLEX and ∼10 PEs/∼67 nm for CellStream. For the SMFC, the LOD for immunofluorescence was 1 PE and ≤ 35 nm for size. The population of EVs detected by each system (di-8-ANEPPS+/PE+ particles) differed widely depending on the LOD of the system; for example, CellStream/CytoFLEX detected only 5.7% and 1.5% of the tetraspanin-labelled EVs detected by SMFC, respectively, and median EV diameter and antibody copy numbers were much larger for CellStream/CytoFLEX than for SMFC as measured and validated using super-resolution/single-molecule TIRF microscopy. To obtain a dataset representing a common EV population analysed by all three platforms, we filtered out SMFC and CellStream measurements for EVs below the CytoFLEX LODs as determined by bead calibration (10 PE/80 nm). The inter-platform agreement using this filtered dataset was significantly better than for the unfiltered dataset, but even better concordance between results was obtained by applying higher cutoffs (21 PE/120 nm) determined by threshold analysis using the SMFC data. The results demonstrate the impact of specifying LODs to define the EV population analysed on inter-instrument reproducibility in EV flow cytometry studies, and the utility of threshold analysis of SMFC data for providing semi-quantitative LOD values for other flow cytometers.
Collapse
Affiliation(s)
- James Kim
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Shihan Xu
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | | | - Alya Nguyen
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Yuanhua Cheng
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Mengxia Zhao
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | | | - Wyatt Nelson
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | | | - Jeffrey L. Franklin
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Robert J. Coffey
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Min Shi
- Department of PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Lucia N. Vojtech
- Department of Obstetrics and GynecologyUniversity of WashingtonSeattleWashingtonUSA
| | - Florian Hladik
- Department of Obstetrics and GynecologyUniversity of WashingtonSeattleWashingtonUSA
- Division of Allergy and Infectious Diseases, Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Muneesh Tewari
- Division of Hematology/OncologyDepartment of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Rogel Comprehensive Cancer CenterUniversity of MichiganAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Center for Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
- VA Ann Arbor Healthcare SystemAnn ArborMichiganUSA
| | - John Tigges
- Department of MedicineBeth Israel Deaconess Medical CenterBoston and CambridgeMassachusettsUSA
| | - Ionita Ghiran
- Department of MedicineBeth Israel Deaconess Medical CenterBoston and CambridgeMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Molecular MedicineBeckman Research Institute of the City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General HospitalHarvard Medical schoolBostonMassachusettsUSA
| | - Olesia Gololobova
- Department of Molecular and Comparative PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tuoye Xu
- Cancer Research InstituteBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Al Charest
- Cancer Research InstituteBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Robert L. Raffai
- Department of Veterans AffairsSurgical Service (112G), San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | | | - Daniel T. Chiu
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
5
|
Yeo WH, Sun C, Zhang HF. Physically informed Monte Carlo simulation of dual-wedge prism-based spectroscopic single-molecule localization microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11502. [PMID: 37795311 PMCID: PMC10546470 DOI: 10.1117/1.jbo.29.s1.s11502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Significance The dual-wedge prism (DWP)-based spectroscopic single-molecule localization microscopy (sSMLM) system offers improved localization precision and adjustable spectral or localization performance, but its nonlinear spectral dispersion presents a challenge. A systematic method can help understand the challenges and thereafter optimize the DWP system's performance by customizing the system parameters to maximize the spectral or localization performance for various molecular labels. Aim We developed a Monte Carlo (MC)-based model that predicts the imaging output of the DWP-based sSMLM system given different system parameters. Approach We assessed our MC model's localization and spectral precisions by comparing our simulation against theoretical equations and fluorescent microspheres. Furthermore, we simulated the DWP-based system using beamsplitters (BSs) with a reflectance (R):transmittance (T) of R50:T50 and R30:T70 and their tradeoffs. Results Our MC simulation showed average deviations of 2.5 and 2.1 nm for localization and spectral precisions against theoretical equations and 2.3 and 1.0 nm against fluorescent microspheres. An R30:T70 BS improved the spectral precision by 8% but worsened the localization precision by 35% on average compared with an R50:T50 BS. Conclusions The MC model accurately predicted the localization precision, spectral precision, spectral peaks, and spectral widths of fluorescent microspheres, as validated by experimental data. Our work enhances the theoretical understanding of DWP-based sSMLM for multiplexed imaging, enabling performance optimization.
Collapse
Affiliation(s)
- Wei-Hong Yeo
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Cheng Sun
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois, United States
| | - Hao F. Zhang
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| |
Collapse
|
6
|
Cha M, Jeong SH, Jung J, Baeg Y, Park S, Bae S, Lim CS, Park JH, Lee J, Gho YS, Oh SW, Shon MJ. Quantitative imaging of vesicle-protein interactions reveals close cooperation among proteins. J Extracell Vesicles 2023; 12:e12322. [PMID: 37186457 PMCID: PMC10130417 DOI: 10.1002/jev2.12322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Membrane-bound vesicles such as extracellular vesicles (EVs) can function as biochemical effectors on target cells. Docking of the vesicles onto recipient plasma membranes depends on their interaction with cell-surface proteins, but a generalizable technique that can quantitatively observe these vesicle-protein interactions (VPIs) is lacking. Here, we describe a fluorescence microscopy that measures VPIs between single vesicles and cell-surface proteins, either in a surface-tethered or in a membrane-embedded state. By employing cell-derived vesicles (CDVs) and intercellular adhesion molecule-1 (ICAM-1) as a model system, we found that integrin-driven VPIs exhibit distinct modes of affinity depending on vesicle origin. Controlling the surface density of proteins also revealed a strong support from a tetraspanin protein CD9, with a critical dependence on molecular proximity. An adsorption model accounting for multiple protein molecules was developed and captured the features of density-dependent cooperativity. We expect that VPI imaging will be a useful tool to dissect the molecular mechanisms of vesicle adhesion and uptake, and to guide the development of therapeutic vesicles.
Collapse
Affiliation(s)
- Minkwon Cha
- Department of PhysicsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
- POSTECH Biotech CenterPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Sang Hyeok Jeong
- Department of PhysicsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Jaehun Jung
- Department of PhysicsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Yoonjin Baeg
- Biodrone Research InstituteMDimune Inc.SeoulRepublic of Korea
| | - Sung‐Soo Park
- Biodrone Research InstituteMDimune Inc.SeoulRepublic of Korea
| | - Seoyoon Bae
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Chan Seok Lim
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Jun Hyuk Park
- Department of PhysicsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Jie‐Oh Lee
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
- Institute of Membrane ProteinsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Yong Song Gho
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Seung Wook Oh
- Biodrone Research InstituteMDimune Inc.SeoulRepublic of Korea
| | - Min Ju Shon
- Department of PhysicsPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| |
Collapse
|
7
|
Chang Y, Dickinson DJ. Non-invasive chimeric HaloTag labeling to study clustering and diffusion of membrane proteins. STAR Protoc 2022; 3:101857. [PMID: 36595905 PMCID: PMC9676207 DOI: 10.1016/j.xpro.2022.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
As live imaging plays an increasingly critical role in cell biology research, the desire to label and track individual protein molecules in vivo has been growing. To address this, in this protocol we describe steps for sparse labeling using two different HaloTag ligand dyes in C. elegans. This labeling approach is simple, is non-invasive, and preserves the view of the bulk protein population. We further describe how to carry out single-particle tracking experiments and extract information about particle diffusion behavior. For complete details on the use and execution of this protocol, please refer to Chang and Dickinson (2022).1.
