1
|
Kwon WA, Song YS, Lee MK. Strategic Advances in Combination Therapy for Metastatic Castration-Sensitive Prostate Cancer: Current Insights and Future Perspectives. Cancers (Basel) 2024; 16:3187. [PMID: 39335158 PMCID: PMC11430187 DOI: 10.3390/cancers16183187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The contemporary treatment for metastatic castration-sensitive prostate cancer (mCSPC) has evolved significantly, building on successes in managing metastatic castration-resistant prostate cancer (mCRPC). Although androgen deprivation therapy (ADT) alone has long been the cornerstone of mCSPC treatment, combination therapies have emerged as the new standard of care based on recent advances, offering improved survival outcomes. Landmark phase 3 trials demonstrated that adding chemotherapy (docetaxel) and androgen receptor pathway inhibitors to ADT significantly enhances overall survival, particularly for patients with high-volume, high-risk, or de novo metastatic disease. Despite these advancements, a concerning gap between evidence-based guidelines and real-world practice remains, with many patients not receiving recommended combination therapies. The challenge in optimizing therapy sequences, considering both disease control and treatment burdens, and identifying clinical and biological subgroups that could benefit from personalized treatment strategies persists. The advent of triplet therapy has shown promise in extending survival, but the uro-oncology community must narrow the gap between evidence and practice to deliver the most effective care. Current research is focused on refining treatment approaches and utilizing biomarkers to guide therapy selection, aiming to offer more personalized and adaptive strategies for mCSPC management. Thus, aligning clinical practices with the evolving evidence is urgently needed to improve outcomes for patients facing this incurable disease.
Collapse
Affiliation(s)
- Whi-An Kwon
- Department of Urology, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Min-Kyung Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Republic of Korea
| |
Collapse
|
2
|
Safi R, Wardell SE, Watkinson P, Qin X, Lee M, Park S, Krebs T, Dolan EL, Blattler A, Tsuji T, Nayak S, Khater M, Fontanillo C, Newlin MA, Kirkland ML, Xie Y, Long H, Fink EC, Fanning SW, Runyon S, Brown M, Xu S, Owzar K, Norris JD, McDonnell DP. Androgen receptor monomers and dimers regulate opposing biological processes in prostate cancer cells. Nat Commun 2024; 15:7675. [PMID: 39227594 PMCID: PMC11371910 DOI: 10.1038/s41467-024-52032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Most prostate cancers express the androgen receptor (AR), and tumor growth and progression are facilitated by exceptionally low levels of systemic or intratumorally produced androgens. Thus, absolute inhibition of the androgen signaling axis remains the goal of current therapeutic approaches to treat prostate cancer (PCa). Paradoxically, high dose androgens also exhibit considerable efficacy as a treatment modality in patients with late-stage metastatic PCa. Here we show that low levels of androgens, functioning through an AR monomer, facilitate a non-genomic activation of the mTOR signaling pathway to drive proliferation. Conversely, high dose androgens facilitate the formation of AR dimers/oligomers to suppress c-MYC expression, inhibit proliferation and drive a transcriptional program associated with a differentiated phenotype. These findings highlight the inherent liabilities in current approaches used to inhibit AR action in PCa and are instructive as to strategies that can be used to develop new therapeutics for this disease and other androgenopathies.
Collapse
Affiliation(s)
- Rachid Safi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Paige Watkinson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Xiaodi Qin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Marissa Lee
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Emma L Dolan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Adam Blattler
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Toshiya Tsuji
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Surendra Nayak
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Marwa Khater
- Informatics and Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Celia Fontanillo
- Informatics and Predictive Sciences, Bristol Myers Squibb, San Diego, CA, USA
| | - Madeline A Newlin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Megan L Kirkland
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Henry Long
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Emma C Fink
- Department of Cancer Biology, Loyola University, Maywood, IL, USA
| | - Sean W Fanning
- Department of Cancer Biology, Loyola University, Maywood, IL, USA
| | - Scott Runyon
- RTI International, Research Triangle Park, NC, USA
| | - Myles Brown
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuichan Xu
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - John D Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Hurst R, Brewer DS, Gihawi A, Wain J, Cooper CS. Cancer invasion and anaerobic bacteria: new insights into mechanisms. J Med Microbiol 2024; 73:001817. [PMID: 38535967 PMCID: PMC10995961 DOI: 10.1099/jmm.0.001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
There is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including Peptoniphilus spp., Porphyromonas spp., Fusobacterium spp., Fenollaria spp., Prevotella spp., Sneathia spp., Veillonella spp. and Anaerococcus spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer-associated bacterial pathogens that may prevent cancer progression are proposed.
Collapse
Affiliation(s)
- Rachel Hurst
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Abraham Gihawi
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Quadram Institute Biosciences, Colney Lane, Norwich, Norfolk, NR4 7UQ, UK
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
4
|
Imboden S, Liu X, Payne MC, Hsieh CJ, Lin NY. Trustworthy in silico cell labeling via ensemble-based image translation. BIOPHYSICAL REPORTS 2023; 3:100133. [PMID: 38026685 PMCID: PMC10663640 DOI: 10.1016/j.bpr.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Artificial intelligence (AI) image translation has been a valuable tool for processing image data in biological and medical research. To apply such a tool in mission-critical applications, including drug screening, toxicity study, and clinical diagnostics, it is essential to ensure that the AI prediction is trustworthy. Here, we demonstrate that an ensemble learning method can quantify the uncertainty of AI image translation. We tested the uncertainty evaluation using experimentally acquired images of mesenchymal stromal cells. We find that the ensemble method reports a prediction standard deviation that correlates with the prediction error, estimating the prediction uncertainty. We show that this uncertainty is in agreement with the prediction error and Pearson correlation coefficient. We further show that the ensemble method can detect out-of-distribution input images by reporting increased uncertainty. Altogether, these results suggest that the ensemble-estimated uncertainty can be a useful indicator for identifying erroneous AI image translations.
Collapse
Affiliation(s)
- Sara Imboden
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California
| | - Xuanqing Liu
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California
| | - Marie C. Payne
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California
| | - Cho-Jui Hsieh
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California
| | - Neil Y.C. Lin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
5
|
Mafla-España MA, Torregrosa MD, Beamud-Cortés M, Bermell-Marco L, Rubio-Briones J, Cauli O. Plasma Androstenedione Concentration Can Discriminate Frail versus Non-Frail Men with Prostate Cancer under Androgen Deprivation Therapy. Biomolecules 2023; 13:1642. [PMID: 38002324 PMCID: PMC10669122 DOI: 10.3390/biom13111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is a mainstay of prostate cancer in both adjuvant and palliative settings. Since androgens are crucial for functional status and psychological functions, we evaluated whether blood testosterone, androstenedione, or DHEA concentrations were associated with functional status and psychological alterations in patients with localised (PCa) or metastatic prostate cancer (mPCa) receiving ADT with analogues of luteinising hormone-releasing hormone (LHRH). METHODS The five Fried criteria were considered to identify frailty syndrome. In addition, complementary evaluations were carried out to measure other variables of interest. Sleep quality was assessed using the Athens Insomnia Scale, cognitive functions were assessed using the Mini-Mental State Examination, and symptoms of depression were measured using the Yesavage Geriatric Depression Scale. Logistic regression analysis was performed to determine if the androgens level could be related to frailty syndrome, sleep impairment, depressive symptoms, and cognitive functions. RESULTS The results of the multivariate analyses show that high concentrations of androstenedione were significantly associated with frailty syndrome in both groups (p = 0.018; odds ratio = 4.66, 95% confidence interval [1.30-16.6]). There were significant relationships between frailty syndrome and the systemic concentration of androstenedione (p = 0.01), but not the concentration of testosterone (p = 0.60) or DHEA (p = 0.42). In addition, the results of the non-parametric tests show significant results between a decreased gait speed in the two groups (metastatic and localised) and the concentration of androstenedione (p = 0.015). High androstenedione levels were associated with a slow walking speed in the mCaP group (p = 0.016), while high testosterone levels were associated with a better walking speed in the localised CaP group (p = 0.03). For the concentration of androstenedione in plasma, the area under the curve was 0.72, with a 95% CI of 0.55-0.88 with acceptable values, and with a cut-off point of 4.51 pg/mL, a sensitivity of 82.9%, and specificity of 53.8%. No relationships between the concentration of androgens in plasma and sleep quality, cognitive functions, or symptoms of depression suggest that the changes were specific to frailty syndrome. CONCLUSIONS Further research into the role of androstenedione should be evaluated in follow-up studies in order to recommend its use as a suitable biomarker of frailty syndrome in prostate cancer patients.
Collapse
Affiliation(s)
- Mayra Alejandra Mafla-España
- Nursing Department, University of Valencia, 46010 Valencia, Spain;
- Frailty Research Organized Group (FROG), University of Valencia, 46010 Valencia, Spain
| | | | | | | | | | - Omar Cauli
- Nursing Department, University of Valencia, 46010 Valencia, Spain;
- Frailty Research Organized Group (FROG), University of Valencia, 46010 Valencia, Spain
- Chair of Healthy, Active and Participative Ageing, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
6
|
Feng K, Liu C, Wang W, Kong P, Tao Z, Liu W. Emerging proteins involved in castration‑resistant prostate cancer via the AR‑dependent and AR‑independent pathways (Review). Int J Oncol 2023; 63:127. [PMID: 37732538 PMCID: PMC10609492 DOI: 10.3892/ijo.2023.5575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Despite achieving optimal initial responses to androgen deprivation therapy, most patients with prostate cancer eventually progress to a poor prognosis state known as castration‑resistant prostate cancer (CRPC). Currently, there is a notable absence of reliable early warning biomarkers and effective treatment strategies for these patients. Although androgen receptor (AR)‑independent pathways have been discovered and acknowledged in recent years, the AR signaling pathway continues to play a pivotal role in the progression of CRPC. The present review focuses on newly identified proteins within human CRPC tissues. These proteins encompass both those involved in AR‑dependent and AR‑independent pathways. Specifically, the present review provides an in‑depth summary and analysis of the emerging proteins within AR bypass pathways. Furthermore, the significance of these proteins as potential biomarkers and therapeutic targets for treating CRPC is discussed. Therefore, the present review offers valuable theoretical insights and clinical perspectives to comprehensively enhance the understanding of CRPC.
Collapse
Affiliation(s)
- Kangle Feng
- Department of Blood Transfusion, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, P.R. China
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chunhua Liu
- Department of Blood Transfusion, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Weixi Wang
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Piaoping Kong
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhihua Tao
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Weiwei Liu
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
7
|
Senapati D, Sharma V, Rath SK, Rai U, Panigrahi N. Functional implications and therapeutic targeting of androgen response elements in prostate cancer. Biochimie 2023; 214:188-198. [PMID: 37460038 DOI: 10.1016/j.biochi.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The androgen receptor (AR) plays an essential role in the growth and progression of prostate cancer (CaP). Ligand-activated AR inside the nucleus binds to the androgen response element (ARE) of the target genes in dimeric form and recruits transcriptional machinery to facilitate gene transcription. Pharmacological compounds that inhibit the AR action either bind to the ligand binding domain (LBD) or interfere with the interactions of AR with other co-regulatory proteins, slowing the progression of the disease. However, the emergence of resistance to conventional treatment makes clinical management of CaP difficult. Resistance has been associated with activation of androgen/AR axis that restores AR transcriptional activity. Activated AR signaling in resistance cases can be mediated by several mechanisms including AR amplification, gain-of-function AR mutations, androgen receptor variant (ARVs), intracrine androgen production, and overexpression of AR coactivators. Importantly, in castration resistant prostate cancer, ARVs lacking the LBD become constitutively active and promote hormone-independent development, underlining the need to concentrate on the other domain or the AR-DNA interface for the identification of novel actionable targets. In this review, we highlight the plasticity of AR-DNA binding and explain how fine-tuning AR's cooperative interactions with DNA translate into developing an alternative strategy to antagonize AR activity.
