1
|
Veselov MM, Efremova MV, Prusov AN, Klyachko NL. Up- and Down-Regulation of Enzyme Activity in Aggregates with Gold-Covered Magnetic Nanoparticles Triggered by Low-Frequency Magnetic Field. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:411. [PMID: 38470742 DOI: 10.3390/nano14050411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
The modern global trend toward sustainable processes that meet the requirements of "green chemistry" provides new opportunities for the broad application of highly active, selective, and specific enzymatic reactions. However, the effective application of enzymes in industrial processes requires the development of systems for the remote regulation of their activity triggered by external physical stimuli, one of which is a low-frequency magnetic field (LFMF). Magnetic nanoparticles (MNPs) transform the energy of an LFMF into mechanical forces and deformations applied to enzyme molecules on the surfaces of MNPs. Here, we demonstrate the up- and down-regulation of two biotechnologically important enzymes, yeast alcohol dehydrogenase (YADH) and soybean formate dehydrogenase (FDH), in aggregates with gold-covered magnetic nanoparticles (GCMNPs) triggered by an LFMF. Two types of aggregates, "dimeric" (with the enzyme attached to several GCMNPs simultaneously), with YADH or FDH, and "monomeric" (the enzyme attached to only one GCMNP), with FDH, were synthesized. Depending on the aggregate type ("dimeric" or "monomeric"), LFMF treatment led to a decrease (down-regulation) or an increase (up-regulation) in enzyme activity. For "dimeric" aggregates, we observed 67 ± 9% and 47 ± 7% decreases in enzyme activity under LFMF exposure for YADH and FDH, respectively. Moreover, in the case of YADH, varying the enzyme or the cross-linking agent concentration led to different magnitudes of the LFMF effect, which was more significant at lower enzyme and higher cross-linking agent concentrations. Different responses to LFMF exposure depending on cofactor presence were also demonstrated. This effect might result from a varying cofactor binding efficiency to enzymes. For the "monomeric" aggregates with FDH, the LFMF treatment caused a significant increase in enzyme activity; the magnitude of this effect depended on the cofactor type: we observed up to 40% enzyme up-regulation in the case of NADP+, while almost no effect was observed in the case of NAD+.
Collapse
Affiliation(s)
- Maxim M Veselov
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Maria V Efremova
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Andrey N Prusov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Natalia L Klyachko
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Blacker TS, Duchen MR, Bain AJ. NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption. Biophys J 2023; 122:1240-1253. [PMID: 36793214 PMCID: PMC10111271 DOI: 10.1016/j.bpj.2023.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
NADH and NADPH play key roles in the regulation of metabolism. Their endogenous fluorescence is sensitive to enzyme binding, allowing changes in cellular metabolic state to be determined using fluorescence lifetime imaging microscopy (FLIM). However, to fully uncover the underlying biochemistry, the relationships between their fluorescence and binding dynamics require greater understanding. Here we accomplish this through time- and polarization-resolved fluorescence and polarized two-photon absorption measurements. Two lifetimes result from binding of both NADH to lactate dehydrogenase and NADPH to isocitrate dehydrogenase. The composite fluorescence anisotropy indicates the shorter (1.3-1.6 ns) decay component to be accompanied by local motion of the nicotinamide ring, pointing to attachment solely via the adenine moiety. For the longer lifetime (3.2-4.4 ns), the nicotinamide conformational freedom is found to be fully restricted. As full and partial nicotinamide binding are recognized steps in dehydrogenase catalysis, our results unify photophysical, structural, and functional aspects of NADH and NADPH binding and clarify the biochemical processes that underlie their contrasting intracellular lifetimes.
Collapse
Affiliation(s)
- Thomas S Blacker
- Department of Physics & Astronomy, University College London, London, United Kingdom; Research Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Angus J Bain
- Department of Physics & Astronomy, University College London, London, United Kingdom.
| |
Collapse
|
3
|
Dumina M, Zhgun A. Thermo-L-Asparaginases: From the Role in the Viability of Thermophiles and Hyperthermophiles at High Temperatures to a Molecular Understanding of Their Thermoactivity and Thermostability. Int J Mol Sci 2023; 24:ijms24032674. [PMID: 36768996 PMCID: PMC9916696 DOI: 10.3390/ijms24032674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine, food industry, and diagnostics. Among various organisms expressing L-ASNases, thermophiles and hyperthermophiles produce enzymes with superior performances-stable and heat resistant thermo-ASNases. This review is an attempt to take a broader view on the thermo-ASNases. Here we discuss the position of thermo-ASNases in the large family of L-ASNases, their role in the heat-tolerance cellular system of thermophiles and hyperthermophiles, and molecular aspects of their thermoactivity and thermostability. Different types of thermo-ASNases exhibit specific L-asparaginase activity and additional secondary activities. All products of these enzymatic reactions are associated with diverse metabolic pathways and are important for mitigating heat stress. Thermo-ASNases are quite distinct from typical mesophilic L-ASNases based on structural properties, kinetic and activity profiles. Here we attempt to summarize the current understanding of the molecular mechanisms of thermo-ASNases' thermoactivity and thermostability, from amino acid composition to structural-functional relationships. Research of these enzymes has fundamental and biotechnological significance. Thermo-ASNases and their improved variants, cloned and expressed in mesophilic hosts, can form a large pool of enzymes with valuable characteristics for biotechnological application.
Collapse
|
4
|
Tang Y, Gu S, Zhu L, Wu Y, Zhang W, Zhao C. LDHA: The Obstacle to T cell responses against tumor. Front Oncol 2022; 12:1036477. [PMID: 36518315 PMCID: PMC9742379 DOI: 10.3389/fonc.2022.1036477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2023] Open
Abstract
Immunotherapy has become a successful therapeutic strategy in certain solid tumors and hematological malignancies. However, this efficacy of immunotherapy is impeded by limited success rates. Cellular metabolic reprogramming determines the functionality and viability in both cancer cells and immune cells. Extensive research has unraveled that the limited success of immunotherapy is related to immune evasive metabolic reprogramming in tumor cells and immune cells. As an enzyme that catalyzes the final step of glycolysis, lactate dehydrogenase A (LDHA) has become a major focus of research. Here, we have addressed the structure, localization, and biological features of LDHA. Furthermore, we have discussed the various aspects of epigenetic regulation of LDHA expression, such as histone modification, DNA methylation, N6-methyladenosine (m6A) RNA methylation, and transcriptional control by noncoding RNA. With a focus on the extrinsic (tumor cells) and intrinsic (T cells) functions of LDHA in T-cell responses against tumors, in this article, we have reviewed the current status of LDHA inhibitors and their combination with T cell-mediated immunotherapies and postulated different strategies for future therapeutic regimens.
Collapse
Affiliation(s)
- Yu Tang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yujiao Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|
5
|
Inhibition of LDHA to Induce EEF2 Release Enhances Thrombocytopoiesis. Blood 2022; 139:2958-2971. [PMID: 35176139 DOI: 10.1182/blood.2022015620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Translation is essential for megakaryocyte (MK) maturation and platelet production. However, how the translational pathways are regulated in this process remains unknown. In this study, we found that megakaryocyte/platelet-specific lactate dehydrogenase A (LdhA)-knockout mice showed an increased number of platelets with remarkably accelerated MK maturation and proplatelet formation. Interestingly, the role of LDHA in MK maturation and platelet formation did not depend on lactate content, which was the major product of LDHA. Mechanism studies revealed that LDHA interacted with eukaryotic elongation factor 2 (eEF2) in the cytoplasm, controlling the participation of eEF2 in translation at the ribosome. Furthermore, the interaction of LDHA and eEF2 was dependent on NADH, a coenzyme of LDHA. NADH-competitive inhibitors of LDHA could release eEF2 from the LDHA pool, up-regulate translation and enhance MK maturation in vitro. Among LDHA inhibitors, stiripentol significantly promoted the production of platelets in vivo under physiological state and in the immune thrombocytopenia model. Moreover, stiripentol could promote platelet production from human cord blood mononuclear cells (CBMCs)-derived megakaryocytes, and also have a superposed effect with romiplostim. In short, this study reveals a novel non-classical function of LDHA in translation and may serve as a potential target for thrombocytopenia therapy.