Collapse
Affiliation(s)
- Yiran Chang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA,Corresponding author
| |
Collapse
|
8
|
Li S, Hu Y, Li A, Lin J, Hsieh K, Schneiderman Z, Zhang P, Zhu Y, Qiu C, Kokkoli E, Wang TH, Mao HQ. Payload distribution and capacity of mRNA lipid nanoparticles. Nat Commun 2022; 13:5561. [PMID: 36151112 PMCID: PMC9508184 DOI: 10.1038/s41467-022-33157-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Lipid nanoparticles (LNPs) are effective vehicles to deliver mRNA vaccines and therapeutics. It has been challenging to assess mRNA packaging characteristics in LNPs, including payload distribution and capacity, which are critical to understanding structure-property-function relationships for further carrier development. Here, we report a method based on the multi-laser cylindrical illumination confocal spectroscopy (CICS) technique to examine mRNA and lipid contents in LNP formulations at the single-nanoparticle level. By differentiating unencapsulated mRNAs, empty LNPs and mRNA-loaded LNPs via coincidence analysis of fluorescent tags on different LNP components, and quantitatively resolving single-mRNA fluorescence, we reveal that a commonly referenced benchmark formulation using DLin-MC3 as the ionizable lipid contains mostly 2 mRNAs per loaded LNP with a presence of 40%–80% empty LNPs depending on the assembly conditions. Systematic analysis of different formulations with control variables reveals a kinetically controlled assembly mechanism that governs the payload distribution and capacity in LNPs. These results form the foundation for a holistic understanding of the molecular assembly of mRNA LNPs. Lipid nanoparticles (LNPs) are effective vehicles to deliver mRNA vaccines and therapeutics but assessing the mRNA packaging characteristics in LNPs is challenging. Here, the authors report that mRNA and lipid contents in LNP formulations can be quantitatively examined by multi-laser cylindrical illumination confocal spectroscopy at the single-nanoparticle level.
Collapse
Affiliation(s)
- Sixuan Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yizong Hu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andrew Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinghan Lin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zachary Schneiderman
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yining Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenhu Qiu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Efrosini Kokkoli
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
McGuinness C, Walsh JC, Bayly-Jones C, Dunstone MA, Christie MP, Morton CJ, Parker MW, Böcking T. Single-molecule analysis of the entire perfringolysin O pore formation pathway. eLife 2022; 11:e74901. [PMID: 36000711 PMCID: PMC9457685 DOI: 10.7554/elife.74901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
The cholesterol-dependent cytolysin perfringolysin O (PFO) is secreted by Clostridium perfringens as a bacterial virulence factor able to form giant ring-shaped pores that perforate and ultimately lyse mammalian cell membranes. To resolve the kinetics of all steps in the assembly pathway, we have used single-molecule fluorescence imaging to follow the dynamics of PFO on dye-loaded liposomes that lead to opening of a pore and release of the encapsulated dye. Formation of a long-lived membrane-bound PFO dimer nucleates the growth of an irreversible oligomer. The growing oligomer can insert into the membrane and open a pore at stoichiometries ranging from tetramers to full rings (~35 mers), whereby the rate of insertion increases linearly with the number of subunits. Oligomers that insert before the ring is complete continue to grow by monomer addition post insertion. Overall, our observations suggest that PFO membrane insertion is kinetically controlled.
Collapse
Affiliation(s)
- Conall McGuinness
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| | - Charles Bayly-Jones
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityMelbourneAustralia
| | - Michelle A Dunstone
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash UniversityMelbourneAustralia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneVictoriaAustralia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneVictoriaAustralia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of MelbourneVictoriaAustralia
- Structural Biology Unit, St. Vincent’s Institute of Medical ResearchVictoriaAustralia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| |
Collapse
|
10
|
Bachman JL, Wight CD, Bardo AM, Johnson AM, Pavlich CI, Boley AJ, Wagner HR, Swaminathan J, Iverson BL, Marcotte EM, Anslyn EV. Evaluating the Effect of Dye-Dye Interactions of Xanthene-Based Fluorophores in the Fluorosequencing of Peptides. Bioconjug Chem 2022; 33:1156-1165. [PMID: 35622964 DOI: 10.1021/acs.bioconjchem.2c00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A peptide sequencing scheme utilizing fluorescence microscopy and Edman degradation to determine the amino acid position in fluorophore-labeled peptides was recently reported, referred to as fluorosequencing. It was observed that multiple fluorophores covalently linked to a peptide scaffold resulted in a decrease in the anticipated fluorescence output and worsened the single-molecule fluorescence analysis. In this study, we report an improvement in the photophysical properties of fluorophore-labeled peptides by incorporating long and flexible (PEG)10 linkers at the peptide attachment points. Long linkers to the fluorophores were installed using copper-catalyzed azide-alkyne cycloaddition conditions. The photophysical properties of these peptides were analyzed in solution and immobilized on a microscope slide at the single-molecule level under peptide fluorosequencing conditions. Solution-phase fluorescence analysis showed improvements in both quantum yield and fluorescence lifetime with the long linkers. While on the solid support, photometry measurements showed significant increases in fluorescence brightness and 20 to 60% improvements in the ability to determine the amino acid position with fluorosequencing. This spatial distancing strategy demonstrates improvements in the peptide sequencing platform and provides a general approach for improving the photophysical properties in fluorophore-labeled macromolecules.
Collapse
Affiliation(s)
- James L Bachman
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher D Wight
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Angela M Bardo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Amber M Johnson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Cyprian I Pavlich
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander J Boley
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Holden R Wagner
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jagannath Swaminathan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brent L Iverson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
A particle size threshold governs diffusion and segregation of PAR-3 during cell polarization. Cell Rep 2022; 39:110652. [PMID: 35417695 PMCID: PMC9093022 DOI: 10.1016/j.celrep.2022.110652] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/14/2021] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
The actomyosin cortex regulates the localization and function of proteins at the plasma membrane. Here, we study how membrane binding, cortical movements, and diffusion determine membrane protein distribution. In Caenorhabditis elegans zygotes, actomyosin flows transport PAR polarity proteins to establish the anterior-posterior axis. Oligomerization of a key scaffold protein, PAR-3, is required for polarization. PAR-3 oligomers are a heterogeneous population of many different sizes, and it remains unclear how oligomer size affects PAR-3 segregation. To address this question, we engineered PAR-3 to defined sizes. We report that PAR-3 trimers are necessary and sufficient for PAR-3 function during polarization and later embryo development. Quantitative analysis of PAR-3 diffusion shows that a threshold size of three subunits allows PAR-3 clusters to stably bind the membrane, where they are corralled and transported by the actomyosin cortex. Our study provides a quantitative model for size-dependent protein transportation of peripheral membrane proteins by cortical flow. The actomyosin cytoskeleton is a major regulator of cellular organization. Chang and Dickinson develop protein-engineering and particle-tracking tools to study how clustered membrane-bound proteins are transported by actomyosin contractions in vivo. Data-driven modeling reveals how membrane binding, diffusion, and collisions with F-actin contribute to protein movement.
Collapse
|
12
|
da Rocha-Azevedo B, Lee S, Dasgupta A, Vega AR, de Oliveira LR, Kim T, Kittisopikul M, Malik ZA, Jaqaman K. Heterogeneity in VEGF Receptor-2 Mobility and Organization on the Endothelial Cell Surface Leads to Diverse Models of Activation by VEGF. Cell Rep 2021; 32:108187. [PMID: 32997988 PMCID: PMC7541195 DOI: 10.1016/j.celrep.2020.108187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/17/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The dynamic nanoscale organization of cell surface receptors plays an important role in signaling. We determine this organization and its relation to activation of VEGF receptor-2 (VEGFR-2), a critical receptor tyrosine kinase in endothelial cells (ECs), by combining single-molecule imaging of endogenous VEGFR-2 in live ECs with multiscale computational analysis. We find that surface VEGFR-2 can be mobile or exhibit restricted mobility and be monomeric or non-monomeric, with a complex interplay between the two. This basal heterogeneity results in heterogeneity in the sequence of steps leading to VEGFR-2 activation by VEGF. Specifically, we find that VEGF can bind to monomeric and non-monomeric VEGFR-2 and that, when binding to monomeric VEGFR-2, its effect on dimerization depends on the mobility of VEGFR-2. Our study highlights the dynamic and heterogeneous nature of cell surface receptor organization and the need for multiscale, single-molecule-based analysis to determine its relationship to receptor activation and signaling. da Rocha-Azevedo et al. show that VEGFR-2 exhibits mobility and interaction heterogeneity on the endothelial cell surface. The sequence of steps leading to VEGFR-2 activation by VEGF depends on the basal state of VEGFR-2. Thus, there is not one model but multiple co-existing models of VEGFR-2 activation by VEGF.