Collapse
Affiliation(s)
- Dhirodatta Senapati
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India.
| | - Vikas Sharma
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Santosh Kumar Rath
- School of Pharmaceuticals and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Uddipak Rai
- School of Pharmaceuticals and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Naresh Panigrahi
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
8
|
Poutanen M, Hagberg Thulin M, Härkönen P. Targeting sex steroid biosynthesis for breast and prostate cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00609-y. [PMID: 37684402 DOI: 10.1038/s41568-023-00609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modelling, University of Turku, Turku, Finland.
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland.
| | - Malin Hagberg Thulin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pirkko Härkönen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
9
|
Congregado Ruiz B, Rivero Belenchón I, Lendínez Cano G, Medina López RA. Strategies to Re-Sensitize Castration-Resistant Prostate Cancer to Antiandrogen Therapy. Biomedicines 2023; 11:biomedicines11041105. [PMID: 37189723 DOI: 10.3390/biomedicines11041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Since prostate cancer (PCa) was described as androgen-dependent, the androgen receptor (AR) has become the mainstay of its systemic treatment: androgen deprivation therapy (ADT). Although, through recent years, more potent drugs have been incorporated, this chronic AR signaling inhibition inevitably led the tumor to an incurable phase of castration resistance. However, in the castration-resistant status, PCa cells remain highly dependent on the AR signaling axis, and proof of it is that many men with castration-resistant prostate cancer (CRPC) still respond to newer-generation AR signaling inhibitors (ARSis). Nevertheless, this response is limited in time, and soon, the tumor develops adaptive mechanisms that make it again nonresponsive to these treatments. For this reason, researchers are focused on searching for new alternatives to control these nonresponsive tumors, such as: (1) drugs with a different mechanism of action, (2) combination therapies to boost synergies, and (3) agents or strategies to resensitize tumors to previously addressed targets. Taking advantage of the wide variety of mechanisms that promote persistent or reactivated AR signaling in CRPC, many drugs explore this last interesting behavior. In this article, we will review those strategies and drugs that are able to resensitize cancer cells to previously used treatments through the use of "hinge" treatments with the objective of obtaining an oncological benefit. Some examples are: bipolar androgen therapy (BAT) and drugs such as indomethacin, niclosamide, lapatinib, panobinostat, clomipramine, metformin, and antisense oligonucleotides. All of them have shown, in addition to an inhibitory effect on PCa, the rewarding ability to overcome acquired resistance to antiandrogenic agents in CRPC, resensitizing the tumor cells to previously used ARSis.
Collapse
Affiliation(s)
- Belén Congregado Ruiz
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Inés Rivero Belenchón
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Lendínez Cano
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Rafael Antonio Medina López
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| |
Collapse
|
10
|
Su Z, Zhang Y, Cao J, Sun Y, Cai Y, Zhang B, He L, Zhang Z, Xie J, Meng Q, Luo L, Li F, Li J, Zhang J, Chen X, Hong A. Hyaluronic acid-FGF2-derived peptide bioconjugates for suppression of FGFR2 and AR simultaneously as an acne antagonist. J Nanobiotechnology 2023; 21:55. [PMID: 36803994 PMCID: PMC9938603 DOI: 10.1186/s12951-023-01812-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Acne is a chronic skin condition that has serious consequences for mental and social well-being because it frequently occurs on the face. Several acne treatment approaches have commonly been used but have been hampered by side effects or weak activity. Thus, the investigation of the safety and efficacy of anti-acne compounds is of considerable medical importance. Herein, an endogenous peptide (P5) derived from fibroblast growth factors 2 (FGF2) was conjugated to the polysaccharide hyaluronic acid (HA) to generate the bioconjugate nanoparticle HA-P5, which suppresses fibroblast growth factor receptors (FGFRs) to significantly rehabilitate acne lesions and reduce sebum accumulation in vivo and in vitro. Moreover, our results show that HA-P5 inhibits both fibroblast growth factor receptor 2 (FGFR2) and androgen receptor (AR) signalling in SZ95 cells, reverses the acne-prone transcriptome, and decreases sebum secretion. Furthermore, the cosuppression mechanism revealed that HA-P5 blocks FGFR2 activation, as well as the YTH N6-methyladenosine RNA binding protein F3 (YTHDF3) downstream molecules, including an N6-methyladenosine (m6A) reader that facilitates AR translation. More importantly, a significant difference between HA-P5 and the commercial FGFR inhibitor AZD4547 is that HA-P5 does not trigger the overexpression of aldo-keto reductase family 1 member C3 (AKR1C3), which blocks acne treatment by catalyzing the synthesis of testosterone. Overall, we demonstrate that a polysaccharide-conjugated and naturally derived oligopeptide HA-P5 can alleviate acne and act as an optimal FGFR2 inhibitor and reveal that YTHDF3 plays a crucial role in signalling between FGFR2 and AR.
Collapse
Affiliation(s)
- Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
- The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yuanmeng Sun
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yuling Cai
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Liu He
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zilei Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Junye Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qilin Meng
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lin Luo
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Fu Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jingsheng Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinting Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
11
|
Claudin-3 Loss of Expression Is a Prognostic Marker in Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24010803. [PMID: 36614243 PMCID: PMC9820886 DOI: 10.3390/ijms24010803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) development is the foremost concern after treatment of patients with high risk with locally advanced or metastatic prostate cancer. Androgen receptor (AR) is the main driver of CRPC development, through its interaction with epigenetic modifier genes, placing epigenetics modifications in the forefront of CRPC development. Comparing the DNA methylation and expression profile of androgen-sensitive and -refractory prostate cancer cells, we describe the epigenetic silencing of claudin-3 (CLDN3) in AR positive cells resistant to androgen deprivation (LNCaP-abl). CLDN3 silencing was associated with DNA methylation, loss of histone acetylation and H3K27 methylation, and was re-expressed by the combined treatment with the epigenetic modulators Aza and SAHA. From a functional point of view, CLDN3 loss was associated with increased cellular invasion. Immunohistochemical analysis showed decreased CLDN3 expression in samples from CRPC patients. Interestingly, CLDN3 expression was significantly decreased in samples from patients with high total Gleason score (≥8) and locally advanced tumors. Finally, CLDN3 loss of expression was associated with worse disease-free survival and time to clinical progression. In conclusion, our findings strongly indicate that epigenetic silencing of CLDN3 is a common event in CRPC that could be useful as a molecular marker for the prognosis of prostate cancer patients and to discriminate aggressive from indolent prostate tumors.
Collapse
|
12
|
Seale KN, Labriola MK, Jiang X"S, Armstrong A. Remission of progressive metastatic castration-resistant prostate cancer during abiraterone therapy following unilateral adrenalectomy for a functioning adrenal adenoma. BMJ Case Rep 2022; 15:15/10/e251036. [PMID: 36198431 PMCID: PMC9535143 DOI: 10.1136/bcr-2022-251036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Despite advances and introduction of new therapies in the last decade, metastatic castration-resistant prostate cancer (mCRPC) has a poor prognosis. The development of androgen axis-targeted therapies such as abiraterone acetate, enzalutamide and darolutamide can prolong survival in mCPRC; however, resistance remains a barrier to prolonged response, necessitating exploration into resistance mechanisms and locoregional therapies. Here, we describe a patient with mCRPC that was progressing on abiraterone acetate. He was also found to have primary hyperaldosteronism from a functional adrenal adenoma, and thus he had a partial adrenalectomy to remove this tumour. Pathology confirmed an aldosterone-producing adrenal adenoma. After his adrenalectomy, he had a sharp decline in both his PSA (prostate specific antigen) and testosterone levels, and he enjoyed a year-long period of remission after his adrenalectomy. We propose several explanations for his response, the most likely being that his adenoma was producing both aldosterone and androgens. This is a unique case of mCRPC responding to partial adrenalectomy from a functional adrenal adenoma, and it raises insights that warrant further investigation into underlying mechanisms of resistance to androgen-targeted therapies.
Collapse
Affiliation(s)
| | - Matthew K Labriola
- Department of Medicine, Duke University, Durham, North Carolina, USA,Division of Medical Oncology, Duke Cancer Institute, Durham, North Carolina, USA
| | | | - Andrew Armstrong
- Department of Medicine, Duke University, Durham, North Carolina, USA,Division of Medical Oncology, Duke Cancer Institute, Durham, North Carolina, USA,Duke Cancer Institute, Center for Prostate and Urologic Cancer, Durham, North Carolina, USA
| |
Collapse
|
13
|
Radiotherapy to the Primary Tumor: The First Step of a Tailored Therapy in Metastatic Prostate Cancer. Diagnostics (Basel) 2022; 12:diagnostics12081981. [PMID: 36010331 PMCID: PMC9407309 DOI: 10.3390/diagnostics12081981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
|
14
|
Storck WK, May AM, Westbrook TC, Duan Z, Morrissey C, Yates JA, Alumkal JJ. The Role of Epigenetic Change in Therapy-Induced Neuroendocrine Prostate Cancer Lineage Plasticity. Front Endocrinol (Lausanne) 2022; 13:926585. [PMID: 35909568 PMCID: PMC9329809 DOI: 10.3389/fendo.2022.926585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
The androgen receptor (AR) signaling pathway is critical for growth and differentiation of prostate cancer cells. For that reason, androgen deprivation therapy with medical or surgical castration is the principal treatment for metastatic prostate cancer. More recently, new potent AR signaling inhibitors (ARSIs) have been developed. These drugs improve survival for men with metastatic castration-resistant prostate cancer (CRPC), the lethal form of the disease. However, ARSI resistance is nearly universal. One recently appreciated resistance mechanism is lineage plasticity or switch from an AR-driven, luminal differentiation program to an alternate differentiation program. Importantly, lineage plasticity appears to be increasing in incidence in the era of new ARSIs, strongly implicating AR suppression in this process. Lineage plasticity and shift from AR-driven tumors occur on a continuum, ranging from AR-expressing tumors with low AR activity to AR-null tumors that have activation of alternate differentiation programs versus the canonical luminal program found in AR-driven tumors. In many cases, AR loss coincides with the activation of a neuronal program, most commonly exemplified as therapy-induced neuroendocrine prostate cancer (t-NEPC). While genetic events clearly contribute to prostate cancer lineage plasticity, it is also clear that epigenetic events-including chromatin modifications and DNA methylation-play a major role. Many epigenetic factors are now targetable with drugs, establishing the importance of clarifying critical epigenetic factors that promote lineage plasticity. Furthermore, epigenetic marks are readily measurable, demonstrating the importance of clarifying which measurements will help to identify tumors that have undergone or are at risk of undergoing lineage plasticity. In this review, we discuss the role of AR pathway loss and activation of a neuronal differentiation program as key contributors to t-NEPC lineage plasticity. We also discuss new epigenetic therapeutic strategies to reverse lineage plasticity, including those that have recently entered clinical trials.