Collapse
|
6
|
Ceci FM, Fiore M, Gavaruzzi F, Angeloni A, Lucarelli M, Scagnolari C, Bonci E, Gabanella F, Di Certo MG, Barbato C, Petrella C, Greco A, Vincentiis MD, Ralli M, Passananti C, Poscia R, Minni A, Ceccanti M, Tarani L, Ferraguti G. Early Routine Biomarkers of SARS-CoV-2 Morbidity and Mortality: Outcomes from an Emergency Section. Diagnostics (Basel) 2022; 12:diagnostics12010176. [PMID: 35054342 PMCID: PMC8774587 DOI: 10.3390/diagnostics12010176] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
Background. COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a virus belonging to the Coronaviridae family. This disease has spread rapidly around the world and soon became an international public health emergency leading to an unpredicted pressure on the hospital emergency units. Early routine blood biomarkers could be key predicting factors of COVID-19 morbidity and mortality as suggested for C-reactive protein (CRP), IL-6, prothrombin and D-dimer. This study aims to identify other early routine blood biomarkers for COVID-19 severity prediction disclosed directly into the emergency section. Methods. Our research was conducted on 156 COVID-19 patients hospitalized at the Sapienza University Hospital “Policlinico Umberto I” of Rome, Italy, between March 2020 and April 2020 during the paroxysm’s initial phase of the pandemic. In this retrospective study, patients were divided into three groups according to their outcome: (1) emergency group (patients who entered the emergency room and were discharged shortly after because they did not show severe symptoms); (2) intensive care unit (ICU) group (patients who attended the ICU after admission to the emergency unit); (3) the deceased group (patients with a fatal outcome who attended the emergency and, afterward, the ICU units). Routine laboratory tests from medical records were collected when patients were admitted to the emergency unit. We focused on Aspartate transaminase (AST), Alanine transaminase (ALT), Lactate dehydrogenase (LDH), Creatine kinase (CK), Myoglobin (MGB), Ferritin, CRP, and D-dimer. Results. As expected, ANOVA data show an age morbidity increase in both ICU and deceased groups compared with the emergency group. A main effect of morbidity was revealed by ANOVA for all the analyzed parameters with an elevation between the emergency group and the deceased group. Furthermore, a significant increase in LDH, Ferritin, CRP, and D-dimer was also observed between the ICU group and the emergency group and between the deceased group and ICU group. Receiver operating characteristic (ROC) analyses confirmed and extended these findings. Conclusions. This study suggests that the contemporaneous presence of high levels of LDH, Ferritin, and as expected, CRP, and D-dimer could be considered as potential predictors of COVID-19 severity and death.
Collapse
Affiliation(s)
- Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (F.M.C.); (A.A.); (M.L.); (E.B.); (G.F.)
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (F.G.); (M.G.D.C.); (C.B.); (C.P.)
- Correspondence:
| | - Francesca Gavaruzzi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy;
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (F.M.C.); (A.A.); (M.L.); (E.B.); (G.F.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (F.M.C.); (A.A.); (M.L.); (E.B.); (G.F.)
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Roma, Italy;
| | - Enea Bonci
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (F.M.C.); (A.A.); (M.L.); (E.B.); (G.F.)
| | - Francesca Gabanella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (F.G.); (M.G.D.C.); (C.B.); (C.P.)
| | - Maria Grazia Di Certo
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (F.G.); (M.G.D.C.); (C.B.); (C.P.)
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (F.G.); (M.G.D.C.); (C.B.); (C.P.)
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (F.G.); (M.G.D.C.); (C.B.); (C.P.)
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (A.G.); (M.D.V.); (M.R.); (A.M.)
| | - Marco De Vincentiis
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (A.G.); (M.D.V.); (M.R.); (A.M.)
| | - Massimo Ralli
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (A.G.); (M.D.V.); (M.R.); (A.M.)
| | - Claudio Passananti
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00185 Rome, Italy;
| | - Roberto Poscia
- Unita di Ricerca Clinica e Clinical Competence-Direzione Generale, AOU Policlinico Umberto I, 00161 Roma, Italy;
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (A.G.); (M.D.V.); (M.R.); (A.M.)
| | - Mauro Ceccanti
- Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze (SITAC), 00184 Roma, Italy;
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University of Rome, 00185 Roma, Italy;
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (F.M.C.); (A.A.); (M.L.); (E.B.); (G.F.)
| |
Collapse
|
7
|
Oluyemi WM, Samuel BB, Adewumi AT, Adekunle YA, Soliman MES, Krenn L. An Allosteric Inhibitory Potential of Triterpenes from Combretum racemosum on the Structural and Functional Dynamics of Plasmodium falciparum Lactate Dehydrogenase Binding Landscape. Chem Biodivers 2022; 19:e202100646. [PMID: 34982514 DOI: 10.1002/cbdv.202100646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022]
Abstract
Multidrug resistance is a significant drawback in malaria treatment, and mutations in the active sites of the many critical antimalarial drug targets have remained challenging. Therefore, this has necessitated the global search for new drugs with new mechanisms of action. Plasmodium falciparum lactate dehydrogenase (pfLHD), a glycolytic enzyme, has emerged as a potential target for developing new drugs due to the parasite reliance on glycolysis for energy. Strong substrate-binding is required in pfLDH enzymatic catalysis; however, there is a lack of information on small molecules' inhibitory mechanism bound to the substrate-binding pocket. Therefore, this study investigated a potential allosteric inhibition of pfLDH by targeting the substrate-binding site. The structural and functional behaviour of madecassic acid (MA), the most promising among the six triterpenes bound to pfLDH, were unravelled using molecular dynamic simulations at 300 ns to gain insights into its mechanism of binding and inhibition and chloroquine as a standard drug. The docking studies identified that the substrate site has the preferred position for the compounds even in the absence of a co-factor. The bound ligands showed comparably higher binding affinity at the substrate site than at the co-factor site. Mechanistically, a characteristic loop implicated in the enzyme catalytic activity was identified at the substrate site. This loop accommodates key interacting residues (LYS174, MET175, LEU177 and LYS179) pivotal in the MA binding and inhibitory action. The MA-bound pfLHD average RMSD (1.60 Å) relative to chloroquine-bound pfLHD RMSD (2.00 Å) showed higher stability for the substrate pocket, explaining the higher binding affinity (-33.40 kcal/mol) observed in the energy calculations, indicating that MA exhibited profound inhibitory activity. The significant pfLDH loop conformational changes and the allostery substrate-binding landscape suggested inhibiting the enzyme function, which provides an avenue for designing antimalarial compounds in the future studies of pfLDH protein as a target.