Collapse
Affiliation(s)
| | - Sungsoo Lee
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aparajita Dasgupta
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony R Vega
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Tae Kim
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mark Kittisopikul
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachariah A Malik
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Andronico LA, Jiang Y, Jung SR, Fujimoto BS, Vojtech L, Chiu DT. Sizing Extracellular Vesicles Using Membrane Dyes and a Single Molecule-Sensitive Flow Analyzer. Anal Chem 2021; 93:5897-5905. [PMID: 33784071 PMCID: PMC10243643 DOI: 10.1021/acs.analchem.1c00253] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are membranous particles released by most cells in our body, which are involved in many cell-to-cell signaling processes. Given the nanometer sizes and heterogeneity of EVs, highly sensitive methods with single-molecule resolution are fundamental to investigating their biophysical properties. Here, we demonstrate the sizing of EVs using a fluorescence-based flow analyzer with single-molecule sensitivity. Using a dye that selectively partitions into the vesicle's membrane, we show that the fluorescence intensity of a vesicle is proportional to its diameter. We discuss the constraints in sample preparation which are inherent to sizing nanoscale vesicles with a fluorescent membrane dye and propose several guidelines to improve data consistency. After optimizing staining conditions, we were able to measure the size of vesicles in the range ∼35-300 nm, covering the spectrum of EV sizes. Lastly, we developed a method to correct the signal intensity from each vesicle based on its traveling speed inside the microfluidic channel, by operating at a high sampling rate (10 kHz) and measuring the time required for the particle to cross the laser beam. Using this correction, we obtained a threefold greater accuracy in EV sizing, with a precision of ±15-25%.
Collapse
Affiliation(s)
- Luca A. Andronico
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Seung-Ryoung Jung
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Bryant S. Fujimoto
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
14
|
Trexler M, Brusatori M, Auner G. Avidin-biotin complex-based capture coating platform for universal Influenza virus immobilization and characterization. PLoS One 2021; 16:e0247429. [PMID: 33635877 PMCID: PMC7909696 DOI: 10.1371/journal.pone.0247429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
Influenza virus mutates quickly and unpredictably creating emerging pathogenic strains that are difficult to detect, diagnose, and characterize. Conventional tools to study and characterize virus, such as next generation sequencing, genome amplification (RT-PCR), and serological antibody testing, are not adequately suited to rapidly mutating pathogens like Influenza virus where the success of infection heavily depends on the phenotypic expression of surface glycoproteins. Bridging the gap between genome and pathogenic expression remains a challenge. Using sialic acid as a universal Influenza virus binding receptor, a novel virus avidin-biotin complex-based capture coating was developed and characterized that may be used to create future diagnostic and interrogation platforms for viable whole Influenza virus. First, fluorescent FITC probe studies were used to optimize coating component concentrations. Then atomic force microscopy (AFM) was used to profile the surface characteristics of the novel capture coating, acquire topographical imaging of Influenza particles immobilized by the coating, and calculate the capture efficiency of the coating (over 90%) for all four representative human Influenza virus strains tested.
Collapse
Affiliation(s)
- Micaela Trexler
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- * E-mail:
| | - Michelle Brusatori
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- Michael and Marian Illitch Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Gregory Auner
- Smart Sensors and Integrated Microsystems, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, United States of America
- Michael and Marian Illitch Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
15
|
Chatterjee S, Molenaar R, Tromp L, Wagterveld RM, Roesink HDW, Cornelissen JJLM, Claessens MMAE, Blum C. Optimizing fluorophore density for single virus counting: a photophysical approach. Methods Appl Fluoresc 2021; 9:025001. [PMID: 33480360 DOI: 10.1088/2050-6120/abd8e4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In health and environmental research, it is often necessary to quantify the concentrations of single (bio) nanoparticles present at very low concentrations. Suitable quantification approaches that rely on counting and tracking of single fluorescently labelled (bio) nanoparticles are often challenging since fluorophore self-quenching limits the maximum particle brightness. Here we study how the number of labels per nanoparticle influences the total brightness of fluorescently labelled cowpea chlorotic mottle virus (CCMV). We analyze in detail the photophysical interplay between the fluorophores on the virus particles. We deduce that the formation of dark aggregates and energy transfer towards these aggregates limits the total particle brightness that can be achieved. We show that by carefully selecting the number of fluorescent labels per CCMV, and thus minimizing the negative effects on particle brightness, it is possible to quantify fluorescently labelled CCMV concentrations down to fM concentrations in single particle counting experiments.
Collapse
Affiliation(s)
- Swarupa Chatterjee
- Nanobiophysics (NBP), MESA + Institute for Nanotechnology and Technical Medical Centre, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands. Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA, Leeuwarden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Low E, Chistol G, Zaher MS, Kochenova OV, Walter JC. The DNA replication fork suppresses CMG unloading from chromatin before termination. Genes Dev 2020; 34:1534-1545. [PMID: 32943574 PMCID: PMC7608748 DOI: 10.1101/gad.339739.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022]
Abstract
When converging replication forks meet during replication termination, the CMG (Cdc45-MCM2-7-GINS) helicase is polyubiquitylated by CRL2Lrr1 and unloaded from chromatin by the p97 ATPase. Here, we investigate the signal that triggers CMG unloading in Xenopus egg extracts using single-molecule and ensemble approaches. We show that converging CMGs pass each other and keep translocating at the same speed as before convergence, whereafter they are rapidly and independently unloaded. When CMG unloading is blocked, diverging CMGs do not support DNA synthesis, indicating that after bypass CMGs encounter the nascent lagging strands of the converging fork and then translocate along double-stranded DNA (dsDNA). However, translocation on dsDNA is not required for CMG's removal from chromatin because in the absence of nascent strand synthesis, converging CMGs are still unloaded. Moreover, recombinant CMG added to nuclear extract undergoes ubiquitylation and disassembly in the absence of any DNA, and DNA digestion triggers CMG ubiquitylation at stalled replication forks. Our findings suggest that DNA suppresses CMG ubiquitylation during elongation and that this suppression is relieved when CMGs converge, leading to CMG unloading.
Collapse
Affiliation(s)
- Emily Low
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| | - Gheorghe Chistol
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| | - Manal S Zaher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| | - Olga V Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
17
|
Karandur D, Bhattacharyya M, Xia Z, Lee YK, Muratcioglu S, McAffee D, McSpadden ED, Qiu B, Groves JT, Williams ER, Kuriyan J. Breakage of the oligomeric CaMKII hub by the regulatory segment of the kinase. eLife 2020; 9:57784. [PMID: 32902386 PMCID: PMC7538161 DOI: 10.7554/elife.57784] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/08/2020] [Indexed: 01/02/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is an oligomeric enzyme with crucial roles in neuronal signaling and cardiac function. Previously, we showed that activation of CaMKII triggers the exchange of subunits between holoenzymes, potentially increasing the spread of the active state (Stratton et al., 2014; Bhattacharyya et al., 2016). Using mass spectrometry, we show now that unphosphorylated and phosphorylated peptides derived from the CaMKII-α regulatory segment bind to the CaMKII-α hub and break it into smaller oligomers. Molecular dynamics simulations show that the regulatory segments dock spontaneously at the interface between hub subunits, trapping large fluctuations in hub structure. Single-molecule fluorescence intensity analysis of CaMKII-α expressed in mammalian cells shows that activation of CaMKII-α results in the destabilization of the holoenzyme. Our results suggest that release of the regulatory segment by activation and phosphorylation allows it to destabilize the hub, producing smaller assemblies that might reassemble to form new holoenzymes.
Collapse
Affiliation(s)
- Deepti Karandur
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Moitrayee Bhattacharyya
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Zijie Xia
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Young Kwang Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Serena Muratcioglu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Darren McAffee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Ethan D McSpadden
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Baiyu Qiu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Jay T Groves
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Evan R Williams
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
18
|
Morise J, Suzuki KGN, Kitagawa A, Wakazono Y, Takamiya K, Tsunoyama TA, Nemoto YL, Takematsu H, Kusumi A, Oka S. AMPA receptors in the synapse turnover by monomer diffusion. Nat Commun 2019; 10:5245. [PMID: 31748519 PMCID: PMC6868016 DOI: 10.1038/s41467-019-13229-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
The number and subunit compositions of AMPA receptors (AMPARs), hetero- or homotetramers composed of four subunits GluA1–4, in the synapse is carefully tuned to sustain basic synaptic activity. This enables stimulation-induced synaptic plasticity, which is central to learning and memory. The AMPAR tetramers have been widely believed to be stable from their formation in the endoplasmic reticulum until their proteolytic decomposition. However, by observing GluA1 and GluA2 at the level of single molecules, we find that the homo- and heterotetramers are metastable, instantaneously falling apart into monomers, dimers, or trimers (in 100 and 200 ms, respectively), which readily form tetramers again. In the dendritic plasma membrane, GluA1 and GluA2 monomers and dimers are far more mobile than tetramers and enter and exit from the synaptic regions. We conclude that AMPAR turnover by lateral diffusion, essential for sustaining synaptic function, is largely done by monomers of AMPAR subunits, rather than preformed tetramers. The mechanisms regulating the turnover of the AMPARs in the synapse, which is critically important to sustain basic synaptic activity, remains unclear. In this study, authors used single-molecule imaging techniques to demonstrate that AMPAR tetramers are not stable entities and readily fall apart to dimers and monomers that could reform to tetramers at the synapse, and that rapidly diffusing monomers in the plasma membrane are primarily responsible for the AMPAR turnover in the synapse.
