1
|
Li H, Fan X, Guo X, Yan W, Yu X, Deng X, Zhang J. Changes in meat quality of Esox Lucius during postmortem storage: Based on the lysosomal-mitochondrial apoptotic pathway. Food Chem 2025; 463:141522. [PMID: 39383794 DOI: 10.1016/j.foodchem.2024.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
In this study, we explored the correlation between the lysosome-mitochondrial apoptosis pathway and fish softening, as well as the correlation between ferritin degradation and lysosomal iron changes. The results indicated that ferritin levels gradually decreased, lysosomal iron first increased and then decreased and tended to stabilize, and lysosomal membrane stability significantly decreased (p < 0.05). Spearman's analysis suggested that an increase in lysosomal iron was associated with ferritin degradation. Lysosomal instability promoted the release of cathepsin D, thereby increasing the release of Bid and Bax, and inhibiting the expression of Bcl-2. Subsequently, caspase-9/-3 was activated. In addition, transmission electron microscopy revealed ultrastructural damage to mitochondria and cell nuclei, which are morphological features of apoptosis during post-mortem storage. Moreover, TUNEL staining confirmed the occurrence of apoptosis. We concluded that the lysosome- mitochondrial apoptosis pathway was active during the storage of Esox Lucius, in which ferritin degradation and increased lysosomal iron were key factors inducing lysosomal damage, and cathepsin D released by lysosomes was a key factor connecting lysosomes and mitochondria.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xuemei Fan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xin Guo
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenbo Yan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xinyao Yu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaorong Deng
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Jian Zhang
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
2
|
Connolly BJ, Saxton SN. Recent updates on the influence of iron and magnesium on vascular, renal, and adipose inflammation and possible consequences for hypertension. J Hypertens 2024; 42:1848-1861. [PMID: 39258532 PMCID: PMC11451934 DOI: 10.1097/hjh.0000000000003829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
The inflammatory status of the kidneys, vasculature, and perivascular adipose tissue (PVAT) has a significant influence on blood pressure and hypertension. Numerous micronutrients play an influential role in hypertension-driving inflammatory processes, and recent reports have provided bases for potential targeted modulation of these micronutrients to reduce hypertension. Iron overload in adipose tissue macrophages and adipocytes engenders an inflammatory environment and may contribute to impaired anticontractile signalling, and thus a treatment such as chelation therapy may hold a key to reducing blood pressure. Similarly, magnesium intake has proven to greatly influence inflammatory signalling and concurrent hypertension in both healthy animals and in a model for chronic kidney disease, demonstrating its potential clinical utility. These findings highlight the importance of further research to determine the efficacy of micronutrient-targeted treatments for the amelioration of hypertension and their potential translation into clinical application.
Collapse
Affiliation(s)
- Benjamin J Connolly
- Divison of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
3
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Mohammadi S, Ghaderi S, Fatehi F. Iron accumulation/overload and Alzheimer's disease risk factors in the precuneus region: A comprehensive narrative review. Aging Med (Milton) 2024; 7:649-667. [PMID: 39507230 PMCID: PMC11535174 DOI: 10.1002/agm2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Early cerebral and body iron dysregulation and accumulation interact with AD pathology, particularly in the precuneus, a crucial functional hub in cognitive functions. Quantitative susceptibility mapping (QSM), a novel post-processing approach, provides insights into tissue iron levels and cerebral oxygen metabolism and reveals abnormal iron accumulation early in AD. Increased iron deposition in the precuneus can lead to oxidative stress, neuroinflammation, and accelerated neurodegeneration. Metabolic disorders (diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity), genetic factors, and small vessel pathology contribute to abnormal iron accumulation in the precuneus. Therefore, in line with the growing body of literature in the precuneus region of patients with AD, QSM as a neuroimaging method could serve as a non-invasive biomarker to track disease progression, complement other imaging modalities, and aid in early AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
5
|
Zhou D, Lu P, Mo X, Yang B, Chen T, Yao Y, Xiong T, Yue L, Yang X. Ferroptosis and metabolic syndrome and complications: association, mechanism, and translational applications. Front Endocrinol (Lausanne) 2024; 14:1248934. [PMID: 38260171 PMCID: PMC10800994 DOI: 10.3389/fendo.2023.1248934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome is a medical condition characterized by several metabolic disorders in the body. Long-term metabolic disorders raise the risk of cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Therefore, it is essential to actively explore the aetiology of metabolic syndrome (MetS) and its comorbidities to provide effective treatment options. Ferroptosis is a new form of cell death that is characterized by iron overload, lipid peroxide accumulation, and decreased glutathione peroxidase 4(GPX4) activity, and it involves the pathological processes of a variety of diseases. Lipid deposition caused by lipid diseases and iron overload is significant in metabolic syndrome, providing the theoretical conditions for developing ferroptosis. Recent studies have found that the major molecules of ferroptosis are linked to common metabolic syndrome consequences, such as T2DM and atherosclerosis. In this review, we first discussed the mechanics of ferroptosis, the regulatory function of inducers and inhibitors of ferroptosis, and the significance of iron loading in MetS. Next, we summarized the role of ferroptosis in the pathogenesis of MetS, such as obesity, type 2 diabetes, and atherosclerosis. Finally, we discussed relevant ferroptosis-targeted therapies and raised some crucial issues of concern to provide directions for future Mets-related treatments and research.
Collapse
Affiliation(s)
- Dongmei Zhou
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peipei Lu
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xianglai Mo
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Bing Yang
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Ting Chen
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - You Yao
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Tian Xiong
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Lin Yue
- School of Nursing, Hunan University of Medicine, Huaihua, China
| | - Xi Yang
- Department of Endocrinology, Geriatric Endocrinology and Metabolism, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Kang GS, Jo HJ, Lee YR, Oh T, Park HJ, Ahn GO. Sensing the oxygen and temperature in the adipose tissues - who's sensing what? Exp Mol Med 2023; 55:2300-2307. [PMID: 37907745 PMCID: PMC10689767 DOI: 10.1038/s12276-023-01113-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 11/02/2023] Open
Abstract
Adipose tissues, composed of various cell types, including adipocytes, endothelial cells, neurons, and immune cells, are organs that are exposed to dynamic environmental challenges. During diet-induced obesity, white adipose tissues experience hypoxia due to adipocyte hypertrophy and dysfunctional vasculature. Under these conditions, cells in white adipose tissues activate hypoxia-inducible factor (HIF), a transcription factor that activates signaling pathways involved in metabolism, angiogenesis, and survival/apoptosis to adapt to such an environment. Exposure to cold or activation of the β-adrenergic receptor (through catecholamines or chemicals) leads to heat generation, mainly in brown adipose tissues through activating uncoupling protein 1 (UCP1), a proton uncoupler in the inner membrane of the mitochondria. White adipose tissues can undergo a similar process under this condition, a phenomenon known as 'browning' of white adipose tissues or 'beige adipocytes'. While UCP1 expression has largely been confined to adipocytes, HIF can be expressed in many types of cells. To dissect the role of HIF in specific types of cells during diet-induced obesity, researchers have generated tissue-specific knockout (KO) mice targeting HIF pathways, and many studies have commonly revealed that intact HIF-1 signaling in adipocytes and adipose tissue macrophages exacerbates tissue inflammation and insulin resistance. In this review, we highlight some of the key findings obtained from these transgenic mice, including Ucp1 KO mice and other models targeting the HIF pathway in adipocytes, macrophages, or endothelial cells, to decipher their roles in diet-induced obesity.