Collapse
Affiliation(s)
- Wande M Oluyemi
- Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan, Nigeria
| | - Babatunde B Samuel
- Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan, Nigeria
| | - Adeniyi T Adewumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Yemi A Adekunle
- Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan, Nigeria.,Department of Pharmaceutical Chemistry, Dora Akunyili College of Pharmacy, Igbinedion University, Okada, Benin City, Nigeria
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| |
Collapse
|
8
|
Khrapunov S, Waterman A, Persaud R, Chang EP. Structure, Function, and Thermodynamics of Lactate Dehydrogenases from Humans and the Malaria Parasite P. falciparum. Biochemistry 2021; 60:3582-3595. [PMID: 34747601 DOI: 10.1021/acs.biochem.1c00470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Temperature adaptation is ubiquitous among all living organisms, yet the molecular basis for this process remains poorly understood. It can be assumed that for parasite-host systems, the same enzymes found in both organisms respond to the same selection factor (human body temperature) with similar structural changes. Herein, we report the existence of a reversible temperature-dependent structural transition for the glycolytic enzyme lactate dehydrogenase (LDH) from the malaria parasite Plasmodium falciparum (pfLDH) and human heart (hhLDH) occurring in the temperature range of human fever. This transition is observed for LDHs from psychrophiles, mesophiles, and moderate thermophiles in their operating temperature range. Thermodynamic analysis reveals unique thermodynamic signatures of the LDH-substrate complexes defining a specific temperature range to which human LDH is adapted and parasite LDH is not, despite their common mesophilic nature. The results of spectroscopic analysis combined with the available crystallographic data reveal the existence of an active center within pfLDH that imparts psychrophilic structural properties to the enzyme. This center consists of two pockets, one formed by the five amino acids (5AA insert) within the substrate specificity loop and the other by the active site, that mutually regulate one another in response to temperature and induce structural and functional changes in the Michaelis complex. Our findings pave the way toward a new strategy for malaria treatments and drug design using therapeutic agents that inactivate malarial LDH selectively at a specific temperature range of the cyclic malaria paroxysm.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Akiba Waterman
- Department of Chemistry and Physical Sciences, Pace University, 1 Pace Plaza, New York, New York 10038, United States
| | - Rudra Persaud
- Department of Chemistry and Physical Sciences, Pace University, 1 Pace Plaza, New York, New York 10038, United States
| | - Eric P Chang
- Department of Chemistry and Physical Sciences, Pace University, 1 Pace Plaza, New York, New York 10038, United States
| |
Collapse
|
9
|
Xu X, Du C, Ren Z, Zhang M, Ma L. Conformational Change and Activity Enhancement of Rabbit Muscle Lactate Dehydrogenase Induced by Polyethyleneimine. ACS OMEGA 2021; 6:10859-10865. [PMID: 34056239 PMCID: PMC8153759 DOI: 10.1021/acsomega.1c00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
For a better understanding on the interaction between polyethyleneimine (PEI) and proteins, spectroscopic studies including UV-vis absorption, resonance Rayleigh scattering, fluorescence, and circular dichroism were conducted to reveal the conformational change of rabbit muscle lactate dehydrogenase (rmLDH) and related to the bioactivity of the enzyme. Regardless of the electrostatic repulsion, PEI could bind on the surface of rmLDH, a basic protein, via hydrogen binding of the dense amine groups and hydrophobic interaction of methyl groups. The competitive binding by PEI led to a reduction of the binding efficiency of rmLDH toward β-nicotinamide adenine dinucleotide, the coenzyme, and sodium pyruvate, the substrate. However, the complex formation with PEI induced a less ordered conformation and an enhanced surface hydrophobicity of rmLDH, facilitating the turnover of the enzyme and generally resulting in an increased activity. PEI of higher molecular weight was more efficient to induce alteration in the conformation and catalytic activity of the enzyme.
Collapse
Affiliation(s)
| | | | | | | | - Lin Ma
- .
Phone: +86-771-3233718. Fax: +86-0771-3233718
| |
Collapse
|
10
|
Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. J Pers Med 2021; 11:jpm11020074. [PMID: 33513899 PMCID: PMC7912158 DOI: 10.3390/jpm11020074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.
Collapse
|
11
|
Borden EA, Furey M, Gattone NJ, Hambardikar VD, Liang XH, Scoma ER, Abou Samra A, D-Gary LR, Dennis DJ, Fricker D, Garcia C, Jiang Z, Khan SA, Kumarasamy D, Kuppala H, Ringrose S, Rosenheim EJ, Van Exel K, Vudhayagiri HS, Zhang J, Zhang Z, Guitart-Mampel M, Urquiza P, Solesio ME. Is there a link between inorganic polyphosphate (polyP), mitochondria, and neurodegeneration? Pharmacol Res 2021; 163:105211. [PMID: 33010423 PMCID: PMC7855267 DOI: 10.1016/j.phrs.2020.105211] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction - including increased apoptosis, calcium and protein dyshomeostasis within the organelle, and dysfunctional bioenergetics and oxidative status - is a common, early feature in all the major neurodegenerative diseases, including Alzheimer's Disease (AD) and Parkinson's Disease (PD). However, the exact molecular mechanisms that drive the organelle to dysfunction and ultimately to failure in these conditions are still not well described. Different authors have shown that inorganic polyphosphate (polyP), an ancient and well-conserved molecule, plays a key role in the regulation of mitochondrial physiology under basal conditions. PolyP, which is present in all studied organisms, is composed of chains of orthophosphates linked together by highly energetic phosphoanhydride bonds, similar to those found in ATP. This polymer shows a ubiquitous distribution, even if a high co-localization with mitochondria has been reported. It has been proposed that polyP might be an alternative to ATP for cellular energy storage in different organisms, as well as the implication of polyP in the regulation of many of the mitochondrial processes affected in AD and PD, including protein and calcium homeostasis. Here, we conduct a comprehensive review and discussion of the bibliography available regarding the role of polyP in the mitochondrial dysfunction present in AD and PD. Taking into account the data presented in this review, we postulate that polyP could be a valid, innovative and, plausible pharmacological target against mitochondrial dysfunction in AD and PD. However, further research should be conducted to better understand the exact role of polyP in neurodegeneration, as well as the metabolism of the polymer, and the effect of different lengths of polyP on cellular and mitochondrial physiology.
Collapse
Affiliation(s)
- Emily A Borden
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Matthew Furey
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Nicholas J Gattone
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | | | - Xiao Hua Liang
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Ernest R Scoma
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Antonella Abou Samra
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - LaKeshia R D-Gary
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Dayshaun J Dennis
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Daniel Fricker
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Cindy Garcia
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - ZeCheng Jiang
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Shariq A Khan
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | | | - Hasmitha Kuppala
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Savannah Ringrose
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Evan J Rosenheim
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Kimberly Van Exel
- Center for Computational and Integrative Biology, Rutgers University, NJ, USA
| | | | - Jiarui Zhang
- Center for Computational and Integrative Biology, Rutgers University, NJ, USA
| | - Zhaowen Zhang
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | | | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA
| | - Maria E Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, NJ, USA; Center for Computational and Integrative Biology, Rutgers University, NJ, USA.
| |
Collapse
|
12
|
Gerringer ME, Yancey PH, Tikhonova OV, Vavilov NE, Zgoda VG, Davydov DR. Pressure tolerance of deep-sea enzymes can be evolved through increasing volume changes in protein transitions: a study with lactate dehydrogenases from abyssal and hadal fishes. FEBS J 2020; 287:5394-5410. [PMID: 32250538 PMCID: PMC7818408 DOI: 10.1111/febs.15317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 03/15/2020] [Accepted: 03/27/2020] [Indexed: 11/28/2022]
Abstract
We explore the principles of pressure tolerance in enzymes of deep-sea fishes using lactate dehydrogenases (LDH) as a case study. We compared the effects of pressure on the activities of LDH from hadal snailfishes Notoliparis kermadecensis and Pseudoliparis swirei with those from a shallow-adapted Liparis florae and an abyssal grenadier Coryphaenoides armatus. We then quantified the LDH content in muscle homogenates using mass-spectrometric determination of the LDH-specific conserved peptide LNLVQR. Existing theory suggests that adaptation to high pressure requires a decrease in volume changes in enzymatic catalysis. Accordingly, evolved pressure tolerance must be accompanied with an important reduction in the volume change associated with pressure-promoted alteration of enzymatic activity ( Δ V PP ∘ ). Our results suggest an important revision to this paradigm. Here, we describe an opposite effect of pressure adaptation-a substantial increase in the absolute value of Δ V PP ∘ in deep-living species compared to shallow-water counterparts. With this change, the enzyme activities in abyssal and hadal species do not substantially decrease their activity with pressure increasing up to 1-2 kbar, well beyond full-ocean depth pressures. In contrast, the activity of the enzyme from the tidepool snailfish, L. florae, decreases nearly linearly from 1 to 2500 bar. The increased tolerance of LDH activity to pressure comes at the expense of decreased catalytic efficiency, which is compensated with increased enzyme contents in high-pressure-adapted species. The newly discovered strategy is presumably used when the enzyme mechanism involves the formation of potentially unstable excited transient states associated with substantial changes in enzyme-solvent interactions.