Collapse
Affiliation(s)
- Jyoji Morise
- Department of Biological Chemistry, Division of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, 501-1193, Japan. .,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8507, Japan.
| | - Ayaka Kitagawa
- Department of Biological Chemistry, Division of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yoshihiko Wakazono
- Department of Integrative Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Kogo Takamiya
- Department of Integrative Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, 904-0495, Japan
| | - Yuri L Nemoto
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, 904-0495, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Division of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Department of Molecular Cell Biology, Faculty of Medical Technology, Graduate School of Health Sciences, Fujita Health University, Aichi, 470-1192, Japan
| | - Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8507, Japan. .,Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa, 904-0495, Japan.
| | - Shogo Oka
- Department of Biological Chemistry, Division of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
19
|
de Oliveira LR, Jaqaman K. FISIK: Framework for the Inference of In Situ Interaction Kinetics from Single-Molecule Imaging Data. Biophys J 2019; 117:1012-1028. [PMID: 31443908 DOI: 10.1016/j.bpj.2019.07.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/27/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Recent experimental and computational developments have been pushing the limits of live-cell single-molecule imaging, enabling the monitoring of intermolecular interactions in their native environment with high spatiotemporal resolution. However, interactions are captured only for the labeled subset of molecules, which tends to be a small fraction. As a result, it has remained a challenge to calculate molecular interaction kinetics, in particular association rates, from live-cell single-molecule tracking data. To overcome this challenge, we developed a mathematical modeling-based Framework for the Inference of in Situ Interaction Kinetics (FISIK) from single-molecule imaging data with substoichiometric labeling. FISIK consists of (I) devising a mathematical model of molecular movement and interactions, mimicking the biological system and data-acquisition setup, and (II) estimating the unknown model parameters, including molecular association and dissociation rates, by fitting the model to experimental single-molecule data. Due to the stochastic nature of the model and data, we adapted the method of indirect inference for model calibration. We validated FISIK using a series of tests in which we simulated trajectories of diffusing molecules that interact with each other, considering a wide range of model parameters, and including resolution limitations, tracking errors, and mismatches between the model and the biological system it mimics. We found that FISIK has the sensitivity to determine association and dissociation rates, with accuracy and precision depending on the labeled fraction of molecules and the extent of molecule tracking errors. For cases where the labeled fraction is too low (e.g., to afford accurate tracking), combining dynamic but sparse single-molecule imaging data with almost-whole population oligomer distribution data improves FISIK's performance. All in all, FISIK is a promising approach for the derivation of molecular interaction kinetics in their native environment from single-molecule imaging data with substoichiometric labeling.
Collapse
Affiliation(s)
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, Texas; Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
20
|
Worthy HL, Auhim HS, Jamieson WD, Pope JR, Wall A, Batchelor R, Johnson RL, Watkins DW, Rizkallah P, Castell OK, Jones DD. Positive functional synergy of structurally integrated artificial protein dimers assembled by Click chemistry. Commun Chem 2019. [DOI: 10.1038/s42004-019-0185-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
21
|
Foret MK, Do Carmo S, Lincoln R, Greene LE, Zhang W, Cuello AC, Cosa G. Effect of antioxidant supplements on lipid peroxidation levels in primary cortical neuron cultures. Free Radic Biol Med 2019; 130:471-477. [PMID: 30465825 DOI: 10.1016/j.freeradbiomed.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Oxidative stress, specifically lipid peroxidation, is a major driving force in neurodegenerative processes. However, the exact role of lipid peroxidation remains elusive as reliable real-time detection and quantification of lipid peroxyl radicals proves to be challenging in vitro and in vivo. Motivated by this methodological limitation, we have optimized conditions for real-time imaging and quantification of lipid peroxyl radical generation in primary neuron cultures using the lipophilic fluorogenic antioxidant H4BPMHC (8-((6-hydroxy-2,5,7,8-tetramethylchroman-2-yl)-methyl)-1,5-di(3-chloropropyl)-pyrromethene fluoroborate), an α-tocopherol analog probe. By subjecting neurons to different antioxidant conditions in the presence and absence of lipid peroxidation inducing stressors (Haber-Weiss reagents), we maximized H4BPMHC sensitivity and confirmed its potential to temporally resolve subtle and marked differences in lipid peroxidation levels in real-time. Herein we report imaging and quantification of homeostatic and induced lipid peroxidation in primary neuron cultures, supporting the use of this probe for investigating healthy and diseased states. Overall these results provide the necessary foundation and impetus towards using H4BPMHC for elucidating and mapping lipid peroxyl radical contributions to ROS-associated pathological processes in neurons.
Collapse
Affiliation(s)
- Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Richard Lincoln
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Lana E Greene
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Wenzhou Zhang
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6; Department of Anatomy and Cell Biology, McGill University, Canada; Department of Neurology and Neurosurgery, McGill University, Canada.
| | - Gonzalo Cosa
- Department of Chemistry and Quebec Center for Advanced Materials (QCAM), McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8.
| |
Collapse
|
22
|
Reismann AWAF, Atanasova L, Schrangl L, Zeilinger S, Schütz GJ. Temporal Filtering to Improve Single Molecule Identification in High Background Samples. Molecules 2018; 23:molecules23123338. [PMID: 30562966 PMCID: PMC6321103 DOI: 10.3390/molecules23123338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022] Open
Abstract
Single molecule localization microscopy is currently revolutionizing the life sciences as it offers, for the first time, insights into the organization of biological samples below the classical diffraction limit of light microscopy. While there have been numerous examples of new biological findings reported in the last decade, the technique could not reach its full potential due to a set of limitations immanent to the samples themselves. Particularly, high background signals impede the proper performance of most single-molecule identification and localization algorithms. One option is to exploit the characteristic blinking of single molecule signals, which differs substantially from the residual brightness fluctuations of the fluorescence background. To pronounce single molecule signals, we used a temporal high-pass filtering in Fourier space on a pixel-by-pixel basis. We evaluated the performance of temporal filtering by assessing statistical parameters such as true positive rate and false discovery rate. For this, ground truth signals were generated by simulations and overlaid onto experimentally derived movies of samples with high background signals. Compared to the nonfiltered case, we found an improvement of the sensitivity by up to a factor 3.5 while no significant change in the localization accuracy was observable.
Collapse
Affiliation(s)
| | - Lea Atanasova
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Lukas Schrangl
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstrasse 1a, A-1060 Vienna, Austria.
| | - Gerhard J Schütz
- Institute of Applied Physics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.
| |
Collapse
|
23
|
Swaminathan J, Boulgakov AA, Hernandez ET, Bardo AM, Bachman JL, Marotta J, Johnson AM, Anslyn EV, Marcotte EM. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat Biotechnol 2018; 36:nbt.4278. [PMID: 30346938 PMCID: PMC6482110 DOI: 10.1038/nbt.4278] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/21/2018] [Indexed: 11/09/2022]
Abstract
The identification and quantification of proteins lags behind DNA-sequencing methods in scale, sensitivity, and dynamic range. Here, we show that sparse amino acid-sequence information can be obtained for individual protein molecules for thousands to millions of molecules in parallel. We demonstrate selective fluorescence labeling of cysteine and lysine residues in peptide samples, immobilization of labeled peptides on a glass surface, and imaging by total internal reflection microscopy to monitor decreases in each molecule's fluorescence after consecutive rounds of Edman degradation. The obtained sparse fluorescent sequence of each molecule was then assigned to its parent protein in a reference database. We tested the method on synthetic and naturally derived peptide molecules in zeptomole-scale quantities. We also fluorescently labeled phosphoserines and achieved single-molecule positional readout of the phosphorylated sites. We measured >93% efficiencies for dye labeling, survival, and cleavage; further improvements should enable studies of increasingly complex proteomic mixtures, with the high sensitivity and digital quantification offered by single-molecule sequencing.