Collapse
Affiliation(s)
- Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Ye-Rim Lee
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Taerim Oh
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hye-Joon Park
- College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
- College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
7
|
Oliveras-Cañellas N, Latorre J, Santos-González E, Lluch A, Ortega F, Mayneris-Perxachs J, Fernández-Real JM, Moreno-Navarrete JM. Inflammatory response to bacterial lipopolysaccharide drives iron accumulation in human adipocytes. Biomed Pharmacother 2023; 166:115428. [PMID: 37677967 DOI: 10.1016/j.biopha.2023.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
The association among increased inflammation, disrupted iron homeostasis, and adipose tissue dysfunction in obesity has been widely recognized. However, the specific impact of inflammation on iron homeostasis during human adipogenesis and in adipocytes remains poorly understood. In this study, we investigated the effects of bacterial lipopolysaccharide (LPS) on iron homeostasis during human adipocyte differentiation, in fully differentiated adipocytes, and in human adipose tissue. We found that LPS-induced inflammation hindered adipogenesis and led to a gene expression profile indicative of intracellular iron accumulation. This was accompanied by increased expression of iron importers (TFRC and SLC11A2), markers of intracellular iron accumulation (FTH, CYBA, FTL, and LCN2), and decreased expression of iron exporter-related genes (SLC40A1), concomitant with elevated intracellular iron levels. Mechanistically, RNA-seq analysis and gene knockdown experiments revealed the significant involvement of iron importers SLC39A14, SLC39A8, and STEAP4 in LPS-induced intracellular iron accumulation in human adipocytes. Notably, markers of LPS signaling pathway-related inflammation were also associated with a gene expression pattern indicative of intracellular iron accumulation in human adipose tissue, corroborating the link between LPS-induced inflammation and iron accumulation at the tissue level. In conclusion, our findings demonstrate that induction of adipocyte inflammation disrupts iron homeostasis, resulting in adipocyte iron overload.
Collapse
Affiliation(s)
- Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Elena Santos-González
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Aina Lluch
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain; Department of Medicine, Universitat de Girona, Girona, Spain.
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain.
| |
Collapse
|
8
|
Bouhamida E, Morciano G, Pedriali G, Ramaccini D, Tremoli E, Giorgi C, Pinton P, Patergnani S. The Complex Relationship between Hypoxia Signaling, Mitochondrial Dysfunction and Inflammation in Calcific Aortic Valve Disease: Insights from the Molecular Mechanisms to Therapeutic Approaches. Int J Mol Sci 2023; 24:11105. [PMID: 37446282 DOI: 10.3390/ijms241311105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is among the most common causes of cardiovascular mortality in an aging population worldwide. The pathomechanisms of CAVS are such a complex and multifactorial process that researchers are still making progress to understand its physiopathology as well as the complex players involved in CAVS pathogenesis. Currently, there is no successful and effective treatment to prevent or slow down the disease. Surgical and transcatheter valve replacement represents the only option available for treating CAVS. Insufficient oxygen availability (hypoxia) has a critical role in the pathogenesis of almost all CVDs. This process is orchestrated by the hallmark transcription factor, hypoxia-inducible factor 1 alpha subunit (HIF-1α), which plays a pivotal role in regulating various target hypoxic genes and metabolic adaptations. Recent studies have shown a great deal of interest in understanding the contribution of HIF-1α in the pathogenesis of CAVS. However, it is deeply intertwined with other major contributors, including sustained inflammation and mitochondrial impairments, which are attributed primarily to CAVS. The present review aims to cover the latest understanding of the complex interplay effect of hypoxia signaling pathways, mitochondrial dysfunction, and inflammation in CAVS. We propose further hypotheses and interconnections on the complexity of these impacts in a perspective of better understanding the pathophysiology. These interplays will be examined considering recent studies that shall help us better dissect the molecular mechanism to enable the design and development of potential future therapeutic approaches that can prevent or slow down CAVS processes.
Collapse
Affiliation(s)
- Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Wang X, Zhou Y, Min J, Wang F. Zooming in and out of ferroptosis in human disease. Front Med 2023; 17:173-206. [PMID: 37121959 DOI: 10.1007/s11684-023-0992-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/12/2023] [Indexed: 05/02/2023]
Abstract
Ferroptosis is defined as an iron-dependent regulated form of cell death driven by lipid peroxidation. In the past decade, it has been implicated in the pathogenesis of various diseases that together involve almost every organ of the body, including various cancers, neurodegenerative diseases, cardiovascular diseases, lung diseases, liver diseases, kidney diseases, endocrine metabolic diseases, iron-overload-related diseases, orthopedic diseases and autoimmune diseases. Understanding the underlying molecular mechanisms of ferroptosis and its regulatory pathways could provide additional strategies for the management of these disease conditions. Indeed, there are an expanding number of studies suggesting that ferroptosis serves as a bona-fide target for the prevention and treatment of these diseases in relevant pre-clinical models. In this review, we summarize the progress in the research into ferroptosis and its regulatory mechanisms in human disease, while providing evidence in support of ferroptosis as a target for the treatment of these diseases. We also discuss our perspectives on the future directions in the targeting of ferroptosis in human disease.