Collapse
|
13
|
Abstract
Dysregulated metabolism is one of the hallmarks of cancer. Under normal physiological conditions, ATP is primarily generated by oxidative phosphorylation. Cancers commonly undergo a dramatic shift toward glycolysis, despite the presence of oxygen. This phenomenon is known as the Warburg effect, and requires the activity of LDHA. LDHA converts pyruvate to lactate in the final step of glycolysis and is often upregulated in cancer. LDHA inhibitors present a promising therapeutic option, as LDHA blockade leads to apoptosis in cancer cells. Despite this, existing LDHA inhibitors have shown limited clinical efficacy. Here, we review recent progress in LDHA structure, function and regulation as well as strategies to target this critical enzyme.
Collapse
|
14
|
Khalilov RA, Dzhafarova AM, Khizrieva SI, Abdullaev VR. The Effect of Hypothermia on Some Structural and Functional Characteristics of Lactate Dehydrogenase of the Rat Brain. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Egawa T, Deng H, Chang E, Callender R. Effect of Protein Isotope Labeling on the Catalytic Mechanism of Lactate Dehydrogenase. J Phys Chem B 2019; 123:9801-9808. [PMID: 31644296 DOI: 10.1021/acs.jpcb.9b08656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate how isotopic labeling of the enzyme lactate dehydrogenase (LDH) affects its function. LDH is of special interest because there exists a line of residues spanning the protein that are involved in the transition state (TS) of the chemical reaction coordinate (so-called promoting vibration). Hence, studies have been carried out on this protein (as well as others) using labeled protein (so-called heavy protein) along with measurements of single turnover kcat yielding a KIE (=kcatlight/kcatheavy) aimed at understanding the effect of labeling generally and more specifically this line of residues. Here, it is shown that 13C, 15N, and 2H atom labeling of hhLDH (human heart) affects its internal structure which in turn affects its dynamics and catalytic mechanism. Spectral studies employing advanced FTIR difference spectroscopy show that the height of the electronic potential surface of the TS is lowered (probably by ground state destabilization) by labeling. Moreover, laser-induced T-jump relaxation kinetic spectroscopy shows that the microsecond to millisecond nuclear motions internal to the protein are affected by labeling. While the effects are small, they are sufficient to contribute to the observed KIE values as well or even more than promoting vibration effects.
Collapse
Affiliation(s)
- Tsuyoshi Egawa
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| | - Hua Deng
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| | - Eric Chang
- Department of Chemistry and Physical Sciences , Pace University , New York , New York 10038 , United States
| | - Robert Callender
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| |
Collapse
|
16
|
Al-Ayoubi SR, Schummel PH, Cisse A, Seydel T, Peters J, Winter R. Osmolytes modify protein dynamics and function of tetrameric lactate dehydrogenase upon pressurization. Phys Chem Chem Phys 2019; 21:12806-12817. [PMID: 31165827 DOI: 10.1039/c9cp02310k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present a study of the combined effects of natural cosolvents (TMAO, glycine, urea) and pressure on the activity of the tetrameric enzyme lactate dehydrogenase (LDH). To this end, high-pressure stopped-flow methodology in concert with fast UV/Vis spectroscopic detection of product formation was applied. To reveal possible pressure effects on the stability and dynamics of the enzyme, FTIR spectroscopic and neutron scattering measurements were carried out. In neat buffer solution, the catalytic turnover number of the enzyme, kcat, increases up to 1000 bar, the pressure range where dissociation of the tetrameric species to dimers sets in. Accordingly, we obtain a negative activation volume, ΔV# = -45.3 mL mol-1. Further, the enzyme substrate complex has a larger volume compared to the enzyme and substrate in the unbound state. The neutron scattering data show that changes in the fast internal dynamics of the enzyme are not responsible for the increase of kcat upon compression. Whereas the magnitude of kcat is similar in the presence of the osmolytes, the pressure of deactivation is modulated by the addition of cosolvents. TMAO and glycine increase the pressure of deactivation, and in accordance with the observed stabilizing effect both cosolvents exhibit against denaturation and/or dissociation of proteins. While urea does not markedly affect the magnitude of the Michaelis constant, KM, both 1 M TMAO and 1 M glycine exhibit smaller KM values of about 0.07 mM and 0.05 mM below about 1 kbar. Such positive effect on the substrate affinity could be rationalized by the effect the two cosolutes impose on the thermodynamic activities of the reactants, which reflect changes in water-mediated intermolecular interactions. Our data show that the intracellular milieu, i.e., the solution conditions that have evolved, may be sufficient to maintain enzymatic activity under extreme environmental conditions, including the whole pressure range encountered on Earth.
Collapse
Affiliation(s)
- Samy R Al-Ayoubi
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Wang F, Mo J, Huang A, Zhang M, Ma L. Effects of interaction with gene carrier polyethyleneimines on conformation and enzymatic activity of pig heart lactate dehydrogenase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:217-224. [PMID: 29935393 DOI: 10.1016/j.saa.2018.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Polyethyleneimine (PEI) has long been considered as "golden standard" for polymeric gene delivery carrier, however also induces cytotoxicity. To make a further insight into the molecular basis of PEI cytotoxicity, fluorescence, absorption and circular dichroism spectroscopy were conducted to investigate the influence of PEI (average molecular weight 25,000 and 1800 Da) on the conformation of pig heart lactate dehydrogenase (LDH) and its catalytic efficiency. Zeta-potential measurement and isothermal titration calorimetry were used to reveal the interaction between PEI and LDH. PEI was found to bind onto the surface of LDH predominantly via hydrophobic interaction, inducing a more compact conformation and an increased surface hydrophobicity of the enzyme. The conformational change of LDH induced by PEI binding had little influence on the complex formation between LDH and reduced nicotinamide adenine dinucleotide (NADH, the co-enzyme). However, the nonspecific binding of PEI on the surface of LDH retarded the turnover of the enzyme. Meanwhile, the large quantity of amine groups on the polymer chain made PEI subject to form complexes with NADH and pyruvate (the substrate) via hydrogen bond and electrostatic interaction, which greatly reduced the binding efficient of LDH. The polymer size played an important role in PEI-LDH interaction. The smaller size of lower molecular weight PEI facilitated the close contact with LDH and consequential reduction of the turnover number of the enzyme. However, higher molecular weight PEI was more favorable for competitive binding with NADH and pyruvate and generally decreased the catalytic efficient of LDH.
Collapse
Affiliation(s)
- Fan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Junyong Mo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Aimin Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Lin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
18
|
Andrews BA, Dyer RB. Small molecule cores demonstrate non-competitive inhibition of lactate dehydrogenase. MEDCHEMCOMM 2018; 9:1369-1376. [PMID: 30151092 DOI: 10.1039/c8md00309b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
Lactate dehydrogenase (LDH) has recently garnered attention as an attractive target for cancer therapies, owing to the enzyme's critical role in cellular metabolism. Current inhibition strategies, employing substrate or cofactor analogues, are insufficiently specific for use as pharmaceutical agents. The possibility of allosteric inhibition of LDH was postulated on the basis of theoretical docking studies of a small molecule inhibitor to LDH. The present study examined structural analogues of this proposed inhibitor to gauge its potency and attempt to elucidate the molecular mechanism of action. These analogues display encouraging in vitro inhibition of porcine heart LDH, including micromolar Ki values and a maximum inhibition of up to 50% in the steady state. Furthermore, Michaelis-Menten kinetics and fluorescence data both suggest the simple, acetaminophen derivatives are non-competitive in binding to the enzyme. Kinetic comparisons of a panel of increasingly decorated structural analogues imply that the binding is specific, and the small molecule core provides a privileged scaffold for further pharmaceutical development of a novel, allosteric drug.