Collapse
Affiliation(s)
- William K. Storck
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Allison M. May
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
| | - Thomas C. Westbrook
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Zhi Duan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Joel A. Yates
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Joshi J. Alumkal
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Sharpe MA, Baskin DS, Jenson AV, Baskin AM. Hijacking Sexual Immuno-Privilege in GBM-An Immuno-Evasion Strategy. Int J Mol Sci 2021; 22:10983. [PMID: 34681642 PMCID: PMC8536168 DOI: 10.3390/ijms222010983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/12/2023] Open
Abstract
Regulatory T-cells (Tregs) are immunosuppressive T-cells, which arrest immune responses to 'Self' tissues. Some immunosuppressive Tregs that recognize seminal epitopes suppress immune responses to the proteins in semen, in both men and women. We postulated that GBMs express reproductive-associated proteins to manipulate reproductive Tregs and to gain immune privilege. We analyzed four GBM transcriptome databases representing ≈900 tumors for hypoxia-responsive Tregs, steroidogenic pathways, and sperm/testicular and placenta-specific genes, stratifying tumors by expression. In silico analysis suggested that the presence of reproductive-associated Tregs in GBM tumors was associated with worse patient outcomes. These tumors have an androgenic signature, express male-specific antigens, and attract reproductive-associated Related Orphan Receptor C (RORC)-Treg immunosuppressive cells. GBM patient sera were interrogated for the presence of anti-sperm/testicular antibodies, along with age-matched controls, utilizing monkey testicle sections. GBM patient serum contained anti-sperm/testicular antibodies at levels > six-fold that of controls. Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) are associated with estrogenic tumors which appear to mimic placental tissue. We demonstrate that RORC-Tregs drive poor patient outcome, and Treg infiltration correlates strongly with androgen levels. Androgens support GBM expression of sperm/testicular proteins allowing Tregs from the patient's reproductive system to infiltrate the tumor. In contrast, estrogen appears responsible for MDSC/TAM immunosuppression.
Collapse
MESH Headings
- Androgens/metabolism
- Brain Neoplasms/immunology
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Databases, Factual
- Estrogens/metabolism
- Female
- Glioblastoma/immunology
- Glioblastoma/mortality
- Glioblastoma/pathology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Kaplan-Meier Estimate
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Microglia/immunology
- Microglia/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Microenvironment
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
Collapse
Affiliation(s)
- Martyn A. Sharpe
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA; (D.S.B.); (A.V.J.); (A.M.B.)
| | - David S. Baskin
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA; (D.S.B.); (A.V.J.); (A.M.B.)
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Amanda V. Jenson
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA; (D.S.B.); (A.V.J.); (A.M.B.)
| | - Alexandra M. Baskin
- Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA; (D.S.B.); (A.V.J.); (A.M.B.)
| |
Collapse
|
16
|
Pandey M, Cuddihy G, Gordon JA, Cox ME, Wasan KM. Inhibition of Scavenger Receptor Class B Type 1 (SR-B1) Expression and Activity as a Potential Novel Target to Disrupt Cholesterol Availability in Castration-Resistant Prostate Cancer. Pharmaceutics 2021; 13:1509. [PMID: 34575583 PMCID: PMC8467449 DOI: 10.3390/pharmaceutics13091509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
There have been several studies that have linked elevated scavenger receptor class b type 1 (SR-B1) expression and activity to the development and progression of castration-resistant prostate cancer (CRPC). SR-B1 facilitates the influx of cholesterol to the cell from lipoproteins in systemic circulation. This influx of cholesterol may be important for many cellular functions, including the synthesis of androgens. Castration-resistant prostate cancer tumors can synthesize androgens de novo to supplement the loss of exogenous sources often induced by androgen deprivation therapy. Silencing of SR-B1 may impact the ability of prostate cancer cells, particularly those of the castration-resistant state, to maintain the intracellular supply of androgens by removing a supply of cholesterol. SR-B1 expression is elevated in CRPC models and has been linked to poor survival of patients. The overarching belief has been that cholesterol modulation, through either synthesis or uptake inhibition, will impact essential signaling processes, impeding the proliferation of prostate cancer. The reduction in cellular cholesterol availability can impede prostate cancer proliferation through both decreased steroid synthesis and steroid-independent mechanisms, providing a potential therapeutic target for the treatment of prostate cancer. In this article, we discuss and highlight the work on SR-B1 as a potential novel drug target for CRPC management.
Collapse
Affiliation(s)
- Mitali Pandey
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Grace Cuddihy
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Jacob A. Gordon
- Oncology Bioscience, Oncology R&D, AstraZeneca, Boston, MA 02451, USA;
| | - Michael E. Cox
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Kishor M. Wasan
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| |
Collapse
|
17
|
Sena LA, Denmeade SR. Fatty Acid Synthesis in Prostate Cancer: Vulnerability or Epiphenomenon? Cancer Res 2021; 81:4385-4393. [PMID: 34145040 PMCID: PMC8416800 DOI: 10.1158/0008-5472.can-21-1392] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023]
Abstract
Tumor metabolism supports the energetic and biosynthetic needs of rapidly proliferating cancer cells and modifies intra- and intercellular signaling to enhance cancer cell invasion, metastasis, and immune evasion. Prostate cancer exhibits unique metabolism with high rates of de novo fatty acid synthesis driven by activation of the androgen receptor (AR). Increasing evidence suggests that activation of this pathway is functionally important to promote prostate cancer aggressiveness. However, the mechanisms by which fatty acid synthesis are beneficial to prostate cancer have not been well defined. In this review, we summarize evidence indicating that fatty acid synthesis drives progression of prostate cancer. We also explore explanations for this phenomenon and discuss future directions for targeting this pathway for patient benefit.
Collapse
Affiliation(s)
- Laura A Sena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Armstrong CM, Gao AC. Dysregulated androgen synthesis and anti-androgen resistance in advanced prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:292-300. [PMID: 34541028 PMCID: PMC8446765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Current therapies for treating castration resistant prostate cancer (CRPC) include abiraterone and enzalutamide which function by inhibiting androgen signaling by targeting androgen synthesis and antagonizing the androgen receptor (AR) respectively. While these therapies are initially beneficial, resistance inevitably develops. A number of pathways have been identified to contribute to CRPC progression and drug resistance. Among these is aberrant androgen signaling perpetuated by increased expression and activity of androgenic enzymes. While abiraterone inhibits the androgenic enzyme, CYP17A1, androgen synthesis inhibition by abiraterone is incomplete and sustained androgenesis persists, in part due to increased levels of AKR1C3 and steroid sulfatase (STS). Expression of both of these enzymes is increased in CRPC and is associated with resistance to anti-androgens. A number of studies have identified methods for targeting these enzymes. Indomethacin, a non-steroidal anti-inflammatory drug commonly used to treat inflammatory arthritis has been well established as an inhibitor of AKR1C3. Treatment of CRPC cells with indomethacin reduces cell growth and improves the response to enzalutamide and abiraterone. Similarly, STS inhibitors have been shown to reduce intracrine androgens and also reduce CRPC growth and enhance anti-androgen treatment. In this review, we provide an overview of androgen synthesis in CRPC and strategies aimed at inhibiting intracrine androgens.
Collapse
Affiliation(s)
- Cameron M Armstrong
- Department of Urology, University of California, DavisSacramento, CA 95817, USA
| | - Allen C Gao
- Department of Urology, University of California, DavisSacramento, CA 95817, USA
- Comprehensive Cancer Center, University of California, DavisSacramento, CA 95817, USA
- VA Northern California Health Care SystemSacramento, CA 95655, USA
| |
Collapse
|
19
|
Hou Z, Yang T, Mei Z, Zhang S, Gao Y, Chen X, Tan Q, Zhu X, Xu C, Lian J, Bian C, Liu Y, Le W, Hydyr N, Wu D, Chen L, Huang S, Li Z. Tracing steroidogenesis in prostate biopsy samples to unveil prostate tissue androgen metabolism characteristics and potential clinical application. J Steroid Biochem Mol Biol 2021; 210:105859. [PMID: 33677016 DOI: 10.1016/j.jsbmb.2021.105859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 01/26/2023]
Abstract
Androgens are essential for prostate cancer development. However, steroidogenesis has mainly been investigated in a limited number of prostate cancer cell lines, leading to varied conclusions and elusive clinical significance. Here, we established an ex vivo research platform with fresh biopsy samples transiently cultured with tritium- labelled androgens to trace steroidogenesis in prostate tissues and investigate its potential clinical application. DHEA was confirmed as the major precursor for androgen synthesis in the prostate. Significant amounts of oxidized DHEA and 5α-androstanedione were generated from DHEA in prostate biopsy samples. Prostatic steroidogenesis was independent of other clinical factors. Furthermore, prostatic steroidogenesis was suppressed after androgen deprivation therapy but increased upon treatment resistance, indicating that prostatic steroidogenesis was affected by clinical treatments. Overall, we provide an accessible research platform to characterize steroidogenesis in prostate tissue and indicate the correlation between prostatic steroidogenesis and disease progression.
Collapse
Affiliation(s)
- Zemin Hou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Tao Yang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zejie Mei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Si Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yuanyuan Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xi Chen
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Qilong Tan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xuyou Zhu
- Department of pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jianpo Lian
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Cuidong Bian
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Ying Liu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wei Le
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Nazarov Hydyr
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shengsong Huang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Zhenfei Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
20
|
Fontana F, Limonta P. Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells 2021; 10:1133. [PMID: 34067217 PMCID: PMC8151003 DOI: 10.3390/cells10051133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the molecular mechanisms underlying prostate cancer (PCa) progression towards its most aggressive, castration-resistant (CRPC) stage is urgently needed to improve the therapeutic options for this almost incurable pathology. Interestingly, CRPC is known to be characterized by a peculiar hormonal landscape. It is now well established that the androgen/androgen receptor (AR) axis is still active in CRPC cells. The persistent activity of this axis in PCa progression has been shown to be related to different mechanisms, such as intratumoral androgen synthesis, AR amplification and mutations, AR mRNA alternative splicing, increased expression/activity of AR-related transcription factors and coregulators. The hypothalamic gonadotropin-releasing hormone (GnRH), by binding to its specific receptors (GnRH-Rs) at the pituitary level, plays a pivotal role in the regulation of the reproductive functions. GnRH and GnRH-R are also expressed in different types of tumors, including PCa. Specifically, it has been demonstrated that, in CRPC cells, the activation of GnRH-Rs is associated with a significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic activity. This antitumor activity is mainly mediated by the GnRH-R-associated Gαi/cAMP signaling pathway. In this review, we dissect the molecular mechanisms underlying the role of the androgen/AR and GnRH/GnRH-R axes in CRPC progression and the possible therapeutic implications.