Collapse
Affiliation(s)
- Xue Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, 315000, China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
10
|
Hinojosa-Moscoso A, Motger-Albertí A, De la Calle-Vargas E, Martí-Navas M, Biarnés C, Arnoriaga-Rodríguez M, Blasco G, Puig J, Luque-Córdoba D, Priego-Capote F, Moreno-Navarrete JM, Fernández-Real JM. The Longitudinal Changes in Subcutaneous Abdominal Tissue and Visceral Adipose Tissue Volumetries Are Associated with Iron Status. Int J Mol Sci 2023; 24:4750. [PMID: 36902180 PMCID: PMC10002479 DOI: 10.3390/ijms24054750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Excess iron is known to trigger adipose tissue dysfunction and insulin resistance. Circulating markers of iron status have been associated with obesity and adipose tissue in cross-sectional studies. We aimed to evaluate whether iron status is linked to changes in abdominal adipose tissue longitudinally. Subcutaneous abdominal tissue (SAT) and visceral adipose tissue (VAT) and its quotient (pSAT) were assessed using magnetic resonance imaging (MRI), at baseline and after one year of follow-up, in 131 (79 in follow-up) apparently healthy subjects, with and without obesity. Insulin sensitivity (euglycemic- hyperinsulinemic clamp) and markers of iron status were also evaluated. Baseline serum hepcidin (p = 0.005 and p = 0.002) and ferritin (p = 0.02 and p = 0.01)) were associated with an increase in VAT and SAT over one year in all subjects, while serum transferrin (p = 0.01 and p = 0.03) and total iron-binding capacity (p = 0.02 and p = 0.04) were negatively associated. These associations were mainly observed in women and in subjects without obesity, and were independent of insulin sensitivity. After controlling for age and sex, serum hepcidin was significantly associated with changes in subcutaneous abdominal tissue index (iSAT) (β = 0.406, p = 0.007) and visceral adipose tissue index (iVAT) (β = 0.306, p = 0.04), while changes in insulin sensitivity (β = 0.287, p = 0.03) and fasting triglycerides (β = -0.285, p = 0.03) were associated with changes in pSAT. These data indicated that serum hepcidin are associated with longitudinal changes in SAT and VAT, independently of insulin sensitivity. This would be the first prospective study evaluating the redistribution of fat according to iron status and chronic inflammation.
Collapse
Affiliation(s)
- Alejandro Hinojosa-Moscoso
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Anna Motger-Albertí
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIEROBN), 28029 Madrid, Spain
| | - Elena De la Calle-Vargas
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
| | - Marian Martí-Navas
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
| | - Carles Biarnés
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
| | - María Arnoriaga-Rodríguez
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIEROBN), 28029 Madrid, Spain
| | - Gerard Blasco
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | - Diego Luque-Córdoba
- Department of Analytical Chemistry, University of Córdoba, Annex Marie Curie Building, Campus of Rabanales, 14014 Córdoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Carlos III Institute of Health, 28029 Madrid, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, University of Córdoba, Annex Marie Curie Building, Campus of Rabanales, 14014 Córdoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing (CIBERFES), Carlos III Institute of Health, 28029 Madrid, Spain
| | - José María Moreno-Navarrete
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIEROBN), 28029 Madrid, Spain
| | - José Manuel Fernández-Real
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), 17007 Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIEROBN), 28029 Madrid, Spain
| |
Collapse
|
11
|
Abstract
High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.
Collapse
Affiliation(s)
- Alexandria V Harrison
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
| | - Felipe Ramos Lorenzo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| | - Donald A McClain
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| |
Collapse
|
12
|
Duan G, Li J, Duan Y, Zheng C, Guo Q, Li F, Zheng J, Yu J, Zhang P, Wan M, Long C. Mitochondrial Iron Metabolism: The Crucial Actors in Diseases. Molecules 2022; 28:29. [PMID: 36615225 PMCID: PMC9822237 DOI: 10.3390/molecules28010029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Iron is a trace element necessary for cell growth, development, and cellular homeostasis, but insufficient or excessive level of iron is toxic. Intracellularly, sufficient amounts of iron are required for mitochondria (the center of iron utilization) to maintain their normal physiologic function. Iron deficiency impairs mitochondrial metabolism and respiratory activity, while mitochondrial iron overload promotes ROS production during mitochondrial electron transport, thus promoting potential disease development. This review provides an overview of iron homeostasis, mitochondrial iron metabolism, and how mitochondrial iron imbalances-induced mitochondrial dysfunction contribute to diseases.
Collapse
Affiliation(s)
- Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Cimin Long
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Hasty AH. Iron at the intersection of macrophage-adipocyte interactions. Nat Metab 2022; 4:1434-1435. [PMID: 36329218 DOI: 10.1038/s42255-022-00663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
14
|
Iron metabolism in nonalcoholic fatty liver disease: a promising therapeutic target. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Transmissible Endoplasmic Reticulum Stress Mediated by Extracellular Vesicles from Adipocyte Promoting the Senescence of Adipose-Derived Mesenchymal Stem Cells in Hypertrophic Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7175027. [PMID: 36035215 PMCID: PMC9410860 DOI: 10.1155/2022/7175027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
Hypertrophic obesity, characterized by an excessive expansion of subcutaneous adipocytes, causes chronic inflammation and insulin resistance. It is the primary feature of obesity in middle-aged and elderly individuals. In the adipose microenvironment, a high level of endoplasmic reticulum (ER) stress and changes in the extracellular vesicle (EV) composition of adipocytes may cause the senescence and restrained differentiation of progenitor cells of adipose, including adipose-derived mesenchymal stem cells (ASCs). In this study, a hypertrophic obesity mouse model was established, and the effects of adipocytes on the ER stress and senescence of ASCs were observed in a coculture of control ASCs and hypertrophic obesity mouse adipocytes or their derived EVs. The adipocytes of hypertrophic obesity mice were treated with GW4869 or an iron chelation agent to observe the effects of EVs secreted by adipocytes and their iron contents on the ER stress and senescence of ASCs. Results showed higher ER stress level and senescence phenotypes in the ASCs from the hypertrophic obesity mice than in those from the control mice. The ER stress, senescence phenotypes, and ferritin level of ASCs can be aggravated by the coculture of ASCs with adipocytes or EVs released by them from the hypertrophic obesity mice. GW4869 or iron chelator treatment improved the ER stress and senescence of the ASCs cocultured with EVs released by the adipocytes of the hypertrophic obesity mice. Our findings suggest that EV-mediated transmissible ER stress is responsible for the senescence of ASCs in hypertrophic obesity mice.
Collapse
|
16
|
Emerging Roles of the Iron Chelators in Inflammation. Int J Mol Sci 2022; 23:ijms23147977. [PMID: 35887336 PMCID: PMC9318075 DOI: 10.3390/ijms23147977] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Iron is a crucial element for mammalian cells, considering its intervention in several physiologic processes. Its homeostasis is finely regulated, and its alteration could be responsible for the onset of several disorders. Iron is closely related to inflammation; indeed, during inflammation high levels of interleukin-6 cause an increased production of hepcidin which induces a degradation of ferroportin. Ferroportin degradation leads to decreased iron efflux that culminates in elevated intracellular iron concentration and consequently iron toxicity in cells and tissues. Therefore, iron chelation could be considered a novel and useful therapeutic strategy in order to counteract the inflammation in several autoimmune and inflammatory diseases. Several iron chelators are already known to have anti-inflammatory effects, among them deferiprone, deferoxamine, deferasirox, and Dp44mT are noteworthy. Recently, eltrombopag has been reported to have an important role in reducing inflammation, acting both directly by chelating iron, and indirectly by modulating iron efflux. This review offers an overview of the possible novel biological effects of the iron chelators in inflammation, suggesting them as novel anti-inflammatory molecules.