Collapse
Affiliation(s)
- Brooke A Andrews
- Department of Chemistry , Emory University , Atlanta , 30322 , Georgia , USA .
| | - R Brian Dyer
- Department of Chemistry , Emory University , Atlanta , 30322 , Georgia , USA .
| |
Collapse
|
19
|
Atkinson SC, Dogovski C, Wood K, Griffin MDW, Gorman MA, Hor L, Reboul CF, Buckle AM, Wuttke J, Parker MW, Dobson RCJ, Perugini MA. Substrate Locking Promotes Dimer-Dimer Docking of an Enzyme Antibiotic Target. Structure 2018; 26:948-959.e5. [PMID: 29804823 DOI: 10.1016/j.str.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/27/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022]
Abstract
Protein dynamics manifested through structural flexibility play a central role in the function of biological molecules. Here we explore the substrate-mediated change in protein flexibility of an antibiotic target enzyme, Clostridium botulinum dihydrodipicolinate synthase. We demonstrate that the substrate, pyruvate, stabilizes the more active dimer-of-dimers or tetrameric form. Surprisingly, there is little difference between the crystal structures of apo and substrate-bound enzyme, suggesting protein dynamics may be important. Neutron and small-angle X-ray scattering experiments were used to probe substrate-induced dynamics on the sub-second timescale, but no significant changes were observed. We therefore developed a simple technique, coined protein dynamics-mass spectrometry (ProD-MS), which enables measurement of time-dependent alkylation of cysteine residues. ProD-MS together with X-ray crystallography and analytical ultracentrifugation analyses indicates that pyruvate locks the conformation of the dimer that promotes docking to the more active tetrameric form, offering insight into ligand-mediated stabilization of multimeric enzymes.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Lilian Hor
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Melbourne, VIC 3086, Australia
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joachim Wuttke
- Juelich Centre for Neutron Science (JCNS), at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Juelich GmbH, Lichtenstrasse 1, Garching 85 747, Germany
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag, Christchurch 4800, New Zealand
| | - Matthew A Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
20
|
Zhang SL, He Y, Tam KY. Targeting cancer metabolism to develop human lactate dehydrogenase ( h LDH)5 inhibitors. Drug Discov Today 2018; 23:1407-1415. [DOI: 10.1016/j.drudis.2018.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
|
21
|
Caparco AA, Bommarius AS, Champion JA. Effect of peptide linker length and composition on immobilization and catalysis of leucine zipper‐enzyme fusion proteins. AIChE J 2018. [DOI: 10.1002/aic.16150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Adam A. Caparco
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| | - Julie A. Champion
- School of Chemical and Biomolecular Engineering, Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta GA 30332
| |
Collapse
|
22
|
Andreeßen C, Wolf N, Cramer B, Humpf HU, Steinbüchel A. In vitro biosynthesis of 3-mercaptolactate by lactate dehydrogenases. Enzyme Microb Technol 2018; 108:1-10. [DOI: 10.1016/j.enzmictec.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 11/17/2022]
|
23
|
Shalini D, Senthilkumar S, Rajaguru P. Effect of size and shape on toxicity of zinc oxide (ZnO) nanomaterials in human peripheral blood lymphocytes. Toxicol Mech Methods 2017; 28:87-94. [DOI: 10.1080/15376516.2017.1366609] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- D. Shalini
- Department of Biotechnology, Anna University-BIT Campus, Tiruchirappalli, India
| | - S. Senthilkumar
- Department of Biotechnology, Anna University-BIT Campus, Tiruchirappalli, India
| | - P. Rajaguru
- Department of Biotechnology, Anna University-BIT Campus, Tiruchirappalli, India
| |
Collapse
|
24
|
Reddish MJ, Callender R, Dyer RB. Resolution of Submillisecond Kinetics of Multiple Reaction Pathways for Lactate Dehydrogenase. Biophys J 2017; 112:1852-1862. [PMID: 28494956 DOI: 10.1016/j.bpj.2017.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022] Open
Abstract
Enzymes are known to exhibit conformational flexibility. An important consequence of this flexibility is that the same enzyme reaction can occur via multiple reaction pathways on a reaction landscape. A model enzyme for the study of reaction landscapes is lactate dehydrogenase. We have previously used temperature-jump (T-jump) methods to demonstrate that the reaction landscape of lactate dehydrogenase branches at multiple points creating pathways with varied reactivity. A limitation of this previous work is that the T-jump method makes only small perturbations to equilibrium and may not report conclusively on all steps in a reaction. Therefore, interpreting T-jump results of lactate dehydrogenase kinetics has required extensive computational modeling work. Rapid mixing methods offer a complementary approach that can access large perturbations from equilibrium; however, traditional enzyme mixing methods like stopped-flow do not allow for the observation of fast protein dynamics. In this report, we apply a microfluidic rapid mixing device with a mixing time of <100 μs that allows us to study these fast dynamics and the catalytic redox step of the enzyme reaction. Additionally, we report UV absorbance and emission T-jump results with improved signal-to-noise ratio at fast times. The combination of mixing and T-jump results yields an unprecedented view of lactate dehydrogenase enzymology, confirming the timescale of substrate-induced conformational change and presence of multiple reaction pathways.
Collapse
Affiliation(s)
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.
| | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia
| |
Collapse
|
25
|
Khrapunov S, Chang E, Callender RH. Thermodynamic and Structural Adaptation Differences between the Mesophilic and Psychrophilic Lactate Dehydrogenases. Biochemistry 2017. [PMID: 28627164 DOI: 10.1021/acs.biochem.7b00156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermodynamics of substrate binding and enzymatic activity of a glycolytic enzyme, lactate dehydrogenase (LDH), from both porcine heart, phLDH (Sus scrofa; a mesophile), and mackerel icefish, cgLDH (Chamapsocephalus gunnari; a psychrophile), were investigated. Using a novel and quite sensitive fluorescence assay that can distinguish protein conformational changes close to and distal from the substrate binding pocket, a reversible global protein structural transition preceding the high-temperature transition (denaturation) was surprisingly found to coincide with a marked change in enzymatic activity for both LDHs. A similar reversible structural transition of the active site structure was observed for phLDH but not for cgLDH. An observed lower substrate binding affinity for cgLDH compared to that for phLDH was accompanied by a larger contribution of entropy to ΔG, which reflects a higher functional plasticity of the psychrophilic cgLDH compared to that of the mesophilic phLDH. The natural osmolyte, trimethylamine N-oxide (TMAO), increases stability and shifts all structural transitions to higher temperatures for both orthologs while simultaneously reducing catalytic activity. The presence of TMAO causes cgLDH to adopt catalytic parameters like those of phLDH in the absence of the osmolyte. Our results are most naturally understood within a model of enzyme dynamics whereby different conformations of the enzyme that have varied catalytic parameters (i.e., binding and catalytic proclivity) and whose population profiles are temperature-dependent and influenced by osmolytes interconvert among themselves. Our results also show that adaptation can be achieved by means other than gene mutations and complements the synchronic evolution of the cellular milieu.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Eric Chang
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Robert H Callender
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
26
|
Rogne P, Wolf-Watz M. Urea-Dependent Adenylate Kinase Activation following Redistribution of Structural States. Biophys J 2017; 111:1385-1395. [PMID: 27705762 DOI: 10.1016/j.bpj.2016.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/29/2022] Open
Abstract
Proteins are often functionally dependent on conformational changes that allow them to sample structural states that are sparsely populated in the absence of a substrate or binding partner. The distribution of such structural microstates is governed by their relative stability, and the kinetics of their interconversion is governed by the magnitude of associated activation barriers. Here, we have explored the interplay among structure, stability, and function of a selected enzyme, adenylate kinase (Adk), by monitoring changes in its enzymatic activity in response to additions of urea. For this purpose we used a 31P NMR assay that was found useful for heterogeneous sample compositions such as presence of urea. It was found that Adk is activated at low urea concentrations whereas higher urea concentrations unfolds and thereby deactivates the enzyme. From a quantitative analysis of chemical shifts, it was found that urea redistributes preexisting structural microstates, stabilizing a substrate-bound open state at the expense of a substrate-bound closed state. Adk is rate-limited by slow opening of substrate binding domains and the urea-dependent redistribution of structural states is consistent with a model where the increased activity results from an increased rate-constant for domain opening. In addition, we also detected a strong correlation between the catalytic free energy and free energy of substrate (ATP) binding, which is also consistent with the catalytic model for Adk. From a general perspective, it appears that urea can be used to modulate conformational equilibria of folded proteins toward more expanded states for cases where a sizeable difference in solvent-accessible surface area exists between the states involved. This effect complements the action of osmolytes, such as trimethylamine N-oxide, that favor more compact protein states.