Collapse
Affiliation(s)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
21
|
Simon I, Perales S, Casado-Medina L, Rodríguez-Martínez A, Garrido-Navas MDC, Puche-Sanz I, Diaz-Mochon JJ, Alaminos C, Lupiañez P, Lorente JA, Serrano MJ, Real PJ. Cross-Resistance to Abiraterone and Enzalutamide in Castration Resistance Prostate Cancer Cellular Models Is Mediated by AR Transcriptional Reactivation. Cancers (Basel) 2021; 13:1483. [PMID: 33807106 PMCID: PMC8004828 DOI: 10.3390/cancers13061483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Androgen deprivation therapy (ADT) and novel hormonal agents (NHAs) (Abiraterone and Enzalutamide) are the goal standard for metastatic prostate cancer (PCa) treatment. Although ADT is initially effective, a subsequent castration resistance status (CRPC) is commonly developed. The expression of androgen receptor (AR) alternative splicing isoforms (AR-V7 and AR-V9) has been associated to CRPC. However, resistance mechanisms to novel NHAs are not yet well understood. Androgen-dependent PCa cell lines were used to generate resistant models to ADT only or in combination with Abiraterone and/or Enzalutamide (concomitant models). Functional and genetic analyses were performed for each resistance model by real-time cell monitoring assays, flow cytometry and RT-qPCR. In androgen-dependent PCa cells, the administration of Abiraterone and/or Enzalutamide as first-line treatment involved a critical inhibition of AR activity associated with a significant cell growth inhibition. Genetic analyses on ADT-resistant PCa cell lines showed that the CRPC phenotype was accompanied by overexpression of AR full-length and AR target genes, but not necessarily AR-V7 and/or AR-V9 isoforms. These ADT resistant cell lines showed higher proliferation rates, migration and invasion abilities. Importantly, ADT resistance induced cross-resistance to Abiraterone and/or Enzalutamide. Similarly, concomitant models possessed an elevated expression of AR full-length and proliferation rates and acquired cross-resistance to its alternative NHA as second-line treatment.
Collapse
Affiliation(s)
- Iris Simon
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Gene Regulation, Stem Cells & Development Lab, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (I.S.); (S.P.); (L.C.-M.); (P.L.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Sonia Perales
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Gene Regulation, Stem Cells & Development Lab, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (I.S.); (S.P.); (L.C.-M.); (P.L.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Laura Casado-Medina
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Gene Regulation, Stem Cells & Development Lab, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (I.S.); (S.P.); (L.C.-M.); (P.L.)
| | - Alba Rodríguez-Martínez
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (A.R.-M.); (M.d.C.G.-N.); (J.A.L.)
- Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Laboratory of Genetic Identification, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Maria del Carmen Garrido-Navas
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (A.R.-M.); (M.d.C.G.-N.); (J.A.L.)
- Universidad Internacional de la Rioja, Avenida de la Paz, 137, 26006 Logroño, Spain
| | - Ignacio Puche-Sanz
- Department of Urology, Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs.GRANADA), Hospital Universitario Virgen de las Nieves, University of Granada, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain;
| | - Juan J. Diaz-Mochon
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Nanochembio Lab, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain;
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus de Cartuja, University of Granada, 18071 Granada, Spain
| | - Clara Alaminos
- Department of Urology, University Hospital of Jaen, Avenida del Ejercito Español 10, 23007 Jaen, Spain;
| | - Pablo Lupiañez
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Gene Regulation, Stem Cells & Development Lab, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (I.S.); (S.P.); (L.C.-M.); (P.L.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Jose A. Lorente
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (A.R.-M.); (M.d.C.G.-N.); (J.A.L.)
- Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Laboratory of Genetic Identification, Avenida de la Investigación 11, 18016 Granada, Spain
| | - María J. Serrano
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (A.R.-M.); (M.d.C.G.-N.); (J.A.L.)
- Comprehensive Oncology Division, Clinical University Hospital, Virgen de las Nieves-IBS, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain
- Department of Pathological Anatomy, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Pedro J. Real
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Gene Regulation, Stem Cells & Development Lab, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (I.S.); (S.P.); (L.C.-M.); (P.L.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
- Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs.GRANADA), Personalized Oncology Group, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain
| |
Collapse
|
22
|
A detailed characterization of stepwise activation of the androgen receptor variant 7 in prostate cancer cells. Oncogene 2020; 40:1106-1117. [PMID: 33323969 PMCID: PMC7880901 DOI: 10.1038/s41388-020-01585-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 01/28/2023]
Abstract
Expression of the andrgogen receptor splice variant 7 (AR-V7) is frequently detected in castrate resistant prostate cancer and associated with resistance to AR-targeted therapies. While we have previously noted that homodimerization is required for the transcriptional activity of AR-V7 and that AR-V7 can also form heterodimers with the full-length AR (AR-FL), there are still many gaps of knowledge in AR-V7 stepwise activation. In the present study, we show that neither AR-V7 homodimerization nor AR-V7/AR-FL heterodimerization requires cofactors or DNA binding. AR-V7 can enter the nucleus as a monomer and drive a transcriptional program and DNA-damage repair as a homodimer. While forming a heterodimer with AR-FL to induce nuclear localization of unliganded AR-FL, AR-V7 does not need to interact with AR-FL to drive gene transcription or DNA-damage repair in prostate cancer cells that co-express AR-V7 and AR-FL. These data indicate that AR-V7 can function independently of its interaction with AR-FL in the true castrate state or “absence of ligand”, providing support for the utility of targeting AR-V7 in improving outcomes of patients with castrate resistant prostate cancer.
Collapse
|
23
|
Wang Y, Chen J, Wu Z, Ding W, Gao S, Gao Y, Xu C. Mechanisms of enzalutamide resistance in castration-resistant prostate cancer and therapeutic strategies to overcome it. Br J Pharmacol 2020; 178:239-261. [PMID: 33150960 DOI: 10.1111/bph.15300] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the second most common malignancy in men and androgen deprivation therapy is the first-line therapy. However, most cases will eventually develop castration-resistant prostate cancer after androgen deprivation therapy treatment. Enzalutamide is a second-generation androgen receptor antagonist approved by the Food and Drug Administration to treat patients with castration-resistant prostate cancer. Unfortunately, patients receiving enzalutamide treatment will ultimately develop resistance via various complicated mechanisms. This review examines the emerging information on these resistance mechanisms, including androgen receptor-related signalling pathways, glucocorticoid receptor-related pathways and metabolic effects. Notably, lineage plasticity and phenotype switching, gene polymorphisms and the relationship between microRNAs and drug resistance are addressed. Furthermore, potential therapeutic strategies for enzalutamide-resistant castration-resistant prostate cancer treatment are suggested, which can help discover more effective and specific regimens to overcome enzalutamide resistance.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiyuan Chen
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhengjie Wu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shen Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
24
|
Pisano C, Tucci M, Di Stefano RF, Turco F, Scagliotti GV, Di Maio M, Buttigliero C. Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: Current and future clinical implications. Crit Rev Oncol Hematol 2020; 157:103185. [PMID: 33341506 DOI: 10.1016/j.critrevonc.2020.103185] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/09/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
In last years several improvements have been made in the management of prostate cancer (PCa). Androgen receptor (AR) is considered the main driver in PCa growth and progression and most drugs are directed against AR pathway. Once PCa spreads outside the prostate, androgen deprivation therapy (ADT) represents the cornerstone of treatment in hormone-sensitive prostate cancer (HSPC). Unfortunately, the response is only transient and most patients eventually develop castration-resistant prostate cancer (CRPC). Most resistance mechanisms depend on maintenance of AR signalling in castration environment. Recent discoveries of multiple growth-promoting and survival pathways in PCa suggest the importance of alternative mechanisms involved in disease progression, such as DNA damage response pathway, PTEN/PI3K/AKT/mTOR pathway, cell cycle pathway, WNT pathway, TMPRSS2/ETS fusion, neuroendocrine pattern and immune system response. In this review, we discuss the interplay between AR signaling and other molecular pathways involved in PCa pathogenesis and their therapeutic implication in advanced disease.
Collapse
Affiliation(s)
- Chiara Pisano
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Marcello Tucci
- Medical Oncology, Cardinal Massaia Hospital, Corso Dante Alighieri 202, 14100, Asti, Italy.
| | - Rosario Francesco Di Stefano
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Fabio Turco
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Giorgio Vittorio Scagliotti
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, at Division of Medical Oncology, Ordine Mauriziano Hospital, Via Magellano 1, 10028, Turin, Italy
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, at Division of Medical Oncology, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| |
Collapse
|
25
|
Tonry C, Finn S, Armstrong J, Pennington SR. Clinical proteomics for prostate cancer: understanding prostate cancer pathology and protein biomarkers for improved disease management. Clin Proteomics 2020; 17:41. [PMID: 33292167 PMCID: PMC7678104 DOI: 10.1186/s12014-020-09305-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Following the introduction of routine Prostate Specific Antigen (PSA) screening in the early 1990's, Prostate Cancer (PCa) is often detected at an early stage. There are also a growing number of treatment options available and so the associated mortality rate is generally low. However, PCa is an extremely complex and heterogenous disease and many patients suffer disease recurrence following initial therapy. Disease recurrence commonly results in metastasis and metastatic PCa has an average survival rate of just 3-5 years. A significant problem in the clinical management of PCa is being able to differentiate between patients who will respond to standard therapies and those who may benefit from more aggressive intervention at an earlier stage. It is also acknowledged that for many men the disease is not life threatenting. Hence, there is a growing desire to identify patients who can be spared the significant side effects associated with PCa treatment until such time (if ever) their disease progresses to the point where treatment is required. To these important clinical needs, current biomarkers and clinical methods for patient stratification and personlised treatment are insufficient. This review provides a comprehensive overview of the complexities of PCa pathology and disease management. In this context it is possible to review current biomarkers and proteomic technologies that will support development of biomarker-driven decision tools to meet current important clinical needs. With such an in-depth understanding of disease pathology, the development of novel clinical biomarkers can proceed in an efficient and effective manner, such that they have a better chance of improving patient outcomes.
Collapse
Affiliation(s)
- Claire Tonry
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
| | | | | |
Collapse
|
26
|
Lounis MA, Péant B, Leclerc-Desaulniers K, Ganguli D, Daneault C, Ruiz M, Zoubeidi A, Mes-Masson AM, Saad F. Modulation of de Novo Lipogenesis Improves Response to Enzalutamide Treatment in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12113339. [PMID: 33187317 PMCID: PMC7698241 DOI: 10.3390/cancers12113339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Prostate cancer cells produce lipids via the activation of a specific pathway called fatty acid synthesis, also known as De novo lipogenesis. This pathway is essential for the survival and growth of most types of cancer cells, including prostate cancer. In our study, we showed that prostate cancer cells activate this lipid synthesis pathway to become more aggressive and develop resistance to commonly used therapeutic agents for advanced prostate cancer such as enzalutamide, an effective and commonly used androgen receptor (AR) targeted agent. Interestingly, by combining enzalutamide with a lipid synthesis pathway inhibitor, we were able to show that growth of prostate cancer tumors was more effectively reduced than with either agent alone. We also showed that this combination led to cell stress and death by changing the lipid content in the cell. These important findings could lead to new therapeutic strategies combining effective AR targeted therapies with lipid synthesis inhibitors for the treatment of advanced prostate cancer. Abstract De novo lipogenesis (DNL) is now considered as a hallmark of cancer. The overexpression of key enzymes of DNL is characteristic of both primary and advanced disease and may play an important role in resistance to therapies. Here, we showed that DNL is highly enhanced in castrate resistant prostate cancer (CRPC) cells compared to hormone sensitive and enzalutamide resistant cells. This observation suggests that this pathway plays an important role in the initiation of aggressive prostate cancer and in the development of enzalutamide resistance. Importantly, here we show that both prostate cancer cells sensitive and resistant to enzalutamide are dependent on DNL to proliferate. We next combined enzalutamide with an inhibitor of Stearoyl CoA Desaturase 1 (SCD1), an important enzyme in DNL, and observed significantly reduced tumor growth caused by the important change in tumoral lipid desaturation. Our findings suggest that the equilibrium between monounsaturated fatty acids and saturated fatty acids is essential in the establishment of the more aggressive prostate cancer phenotype and that the combination therapy induces a disruption of this equilibrium leading to an important decrease of cell proliferation. These findings provide new insights into the role of DNL in the progression of prostate cancer cells. The study also provides the rationale for the use of an inhibitor of SCD1 in combination with enzalutamide to improve response, delay enzalutamide resistance and improve disease free progression.