Collapse
|
17
|
Ameka MK, Beavers WN, Shaver CM, Ware LB, Kerchberger VE, Schoenfelt KQ, Sun L, Koyama T, Skaar EP, Becker L, Hasty AH. An Iron Refractory Phenotype in Obese Adipose Tissue Macrophages Leads to Adipocyte Iron Overload. Int J Mol Sci 2022; 23:ijms23137417. [PMID: 35806422 PMCID: PMC9267114 DOI: 10.3390/ijms23137417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Adipocyte iron overload is a maladaptation associated with obesity and insulin resistance. The objective of the current study was to determine whether and how adipose tissue macrophages (ATMs) regulate adipocyte iron concentrations and whether this is impacted by obesity. Using bone marrow-derived macrophages (BMDMs) polarized to M0, M1, M2, or metabolically activated (MMe) phenotypes, we showed that MMe BMDMs and ATMs from obese mice have reduced expression of several iron-related proteins. Furthermore, the bioenergetic response to iron in obese ATMs was hampered. ATMs from iron-injected lean mice increased their glycolytic and respiratory capacities, thus maintaining metabolic flexibility, while ATMs from obese mice did not. Using an isotope-based system, we found that iron exchange between BMDMs and adipocytes was regulated by macrophage phenotype. At the end of the co-culture, MMe macrophages transferred and received more iron from adipocytes than M0, M1, and M2 macrophages. This culminated in a decrease in total iron in MMe macrophages and an increase in total iron in adipocytes compared with M2 macrophages. Taken together, in the MMe condition, the redistribution of iron is biased toward macrophage iron deficiency and simultaneous adipocyte iron overload. These data suggest that obesity changes the communication of iron between adipocytes and macrophages and that rectifying this iron communication channel may be a novel therapeutic target to alleviate insulin resistance.
Collapse
Affiliation(s)
- Magdalene K. Ameka
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37212, USA;
| | - William N. Beavers
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA; (C.M.S.); (L.B.W.); (V.E.K.)
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA; (C.M.S.); (L.B.W.); (V.E.K.)
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA;
| | - Vern Eric Kerchberger
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA; (C.M.S.); (L.B.W.); (V.E.K.)
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA;
| | - Kelly Q. Schoenfelt
- Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA; (K.Q.S.); (L.B.)
| | - Lili Sun
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212, USA; (L.S.); (T.K.)
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212, USA; (L.S.); (T.K.)
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA;
| | - Lev Becker
- Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA; (K.Q.S.); (L.B.)
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37212, USA;
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
- Correspondence:
| |
Collapse
|
18
|
Feng G, Byrne CD, Targher G, Wang F, Zheng MH. Ferroptosis and metabolic dysfunction-associated fatty liver disease: Is there a link? Liver Int 2022; 42:1496-1502. [PMID: 35007392 DOI: 10.1111/liv.15163] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), recently re-defined and re-classified as metabolic dysfunction-associated fatty liver disease (MAFLD), has become increasingly prevalent and emerged as a public health problem worldwide. To date, the precise pathogenic mechanisms underpinning MAFLD are not entirely understood, and there is no effective pharmacological therapy for NAFLD/MAFLD. As a newly discovered form of iron-dependent programmed cell death, ferroptosis can be involved in the development and progression of various chronic diseases, but the pathogenic connections and mechanisms that link MAFLD and ferroptosis have not been fully elucidated. The main characteristics of ferroptosis are the accumulation of lipid peroxides and reactive oxygen species. In this brief narrative review, the mechanisms of ferroptosis and its putative pathogenic role in MAFLD are discussed to highlight potential new research directions and ideas for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Gong Feng
- Xi'an Medical University, Xi'an, China
| | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.,The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
19
|
DFO treatment protects against depression-like behaviors and cognitive impairment in CUMS mice. Brain Res Bull 2022; 187:75-84. [PMID: 35779818 DOI: 10.1016/j.brainresbull.2022.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022]
Abstract
Depression has several negative effects on emotion as well as learning and memory abilities. Previous studies showed that depression could exacerbate inflammation, which in turn further aggravated depression. Deferoxamine (DFO) is a chelating agent binding iron and aluminium, and is clinically applied to treat acute ion poisoning and hemochromatosis. Researches showed that it could reduce inflammation via increasing the expression of hypoxia-inducible factor-1alpha (HIF-1α). Here, we established a chronic unpredictable mild stress (CUMS) model to investigate whether DFO exerted a neuroprotective function in depression. The results demonstrated that CUMS (4 weeks) effectively induced depression-like behaviors in mice based on sucrose preference test (SPT), forced swim test (FST), tail suspension test (TST), open field test (OFT), and elevated plus-maze test (EPT). It also brought cognitive deficits based on Morris water maze (MWM) test and the impairment of synaptic plasticity based on in vivo electrophysiological recordings. Additionally, CUMS exposure significantly decreased the expression of hippocampal synapse related proteins and the spine density of neurons in the DG region, accompanied by increasing the expression of hippocampal inflammatory cytokines, and promoted the activation of microglia in the hippocampus. The expression of HIF-1α was down-regulated as expected. However, DFO distinctly reversed the CUMS-induced impairments. The mechanism is associated with the DFO inhibition of inflammation by upregulating HIF-1 expression, thereby alleviating a series of pathology changes. Together, these findings suggest that DFO likely plays a protective role in cognitive impairments and synaptic plasticity deficits resulting from depression.
Collapse
|
20
|
Ikeda Y, Funamoto M, Tsuchiya K. The role of iron in obesity and diabetes. THE JOURNAL OF MEDICAL INVESTIGATION 2022; 69:1-7. [PMID: 35466128 DOI: 10.2152/jmi.69.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Iron is an essential trace metal for all life, but excess iron causes oxidative stress through catalyzing the toxic hydroxy-radical production via the Fenton reaction. The number of patients with obesity and diabetes has been increasing worldwide, and their onset and development are affected by diet. In both clinical and experimental studies, a high body iron content was associated with obesity and diabetes, and the reduction of body iron content to an appropriate level can ameliorate the status and development of obesity and diabetes. Macrophages play an essential role in the pathophysiology of obesity and diabetes, and in the metabolism and homeostasis of iron in the body. Recent studies demonstrated that macrophage polarization is related to adipocyte hypertrophy and insulin resistance through their capabilities of iron handling. Control of iron in macrophages is a potential therapeutic strategy for obesity and diabetes. J. Med. Invest. 69 : 1-7, February, 2022.