Collapse
Affiliation(s)
- Per Rogne
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
27
|
Katava M, Maccarini M, Villain G, Paciaroni A, Sztucki M, Ivanova O, Madern D, Sterpone F. Thermal activation of 'allosteric-like' large-scale motions in a eukaryotic Lactate Dehydrogenase. Sci Rep 2017; 7:41092. [PMID: 28112231 PMCID: PMC5253740 DOI: 10.1038/srep41092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/14/2016] [Indexed: 01/22/2023] Open
Abstract
Conformational changes occurring during the enzymatic turnover are essential for the regulation of protein functionality. Individuating the protein regions involved in these changes and the associated mechanical modes is still a challenge at both experimental and theoretical levels. We present here a detailed investigation of the thermal activation of the functional modes and conformational changes in a eukaryotic Lactate Dehydrogenase enzyme (LDH). Neutron Spin Echo spectroscopy and Molecular Dynamics simulations were used to uncover the characteristic length- and timescales of the LDH nanoscale motions in the apo state. The modes involving the catalytic loop and the mobile region around the binding site are activated at room temperature, and match the allosteric reorganisation of bacterial LDHs. In a temperature window of about 15 degrees, these modes render the protein flexible enough and capable of reorganising the active site toward reactive configurations. On the other hand an excess of thermal excitation leads to the distortion of the protein matrix with a possible anti-catalytic effect. Thus, the temperature activates eukaryotic LDHs via the same conformational changes observed in the allosteric bacterial LDHs. Our investigation provides an extended molecular picture of eukaryotic LDH's conformational landscape that enriches the static view based on crystallographic studies alone.
Collapse
Affiliation(s)
- Marina Katava
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Marco Maccarini
- Univ. Grenoble Alpes - Laboratoire TIMC/IMAG UMR CNRS 5525, Grenoble Pavillon Taillefer Domaine de la merci, 38700 La Tronche, France
| | - Guillaume Villain
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Universitá di Perugia, via A. Pascoli, 06123 Perugia, Italy
| | - Michael Sztucki
- European Syncrotron Radiation Facility, 6, rue Jules Horowitz, 38042, Grenoble, France
| | - Oxana Ivanova
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Garching, Germany
| | - Dominique Madern
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
28
|
Nie B, Lodewyks K, Deng H, Desamero RZB, Callender R. Active-Loop Dynamics within the Michaelis Complex of Lactate Dehydrogenase from Bacillus stearothermophilus. Biochemistry 2016; 55:3803-14. [PMID: 27319381 DOI: 10.1021/acs.biochem.6b00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Laser-induced temperature-jump relaxation spectroscopy was used to study the active site mobile-loop dynamics found in the binding of the NADH nucleotide cofactor and oxamate substrate mimic to lactate dehydrogenase in Bacillus stearothermophilus thermophilic bacteria (bsLDH). The kinetic data can be best described by a model in which NADH can bind only to the open-loop apoenzyme, oxamate can bind only to the bsLDH·NADH binary complex in the open-loop conformation, and oxamate binding is followed by closing of the active site loop preventing oxamate unbinding. The open and closed states of the loop are in dynamic equilibrium and interconvert on the submillisecond time scale. This interconversion strongly accelerates with an increase in temperature because of significant enthalpy barriers. Binding of NADH to bsLDH results in minor changes of the loop dynamics and does not shift the open-closed equilibrium, but binding of the oxamate substrate mimic shifts this equilibrium to the closed state. At high excess oxamate concentrations where all active sites are nearly saturated with the substrate mimic, all active site mobile loops are mainly closed. The observed active-loop dynamics for bsLDH is very similar to that previously observed for pig heart LDH.
Collapse
Affiliation(s)
- Beining Nie
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Kara Lodewyks
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Hua Deng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Ruel Z B Desamero
- Department of Chemistry, York College-CUNY, The CUNY Institute for Macromolecular Assemblies, and Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York , Jamaica, New York 11451, United States
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| |
Collapse
|
29
|
Wilcox AE, LoConte MA, Slade KM. Effects of Macromolecular Crowding on Alcohol Dehydrogenase Activity Are Substrate-Dependent. Biochemistry 2016; 55:3550-8. [PMID: 27283046 DOI: 10.1021/acs.biochem.6b00257] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzymes operate in a densely packed cellular environment that rarely matches the dilute conditions under which they are studied. To better understand the ramifications of this crowding, the Michaelis-Menten kinetics of yeast alcohol dehydrogenase (YADH) were monitored spectrophotometrically in the presence of high concentrations of dextran. Crowding decreased the maximal rate of the reaction by 40% for assays with ethanol, the primary substrate of YADH. This observation was attributed to slowed release of the reduced β-nicotinamide adenine dinucleotide product, which is rate-limiting. In contrast, when larger alcohols were used as the YADH substrate, the rate-limiting step becomes hydride transfer and crowding instead increased the maximal rate of the reaction by 20-40%. This work reveals the importance of considering enzyme mechanism when evaluating the ways in which crowding can alter kinetics.
Collapse
Affiliation(s)
- A E Wilcox
- Department of Chemistry, Hobart and William Smith Colleges , Geneva, New York 14456, United States
| | - Micaela A LoConte
- Department of Chemistry, Hobart and William Smith Colleges , Geneva, New York 14456, United States
| | - Kristin M Slade
- Department of Chemistry, Hobart and William Smith Colleges , Geneva, New York 14456, United States
| |
Collapse
|
30
|
Szwed A, Milowska K, Ionov M, Shcharbin D, Moreno S, Gomez-Ramirez R, de la Mata FJ, Majoral JP, Bryszewska M, Gabryelak T. Interaction between dendrimers and regulatory proteins. Comparison of effects of carbosilane and carbosilane–viologen–phosphorus dendrimers. RSC Adv 2016. [DOI: 10.1039/c6ra16558c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For nanoparticles to be used successfully in biomedical application, their interactions with biological fluids need to be investigated, in which they will react with proteins and other macromolecules.
Collapse
|
31
|
Peng HL, Egawa T, Chang E, Deng H, Callender R. Mechanism of Thermal Adaptation in the Lactate Dehydrogenases. J Phys Chem B 2015; 119:15256-62. [PMID: 26556099 DOI: 10.1021/acs.jpcb.5b09909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of thermal adaptation of enzyme function at the molecular level is poorly understood but is thought to lie within the structure of the protein or its dynamics. Our previous work on pig heart lactate dehydrogenase (phLDH) has determined very high resolution structures of the active site, via isotope edited IR studies, and has characterized its dynamical nature, via laser-induced temperature jump (T-jump) relaxation spectroscopy on the Michaelis complex. These particular probes are quite powerful at getting at the interplay between structure and dynamics in adaptation. Hence, we extend these studies to the psychrophilic protein cgLDH (Champsocephalus gunnari; 0 °C) and the extreme thermophile tmLDH (Thermotoga maritima LDH; 80 °C) for comparison to the mesophile phLDH (38-39 °C). Instead of the native substrate pyruvate, we utilize oxamate as a nonreactive substrate mimic for experimental reasons. Using isotope edited IR spectroscopy, we find small differences in the substate composition that arise from the detailed bonding patterns of oxamate within the active site of the three proteins; however, we find these differences insufficient to explain the mechanism of thermal adaptation. On the other hand, T-jump studies of reduced β-nicotinamide adenine dinucleotide (NADH) emission reveal that the most important parameter affecting thermal adaptation appears to be enzyme control of the specific kinetics and dynamics of protein motions that lie along the catalytic pathway. The relaxation rate of the motions scale as cgLDH > phLDH > tmLDH in a way that faithfully matches kcat of the three isozymes.