Collapse
Affiliation(s)
- Mohamed Amine Lounis
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Benjamin Péant
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Kim Leclerc-Desaulniers
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Dwaipayan Ganguli
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (D.G.); (A.Z.)
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Caroline Daneault
- Institut de Cardiologie de Montréal, Montreal, QC H1T 1C8, Canada; (C.D.); (M.R.)
| | - Matthieu Ruiz
- Institut de Cardiologie de Montréal, Montreal, QC H1T 1C8, Canada; (C.D.); (M.R.)
- Département de Nutrition, Université de Montréal (UdeM), Montreal, QC H3C 3J7, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (D.G.); (A.Z.)
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anne-Marie Mes-Masson
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Médecine, Université de Montréal (UdeM), Montreal, QC H3C 3J7, Canada
| | - Fred Saad
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Chirurgie, Université de Montréal (UdeM), Montreal, QC H3C 3J7, Canada
- Correspondence:
| |
Collapse
|
27
|
Wang Y, Gao W, Li Y, Chow ST, Xie W, Zhang X, Zhou J, Chan FL. Interplay between orphan nuclear receptors and androgen receptor-dependent or-independent growth signalings in prostate cancer. Mol Aspects Med 2020; 78:100921. [PMID: 33121737 DOI: 10.1016/j.mam.2020.100921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
It is well-established that both the initial and advanced growth of prostate cancer depends critically on androgens and thus on the activated androgen receptor (AR) -mediated signaling pathway. The unique hormone-dependent feature of prostate cancer forms the biological basis of hormone or androgen-deprivation therapy (ADT) that aims to suppress the AR signaling by androgen depletion or AR antagonists. ADT still remains the mainstay treatment option for locally advanced or metastatic prostate cancer. However, most patients upon ADT will inevitably develop therapy-resistance and progress to relapse in the form of castration-resistant disease (castration-resistant prostate cancer or CRPC) or even a more aggressive androgen-independent subtype (therapy-related neuroendocrine prostate cancer or NEPC). Recent advances show that besides AR, some ligand-independent members of nuclear receptor superfamily-designated as orphan nuclear receptors (ONRs), as their endogenous physiological ligands are either absent or not yet identified to date, also play significant roles in the growth regulation of prostate cancer via multiple AR-dependent or -independent (AR-bypass) pathways or mechanisms. In this review, we summarize the recent progress in the newly elucidated roles of ONRs in prostate cancer, with a focus on their interplay in the AR-dependent pathways (intratumoral androgen biosynthesis and suppression of AR signaling) and AR-independent pathways or cellular processes (hypoxia, oncogene- or tumor suppressor-induced senescence, apoptosis and regulation of prostate cancer stem cells). These ONRs with their newly characterized roles not only can serve as novel biomarkers but also as potential therapeutic targets for management of advanced prostate cancer.
Collapse
Affiliation(s)
- Yuliang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Weijie Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Youjia Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sin Ting Chow
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenjuan Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xingxing Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianfu Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510370, China
| | - Franky Leung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Hertzog JR, Zhang Z, Bignan G, Connolly PJ, Heindl JE, Janetopoulos CJ, Rupnow BA, McDevitt TM. AKR1C3 mediates pan-AR antagonist resistance in castration-resistant prostate cancer. Prostate 2020; 80:1223-1232. [PMID: 33258507 DOI: 10.1002/pros.24049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Antiandrogens are effective therapies that block androgen receptor (AR) transactivation and signaling in over 50% of castration-resistant prostate cancer (CRPC) patients. However, an estimated 30% of responders will develop resistance to these therapies within 2 years. JNJ-pan-AR is a broad-spectrum AR antagonist that inhibits wild-type AR as well as several mutated versions of AR that have emerged in patients on chronic antiandrogen treatment. In this work, we aimed to identify the potential underlying mechanisms of resistance that may result from chronic JNJ-pan-AR treatment. METHODS The LNCaP JNJR prostate cancer subline was developed by chronically exposing LNCaP parental cells to JNJ-pan-AR. Transcriptomic and proteomic profiling was performed to identify potential drivers and/or biomarkers of the resistant phenotype. RESULTS Several enzymes critical to intratumoral androgen biosynthesis, Aldo-keto reductase family 1 member C3 (AKR1C3), UGT2B15, and UGT2B17 were identified as potential upstream regulators of the JNJ-pan-AR resistant cells. While we confirmed the overexpression of all three enzymes in the resistant cells only AKR1C3 expression played a functional role in driving JNJ-pan-AR resistance. We also discovered that AKR1C3 regulates UGT2B15 and UGT2B17 expression in JNJ-pan-AR resistant cells. CONCLUSIONS This study supports the rationale to further investigate the benefits of AKR1C3 inhibition in combination with antiandrogens to prevent CRPC disease progression.
Collapse
Affiliation(s)
- Jennifer R Hertzog
- Discovery Oncology, Janssen R&D US, Spring House, Pennsylvania
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania
| | - Zhuming Zhang
- Discovery Chemistry, Janssen R&D US, Spring House, Pennsylvania
| | - Gilles Bignan
- Discovery Chemistry, Janssen R&D US, Spring House, Pennsylvania
| | | | - Jason E Heindl
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania
| | - Christopher J Janetopoulos
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania
| | - Brent A Rupnow
- Discovery Oncology, Janssen R&D US, Spring House, Pennsylvania
| | | |
Collapse
|
29
|
Bungaro M, Buttigliero C, Tucci M. Overcoming the mechanisms of primary and acquired resistance to new generation hormonal therapies in advanced prostate cancer: focus on androgen receptor independent pathways. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:726-741. [PMID: 35582226 PMCID: PMC8992570 DOI: 10.20517/cdr.2020.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 11/25/2022]
Abstract
In recent years, many therapeutic advances have been made in the management of castration-resistant prostate cancer, with the development and approval of many new drugs. The androgen receptor (AR) is the main driver in prostate cancer growth and progression and the most effective therapeutic agents are still directed against this pathway. Among these, new generation hormonal agents (NHA) including enzalutamide, abiraterone acetate, apalutamide, and darolutamide have shown to improve overall survival and quality of life of prostate cancer patients. Unfortunately, despite the demonstrated benefit, not all patients respond to treatment and almost all are destined to develop a resistant phenotype. Although the resistance mechanisms are not fully understood, the most studied ones include the activation of both dependent and independent AR signalling pathways. Recent findings about multiple growth-promoting and survival pathways in advanced prostate cancer suggest the presence of alternative mechanisms involved in disease progression, and an interplay between these pathways and AR signalling. In this review we discuss the possible mechanisms of primary and acquired resistance to NHA with a focus on AR independent pathways.
Collapse
Affiliation(s)
- Maristella Bungaro
- Medical Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Consuelo Buttigliero
- Medical Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Marcello Tucci
- Medical Oncology, Cardinal Massaia Hospital, Asti 14100, Italy
| |
Collapse
|
30
|
Jonnalagadda B, Arockiasamy S, Krishnamoorthy S. Cellular growth factors as prospective therapeutic targets for combination therapy in androgen independent prostate cancer (AIPC). Life Sci 2020; 259:118208. [PMID: 32763294 DOI: 10.1016/j.lfs.2020.118208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022]
Abstract
Cancer is the second leading cause of death worldwide, with prostate cancer, the second most commonly diagnosed cancer among men. Prostate cancer develops in the peripheral zone of the prostate gland, and the initial progression largely depends on androgens, the male reproductive hormone that regulates the growth and development of the prostate gland and testis. The currently available treatments for androgen dependent prostate cancer are, however, effective for a limited period, where the patients show disease relapse, and develop androgen-independent prostate cancer (AIPC). Studies have shown various intricate cellular processes such as, deregulation in multiple biochemical and signaling pathways, intra-tumoral androgen synthesis; AR over-expression and mutations and AR activation via alternative growth pathways are involved in progression of AIPC. The currently approved treatment strategies target a single cellular protein or pathway, where the cells slowly develop resistance and adapt to proliferate via other cellular pathways over a period of time. Therefore, an increased research aims to understand the efficacy of combination therapy, which targets multiple interlinked pathways responsible for acquisition of resistance and survival. The combination therapy is also shown to enhance efficacy as well as reduce toxicity of the drugs. Thus, the present review focuses on the signaling pathways involved in the progression of AIPC, comprising a heterogeneous population of cells and the advantages of combination therapy. Several clinical and pre-clinical studies on a variety of combination treatments have shown beneficial outcomes, yet further research is needed to understand the potential of combination therapy and its diverse strategies.
Collapse
Affiliation(s)
- Bhavana Jonnalagadda
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| | - Sriram Krishnamoorthy
- Department of Urology, Sri Ramachandra Medical Centre, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
31
|
Nassar ZD, Mah CY, Dehairs J, Burvenich IJG, Irani S, Centenera MM, Helm M, Shrestha RK, Moldovan M, Don AS, Holst J, Scott AM, Horvath LG, Lynn DJ, Selth LA, Hoy AJ, Swinnen JV, Butler LM. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. eLife 2020; 9:e54166. [PMID: 32686647 PMCID: PMC7386908 DOI: 10.7554/elife.54166] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/16/2020] [Indexed: 12/27/2022] Open
Abstract
Fatty acid β-oxidation (FAO) is the main bioenergetic pathway in human prostate cancer (PCa) and a promising novel therapeutic vulnerability. Here we demonstrate therapeutic efficacy of targeting FAO in clinical prostate tumors cultured ex vivo, and identify DECR1, encoding the rate-limiting enzyme for oxidation of polyunsaturated fatty acids (PUFAs), as robustly overexpressed in PCa tissues and associated with shorter relapse-free survival. DECR1 is a negatively-regulated androgen receptor (AR) target gene and, therefore, may promote PCa cell survival and resistance to AR targeting therapeutics. DECR1 knockdown selectively inhibited β-oxidation of PUFAs, inhibited proliferation and migration of PCa cells, including treatment resistant lines, and suppressed tumor cell proliferation and metastasis in mouse xenograft models. Mechanistically, targeting of DECR1 caused cellular accumulation of PUFAs, enhanced mitochondrial oxidative stress and lipid peroxidation, and induced ferroptosis. These findings implicate PUFA oxidation via DECR1 as an unexplored facet of FAO that promotes survival of PCa cells.