Collapse
Affiliation(s)
- Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masafumi Funamoto
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
21
|
Therapeutic potential of induced iron depletion using iron chelators in Covid-19. Saudi J Biol Sci 2022; 29:1947-1956. [PMID: 34924800 PMCID: PMC8666385 DOI: 10.1016/j.sjbs.2021.11.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/24/2021] [Accepted: 11/28/2021] [Indexed: 01/09/2023] Open
Abstract
Ferritin, which includes twenty-four light and heavy chains in varying proportions in different tissues, is primarily responsible for maintaining the body's iron metabolism. Its normal value is between 10 and 200 ngmL-1 in men and between 30 and 300 ngmL-1 in women. Iron is delivered to the tissue via them, and they act as immunomodulators, signaling molecules, and inflammatory markers. When ferritin level exceeds 1000 µgL-1, the patient is categorized as having hyperferritinemia. Iron chelators such as deferiprone, deferirox, and deferoxamine are currently FDA approved to treat iron overload. The inflammation cascade and poor prognosis of COVID-19 may be attributed to high ferritin levels. Critically ill patients can benefit from deferasirox, an iron chelator administered orally at 20-40 mgkg-1 once daily, as well as intravenous deferoxamine at 1000 mg initially followed by 500 mg every 4 to 12 h. It can be combined with monoclonal antibodies, antioxidants, corticosteroids, and lactoferrin to make iron chelation therapy effective for COVID-19 victims. In this article, we analyze the antiviral and antifibrotic activity of iron chelators, thereby promoting iron depletion therapy as a potentially innovative treatment strategy for COVID-19.
Collapse
|
22
|
Winn NC, Wolf EM, Cottam MA, Bhanot M, Hasty AH. Myeloid-specific deletion of ferroportin impairs macrophage bioenergetics but is disconnected from systemic insulin action in adult mice. Am J Physiol Endocrinol Metab 2021; 321:E376-E391. [PMID: 34338042 PMCID: PMC8461794 DOI: 10.1152/ajpendo.00116.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/28/2021] [Accepted: 07/25/2021] [Indexed: 12/28/2022]
Abstract
Tissue iron overload is associated with insulin resistance and mitochondrial dysfunction in rodents and humans; however, the mechanisms or cell types that mediate this phenotype are not completely understood. Macrophages (Mɸs) are known to contribute to iron handling; thus, we hypothesized that perturbed iron handling by Mɸs impairs mitochondrial energetics and evokes systemic insulin resistance in mice. Male and female mice with myeloid-targeted (LysMCre) deletion of the canonical iron exporter, ferroportin (Fpn, encoded by Slc40a1), floxed littermates, and C57BL/6J wild-type mice were used to test our hypotheses. Myeloid-targeted deletion of Fpn evoked multitissue iron accumulation and reduced mitochondrial respiration in bone marrow-derived Mɸs, liver leukocytes, and Mɸ-enriched populations from adipose tissue (AT). In addition, a single bolus of exogenous iron administered to C57BL/6J mice phenocopied the loss of Fpn, resulting in a reduction in maximal and mitochondrial reserve capacity in Mɸ-enriched cellular fractions from liver and AT. In vivo exogenous iron chelation restored mitochondrial reserve capacity in liver leukocytes from Fpn LysMCre mice, but had no effect in AT myeloid populations. However, despite the impairments in mitochondrial respiration, neither loss of myeloid-specific Fpn nor exogenous iron overload perturbed glucose homeostasis or systemic insulin action in lean or obese mice, whereas aging coupled with lifelong loss of Fpn unmasked glucose intolerance. Together these data demonstrate that iron handling is critical for the maintenance of macrophage mitochondrial function, but perturbing myeloid iron flux via the loss of Fpn action is not sufficient to evoke systemic insulin resistance in young adult mice. These findings also suggest that if Mɸs are capable of storing iron properly, they have a pronounced ability to withstand iron excess without evoking overt collateral damage and associated insulin resistance that may be age dependent.NEW & NOTEWORTHY We used myeloid-specific knockout of ferroportin to determine whether macrophage iron enrichment alters systemic metabolism. We found that macrophages in several tissues showed mitochondrial defects such as a reduction in mitochondrial reserve capacity. However, insulin action in the mice was preserved. These findings also suggest that Mɸs have a pronounced ability to withstand iron excess without evoking overt collateral damage and associated insulin resistance, which appears to be age dependent.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elysa M Wolf
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Monica Bhanot
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt Medical Center, Nashville, Tennessee
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- VA Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
23
|
Wang X, Li Y, Han L, Li J, Liu C, Sun C. Role of Flavonoids in the Treatment of Iron Overload. Front Cell Dev Biol 2021; 9:685364. [PMID: 34291050 PMCID: PMC8287860 DOI: 10.3389/fcell.2021.685364] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Iron overload, a high risk factor for many diseases, is seen in almost all human chronic and common diseases. Iron chelating agents are often used for treatment but, at present, most of these have a narrow scope of application, obvious side effects, and other disadvantages. Recent studies have shown that flavonoids can affect iron status, reduce iron deposition, and inhibit the lipid peroxidation process caused by iron overload. Therefore, flavonoids with iron chelating and antioxidant activities may become potential complementary therapies. In this study, we not only reviewed the research progress of iron overload and the regulation mechanism of flavonoids, but also studied the structural basis and potential mechanism of their function. In addition, the advantages and disadvantages of flavonoids as plant iron chelating agents are discussed to provide a foundation for the prevention and treatment of iron homeostasis disorders using flavonoids.