Collapse
Affiliation(s)
- Huo-Lei Peng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Tsuyoshi Egawa
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Eric Chang
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Hua Deng
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| |
Collapse
|
32
|
Khalilov RA, Dzhafarova AM, Dzhabrailova RN, Emirbekov EZ. Analysis of the kinetic characteristics of lactate dehydrogenase from the rat brain during ischemia and reperfusion. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414040047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Sundaram B, Varadarajan NM, Subramani PA, Ghosh SK, Nagaraj VA. Purification of a recombinant histidine-tagged lactate dehydrogenase from the malaria parasite, Plasmodium vivax, and characterization of its properties. Biotechnol Lett 2014; 36:2473-80. [PMID: 25048245 DOI: 10.1007/s10529-014-1622-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
Lactate dehydrogenase (LDH) of the malaria parasite, Plasmodium vivax (Pv), serves as a drug target and immunodiagnostic marker. The LDH cDNA generated from total RNA of a clinical isolate of the parasite was cloned into pRSETA plasmid. Recombinant his-tagged PvLDH was over-expressed in E. coli Rosetta2DE3pLysS and purified using Ni(2+)-NTA resin giving a yield of 25-30 mg/litre bacterial culture. The recombinant protein was enzymatically active and its catalytic efficiency for pyruvate was 5.4 × 10(8) min(-1) M(-1), 14.5 fold higher than a low yield preparation reported earlier to obtain PvLDH crystal structure. The enzyme activity was inhibited by gossypol and sodium oxamate. The recombinant PvLDH was reactive in lateral flow immunochromatographic assays detecting pan- and vivax-specific LDH. The soluble recombinant PvLDH purified using heterologous expression system can facilitate the generation of vivax LDH-specific monoclonals and the screening of chemical compound libraries for PvLDH inhibitors.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | | | | | | | |
Collapse
|
34
|
Dempster S, Harper S, Moses JE, Dreveny I. Structural characterization of the apo form and NADH binary complex of human lactate dehydrogenase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1484-90. [PMID: 24816116 PMCID: PMC4014127 DOI: 10.1107/s1399004714005422] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/10/2014] [Indexed: 01/28/2023]
Abstract
Lactate dehydrogenase A (LDH-A) is a key enzyme in anaerobic respiration that is predominantly found in skeletal muscle and catalyses the reversible conversion of pyruvate to lactate in the presence of NADH. LDH-A is overexpressed in many tumours and has therefore emerged as an attractive target for anticancer drug discovery. Crystal structures of human LDH-A in the presence of inhibitors have been described, but currently no structures of the apo or binary NADH-bound forms are available for any mammalian LDH-A. Here, the apo structure of human LDH-A was solved at a resolution of 2.1 Å in space group P4122. The active-site loop adopts an open conformation and the packing and crystallization conditions suggest that the crystal form is suitable for soaking experiments. The soaking potential was assessed with the cofactor NADH, which yielded a ligand-bound crystal structure in the absence of any inhibitors. The structures show that NADH binding induces small conformational changes in the active-site loop and an adjacent helix. A comparison with other eukaryotic apo LDH structures reveals the conservation of intra-loop interactions. The structures provide novel insight into cofactor binding and provide the foundation for soaking experiments with fragments and inhibitors.
Collapse
Affiliation(s)
- Sally Dempster
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, England
| | - Stephen Harper
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, England
| | - John E. Moses
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, England
| | - Ingrid Dreveny
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, England
| |
Collapse
|
35
|
Buonfiglio R, Ferraro M, Falchi F, Cavalli A, Masetti M, Recanatini M. Collecting and assessing human lactate dehydrogenase-A conformations for structure-based virtual screening. J Chem Inf Model 2013; 53:2792-7. [PMID: 24138094 DOI: 10.1021/ci400543y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lactate dehydrogenase-A (LDHA) is emerging as a promising anticancer target. Up to now, structure-based investigations for identifying inhibitors of this enzyme have not explicitly accounted for active site flexibility. In the present study, by combining replica exchange molecular dynamics with network and cluster analyses, we identified reliable LDHA conformations for structure-based ligand design. The selected conformations were challenged and validated by retrospective virtual screening simulations.
Collapse
Affiliation(s)
- Rosa Buonfiglio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna , via Belmeloro 6, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Nie B, Deng H, Desamero R, Callender R. Large scale dynamics of the Michaelis complex in Bacillus stearothermophilus lactate dehydrogenase revealed by a single-tryptophan mutant study. Biochemistry 2013; 52:1886-92. [PMID: 23428201 DOI: 10.1021/bi3017125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large scale dynamics within the Michaelis complex mimic of Bacillus stearothermophilus thermophilic lactate dehydrogenase, bsLDH·NADH·oxamate, were studied with site specific resolution by laser-induced temperature jump relaxation spectroscopy with a time resolution of 20 ns. NADH emission and Trp emission from the wild type and a series of single-tryptophan bsLDH mutants, with the tryptophan positions different distances from the active site, were used as reporters of evolving structure in response to the rapid change in temperature. Several distinct dynamical events were observed on the millisecond to microsecond time scale involving motion of atoms spread over the protein, some occurring concomitantly or nearly concomitantly with structural changes at the active site. This suggests that a large portion of the protein-substrate complex moves in a rather concerted fashion to bring about catalysis. The catalytically important surface loop undergoes two distinct movements, both needed for a competent enzyme. Our results also suggest that what is called "loop motion" is not just localized to the loop and active site residues. Rather, it involves the motion of atoms spread over the protein, even some quite distal from the active site. How these results bear on the catalytic mechanism of bsLDH is discussed.
Collapse
Affiliation(s)
- Beining Nie
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | | | | | |
Collapse
|
37
|
How conformational changes can affect catalysis, inhibition and drug resistance of enzymes with induced-fit binding mechanism such as the HIV-1 protease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:867-73. [PMID: 23376188 DOI: 10.1016/j.bbapap.2013.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 11/21/2022]
Abstract
A central question is how the conformational changes of proteins affect their function and the inhibition of this function by drug molecules. Many enzymes change from an open to a closed conformation upon binding of substrate or inhibitor molecules. These conformational changes have been suggested to follow an induced-fit mechanism in which the molecules first bind in the open conformation in those cases where binding in the closed conformation appears to be sterically obstructed such as for the HIV-1 protease. In this article, we present a general model for the catalysis and inhibition of enzymes with induced-fit binding mechanism. We derive general expressions that specify how the overall catalytic rate of the enzymes depends on the rates for binding, for the conformational changes, and for the chemical reaction. Based on these expressions, we analyze the effect of mutations that mainly shift the conformational equilibrium on catalysis and inhibition. If the overall catalytic rate is limited by product unbinding, we find that mutations that destabilize the closed conformation relative to the open conformation increase the catalytic rate in the presence of inhibitors by a factor exp(ΔΔGC/RT) where ΔΔGC is the mutation-induced shift of the free-energy difference between the conformations. This increase in the catalytic rate due to changes in the conformational equilibrium is independent of the inhibitor molecule and, thus, may help to understand how non-active-site mutations can contribute to the multi-drug-resistance that has been observed for the HIV-1 protease. A comparison to experimental data for the non-active-site mutation L90M of the HIV-1 protease indicates that the mutation slightly destabilizes the closed conformation of the enzyme. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.
Collapse
|
38
|
Waingeh VF, Groves AT, Eberle JA. Binding of Quinoline-Based Inhibitors to <i>Plasmodium falciparum</i> Lactate Dehydrogenase: A Molecular Docking Study. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojbiphy.2013.34034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Weikl TR, Boehr DD. Conformational selection and induced changes along the catalytic cycle of Escherichia coli
dihydrofolate reductase. Proteins 2012; 80:2369-83. [DOI: 10.1002/prot.24123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 01/21/2023]
|
40
|
Rodríguez-Páez L, Chena-Taboada MA, Cabrera-Hernández A, Cordero-Martínez J, Wong C. Oxamic acid analogues as LDH-C4-specific competitive inhibitors. J Enzyme Inhib Med Chem 2011; 26:579-86. [PMID: 21438710 DOI: 10.3109/14756366.2011.566221] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We performed kinetic studies to determine whether oxamate analogues are selective inhibitors of LDH-C4, owing to their potential usefulness in fertility control and treatment of some cancers. These substances were shown to be competitive inhibitors of LDH isozymes and are able to discriminate among subtle differences that differentiate the active sites of LDH-A4, LDH-B4 and LDH-C4. N-Ethyl oxamate was the most potent inhibitor showing the highest affinity for LDH-C4. However, N-propyl oxamate was the most selective inhibitor showing a high degree of selectivity towards LDH-C4. Non-polar four carbon atoms chains, linear or branched, dramatically diminished the affinity and selectivity towards LDH-C4. N-Propyl oxamate significantly reduced ATP levels, capacitation and mouse sperm motility, in line with results shown by others, suggesting that LDH-C4 plays an essential role in mouse fertility.