Collapse
Grants
- Early Career Fellowship,1138648 National Health and Medical Research Council
- Project Grants C16/15/073 and C32/17/052 KU Leuven
- Future Fellowship,FT130101004 Australian Research Council
- Beat Cancer Fellowship,PRF1117 Cancer Council South Australia
- Revolutionary Team Award,MRTA3 Movember Foundation
- Project Grant,1121057 National Health and Medical Research Council
- Project Grant,1100626 National Health and Medical Research Council
- Fellowship,1084178 National Health and Medical Research Council
- Young Investigator Award,YI 1417 Prostate Cancer Foundation of Australia
- Project Grant,1164798 Cure Cancer Australia Foundation
- Group Leader Award EMBL Australia
- Robinson Fellowship University of Sydney
- Project Grants G.0841.15 and G.0C22.19N Fonds Wetenschappelijk Onderzoek
- 1138648 National Health and Medical Research Council
- 1121057 National Health and Medical Research Council
- 1100626 National Health and Medical Research Council
- 1084178 National Health and Medical Research Council
- YI 1417 Prostate Cancer Foundation of Australia
- 1164798 Cure Cancer Australia Foundation
- FT130101004 Australian Research Council
- PRF1117 Cancer Council South Australia
- MRTA3 Movember Foundation
- Freemasons Foundation Centre for Men's Health, University of Adelaide
Collapse
Affiliation(s)
- Zeyad D Nassar
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Chui Yan Mah
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Jonas Dehairs
- KU Leuven- University of Leuven, LKI- Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and CancerLeuvenBelgium
| | - Ingrid JG Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe UniversityMelbourneAustralia
| | - Swati Irani
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Margaret M Centenera
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Madison Helm
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Raj K Shrestha
- Dame Roma Mitchell Cancer Research Laboratories, University of AdelaideAdelaideAustralia
| | - Max Moldovan
- South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Anthony S Don
- NHMRC Clinical Trials Centre, and Centenary Institute, The University of SydneyCamperdownAustralia
| | - Jeff Holst
- Translational Cancer Metabolism Laboratory, School of Medical Sciences and Prince of Wales Clinical School, UNSW SydneySydneyAustralia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe UniversityMelbourneAustralia
| | - Lisa G Horvath
- Garvan Institute of Medical Research, NSW 2010; University of Sydney, NSW 2006; and University of New South WalesDarlinghurstAustralia
| | - David J Lynn
- South Australian Health and Medical Research InstituteAdelaideAustralia
- College of Medicine and Public Health, Flinders UniversityBedford ParkAustralia
| | - Luke A Selth
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- Dame Roma Mitchell Cancer Research Laboratories, University of AdelaideAdelaideAustralia
- College of Medicine and Public Health, Flinders UniversityBedford ParkAustralia
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of SydneyCamperdownAustralia
| | - Johannes V Swinnen
- KU Leuven- University of Leuven, LKI- Leuven Cancer Institute, Department of Oncology, Laboratory of Lipid Metabolism and CancerLeuvenBelgium
| | - Lisa M Butler
- University of Adelaide Medical School and Freemasons Foundation Centre for Men’s Health, University of AdelaideAdelaideAustralia
- South Australian Health and Medical Research InstituteAdelaideAustralia
| |
Collapse
|
32
|
Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci 2020; 21:E4507. [PMID: 32630372 PMCID: PMC7350257 DOI: 10.3390/ijms21124507] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Oncogenic activation of the phosphatidylinositol-3-kinase (PI3K), protein kinase B (PKB/AKT), and mammalian target of rapamycin (mTOR) pathway is a frequent event in prostate cancer that facilitates tumor formation, disease progression and therapeutic resistance. Recent discoveries indicate that the complex crosstalk between the PI3K-AKT-mTOR pathway and multiple interacting cell signaling cascades can further promote prostate cancer progression and influence the sensitivity of prostate cancer cells to PI3K-AKT-mTOR-targeted therapies being explored in the clinic, as well as standard treatment approaches such as androgen-deprivation therapy (ADT). However, the full extent of the PI3K-AKT-mTOR signaling network during prostate tumorigenesis, invasive progression and disease recurrence remains to be determined. In this review, we outline the emerging diversity of the genetic alterations that lead to activated PI3K-AKT-mTOR signaling in prostate cancer, and discuss new mechanistic insights into the interplay between the PI3K-AKT-mTOR pathway and several key interacting oncogenic signaling cascades that can cooperate to facilitate prostate cancer growth and drug-resistance, specifically the androgen receptor (AR), mitogen-activated protein kinase (MAPK), and WNT signaling cascades. Ultimately, deepening our understanding of the broader PI3K-AKT-mTOR signaling network is crucial to aid patient stratification for PI3K-AKT-mTOR pathway-directed therapies, and to discover new therapeutic approaches for prostate cancer that improve patient outcome.
Collapse
Affiliation(s)
| | | | | | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, Wales, UK; (B.Y.S.); (M.S.D.); (M.J.S.)
| |
Collapse
|
33
|
Manceau C, Mourey L, Pouessel D, Ploussard G. Abiraterone acetate in combination with prednisone in the treatment of prostate cancer: safety and efficacy. Expert Rev Anticancer Ther 2020; 20:629-638. [PMID: 32552120 DOI: 10.1080/14737140.2020.1785289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Metastatic prostate cancer is a life-threatening disease and an important public health concern with prevalence rates varying drastically between high- and low-income countries. Androgen-deprivation therapy alone has been the first-line treatment option for decades, temporarily controlling disease until invariable tumor regression. At the castration-resistant stage, metastatic disease becomes lethal. In recent years several new treatments, including second-generation hormone therapies, have proven to be life-prolonging in metastatic castration-resistant prostate cancer, and at an earlier hormone-sensitive stage. Abiraterone acetate in combination with prednisone was the first approved hormone therapy demonstrating survival benefit, and represents, to date, an alternative, or a second-line treatment after taxane-based chemotherapy, in addition to androgen-deprivation therapy, in hormone sensitive, and metastatic castration-resistant prostate cancer. AREA COVERED We performed a literature review of papers from 2012 to 2020 using PubMed, Web of Science, and Embase searching for the safety and efficacy of abiraterone acetate in prostate cancer management. Search results were limited to phase III-IV trials and post hoc analysis of Phase III trials evaluated Abiraterone acetate in the English language. EXPERT OPINION This literature review confirms the role of abiraterone acetate in the therapeutic landscape with well-proven safety and efficacy, demonstrated in trials and post-approval studies.
Collapse
Affiliation(s)
- Cécile Manceau
- Department of Urology, CHU-IUCT Oncopole , Toulouse, France
| | - Loic Mourey
- Department of Medical Oncology, Institut Claudius Régaud, IUCT Oncopole , Toulouse, France
| | - Damien Pouessel
- Department of Medical Oncology, Institut Claudius Régaud, IUCT Oncopole , Toulouse, France
| | | |
Collapse
|
34
|
Novel androgen receptor antagonist identified by structure-based virtual screening, structural optimization, and biological evaluation. Eur J Med Chem 2020; 192:112156. [DOI: 10.1016/j.ejmech.2020.112156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022]
|
35
|
Madan RA, Schmidt KT, Karzai F, Peer CJ, Cordes LM, Chau CH, Steinberg SM, Owens H, Eisner J, Moore WR, Dahut WL, Gulley JL, Figg WD. Phase 2 Study of Seviteronel (INO-464) in Patients With Metastatic Castration-Resistant Prostate Cancer After Enzalutamide Treatment. Clin Genitourin Cancer 2020; 18:258-267.e1. [PMID: 32327394 DOI: 10.1016/j.clgc.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Seviteronel was being developed by Innocrin Pharmaceuticals as a selective cytochrome P450c17a (CYP17) 17,20-lyase (lyase) inhibitor and androgen receptor antagonist with activity against prostate cancer cells in vitro and in vivo. This open-label phase 2 clinical study evaluated the tolerability and efficacy of seviteronel in patients with metastatic castration-resistant prostate cancer (mCRPC) previously treated with enzalutamide. PATIENTS AND METHODS Patients with mCRPC whose disease previously progressed while receiving enzalutamide therapy were divided into 2 cohorts on the basis of prior exposure to docetaxel. Seviteronel was administered without routine oral steroids either twice daily with dose titration (450 mg) or once daily without dose titration (600 or 750 mg). The primary objective was to determine the rate of significant prostate-specific antigen response (ie, decline of ≥ 50%) after 12 weeks of seviteronel therapy. RESULTS Seventeen patients, with a median (range) age of 71 (60-92) years, were enrolled, with 8 patients having received prior docetaxel. Patients received a median of 2 cycles of treatment, with most patients discontinuing treatment because of toxicity related to the study drug. The most common adverse events included concentration impairment, fatigue, tremor, and nausea. Despite changes in dosing, the study was closed prematurely because of the high magnitude of toxicity. One (6%) of 17 patients experienced a significant decline in prostate-specific antigen. CONCLUSION Seviteronel was not generally well tolerated nor associated with significant clinical responses in patients with mCRPC who had previously received enzalutamide. Further investigation of single-agent seviteronel in this patient population is not warranted; however, studies investigating seviteronel with low-dose dexamethasone are ongoing in patients with androgen receptor-positive tumors.
Collapse
Affiliation(s)
- Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Keith T Schmidt
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Cody J Peer
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lisa M Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Cindy H Chau
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Helen Owens
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - William R Moore
- Innocrin Pharmaceuticals Inc, Durham, NC; Vizuri Health Sciences LLC, Fairfax, VA
| | - William L Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - William D Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
36
|
Extra-adrenal glucocorticoid biosynthesis: implications for autoimmune and inflammatory disorders. Genes Immun 2020; 21:150-168. [PMID: 32203088 PMCID: PMC7276297 DOI: 10.1038/s41435-020-0096-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Glucocorticoid synthesis is a complex, multistep process that starts with cholesterol being delivered to the inner membrane of mitochondria by StAR and StAR-related proteins. Here its side chain is cleaved by CYP11A1 producing pregnenolone. Pregnenolone is converted to cortisol by the enzymes 3-βHSD, CYP17A1, CYP21A2 and CYP11B1. Glucocorticoids play a critical role in the regulation of the immune system and exert their action through the glucocorticoid receptor (GR). Although corticosteroids are primarily produced in the adrenal gland, they can also be produced in a number of extra-adrenal tissue including the immune system, skin, brain, and intestine. Glucocorticoid production is regulated by ACTH, CRH, and cytokines such as IL-1, IL-6 and TNFα. The bioavailability of cortisol is also dependent on its interconversion to cortisone which is inactive, by 11βHSD1/2. Local and systemic glucocorticoid biosynthesis can be stimulated by ultraviolet B, explaining its immunosuppressive activity. In this review, we want to emphasize that dysregulation of extra-adrenal glucocorticoid production can play a key role in a variety of autoimmune diseases including multiple sclerosis (MS), lupus erythematosus (LE), rheumatoid arthritis (RA), and skin inflammatory disorders such as psoriasis and atopic dermatitis (AD). Further research on local glucocorticoid production and its bioavailability may open doors into new therapies for autoimmune diseases.