Collapse
Affiliation(s)
- Jagannath Swaminathan
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Alexander A. Boulgakov
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Erik T. Hernandez
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | - Angela M. Bardo
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - James L. Bachman
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | - Joseph Marotta
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Amber M. Johnson
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | - Eric V. Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | - Edward M. Marcotte
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
24
|
Leclerc S, Arntz Y, Taniguchi Y. Extending Single Molecule Imaging to Proteome Analysis by Quantitation of Fluorescent Labeling Homogeneity in Complex Protein Samples. Bioconjug Chem 2018; 29:2541-2549. [PMID: 29975043 DOI: 10.1021/acs.bioconjchem.8b00226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence-based electrophoresis has been widely used for proteome analysis in which every protein species in cells is labeled with a fluorescent dye, separated by electric migration, and quantified using fluorescence detection. The ultimate limit of sensitivity for this approach could be reached by single-molecule fluorescence imaging and counting individual proteins, requiring exhaustive fluorescent labeling of proteins across molecular populations and species. However, it remains unclear how homogeneous the fluorescence labeling of individual protein molecules of each species is across the proteome. To address this question, we developed a method to measure the labeling homogeneity based on a single-molecule fluorescence counting assay. Our results reveal that the proportion of proteins labeled with at least one dye, called labeling occupancy (LO), was 35% for fluorescently labeled BSA using existing protocols. We then found that the LO could be improved to 82% under high pH and surfactant-rich conditions. Furthermore, when a proteome sample from a human cell lysate was analyzed, the total LO was 71%, whereby the values varied between 50 and 90% for low and high molecular weight proteome fractions, respectively. The results support the possibility of sensitive detection of proteins using single-molecule counting with fluorescent labeling at the proteome scale.
Collapse
Affiliation(s)
- Simon Leclerc
- Laboratory for Cell Systems Control , RIKEN Center for Biosystems Dynamics Research , 6-2-3 Furuedai , Suita , Osaka 565-0874 , Japan.,Laboratoire de Biomatériaux et Bioimagerie , INSERM 1121 Université de Strasbourg, Faculté de Médecine , 4 rue Human , F-67000 Strasbourg , France
| | - Youri Arntz
- Laboratoire de Biomatériaux et Bioimagerie , INSERM 1121 Université de Strasbourg, Faculté de Médecine , 4 rue Human , F-67000 Strasbourg , France
| | - Yuichi Taniguchi
- Laboratory for Cell Systems Control , RIKEN Center for Biosystems Dynamics Research , 6-2-3 Furuedai , Suita , Osaka 565-0874 , Japan.,PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| |
Collapse
|
25
|
Rossboth B, Arnold AM, Ta H, Platzer R, Kellner F, Huppa JB, Brameshuber M, Baumgart F, Schütz GJ. TCRs are randomly distributed on the plasma membrane of resting antigen-experienced T cells. Nat Immunol 2018; 19:821-827. [PMID: 30013143 PMCID: PMC6071872 DOI: 10.1038/s41590-018-0162-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022]
Abstract
The main function of T cells is to identify harmful antigens as quickly and precisely as possible. Super-resolution microscopy data have indicated that global clustering of T cell antigen receptors (TCRs) occurs before T cell activation. Such pre-activation clustering has been interpreted as representing a potential regulatory mechanism that fine tunes the T cell response. We found here that apparent TCR nanoclustering could be attributed to overcounting artifacts inherent to single-molecule-localization microscopy. Using complementary super-resolution approaches and statistical image analysis, we found no indication of global nanoclustering of TCRs on antigen-experienced CD4+ T cells under non-activating conditions. We also used extensive simulations of super-resolution images to provide quantitative limits for the degree of randomness of the TCR distribution. Together our results suggest that the distribution of TCRs on the plasma membrane is optimized for fast recognition of antigen in the first phase of T cell activation.
Collapse
Affiliation(s)
| | | | - Haisen Ta
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - René Platzer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Florian Kellner
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
26
|
Jung SR, Han R, Sun W, Jiang Y, Fujimoto BS, Yu J, Kuo CT, Rong Y, Zhou XH, Chiu DT. Single-Molecule Flow Platform for the Quantification of Biomolecules Attached to Single Nanoparticles. Anal Chem 2018; 90:6089-6095. [PMID: 29672026 DOI: 10.1021/acs.analchem.8b00024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe here a flow platform for quantifying the number of biomolecules on individual fluorescent nanoparticles. The platform combines line-confocal fluorescence detection with near nanoscale channels (1-2 μm in width and height) to achieve high single-molecule detection sensitivity and throughput. The number of biomolecules present on each nanoparticle was determined by deconvolving the fluorescence intensity distribution of single-nanoparticle-biomolecule complexes with the intensity distribution of single biomolecules. We demonstrate this approach by quantifying the number of streptavidins on individual semiconducting polymer dots (Pdots); streptavidin was rendered fluorescent using biotin-Alexa647. This flow platform has high-throughput (hundreds to thousands of nanoparticles detected per second) and requires minute amounts of sample (∼5 μL at a dilute concentration of 10 pM). This measurement method is an additional tool for characterizing synthetic or biological nanoparticles.
Collapse
Affiliation(s)
- Seung-Ryoung Jung
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Rui Han
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Wei Sun
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Yifei Jiang
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Bryant S Fujimoto
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Jiangbo Yu
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Chun-Ting Kuo
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Yu Rong
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Xing-Hua Zhou
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Daniel T Chiu
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
27
|
Dynamic tuneable G protein-coupled receptor monomer-dimer populations. Nat Commun 2018; 9:1710. [PMID: 29703992 PMCID: PMC5923235 DOI: 10.1038/s41467-018-03727-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of membrane receptors, playing a key role in the regulation of processes as varied as neurotransmission and immune response. Evidence for GPCR oligomerisation has been accumulating that challenges the idea that GPCRs function solely as monomeric receptors; however, GPCR oligomerisation remains controversial primarily due to the difficulties in comparing evidence from very different types of structural and dynamic data. Using a combination of single-molecule and ensemble FRET, double electron–electron resonance spectroscopy, and simulations, we show that dimerisation of the GPCR neurotensin receptor 1 is regulated by receptor density and is dynamically tuneable over the physiological range. We propose a “rolling dimer” interface model in which multiple dimer conformations co-exist and interconvert. These findings unite previous seemingly conflicting observations, provide a compelling mechanism for regulating receptor signalling, and act as a guide for future physiological studies. Evidence suggests oligomerisation of G protein-coupled receptors in membranes, but this is controversial. Here, authors use single-molecule and ensemble FRET, and spectroscopy to show that the neurotensin receptor 1 forms multiple dimer conformations that interconvert - “rolling” interfaces.
Collapse
|
28
|
Xiang L, Wojcik M, Kenny SJ, Yan R, Moon S, Li W, Xu K. Optical characterization of surface adlayers and their compositional demixing at the nanoscale. Nat Commun 2018; 9:1435. [PMID: 29650981 PMCID: PMC5897338 DOI: 10.1038/s41467-018-03820-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/15/2018] [Indexed: 12/31/2022] Open
Abstract
Under ambient conditions, the behavior of a solid surface is often dominated by a molecularly thin adsorbed layer (adlayer) of small molecules. Here we develop an optical approach to unveil the nanoscale structure and composition of small-molecule adlayers on glass surfaces through spectrally resolved super-resolution microscopy. By recording the images and emission spectra of millions of individual solvatochromic molecules that turn fluorescent in the adlayer phase, we obtain ~30 nm spatial resolution and achieve concurrent measurement of local polarity. This allows us to establish that the adlayer dimensionality gradually increases through a sequence of 0D (nanodroplets), 1D (nano-lines), and 2D (films) for liquids of increasing polarity. Moreover, we find that in adlayers, a solution of two miscible liquids spontaneously demixes into nanodroplets of different compositions that correlate strongly with droplet size and location. We thus reveal unexpectedly rich structural and compositional behaviors of surface adlayers at the nanoscale. Characterization of adsorbed molecular layers on surfaces is the key to wide-ranging applications, but elucidating the structure and composition of such adlayers remains challenging. Here the authors develop an approach to unveil the nanoscale structure and composition of adlayers through spectrally resolved super-resolution microscopy.