Collapse
Affiliation(s)
- Lorena Rodríguez-Páez
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala, México, D.F. México.
| | | | | | | | | |
Collapse
|
41
|
Zhadin N, Callender R. Effect of osmolytes on protein dynamics in the lactate dehydrogenase-catalyzed reaction. Biochemistry 2011; 50:1582-9. [PMID: 21306147 DOI: 10.1021/bi1018545] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Laser-induced temperature jump relaxation spectroscopy was used to probe the effect of osmolytes on the microscopic rate constants of the lactate dehydrogenase-catalyzed reaction. NADH fluorescence and absorption relaxation kinetics were measured for the lactate dehydrogenase (LDH) reaction system in the presence of varying amounts of trimethylamine N-oxide (TMAO), a protein-stabilizing osmolyte, or urea, a protein-destabilizing osmolyte. Trimethylamine N-oxide (TMAO) at a concentration of 1 M strongly increases the rate of hydride transfer, nearly nullifies its activation energy, and also slightly increases the enthalpy of hydride transfer. In 1 M urea, the hydride transfer enthalpy is almost nullified, but the activation energy of the step is not affected significantly. TMAO increases the preference of the closed conformation of the active site loop in the LDH·NAD(+)·lactate complex; urea decreases it. The loop opening rate in the LDH·NADH·pyruvate complex changes its temperature dependence to inverse Arrhenius with TMAO. In this complex, urea accelerates the loop motion, without changing the loop opening enthalpy. A strong, non-Arrhenius decrease in the pyruvate binding rate in the presence of TMAO offers a decrease in the fraction of the open loop, pyruvate binding competent form at higher temperatures. The pyruvate off rate is not affected by urea but decreases with TMAO. Thus, the osmolytes strongly affect the rates and thermodynamics of specific events along the LDH-catalyzed reaction: binding of substrates, loop closure, and the chemical event. Qualitatively, these results can be understood as an osmolyte-induced change in the energy landscape of the protein complexes, shifting the conformational nature of functional substates within the protein ensemble.
Collapse
Affiliation(s)
- Nickolay Zhadin
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | |
Collapse
|
42
|
Abstract
The dynamic nature of the interconversion of pyruvate to lactate as catalyzed by lactate dehydrogenase (LDH) is characterized by laser-induced temperature jump relaxation spectroscopy with a resolution of 20 ns. An equilibrium system of LDH.NADH plus pyruvate and LDH.NAD+ plus lactate is perturbed by a sudden T-jump, and the relaxation of the system is monitored by NADH emission and absorption changes. The substrate binding pathway is observed to be similar, although not identical, to previous work on substrate mimics: an encounter complex is formed between LDH.NADH and pyruvate, which collapses to the active Michaelis complex. The previously unresolved hydride transfer event is characterized and separated from other unimolecular isomerizations of the protein important for the catalytic mechanism, such as loop closure, a slower step, and faster events on the nanosecond-microsecond timescales whose structural basis is not understood. The results of this study show that this approach can be applied quite generally to enzyme systems and report on the dynamic nature of proteins over a very wide time range.
Collapse
|
43
|
On the pathway of forming enzymatically productive ligand-protein complexes in lactate dehydrogenase. Biophys J 2008; 95:804-13. [PMID: 18390601 DOI: 10.1529/biophysj.108.128884] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have carried out a series of studies on the binding of a substrate mimic to the enzyme lactate dehydrogenase (LDH) using advanced kinetic approaches, which begin to provide a molecular picture of the dynamics of ligand binding for this protein. Binding proceeds via a binding-competent subpopulation of the nonligated form of the protein (the LDH/NADH binary complex) to form a protein-ligand encounter complex. The work here describes the collapse of the encounter complex to form the catalytically competent Michaelis complex. Isotope-edited static Fourier transform infrared studies on the bound oxamate protein complex reveal two kinds of oxamate environments: 1), a major populated structure wherein all significant hydrogen-bonding patterns are formed at the active site between protein and bound ligand necessary for the catalytically productive Michaelis complex and 2), a minor structure in a configuration of the active site that is unfavorable to carry out catalyzed chemistry. This latter structure likely simulates a dead-end complex in the reaction mixture. Temperature jump isotope-edited transient infrared studies on the binding of oxamate with LDH/NADH suggest that the evolution of the encounter complex between LDH/NADH and oxamate collapses via a branched reaction pathway to form the major and minor bound species. The production of the catalytically competent protein-substrate complex has strong similarities to kinetic pathways found in two-state protein folding processes. Once the encounter complex is formed between LDH/NADH and substrate, the ternary protein-ligand complex appears to "fold" to form a compact productive complex in an all or nothing like fashion with all the important molecular interactions coming together at the same time.
Collapse
|
44
|
Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D. Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 2007; 374:547-62. [PMID: 17936781 DOI: 10.1016/j.jmb.2007.09.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 11/19/2022]
Abstract
Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate with concomitant oxidation of NADH during the last step in anaerobic glycolysis. In the present study, we present a comparative biochemical and structural analysis of various LDHs adapted to function over a large temperature range. The enzymes were from Champsocephalus gunnari (an Antarctic fish), Deinococcus radiodurans (a mesophilic bacterium) and Thermus thermophilus (a hyperthermophilic bacterium). The thermodynamic activation parameters of these LDHs indicated that temperature adaptation from hot to cold conditions was due to a decrease in the activation enthalpy and an increase in activation entropy. The crystal structures of these LDHs have been solved. Pairwise comparisons at the structural level, between hyperthermophilic versus mesophilic LDHs and mesophilic versus psychrophilic LDHs, have revealed that temperature adaptation is due to a few amino acid substitutions that are localized in critical regions of the enzyme. These substitutions, each having accumulating effects, play a role in either the conformational stability or the local flexibility or in both. Going from hot- to cold-adapted LDHs, the various substitutions have decreased the number of ion pairs, reduced the size of ionic networks, created unfavorable interactions involving charged residues and induced strong local disorder. The analysis of the LDHs adapted to extreme temperatures shed light on how evolutionary processes shift the subtle balance between overall stability and flexibility of an enzyme.
Collapse
Affiliation(s)
- Nicolas Coquelle
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale J.-P. Ebel, CEA CNRS UJF, UMR 5075, 41 rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | | | | | | | | |
Collapse
|
45
|
Abstract
Recent experimental studies suggest that lactate dehydrogenase (LDH) binds its substrate via the formation of a LDH/NADH.substrate encounter complex through a select-fit mechanism, whereby only a minority population of LDH/NADH is binding-competent. In this study, we perform molecular dynamics calculations to explore the variations in structure accessible to the binary complex with a focus on identifying structures that seem likely to be binding-competent and which are in accord with the known experimental characterization of forming binding-competent species. We find that LDH/NADH samples quite a range of protein conformations within our 2.148 ns calculations, some of which yield quite facile access of solvent to the active site. The results suggest that the mobile loop of LDH is perhaps just partially open in these conformations and that multiple open conformations, yielding multiple binding pathways, are likely. These open conformations do not require large-scale unfolding/melting of the binary complex. Rather, open versus closed conformations are due to subtle protein and water rearrangements. Nevertheless, the large heat capacity change observed between binding-competent and binding-incompetent can be explained by changes in solvation and an internal rearrangement of hydrogen bonds. We speculate that such a strategy for binding may be necessary to get a ligand efficiently to a binding pocket that is located fairly deep within the protein's interior.
Collapse
|