Collapse
|
37
|
Morsy A, Trippier PC. Reversal of Apalutamide and Darolutamide Aldo-Keto Reductase 1C3-Mediated Resistance by a Small Molecule Inhibitor. ACS Chem Biol 2020; 15:646-650. [PMID: 32125151 DOI: 10.1021/acschembio.0c00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The antiandrogen therapeutics apalutamide and darolutamide entered the clinic in 2018 and 2019, respectively, for the treatment of castration-resistant prostate cancer (CRPC). Increased expression of the enzyme aldo-keto reductase 1C3 (AKR1C3) is phenotypic of CRPC. The enzyme acts to circumvent castration by producing potent androgens that drive proliferation. Furthermore, AKR1C3 mediates chemotherapeutic resistance to the standard of care, enzalutamide, a structural analogue of apalutamide. Resistance develops in almost all CRPC patients within three months of beginning treatment. Herein, we report that both apalutamide and the structurally distinct darolutamide induce AKR1C3 expression in in vitro models of prostate cancer and are susceptible to AKR1C3-mediated resistance. This effect is countered by pretreatment with a potent and highly selective AKR1C3 inhibitor, sensitizing high AKR1C3 expressing prostate cancer cell lines to the action of both chemotherapeutics with a concomitant reduction in expression of AKR1C3 and the biomarker prostate-specific antigen.
Collapse
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
38
|
Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH. The role of adrenal derived androgens in castration resistant prostate cancer. J Steroid Biochem Mol Biol 2020; 197:105506. [PMID: 31672619 PMCID: PMC7883395 DOI: 10.1016/j.jsbmb.2019.105506] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023]
Abstract
Castration resistant prostate cancer (CRPC) remains androgen dependant despite castrate levels of circulating testosterone following androgen deprivation therapy, the first line of treatment for advanced metstatic prostate cancer. CRPC is characterized by alterations in the expression levels of steroidgenic enzymes that enable the tumour to derive potent androgens from circulating adrenal androgen precursors. Intratumoral androgen biosynthesis leads to the localized production of both canonical androgens such as 5α-dihydrotestosterone (DHT) as well as less well characterized 11-oxygenated androgens, which until recently have been overlooked in the context of CRPC. In this review we discuss the contribution of both canonical and 11-oxygenated androgen precursors to the intratumoral androgen pool in CRPC. We present evidence that CRPC remains androgen dependent and discuss the alterations in steroidogenic enzyme expression and how these affect the various pathways to intratumoral androgen biosynthesis. Finally we summarize the current treatment strategies for targeting adrenal derived androgen biosynthesis.
Collapse
Affiliation(s)
- Monique Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
39
|
Zhu Y, Luo J. Regulation of androgen receptor variants in prostate cancer. Asian J Urol 2020; 7:251-257. [PMID: 33024700 PMCID: PMC7525062 DOI: 10.1016/j.ajur.2020.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022] Open
Abstract
Aberrant activation of androgen receptor (AR) signaling occurs in patients treated with AR-targeted therapies, contributing to the development of castration-resistant prostate cancer (CRPC) and therapeutic resistance. Over the past decade, many AR variants (AR-Vs) have been identified in prostate cancer cell lines and clinical CRPC specimens. These AR-Vs lack the COOH-terminal ligand-binding domain (LBD), and may mediate constitutively active AR signaling acquired following AR-targeting therapies. AR splice variant-7 (AR-V7), one of the most well characterized AR-Vs, can be reliably measured in tissue and liquid biopsy specimens, and blood-based detection of AR-V7 is a reliable indicator of poor outcome to relatively novel hormonal therapies (NHT) such as abiraterone and enzalutamide in men with metastatic CRPC (mCRPC). Given the important clinical implication of AR-Vs, this short review will focus on studies addressing how AR-Vs are regulated in prostate cancer. With regard to the molecular origin of AR-Vs, it is established that expression of AR-Vs is highly correlated with androgen deprivation and suppression of AR signaling. Therapeutic targeting of the AR axis may result in active transcription of the AR gene, elevated activities of certain components of the mRNA splicing machinery, as well as AR genomic alterations, all of which may explain the molecular origin of AR-Vs. Although a unified hypothesis is currently lacking, existing data suggest that elevated expression of AR-Vs, which in general occurs quite specifically in a cellular environment where the canonical AR signaling is suppressed, is driven by both genomic and epigenomic features acquired in the development of CRPC.
Collapse
Affiliation(s)
- Yezi Zhu
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA.,LIVESTRONG Cancer Institutes, The University of Texas, Austin, TX, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
40
|
Goodman JR, Ashrafian H. The Promising Connection Between Data Science and Evolutionary Theory in Oncology. Front Oncol 2020; 9:1527. [PMID: 32039014 PMCID: PMC6984404 DOI: 10.3389/fonc.2019.01527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
Theoretical and empirical work over the past several decades suggests that oncogenesis and disease progression represents an evolutionary story. Despite this knowledge, current anti-resistance strategies to drugs are often managed through treating cancers as independent biological agents divorced from human activity. Yet once drug resistance to cancer treatment is understood as a product of artificial or anthropogenic rather than unconscious selection, oncologists could improve outcomes for their patients by consulting evolutionary studies of oncology prior to clinical trial and treatment plan design. In the setting of multiple cancer types, for example, a machine learning algorithm can predict the genetic changes known to be related to drug resistance. In this way, a unity between technology and theory might have practical clinical implications—and may pave the way for a new paradigm shift in medicine.
Collapse
Affiliation(s)
- Jonathan R Goodman
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge, United Kingdom
| | - Hutan Ashrafian
- Institute of Global Health Innovation, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Ferroni C, Varchi G. Non-Steroidal Androgen Receptor Antagonists and Prostate Cancer: A Survey on Chemical Structures Binding this Fast-Mutating Target. Curr Med Chem 2019; 26:6053-6073. [PMID: 30209993 DOI: 10.2174/0929867325666180913095239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/01/2023]
Abstract
The Androgen Receptor (AR) pathway plays a major role in both the pathogenesis and progression of prostate cancer. In particular, AR is chiefly involved in the development of Castration-Resistant Prostate Cancer (CRPC) as well as in the resistance to the secondgeneration AR antagonist enzalutamide, and to the selective inhibitor of cytochrome P450 17A1 (CYP17A1) abiraterone. Several small molecules acting as AR antagonists have been designed and developed so far, also as a result of the ability of cells expressing this molecular target to rapidly develop resistance and turn pure receptor antagonists into ineffective or event detrimental molecules. This review covers a survey of most promising classes of non-steroidal androgen receptor antagonists, also providing insights into their mechanism of action and efficacy in treating prostate cancer.
Collapse
Affiliation(s)
- Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| |
Collapse
|
42
|
Zhao J, Zhang M, Liu J, Liu Z, Shen P, Nie L, Guo W, Cai D, Liu J, Armstrong CM, Sun G, Chen J, Zhu S, Dai J, Zhang H, Zhao P, Zhang X, Yin X, Zhu X, Ni Y, Chen N, Zeng H. AKR1C3 expression in primary lesion rebiopsy at the time of metastatic castration-resistant prostate cancer is strongly associated with poor efficacy of abiraterone as a first-line therapy. Prostate 2019; 79:1553-1562. [PMID: 31294486 DOI: 10.1002/pros.23875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/17/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Previous studies had demonstrated that aldo-keto reductase family 1 member C3 (AKR1C3), a crucial enzyme in the steroidogenic pathway, played an important role in abiraterone (ABI)-resistance in metastatic castration-resistant prostate cancer (mCRPC) by increasing intratumoral androgen synthesis. However, its value in predicting treatment response in patients with mCRPC is unknown. METHOD AND MATERIALS Data of 163 patients with metastatic prostate cancer between 2016 and 2018 were retrospectively analyzed. All patients received androgen deprivation therapy plus bicalutamide after initial diagnosis. After mCRPC, either ABI or docetaxel (DOC) treatment was used. No patient had the experience of therapy to the primary tumor. AKR1C3 protein was detected by immunohistochemical staining from rebiopsy (re-Bx) of primary prostate lesions at mCRPC. Kaplan-Meier curves and Cox regression were used to analyze the association between AKR1C3 and treatment outcomes. RESULTS AKR1C3 was positive in 58 of 163 (35.6%) cases. AKR1C3 was associated with significantly shorter median prostate-specific antigen progression-free survival (mPSA-PFS, 5.6 mo vs 10.7 mo; P < .001), median radiographic progression-free survival (mrPFS, 11.1 mo vs 18.0 mo; P = .018), and numerically shorter median overall survival (mOS, 20.4 mo vs 26.4 mo; P = .157). Notably, AKR1C3-positive patients treated with ABI, but not DOC, had shorter mPSA-PFS and mrPFS compared with AKR1C3-negative men, (mPSA-PFS, 5.7 mo vs. 11.2 mo; P < .001; mrPFS, 12.4 mo vs 23.3 mo; P = .048). However, AKR1C3 expression had no correlation to PSA response or OS. Multivariate Cox regression indicated that AKR1C3 was independently accompanied with rapid PSA progression (hazard ratio [HR], 3.64; 95% confidence interval [CI], 2.10-6.31; P < 0.001) and radiological progression (HR, 2.08; 95% CI, 1.05-4.11; P = .036) in the ABI-treated subgroup. CONCLUSION This study demonstrated that AKR1C3 detection in tissues from prostate re-Bx at mCRPC was associated with early resistance to ABI but not DOC. These results will help to make optimal personalized treatment decisions for patients with mCRPC, facilitate physicians predicting the effectiveness of ABI.
Collapse
Affiliation(s)
- Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Mengni Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiandong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Shen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenhao Guo
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Diming Cai
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cameron M Armstrong
- Department of Urology and Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Sha Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jindong Dai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Haoran Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Zhao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingming Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxue Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xudong Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchao Ni
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
He Y, Lu J, Ye Z, Hao S, Wang L, Kohli M, Tindall DJ, Li B, Zhu R, Wang L, Huang H. Androgen receptor splice variants bind to constitutively open chromatin and promote abiraterone-resistant growth of prostate cancer. Nucleic Acids Res 2019; 46:1895-1911. [PMID: 29309643 PMCID: PMC5829742 DOI: 10.1093/nar/gkx1306] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Androgen receptor (AR) splice variants (ARVs) are implicated in development of castration-resistant prostate cancer (CRPC). Upregulation of ARVs often correlates with persistent AR activity after androgen deprivation therapy (ADT). However, the genomic and epigenomic characteristics of ARV-dependent cistrome and the disease relevance of ARV-mediated transcriptome remain elusive. Through integrated chromatin immunoprecipitation coupled sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analysis, we identified ARV-preferential-binding sites (ARV-PBS) and a set of genes preferentially transactivated by ARVs in CRPC cells. ARVs preferentially bind to enhancers located in nucleosome-depleted regions harboring the full AR-response element (AREfull), while full-length AR (ARFL)-PBS are enhancers resided in closed chromatin regions containing the composite FOXA1-nnnn-AREhalf motif. ARV-PBS exclusively overlapped with AR binding sites in castration-resistant (CR) tumors in patients and ARV-preferentially activated genes were up-regulated in abiraterone-resistant patient specimens. Expression of ARV-PBS target genes, such as oncogene RAP2A and cell cycle gene E2F7, were significantly associated with castration resistance, poor survival and tumor progression. We uncover distinct genomic and epigenomic features of ARV-PBS, highlighting that ARVs are useful tools to depict AR-regulated oncogenic genome and epigenome landscapes in prostate cancer. Our data also suggest that the ARV-preferentially activated transcriptional program could be targeted for effective treatment of CRPC.