Collapse
Affiliation(s)
- Limin Xiang
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Michal Wojcik
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Rui Yan
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Seonah Moon
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Wan Li
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
29
|
Fu G, Tu LC, Zilman A, Musser SM. Investigating molecular crowding within nuclear pores using polarization-PALM. eLife 2017; 6:e28716. [PMID: 28949296 PMCID: PMC5693140 DOI: 10.7554/elife.28716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
The key component of the nuclear pore complex (NPC) controlling permeability, selectivity, and the speed of nucleocytoplasmic transport is an assembly of natively unfolded polypeptides, which contain phenylalanine-glycine (FG) binding sites for nuclear transport receptors. The architecture and dynamics of the FG-network have been refractory to characterization due to the paucity of experimental methods able to probe the mobility and density of the FG-polypeptides and embedded macromolecules within intact NPCs. Combining fluorescence polarization, super-resolution microscopy, and mathematical analyses, we examined the rotational mobility of fluorescent probes at various locations within the FG-network under different conditions. We demonstrate that polarization PALM (p-PALM) provides a rich source of information about low rotational mobilities that are inaccessible with bulk fluorescence anisotropy approaches, and anticipate that p-PALM is well-suited to explore numerous crowded cellular environments. In total, our findings indicate that the NPC's internal organization consists of multiple dynamic environments with different local properties.
Collapse
Affiliation(s)
- Guo Fu
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| | - Li-Chun Tu
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| | - Anton Zilman
- Department of PhysicsUniversity of TorontoTorontoCanada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Siegfried M Musser
- Department of Molecular and Cellular Medicine, College of MedicineThe Texas A&M University Health Science CenterCollege StationUnited States
| |
Collapse
|
30
|
Jung SR, Fujimoto BS, Chiu DT. Quantitative microscopy based on single-molecule fluorescence. Curr Opin Chem Biol 2017. [PMID: 28623730 DOI: 10.1016/j.cbpa.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Quantitative microscopy is needed to understand reactions or phenomena carried out by biological molecules such as enzymes, receptors, and membrane-localized proteins. Counting the biomolecules of interest in single organelles or cellular compartments is critical in these approaches. In this brief perspective, we focus on the development of quantitative fluorescence microscopies that measure the precise copy numbers of proteins in cellular organelles or purified samples. We introduce recent improvements in quantitative microscopies to overcome undercounting or overcounting errors in certain conditions. We conclude by discussing biological applications.
Collapse
Affiliation(s)
- Seung-Ryoung Jung
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA 98195, United States
| | - Bryant S Fujimoto
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA 98195, United States
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
31
|
Oguzlu H, Danumah C, Boluk Y. Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.02.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Miles BT, Greenwood AB, Benito-Alifonso D, Tanner H, Galan MC, Verkade P, Gersen H. Direct Evidence of Lack of Colocalisation of Fluorescently Labelled Gold Labels Used in Correlative Light Electron Microscopy. Sci Rep 2017; 7:44666. [PMID: 28317888 PMCID: PMC5357795 DOI: 10.1038/srep44666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
Fluorescently labelled nanoparticles are routinely used in Correlative Light Electron Microscopy (CLEM) to combine the capabilities of two separate microscope platforms: fluorescent light microscopy (LM) and electron microscopy (EM). The inherent assumption is that the fluorescent label observed under LM colocalises well with the electron dense nanoparticle observed in EM. Herein we show, by combining single molecule fluorescent imaging with optical detection of the scattering from single gold nanoparticles, that for a commercially produced sample of 10 nm gold nanoparticles tagged to Alexa-633 there is in fact no colocalisation between the fluorescent signatures of Alexa-633 and the scattering associated with the gold nanoparticle. This shows that the attached gold nanoparticle quenches the fluorescent signal by ~95%, or less likely that the complex has dissociated. In either scenario, the observed fluorescent signal in fact arises from a large population of untagged fluorophores; rendering these labels potentially ineffective and misleading to the field.
Collapse
Affiliation(s)
- Benjamin T. Miles
- Nanophotonics and Nanophysics Group, H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | - Alexander B. Greenwood
- Nanophotonics and Nanophysics Group, H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | | | - Hugh Tanner
- Bristol Centre for Functional Nanomaterials, H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - M. Carmen Galan
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK
| | - Paul Verkade
- Wolfson Bioimaging Facility, University of Bristol, Bristol, BS8 1TD, UK
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Henkjan Gersen
- Nanophotonics and Nanophysics Group, H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
- Bristol Centre for Functional Nanomaterials, H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| |
Collapse
|
33
|
Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc Natl Acad Sci U S A 2016; 113:E6352-E6361. [PMID: 27679846 DOI: 10.1073/pnas.1607674113] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of order, such as orientation and conformation, drives the function of most molecular assemblies in living cells but remains difficult to measure accurately through space and time. We built an instantaneous fluorescence polarization microscope, which simultaneously images position and orientation of fluorophores in living cells with single-molecule sensitivity and a time resolution of 100 ms. We developed image acquisition and analysis methods to track single particles that interact with higher-order assemblies of molecules. We tracked the fluctuations in position and orientation of molecules from the level of an ensemble of fluorophores down to single fluorophores. We tested our system in vitro using fluorescently labeled DNA and F-actin, in which the ensemble orientation of polarized fluorescence is known. We then tracked the orientation of sparsely labeled F-actin network at the leading edge of migrating human keratinocytes, revealing the anisotropic distribution of actin filaments relative to the local retrograde flow of the F-actin network. Additionally, we analyzed the position and orientation of septin-GFP molecules incorporated in septin bundles in growing hyphae of a filamentous fungus. Our data indicate that septin-GFP molecules undergo positional fluctuations within ∼350 nm of the binding site and angular fluctuations within ∼30° of the central orientation of the bundle. By reporting position and orientation of molecules while they form dynamic higher-order structures, our approach can provide insights into how micrometer-scale ordered assemblies emerge from nanoscale molecules in living cells.
Collapse
|
34
|
Automatic Bayesian single molecule identification for localization microscopy. Sci Rep 2016; 6:33521. [PMID: 27641933 PMCID: PMC5027599 DOI: 10.1038/srep33521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/30/2016] [Indexed: 01/03/2023] Open
Abstract
Single molecule localization microscopy (SMLM) is on its way to become a mainstream imaging technique in the life sciences. However, analysis of SMLM data is biased by user provided subjective parameters required by the analysis software. To remove this human bias we introduce here the Auto-Bayes method that executes the analysis of SMLM data automatically. We demonstrate the success of the method using the photoelectron count of an emitter as selection characteristic. Moreover, the principle can be used for any characteristic that is bimodally distributed with respect to false and true emitters. The method also allows generation of an emitter reliability map for estimating quality of SMLM-based structures. The potential of the Auto-Bayes method is shown by the fact that our first basic implementation was able to outperform all software packages that were compared in the ISBI online challenge in 2015, with respect to molecule detection (Jaccard index).
Collapse
|
35
|
Ramanan V, Trehan K, Ong ML, Luna JM, Hoffmann HH, Espiritu C, Sheahan TP, Chandrasekar H, Schwartz RE, Christine KS, Rice CM, van Oudenaarden A, Bhatia SN. Viral genome imaging of hepatitis C virus to probe heterogeneous viral infection and responses to antiviral therapies. Virology 2016; 494:236-47. [PMID: 27128351 DOI: 10.1016/j.virol.2016.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a positive single-stranded RNA virus of enormous global health importance, with direct-acting antiviral therapies replacing an immunostimulatory interferon-based regimen. The dynamics of HCV positive and negative-strand viral RNAs (vRNAs) under antiviral perturbations have not been studied at the single-cell level, leaving a gap in our understanding of antiviral kinetics and host-virus interactions. Here, we demonstrate quantitative imaging of HCV genomes in multiple infection models, and multiplexing of positive and negative strand vRNAs and host antiviral RNAs. We capture the varying kinetics with which antiviral drugs with different mechanisms of action clear HCV infection, finding the NS5A inhibitor daclatasvir to induce a rapid decline in negative-strand viral RNAs. We also find that the induction of host antiviral genes upon interferon treatment is positively correlated with viral load in single cells. This study adds smFISH to the toolbox available for analyzing the treatment of RNA virus infections.