Collapse
Affiliation(s)
- Xiaomin Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ye Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Han
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
24
|
Liao W, Yang W, Shen Z, Ai W, Pan Q, Sun Y, Guo S. Heme Oxygenase-1 Regulates Ferrous Iron and Foxo1 in Control of Hepatic Gluconeogenesis. Diabetes 2021; 70:696-709. [PMID: 33408127 PMCID: PMC7897351 DOI: 10.2337/db20-0954] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
The liver is a key player for maintaining glucose homeostasis. Excessive hepatic glucose production is considered to be a key for the onset of type 2 diabetes. The primary function of heme oxygenase-1 (HO1) is to catalyze the degradation of heme into biliverdin, ferrous iron, and carbon monoxide. Previous studies have demonstrated that the degradation of heme by HO1 in the liver results in mitochondrial dysfunction and drives insulin resistance. In this study, by overexpressing HO1 in hepatocytes and mice, we showed that HO1 promotes gluconeogenesis in a Foxo1-dependent manner. Importantly, HO1 overexpression increased the generation of ferrous iron in the liver, which further activates nuclear factor-κB and phosphorylates Foxo1 at Ser273 to enhance gluconeogenesis. We further assessed the role of HO1 in insulin-resistant liver-specific knockout of IRS1 and IRS2 genes (L-DKO) mice, which exhibit upregulation of HO1 in the liver and hepatic ferrous iron overload. HO1 knockdown by shRNA or treatment of iron chelator rescued the aberrant gluconeogenesis in L-DKO mice. In addition, we found that systemic iron overload promotes gluconeogenesis by activating the hepatic protein kinase A→Foxo1 axis. Thus, our results demonstrate the role of HO1 in regulating hepatic iron status and Foxo1 to control gluconeogenesis and blood glucose.
Collapse
Affiliation(s)
- Wang Liao
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Zheng Shen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Quan Pan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yuxiang Sun
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
25
|
Hepcidin gene silencing ameliorated inflammation and insulin resistance in adipose tissue of db/db mice via inhibiting METs formation. Mol Immunol 2021; 133:110-121. [PMID: 33640761 DOI: 10.1016/j.molimm.2021.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
As a major feature of diabetes, inflammation is closely related to macrophage extracellular traps and the expression of hepcidin upregulated by diabetes is reportedly involved in chronic inflammation. Therefore, we aimed to explore whether hepcidin could be implicated in inflammation and macrophage extracellular traps (METs) formation. The diabetic db/db mouse model was established exhibiting insulin resistance (IR), inflammation, macrophages infiltration and higher expression of hepcidin, where samples were obtained from epididymal adipose tissue. We observed that inflammation and IR improved in adipose tissue of mice treated with hepcidin gene silencing. Furthermore, METs formation could be markedly inhibited via hepcidin gene silencing followed by attenuated inflammatory response due to METs, indicating hepcidin gene silencing played a key role in anti-inflammation by inhibiting METs formation. So, we concluded that hepcidin gene silencing has a potential for treatment of diabetes due to its ability to ameliorate inflammation via inhibiting METs formation.
Collapse
|
26
|
Abstract
Low-grade chronic adipose tissue (AT) inflammation is now recognized as a pivotal driver of the multi-organ dysfunction associated with obesity-related complications; and adipose tissue macrophages (ATMs) are key to the development of this inflammatory milieu. Along with their role in immunosurveillance, ATMs are central regulators of AT iron homeostasis. Under optimal conditions, ATMs maintain a proper homeostatic balance of iron in adipocytes; however, during obesity, this relationship is altered, and iron is repartitioned into adipocytes as opposed to ATMs. This adipocyte iron overload leads to systemic IR and the mechanism for these effects is still under investigation. Here, we comment on the most recent findings addressing the interplay between adipocyte and ATM iron handling, and metabolic dysfunction.
Collapse
|
27
|
Ikeda Y, Watanabe H, Shiuchi T, Hamano H, Horinouchi Y, Imanishi M, Goda M, Zamami Y, Takechi K, Izawa-Ishizawa Y, Miyamoto L, Ishizawa K, Aihara KI, Tsuchiya K, Tamaki T. Deletion of H-ferritin in macrophages alleviates obesity and diabetes induced by high-fat diet in mice. Diabetologia 2020; 63:1588-1602. [PMID: 32430665 DOI: 10.1007/s00125-020-05153-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Iron accumulation affects obesity and diabetes, both of which are ameliorated by iron reduction. Ferritin, an iron-storage protein, plays a crucial role in iron metabolism. H-ferritin exerts its cytoprotective action by reducing toxicity via its ferroxidase activity. We investigated the role of macrophage H-ferritin in obesity and diabetes. METHODS Conditional macrophage-specific H-ferritin (Fth, also known as Fth1) knockout (LysM-Cre Fth KO) mice were used and divided into four groups: wild-type (WT) and LysM-Cre Fth KO mice with normal diet (ND), and WT and LysM-Cre Fth KO mice with high-fat diet (HFD). These mice were analysed for characteristics of obesity and diabetes, tissue iron content, inflammation, oxidative stress, insulin sensitivity and metabolic measurements. RAW264.7 macrophage cells were used for in vitro experiments. RESULTS Iron concentration reduced, and mRNA expression of ferroportin increased, in macrophages from LysM-Cre Fth KO mice. HFD-induced obesity was lower in LysM-Cre Fth KO mice than in WT mice at 12 weeks (body weight: KO 34.6 ± 5.6 g vs WT 40.1 ± 5.2 g). mRNA expression of inflammatory cytokines and infiltrated macrophages and oxidative stress increased in the adipose tissue of HFD-fed WT mice, but was not elevated in HFD-fed LysM-Cre Fth KO mice. However, WT mice fed an HFD had elevated iron concentration in adipose tissue and spleen, which was not observed in LysM-Cre Fth KO mice fed an HFD (adipose tissue [μmol Fe/g protein]: KO 1496 ± 479 vs WT 2316 ± 866; spleen [μmol Fe/g protein]: KO 218 ± 54 vs WT 334 ± 83). Moreover, HFD administration impaired both glucose tolerance and insulin sensitivity in WT mice, which was ameliorated in LysM-Cre Fth KO mice. In addition, energy expenditure, mRNA expression of thermogenic genes, and body temperature were higher in KO mice with HFD than WT mice with HFD. In vitro experiments showed that iron content was reduced, and lipopolysaccharide-induced Tnf-α (also known as Tnf) mRNA upregulation was inhibited in a macrophage cell line transfected with Fth siRNA. CONCLUSIONS/INTERPRETATION Deletion of macrophage H-ferritin suppresses the inflammatory response by reducing intracellular iron levels, resulting in the prevention of HFD-induced obesity and diabetes. The findings from this study highlight macrophage iron levels as a potential therapeutic target for obesity and diabetes.