Collapse
Affiliation(s)
- Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ji Lu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Siyuan Hao
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Manish Kohli
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Donald J Tindall
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Benyi Li
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Runzhi Zhu
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Center for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
44
|
van Nuland M, Venekamp N, Wouters WME, van Rossum HH, Rosing H, Beijnen JH. LC-MS/MS assay for the quantification of testosterone, dihydrotestosterone, androstenedione, cortisol and prednisone in plasma from castrated prostate cancer patients treated with abiraterone acetate or enzalutamide. J Pharm Biomed Anal 2019; 170:161-168. [PMID: 30925273 DOI: 10.1016/j.jpba.2019.03.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Prostate cancer is the most common malignancy among men in the Western world. Treatment of this patient population, e.g. by (chemical) castration, is primarily focused on depletion of tumor-stimulating androgens, with testosterone being the major androgenic hormone. After initial therapy, prostate cancer may progress to metastatic castration-resistant prostate cancer. Anti-hormonal drugs abiraterone acetate and enzalutamide are commonly used to treat patients with this disease as both drugs reduce tumor growth and increase time to tumor progression. To evaluate the pharmacodynamic effects of anti-hormonal drugs in this patient population, we developed an LC-MS/MS method for the quantification of testosterone, dihydrotestosterone, androstenedione, cortisol and prednisone in human plasma. The validated assay ranges from 10-10,000 pg/mL for testosterone and androstenedione, 100-10,000 pg/mL for dihydrotestosterone, 50-5000 pg/mL for cortisol and 500-50,000 pg/mL for prednisone. Intra-assay and inter-assay variabilities were within ±15% of the nominal concentrations for quality control (QC) samples at low, medium and high concentrations and within ±20% at the lower limit of quantification (LLOQ), respectively. The applicability of the method was demonstrated in plasma from patients with metastatic castrated-resistant prostate cancer using either abiraterone acetate or enzalutamide.
Collapse
Affiliation(s)
- Merel van Nuland
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Pharmacology, The Netherlands, Cancer Institute, Amsterdam, the Netherlands.
| | - Nikkie Venekamp
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Willemijn M E Wouters
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Huub H van Rossum
- Department of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Pharmacology, The Netherlands, Cancer Institute, Amsterdam, the Netherlands; Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
45
|
Applegate CC, Rowles JL, Erdman JW. Can Lycopene Impact the Androgen Axis in Prostate Cancer?: A Systematic Review of Cell Culture and Animal Studies. Nutrients 2019; 11:E633. [PMID: 30875962 PMCID: PMC6471887 DOI: 10.3390/nu11030633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/23/2023] Open
Abstract
First-line therapy for advanced or metastatic prostate cancer (PCa) involves the removal of tumor-promoting androgens by androgen deprivation therapy (ADT), resulting in transient tumor regression. Recurrent disease is attributed to tumor adaptation to survive, despite lower circulating androgen concentrations, making the blockage of downstream androgen signaling a chemotherapeutic goal for PCa. Dietary intake of tomato and its predominant carotenoid, lycopene, reduce the risk for PCa, and preclinical studies have shown promising results that tomato and lycopene can inhibit androgen signaling in normal prostate tissue. The goal of this systematic review was to evaluate whether mechanistic evidence exists to support the hypothesis that tomato or lycopene interact with the androgen axis in PCa. Eighteen studies (n = 5 in vivo; n = 13 in vitro) were included in the final review. A formal meta-analysis was not feasible due to variability of the data; however, the overall estimated directions of effect for the compared studies were visually represented by albatross plots. All studies demonstrated either null or, more commonly, inhibitory effects of tomato or lycopene treatment on androgen-related outcomes. Strong mechanistic evidence was unable to be ascertained, but tomato and lycopene treatment appears to down-regulate androgen metabolism and signaling in PCa.
Collapse
Affiliation(s)
- Catherine C Applegate
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Joe L Rowles
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
46
|
Shiota M, Fujimoto N, Tsukahara S, Ushijima M, Takeuchi A, Kashiwagi E, Inokuchi J, Tatsugami K, Uchiumi T, Eto M. The impact of genetic polymorphism on CYP19A1 in androgen-deprivation therapy among Japanese men. Cancer Chemother Pharmacol 2019; 83:933-938. [PMID: 30868236 DOI: 10.1007/s00280-019-03811-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/08/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Inadequate suppression of testosterone during androgen-deprivation therapy impairs its efficacy. This study investigated the significance of genetic polymorphism in CYP19A1, which encodes aromatase that catalyzes androgens into estrogens, among men treated with primary ADT for metastatic prostate cancer. METHODS This study included 80 Japanese patients with metastatic prostate cancer whose serum testosterone levels during ADT were available. The association of CYP19A1 gene polymorphism (rs1870050) with clinicopathological parameters including serum testosterone levels during ADT as well as progression-free survival and overall survival was examined. RESULTS Serum testosterone levels during ADT of men carrying homozygous wild-type (AA) in the CYP19A1 gene [median (interquartile range); 11.6 (8.3-20.3) ng/dl] were higher than those in men carrying the heterozygous/homozygous variant (AC/CC) [median (interquartile range); 10.0 (6.4-12.8) ng/dl]. When adjusted by Gleason score, initial PSA, M-stage and serum testosterone level during ADT, heterozygous/homozygous variant (AC/CC) in the CYP19A1 gene was associated with a lower risk of progression to castration resistance [hazard ratio (95% confidence interval), 0.53 [0.29-0.92], p = 0.025], but not to any-cause death [hazard ratio (95% confidence interval), 0.74 [0.36-1.49], p = 0.40]. CONCLUSIONS These findings suggest that genetic variation in CYP19A1 (rs1870050) might affect the prognosis of patients with metastatic prostate cancer when treated with ADT by regulating serum testosterone levels.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8556, Japan
| | - Shigehiro Tsukahara
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Miho Ushijima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ario Takeuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsunori Tatsugami
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
47
|
Albisinni S, Aoun F, Diamand R, Al-Hajj Obeid W, Porpiglia F, Roumeguère T, De Nunzio C. Cytoreductive prostatectomy: what is the evidence? A systematic review. MINERVA UROL NEFROL 2019; 71:1-8. [DOI: 10.23736/s0393-2249.18.03319-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Treatment of the primary tumor in metastatic prostate cancer. World J Urol 2018; 37:2597-2606. [PMID: 30456709 DOI: 10.1007/s00345-018-2552-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
The cornerstone of treatment for metastatic prostate cancer patients has been conventional androgen deprivation therapy, with additional systemic therapy initiated only after castration resistance, and local therapy reserved for palliation. Compelling results from modern trials challenge this paradigm, arguing for initiating escalated hormone therapy and/or chemotherapy during the castration-sensitive disease state for many patients. Furthermore, modern radiotherapy techniques allow for local control of disease with low risk of toxicity. Finally, new PET probes with enhanced sensitivity and accuracy are likely to become a part of routine staging and will lead to an increased incidence of patients with metastatic disease at presentation, with a shift toward identification of patients with limited metastatic disease. As such, the landscape is primed for investigations aimed to explore the role of primary tumor therapy for patients with metastatic prostate cancer. We review the existing data evaluating primary tumor therapy for patients with metastatic prostate cancer and describe ongoing clinical trials testing the hypothesis that primary tumor therapy may benefit patients with metastatic prostate cancer.
Collapse
|
49
|
Tucci M, Zichi C, Buttigliero C, Vignani F, Scagliotti GV, Di Maio M. Enzalutamide-resistant castration-resistant prostate cancer: challenges and solutions. Onco Targets Ther 2018; 11:7353-7368. [PMID: 30425524 PMCID: PMC6204864 DOI: 10.2147/ott.s153764] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The new-generation hormonal agent enzalutamide has been approved for the treatment of metastatic castration-resistant prostate cancer (CRPC), in both post- and predocetaxel setting, due to the significant improvement in overall survival. More recently, enzalutamide also showed impressive results in the treatment of men with nonmetastatic CRPC. Unfortunately, not all patients with CRPC are responsive to enzalutamide, and even in responders, benefits are limited by the development of drug resistance. Adaptive resistance of metastatic prostate cancer to enzalutamide treatment can be due to the activation of both androgen receptor (AR)-dependent pathways (expression of constitutively active AR splice variants, AR point mutations, gene amplification and overexpression) and mechanisms independent of AR signaling pathway (altered steroidogenesis, upregulation of the glucocorticoid receptor, epithelial–mesenchymal transition, neuroendocrine transformation, autophagy and activation of the immune system). In this review, we focus on resistance mechanisms to enzalutamide, exploring how we could overcome them through novel therapeutic options.
Collapse
Affiliation(s)
- Marcello Tucci
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy,
| | - Clizia Zichi
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy,
| | - Consuelo Buttigliero
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy,
| | - Francesca Vignani
- Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
| | - Giorgio V Scagliotti
- Division of Medical Oncology, Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy,
| | - Massimo Di Maio
- Division of Medical Oncology, Ordine Mauriziano Hospital, Torino, Italy
| |
Collapse
|
50
|
Sundaresan L, Kumar P, Chatterjee S. Mechanistic insights into the differential effects of thalidomide and lenalidomide in metastatic prostate cancer. Future Oncol 2018; 14:2383-2401. [DOI: 10.2217/fon-2018-0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: To understand why thalidomide and lenalidomide exhibit different responses in metastatic prostate cancer (mPCa) treatment. Methods: We analyzed the perturbation signatures of thalidomide, lenalidomide, flutamide treated mPCa cell line from Library of Integrated Network-based Cellular Signatures database and transcriptome of docetaxel-treated mPCa patients. Results: Flutamide and docetaxel downregulated ‘Steroid Biosynthesis’, ‘Cell cycle’ and PCa specific transcription factor networks. Thalidomide inhibited ‘Cell cycle’ and ‘E2F network’, possibly accounting for its synergistic effects with docetaxel. Conversely, lenalidomide promoted ‘Cell cycle’ and ‘Cholesterol biosynthesis’. Conclusion: Hence, we propose that lenalidomide upregulates cholesterol synthesis followed by enhanced rate of cell cycle, thereby nurturing a hyperproliferative tumor microenvironment. In summary, this study offers a possible explanation for the differential outcomes in the treatment of mPCa with thalidomide and lenalidomide.
Collapse
Affiliation(s)
- Lakshmikirupa Sundaresan
- AU-KBC Research Center, Anna University, Chennai, India
- Department of Biotechnology, Anna University, Chennai, India
| | - Pavitra Kumar
- AU-KBC Research Center, Anna University, Chennai, India
| | - Suvro Chatterjee
- AU-KBC Research Center, Anna University, Chennai, India
- Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|