Collapse
Affiliation(s)
- Vyas Ramanan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kartik Trehan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mei-Lyn Ong
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph M Luna
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, 10065 NY, USA
| | - Hans-Heinrich Hoffmann
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, 10065 NY, USA
| | - Christine Espiritu
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, 10065 NY, USA
| | - Timothy P Sheahan
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, 10065 NY, USA
| | - Hamsika Chandrasekar
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert E Schwartz
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kathleen S Christine
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles M Rice
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, 10065 NY, USA
| | - Alexander van Oudenaarden
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Farsi Z, Preobraschenski J, van den Bogaart G, Riedel D, Jahn R, Woehler A. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles. Science 2016; 351:981-4. [DOI: 10.1126/science.aad8142] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
|
37
|
Verma V, Mallik L, Hariadi RF, Sivaramakrishnan S, Skiniotis G, Joglekar AP. Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds. PLoS One 2015; 10:e0137125. [PMID: 26348722 PMCID: PMC4562706 DOI: 10.1371/journal.pone.0137125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
DNA origami provides a versatile platform for conducting 'architecture-function' analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis.
Collapse
Affiliation(s)
- Vikash Verma
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Leena Mallik
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States of America
| | - Rizal F. Hariadi
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sivaraj Sivaramakrishnan
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Georgios Skiniotis
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan Medical School, Michigan, United States of America
| | - Ajit P. Joglekar
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
38
|
Ye F, Wu C, Sun W, Yu J, Zhang X, Rong Y, Zhang Y, Wu IC, Chan YH, Chiu DT. Semiconducting polymer dots with monofunctional groups. Chem Commun (Camb) 2015; 50:5604-7. [PMID: 24728589 DOI: 10.1039/c4cc01689k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This communication describes an approach for preparing monovalent semiconducting polymer dots (mPdots) with a size of 5 nm where each mPdot was composed of precisely a single active functional group.
Collapse
Affiliation(s)
- Fangmao Ye
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Beh C, Pan D, Lee J, Jiang X, Liu KJ, Mao HQ, Wang TH. Direct interrogation of DNA content distribution in nanoparticles by a novel microfluidics-based single-particle analysis. NANO LETTERS 2014; 14:4729-35. [PMID: 25054542 PMCID: PMC4134141 DOI: 10.1021/nl5018404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/01/2014] [Indexed: 05/29/2023]
Abstract
Nonviral gene delivery holds great promise not just as a safer alternative to viral vectors in traditional gene therapy applications, but also for regenerative medicine, induction of pluripotency in somatic cells, and RNA interference for gene silencing. Although it continues to be an active area of research, there remain many challenges to the rational design of vectors. Among these, the inability to characterize the composition of nanoparticles and its distribution has made it difficult to probe the mechanism of gene transfection process, since differences in the nanoparticle-mediated transfection exist even when the same vector is used. There is a lack of sensitive methods that allow for full characterization of DNA content in single nanoparticles and its distribution among particles in the same preparation. Here we report a novel spectroscopic approach that is capable of interrogating nanoparticles on a particle-by-particle basis. Using PEI/DNA and PEI-g-PEG/DNA nanoparticles as examples, we have shown that the distribution of DNA content among these nanoparticles was relatively narrow, with the average numbers of DNA of 4.8 and 6.7 per particle, respectively, in PEI/DNA and PEI-g-PEG/DNA nanoparticles. This analysis enables a more accurate description of DNA content in polycation/DNA nanoparticles. It paves the way toward comparative assessments of various types of gene carriers and provides insights into bridging the efficiency gap between viral and nonviral vehicles.
Collapse
Affiliation(s)
- Cyrus
W. Beh
- Department
of Biomedical Engineering, Johns Hopkins
School of Medicine, 720
Rutland Avenue, Baltimore, Maryland 21205, United
States
| | - Deng Pan
- Department
of Biomedical Engineering, Johns Hopkins
School of Medicine, 720
Rutland Avenue, Baltimore, Maryland 21205, United
States
| | - Jason Lee
- Department
of Biomedical Engineering, Johns Hopkins
School of Medicine, 720
Rutland Avenue, Baltimore, Maryland 21205, United
States
| | - Xuan Jiang
- Department of Materials Science
and Engineering and Department of Mechanical Engineering, Whiting
School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21212, United States
| | - Kelvin J. Liu
- Department
of Biomedical Engineering, Johns Hopkins
School of Medicine, 720
Rutland Avenue, Baltimore, Maryland 21205, United
States
| | - Hai-Quan Mao
- Department
of Biomedical Engineering, Johns Hopkins
School of Medicine, 720
Rutland Avenue, Baltimore, Maryland 21205, United
States
- Department of Materials Science
and Engineering and Department of Mechanical Engineering, Whiting
School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21212, United States
- Translational
Tissue Engineering Center, Johns Hopkins
School of Medicine, 400
North Broadway, Baltimore, Maryland 21287, United
States
| | - Tza-Huei Wang
- Department
of Biomedical Engineering, Johns Hopkins
School of Medicine, 720
Rutland Avenue, Baltimore, Maryland 21205, United
States
- Department of Materials Science
and Engineering and Department of Mechanical Engineering, Whiting
School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21212, United States
| |
Collapse
|
40
|
Pitchiaya S, Heinicke LA, Custer TC, Walter NG. Single molecule fluorescence approaches shed light on intracellular RNAs. Chem Rev 2014; 114:3224-65. [PMID: 24417544 PMCID: PMC3968247 DOI: 10.1021/cr400496q] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sethuramasundaram Pitchiaya
- Single Molecule Analysis in Real-Time (SMART)
Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Laurie A. Heinicke
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thomas C. Custer
- Program in Chemical Biology, University of Michigan,
Ann Arbor, MI 48109-1055, USA
| | - Nils G. Walter
- Single Molecule Analysis in Real-Time (SMART)
Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of
Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
41
|
Langhans M, Meckel T. Single-molecule detection and tracking in plants. PROTOPLASMA 2014; 251:277-91. [PMID: 24385216 DOI: 10.1007/s00709-013-0601-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 05/07/2023]
Abstract
Combining optical properties with a limited choice of fluorophores turns single-molecule imaging in plants into a challenging task. This explains why the technique, despite its success in the field of animal cell biology, is far from being routinely applied in plant cell research. The same challenges, however, also apply to the application of single-molecule microscopy to any intact tissue or multicellular 3D cell culture. As recent and upcoming progress in fluorescence microscopy will permit single-molecule detection in the context of multicellular systems, plant tissue imaging will experience a huge benefit from this progress. In this review, we address every step of a single-molecule experiment, highlight the critical aspects of each and elaborate on optimizations and developments required for improvements. We relate each step to recent achievements, which have so far been conducted exclusively on the root epidermis of Arabidopsis thaliana seedlings with inclined illumination and show examples of single-molecule measurements using different cells or illumination schemes.
Collapse
Affiliation(s)
- Markus Langhans
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3-5, 64287, Darmstadt, Germany
| | | |
Collapse
|
42
|
Kurz A, Schmied JJ, Grußmayer KS, Holzmeister P, Tinnefeld P, Herten DP. Counting fluorescent dye molecules on DNA origami by means of photon statistics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:4061-4068. [PMID: 23794455 DOI: 10.1002/smll.201300619] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 06/02/2023]
Abstract
Obtaining quantitative information about molecular assemblies with high spatial and temporal resolution is a challenging task in fluorescence microscopy. Single-molecule techniques build on the ability to count molecules one by one. Here, a method is presented that extends recent approaches to analyze the statistics of coincidently emitted photons to enable reliable counting of molecules in the range of 1-20. This method does not require photochemistry such as blinking or bleaching. DNA origami structures are labeled with up to 36 dye molecules as a new evaluation tool to characterize this counting by a photon statistics approach. Labeled DNA origami has a well-defined labeling stoichiometry and ensures equal brightness for all dyes incorporated. Bias and precision of the estimating algorithm are determined, along with the minimal acquisition time required for robust estimation. Complexes containing up to 18 molecules can be investigated non-invasively within 150 ms. The method might become a quantifying add-on for confocal microscopes and could be especially powerful in combination with STED/RESOLFT-type microscopy.