Collapse
Affiliation(s)
- Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Hiroaki Watanabe
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Department of Clinical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuya Shiuchi
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirofumi Hamano
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | | | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Ken-Ichi Aihara
- Department of Community Medicine for Diabetes and Metabolic Disorders, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Anan Medical Center, Tokushima, Japan
| |
Collapse
|
28
|
Li J, Pan X, Pan G, Song Z, He Y, Zhang S, Ye X, Yang X, Xie E, Wang X, Mai X, Yin X, Tang B, Shu X, Chen P, Dai X, Tian Y, Yao L, Han M, Xu G, Zhang H, Sun J, Chen H, Wang F, Min J, Xie L. Transferrin Receptor 1 Regulates Thermogenic Capacity and Cell Fate in Brown/Beige Adipocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903366. [PMID: 32596110 PMCID: PMC7312276 DOI: 10.1002/advs.201903366] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Indexed: 05/02/2023]
Abstract
Iron homeostasis is essential for maintaining cellular function in a wide range of cell types. However, whether iron affects the thermogenic properties of adipocytes is currently unknown. Using integrative analyses of multi-omics data, transferrin receptor 1 (Tfr1) is identified as a candidate for regulating thermogenesis in beige adipocytes. Furthermore, it is shown that mice lacking Tfr1 specifically in adipocytes have impaired thermogenesis, increased insulin resistance, and low-grade inflammation accompanied by iron deficiency and mitochondrial dysfunction. Mechanistically, the cold treatment in beige adipocytes selectively stabilizes hypoxia-inducible factor 1-alpha (HIF1α), upregulating the Tfr1 gene, and thermogenic adipocyte-specific Hif1α deletion reduces thermogenic gene expression in beige fat without altering core body temperature. Notably, Tfr1 deficiency in interscapular brown adipose tissue (iBAT) leads to the transdifferentiation of brown preadipocytes into white adipocytes and muscle cells; in contrast, long-term exposure to a low-iron diet fails to phenocopy the transdifferentiation effect found in Tfr1-deficient mice. Moreover, mice lacking transmembrane serine protease 6 (Tmprss6) develop iron deficiency in both inguinal white adipose tissue (iWAT) and iBAT, and have impaired cold-induced beige adipocyte formation and brown fat thermogenesis. Taken together, these findings indicate that Tfr1 plays an essential role in thermogenic adipocytes via both iron-dependent and iron-independent mechanisms.
Collapse
Affiliation(s)
- Jin Li
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthChina Agricultural UniversityBeijing100193China
- Department of NutritionPrecision Nutrition Innovation CenterSchool of Public HealthZhengzhou UniversityZhengzhou450001China
| | - Xiaohan Pan
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Guihua Pan
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Zijun Song
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Yao He
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Susu Zhang
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Xueru Ye
- Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xiang Yang
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Enjun Xie
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xinhui Wang
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xudong Mai
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Xiangju Yin
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Biyao Tang
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xuan Shu
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Pengyu Chen
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xiaoshuang Dai
- BGI Institute of Applied AgricultureBGI‐ShenzhenShenzhen518120China
| | - Ye Tian
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Liheng Yao
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Mulan Han
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Huijie Zhang
- Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jia Sun
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Hong Chen
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| | - Fudi Wang
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthChina Agricultural UniversityBeijing100193China
- Department of NutritionPrecision Nutrition Innovation CenterSchool of Public HealthZhengzhou UniversityZhengzhou450001China
| | - Junxia Min
- The First Affiliated HospitalInstitute of Translational MedicineSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern ChinaGuangdong Provincial Key Laboratory of Microbial Culture Collection and ApplicationGuangdong Open Laboratory of Applied MicrobiologyGuangdong Institute of MicrobiologyGuangdong Academy of SciencesZhujiang HospitalSouthern Medical UniversityGuangzhou510070China
| |
Collapse
|
29
|
Zhang J, Yu Q, Han L, Han M, Han G. Effects of lysosomal iron involvement in the mechanism of mitochondrial apoptosis on postmortem muscle protein degradation. Food Chem 2020; 328:127174. [PMID: 32492604 DOI: 10.1016/j.foodchem.2020.127174] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023]
Abstract
This study investigated the effect of lysosomal iron involvement in the mechanism of mitochondrial apoptosis on bovine muscle protein degradation during postmortem aging. Six crossbred cattle were studied to evaluate intracellular reactive oxygen species (ROS), antioxidant enzyme activity, lysosomal membrane stability, mitochondrial dysfunction-induced apoptosis, desmin and troponin-T degradation in both control and iron chelator desferrioxamine (DFO) groups. Results showed that lysosomal iron induced ROS accumulation and lysosomal membrane destabilization by decreasing the antioxidant enzyme activity (P < 0.05). Subsequently, lysosomal dysfunction mediated by iron increased mitochondrial membrane permeability and decreased mitochondrial membrane potential, thereby enhancing Bid and cytochrome c release and caspase-9/-3 activation (P < 0.05). Ultimately, lysosomal iron mediated lysosomal-mitochondrial apoptosis increased the postmortem bovine muscle desmin and troponin-T degradation (P < 0.05). The results indicated that lysosomal iron contributes to postmortem meat tenderization through the lysosomal-mitochondrial dysfunction-induced apoptosis pathway.
Collapse
Affiliation(s)
- Jiaying Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Mingshan Han
- Inner Mongolia Kerchin Cattle Industry Co., Ltd., Tongliao 028000, China
| | - Guangxing Han
- Shandong Lorain Corporation Co., Ltd., Linyi 276600, China
| |
Collapse
|
30
|
Higashida K, Takeuchi N, Inoue S, Hashimoto T, Nakai N. Iron deficiency attenuates catecholamine‑stimulated lipolysis via downregulation of lipolysis‑related proteins and glucose utilization in 3T3‑L1 adipocytes. Mol Med Rep 2020; 21:1383-1389. [PMID: 32016466 DOI: 10.3892/mmr.2020.10929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/29/2019] [Indexed: 11/06/2022] Open
Abstract
Iron deficiency has been associated with obesity and related metabolic disorders. The aim of the present study was to evaluate the effect of iron deficiency on fat metabolism, particularly regarding the lipolytic activity, lipolysis‑related protein expression, and glucose utilization of adipocytes. Differentiated 3T3‑L1 adipocytes were incubated with an iron chelator, deferoxamine mesylate (DFO), for 48 h. Subsequently, basal and isoproterenol‑stimulated lipolytic activities, the proteins involved in lipolysis and glucose utilization were compared with a control (CON). The results revealed that treatment with DFO significantly decreased the free iron content but did not affect total protein and lipid contents in adipocytes. Iron deprivation caused a significant reduction in isoproterenol‑stimulated lipolysis, but not basal lipolysis. Lipolysis‑related proteins, including perilipin A, adipose triglyceride lipase, hormone sensitive lipase and comparative gene identification‑58, were decreased in the DFO compared with the CON group. Furthermore, glucose utilization, a major precursor of 3‑glycerol phosphate for micro‑lipid droplet synthesis during lipolysis and the expression of glucose transporter (GLUT) 4 were significantly lower in the DFO group when compared with the CON group. However, hypoxia‑inducible factor‑1α and GLUT1 expressions were upregulated in DFO‑treated adipocytes. In conclusion, the results indicated that low iron availability attenuated catecholamine‑stimulated lipolysis by downregulating lipolytic enzymes and glucose utilization in 3T3‑L1 adipocytes.
Collapse
Affiliation(s)
- Kazuhiko Higashida
- Department of Nutrition, Laboratory of Exercise Nutrition, University of Shiga Prefecture, Hikone, Shiga 522‑8533, Japan
| | - Nodoka Takeuchi
- Department of Nutrition, Laboratory of Exercise Nutrition, University of Shiga Prefecture, Hikone, Shiga 522‑8533, Japan
| | - Sachika Inoue
- Department of Nutrition, Laboratory of Exercise Nutrition, University of Shiga Prefecture, Hikone, Shiga 522‑8533, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga 525‑8577, Japan
| | - Naoya Nakai
- Department of Nutrition, Laboratory of Exercise Nutrition, University of Shiga Prefecture, Hikone, Shiga 522‑8533, Japan
| |
Collapse
|
31
|
Rodrigues de Morais T, Gambero A. Iron chelators in obesity therapy – Old drugs from a new perspective? Eur J Pharmacol 2019; 861:172614. [DOI: 10.1016/j.ejphar.2019.172614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
|
32
|
Sikkeland J, Lindstad T, Nenseth HZ, Dezitter X, Qu S, Muhumed RM, Ertunc ME, Gregor MF, Saatcioglu F. Inflammation and ER stress differentially regulate STAMP2 expression and localization in adipocytes. Metabolism 2019; 93:75-85. [PMID: 30710574 PMCID: PMC6460919 DOI: 10.1016/j.metabol.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chronic ER stress and dysfunction is a hallmark of obesity and a critical contributor to metaflammation, abnormal hormone action and altered substrate metabolism in metabolic tissues, such as liver and adipocytes. Lack of STAMP2 in lean mice induces inflammation and insulin resistance on a regular diet, and it is dysregulated in the adipose tissue of obese mice and humans. We hypothesized that the regulation of STAMP2 is disrupted by ER stress. METHODS 3T3-L1 and MEF adipocytes were treated with ER stress inducers thapsigargin and tunicamycin, and inflammation inducer TNFα. The treatments effect on STAMP2 expression and enzymatic function was assessed. In addition, 3T3-L1 adipocytes and HEK cells were utilized for Stamp2 promoter activity investigation performed with luciferase and ChIP assays. RESULTS ER stress significantly reduced both STAMP2 mRNA and protein expression in cultured adipocytes whereas TNFα had the opposite effect. Concomitant with loss of STAMP2 expression during ER stress, intracellular localization of STAMP2 was altered and total iron reductase activity was reduced. Stamp2 promoter analysis by reporter assays and chromatin immunoprecipitation, showed that induction of ER stress disrupts C/EBPα-mediated STAMP2 expression. CONCLUSION These data suggest a clear link between ER stress and quantitative and functional STAMP2-deficiency.
Collapse
Affiliation(s)
- Jørgen Sikkeland
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0310 Oslo, Norway
| | - Torstein Lindstad
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway
| | - Hatice Zeynep Nenseth
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway
| | - Xavier Dezitter
- Plateforme de Binding et de Biologie Moléculaire, Institut de Chimie Pharmaceutique Albert Lespagnol, Faculté des Sciences Pharmaceutiques et Biologiques - Université de Lille, F-59006 Lille, France
| | - Su Qu
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway
| | - Ridhwan M Muhumed
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway
| | - Meric Erikci Ertunc
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway; Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Margaret F Gregor
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Postboks 1066 Blindern, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0310 Oslo, Norway.
| |
Collapse
|
33
|
Segrestin B, Moreno-Navarrete JM, Seyssel K, Alligier M, Meugnier E, Nazare JA, Vidal H, Fernandez-Real JM, Laville M. Adipose Tissue Expansion by Overfeeding Healthy Men Alters Iron Gene Expression. J Clin Endocrinol Metab 2019; 104:688-696. [PMID: 30260393 DOI: 10.1210/jc.2018-01169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/20/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Iron overload has been associated with greater adipose tissue (AT) depots. We retrospectively studied the potential interactions between iron and AT during an experimental overfeeding in participants without obesity. METHODS Twenty-six participants (mean body mass index ± SD, 24.7 ± 3.1 kg/m2) underwent a 56-day overfeeding (+760 kcal/d). Serum iron biomarkers (ELISA), subcutaneous AT (SAT) gene expression, and abdominal AT distribution assessed by MRI were analyzed at the beginning and the end of the intervention. RESULTS Before intervention: SAT mRNA expression of the iron transporter transferrin (Tf) was positively correlated with the expression of genes related to lipogenesis (lipin 1, ACSL1) and lipid storage (SCD). SAT expression of the ferritin light chain (FTL) gene, encoding ferritin (FT), an intracellular iron storage protein, was negatively correlated to SREBF1, a gene related to lipogenesis. Serum FT (mean, 92 ± 57 ng/mL) was negatively correlated with the expression of SAT genes linked to lipid storage (SCD, DGAT2) and to lipogenesis (SREBF1, ACSL1). After intervention: Overfeeding led to a 2.3 ± 1.3-kg weight gain. In parallel to increased expression of lipid storage-related genes (mitoNEET, SCD, DGAT2, SREBF1), SAT Tf, SLC40A1 (encoding ferroportin 1, a membrane iron export channel) and hephaestin mRNA levels increased, whereas SAT FTL mRNA decreased, suggesting increased AT iron requirement. Serum FT decreased to 67 ± 43 ng/mL. However, no significant associations between serum iron biomarkers and AT distribution or expansion were observed. CONCLUSION In healthy men, iron metabolism gene expression in SAT is associated with lipid storage and lipogenesis genes expression and is modulated during a 56-day overfeeding diet.
Collapse
Affiliation(s)
- Berenice Segrestin
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
- Eating Disorder Unit, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute, Hospital Universitari de Girona Dr Josep Trueta, Departament de Medicina, Universitat de Girona, CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Kevin Seyssel
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - Maud Alligier
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
- F-CRIN/FORCE Network, Pierre Bénite, France
| | - Emmanuelle Meugnier
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - Julie-Anne Nazare
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - Hubert Vidal
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute, Hospital Universitari de Girona Dr Josep Trueta, Departament de Medicina, Universitat de Girona, CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Martine Laville
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
- Endocrinology, Diabetes, and Nutrition Department, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre Benite, France
- F-CRIN/FORCE Network, Pierre Bénite, France
| |
Collapse
|