Collapse
Affiliation(s)
- Anton Kurz
- Cellnetworks Cluster und Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, 69210 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Köklü G, Ghaye J, Etienne-Cummings R, Leblebici Y, De Micheli G, Carrara S. Empowering Low-Cost CMOS Cameras by Image Processing to Reach Comparable Results with Costly CCDs. BIONANOSCIENCE 2013. [DOI: 10.1007/s12668-013-0106-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Nishimura H, Ritchie K, Kasai RS, Goto M, Morone N, Sugimura H, Tanaka K, Sase I, Yoshimura A, Nakano Y, Fujiwara TK, Kusumi A. Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. ACTA ACUST UNITED AC 2013; 202:967-83. [PMID: 24043702 PMCID: PMC3776351 DOI: 10.1083/jcb.201301053] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fluorescence microscopy is used extensively in cell-biological and biomedical research, but it is often plagued by three major problems with the presently available fluorescent probes: photobleaching, blinking, and large size. We have addressed these problems, with special attention to single-molecule imaging, by developing biocompatible, red-emitting silicon nanocrystals (SiNCs) with a 4.1-nm hydrodynamic diameter. Methods for producing SiNCs by simple chemical etching, for hydrophilically coating them, and for conjugating them to biomolecules precisely at a 1:1 ratio have been developed. Single SiNCs neither blinked nor photobleached during a 300-min overall period observed at video rate. Single receptor molecules in the plasma membrane of living cells (using transferrin receptor) were imaged for ≥10 times longer than with other probes, making it possible for the first time to observe the internalization process of receptor molecules at the single-molecule level. Spatial variations of molecular diffusivity in the scale of 1-2 µm, i.e., a higher level of domain mosaicism in the plasma membrane, were revealed.
Collapse
Affiliation(s)
- Hirohito Nishimura
- Institute for Integrated Cell-Material Sciences, 2 Institute for Frontier Medical Sciences, and 3 Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Suzuki KGN, Kasai RS, Fujiwara TK, Kusumi A. Single-molecule imaging of receptor-receptor interactions. Methods Cell Biol 2013; 117:373-90. [PMID: 24143988 DOI: 10.1016/b978-0-12-408143-7.00020-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-molecule imaging is a powerful tool for the study of dynamic molecular interactions in living cell plasma membranes. Herein, we describe a single-molecule imaging microscopy technique that can be used to measure lifetimes and densities of receptor dimers and oligomers. This method can be performed using a total internal reflection fluorescent microscope equipped with one or two high-sensitivity cameras. For dual-color observation, two images obtained synchronously in different colors are spatially corrected and then overlaid. Receptors must be expressed at low density in cell plasma membranes because high-density expression (>2 molecules/μm(2)) creates difficulty for tracking individual fluorescent spots. In addition, the receptors should be labeled with highly photostable fluorophores at high efficiency because short photobleaching lifetimes and low labeling efficiency of receptors reduce the probability of detecting dimers and oligomers. In this chapter, we describe methods for observing and detecting colocalization of the individual fluorescent spots of receptors labeled with fluorophores via small tags and the estimation of true dimer and oligomer lifetimes after correction with photobleaching lifetimes of fluorophores.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan; National Centre for Biological Sciences (NCBS)/Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
| | | | | | | |
Collapse
|
46
|
Gadd JC, Fujimoto BS, Bajjalieh SM, Chiu DT. Single-molecule fluorescence quantification with a photobleached internal standard. Anal Chem 2012; 84:10522-5. [PMID: 23210507 DOI: 10.1021/ac303032m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In cellular and molecular biology, fluorophores are employed to aid in tracking and quantifying molecules involved in cellular function. We previously developed a sensitive single-molecule quantification technique to count the number of proteins and the variation of the protein number over the population of individual subcellular organelles. However, environmental effects on the fluorescent intensity of fluorophores can make it difficult to accurately quantify proteins using these sensitive techniques. In this letter, we demonstrate the use of photobleaching to extract an accurate single-molecule calibration intensity distribution from the sample directly to avoid any differences in environment that may alter the count. Using this technique, we were able to show that goat antimouse IgG antibody labeled with Alexa Fluor 488, an environmentally insensitive fluorophore, exhibited an average fluorescence equivalent to 4.6 single fluorophores. SynaptopHluorin vesicles, which contain the environmentally sensitive green fluorescent protein, exhibited an average of 4.4 single green fluorescent proteins per vesicle.
Collapse
Affiliation(s)
- Jennifer C Gadd
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | | | |
Collapse
|
47
|
STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophys J 2012; 102:2926-35. [PMID: 22735543 DOI: 10.1016/j.bpj.2012.05.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/24/2012] [Accepted: 05/07/2012] [Indexed: 11/20/2022] Open
Abstract
Super-resolution fluorescence microscopy can achieve resolution beyond the optical diffraction limit, partially closing the gap between conventional optical imaging and electron microscopy for elucidation of subcellular architecture. The centriole, a key component of the cellular control and division machinery, is 250 nm in diameter, a spatial scale where super-resolution methods such as stimulated emission depletion (STED) microscopy can provide previously unobtainable detail. We use STED with a resolution of 60 nm to demonstrate that the centriole distal appendage protein Cep164 localizes in nine clusters spaced around a ring of ∼300 nm in diameter, and quantify the influence of the labeling density in STED immunofluorescence microscopy. We find that the labeling density dramatically influences the observed number, size, and brightness of labeled Cep164 clusters, and estimate the average number of secondary antibody labels per cluster. The arrangements are morphologically similar in centrioles of both proliferating cells and differentiated multiciliated cells, suggesting a relationship of this structure to function. Our STED measurements in single centrioles are consistent with results obtained by electron microscopy, which involve ensemble averaging or very different sample preparation conditions, suggesting that we have arrived at a direct measurement of a centriole protein by careful optimization of the labeling density.
Collapse
|
48
|
Schiro PG, Gadd JC, Yen GS, Chiu DT. High-throughput fluorescence-activated nanoscale subcellular sorter with single-molecule sensitivity. J Phys Chem B 2012; 116:10490-5. [PMID: 22574902 DOI: 10.1021/jp3019233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent single-cell and single-molecule studies have shown that a variety of subpopulations exist within biological systems, such as synaptic vesicles, that have previously been overlooked in common bulk studies. By isolating and enriching these various subpopulations, detailed analysis with a variety of analytical techniques can be done to further understand the role that various subpopulations play in cellular dynamics and how alterations to these subpopulations affect the overall function of the biological system. Previous sorters lack the sensitivity, sorting speed, and efficiency to isolate synaptic vesicles and other nanoscale systems. This paper describes the development of a fluorescence-activated nanoscale subcellular sorter that can sort nearly 10 million objects per hour with single-molecule sensitivity. Utilizing a near-nanoscale channel system, we were able to achieve upward of 91% recovery of desired objects with a 99.7% purity.
Collapse
Affiliation(s)
- Perry G Schiro
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | | | | |
Collapse
|
49
|
|
50
|
Liu C, Qu Y, Luo Y, Fang N. Recent advances in single-molecule detection on micro- and nano-fluidic devices. Electrophoresis 2012; 32:3308-18. [PMID: 22134976 DOI: 10.1002/elps.201100159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-molecule detection (SMD) allows static and dynamic heterogeneities from seemingly equal molecules to be revealed in the studies of molecular structures and intra- and inter-molecular interactions. Micro- and nanometer-sized structures, including channels, chambers, droplets, etc., in microfluidic and nanofluidic devices allow diffusion-controlled reactions to be accelerated and provide high signal-to-noise ratio for optical signals. These two active research frontiers have been combined to provide unprecedented capabilities for chemical and biological studies. This review summarizes the advances of SMD performed on microfluidic and nanofluidic devices published in the past five years. The latest developments on optical SMD methods, microfluidic SMD platforms, and on-chip SMD applications are discussed herein and future development directions are also envisioned.
Collapse
Affiliation(s)
- Chang Liu
- Ames Laboratory, US Department of Energy, Ames, Iowa, USA
| | | | | | | |
Collapse
|