1
|
Salfi G, Pedrani M, Candan S, Urechie V, Merler S, Ruinelli L, Colombo A, Castelo-Branco L, Testi I, Turco F, Tortola L, Vogl U, Gabutti L, Gillessen S, Pereira Mestre R. Treatment-related Hypertension as a Prognostic Factor for De Novo Metastatic Hormone-sensitive Prostate Cancer: A Retrospective Real-world Evidence Study. EUR UROL SUPPL 2025; 71:1-10. [PMID: 39641119 PMCID: PMC11617314 DOI: 10.1016/j.euros.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background and objective Hypertension (HTN) has been linked to an elevated risk of prostate cancer (PC) development and poorer prognosis in localized cases, and is a common side effect of hormonal PC treatments. However, its relationship with the prognosis of metastatic PC is still unclear. We assessed the prognostic role of treatment-related HTN in patients with de novo metastatic hormone-sensitive PC (mHSPC) undergoing androgen deprivation therapy (ADT) alone or in combination with docetaxel or androgen receptor pathway inhibitors (ARPIs). Methods Our retrospective analysis included 100 patients with de novo mHSPC treated with ADT, ADT + docetaxel, or ADT + ARPI between 2014 and 2021. Data on clinical variables, antihypertensive drugs, and blood pressure were collected from treatment initiation to 7 mo from ADT start. HTN development within 7 mo from hormonal treatment initiation was graded according to the Common Toxicity Criteria for Adverse Events version 5.0, and Cox analyses were performed for time to castration resistance (TTCR) and overall survival (OS). Key findings and limitations In the overall population, grade (G) 2-3 HTN development within 7 mo from hormonal treatment initiation was associated with improved TTCR and OS at both univariate (TTCR: 19.8 vs 7.9 mo, hazard ratio [HR]: 0.35, 95% confidence interval [CI]: 0.20-0.63, p < 0.001; OS: 42 vs 18.4 mo, HR: 0.48, 95% CI: 0.26-0.87, p = 0.017) and multivariate (TTCR: HR: 0.41, 95% CI: 0.18-0.91, p = 0.029; OS: HR: 0.42, 95% CI: 0.18-0.97, p = 0.042) analyses. A subgroup analysis of the ADT + ARPI-treated population revealed 7-mo treatment-related G2-3 HTN to be an independent positive prognostic factor in terms of both TTCR and OS multivariate survival analyses (HR: 0.30, 95% CI: 0.09-0.95, p = 0.040, and HR: 0.12, 95% CI: 0.02-0.57, p = 0.008, respectively). Conclusions and clinical implications The early development or worsening of HTN under hormonal treatment may be associated with longer TTCR and OS in de novo mHSPC patients. Larger studies are needed to validate these findings and explore the potential underlying mechanisms. Patient summary In this report, we examined the outcomes of patients with metastatic hormone-sensitive prostate cancer and their correlation with hypertension toxicities. We found that patients who developed clinically significant blood pressure toxicity early in oncological treatment experienced longer survival.
Collapse
Affiliation(s)
- Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Selin Candan
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Vasile Urechie
- Clinical Research Unit, myDoctorAngel Sagl, Bioggio, Switzerland
- Department of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Section of Innovation Biomedicine – Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, Verona, Italy
| | - Lorenzo Ruinelli
- Information and Communications Technology, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Amos Colombo
- Information and Communications Technology, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Luca Gabutti
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Clinical Research Unit, myDoctorAngel Sagl, Bioggio, Switzerland
| |
Collapse
|
2
|
Jain K, Tyagi T, Gu SX, Faustino EVS, Hwa J. Demographic diversity in platelet function and response to antiplatelet therapy. Trends Pharmacol Sci 2025; 46:78-93. [PMID: 39672782 PMCID: PMC11710996 DOI: 10.1016/j.tips.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
Recent studies have highlighted the complexity of platelet biology, revealing their diverse roles beyond hemostasis. Pathological platelet activation is now recognized as a key contributor to thrombosis and inflammation that are both central to cardiovascular disease (CVD). Emerging research emphasizes the significant impact of demographic factors - such as age, sex, race, and ethnicity - on CVD risk and responses to antiplatelet therapies. These population-based differences, shaped by genetic and non-genetic factors, highlight the need for reevaluation of antiplatelet strategies. We address current knowledge and emphasize the pressing need for further research into platelet biology and cardiovascular outcomes across diverse populations. In this review we advocate for tailored therapeutic approaches in CVD based on the recent demographic-focused findings.
Collapse
Affiliation(s)
- Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Yale Cooperative Center of Excellence in Hematology, Yale School of Medicine, New Haven, CT, USA.
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Yale Cooperative Center of Excellence in Hematology, Yale School of Medicine, New Haven, CT, USA
| | - Sean X Gu
- Yale Cooperative Center of Excellence in Hematology, Yale School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - E Vincent S Faustino
- Yale Cooperative Center of Excellence in Hematology, Yale School of Medicine, New Haven, CT, USA; Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Yale Cooperative Center of Excellence in Hematology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Alekseev BY, Perepukhov VM, Nyushko KM, Poltavskaya MG. Androgen deprivation therapy and cardiological risks in patients with prostate cancer. Are all drugs the same? CANCER UROLOGY 2024; 20:80-93. [DOI: 10.17650/1726-9776-2024-20-3-80-93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Prostate cancer (PCa) is the most common oncological disease in men in Russia. For a long time, long-term androgen deprivation therapy (ADT) decreasing native testosterone level has been the basis of PCa drug therapy. At the time of PCa diagnosis, 2/3 of men have various risk factors for cardiovascular diseases (CVDs) or established CVDs (one fourth of the patients have CVDs associated with atherosclerosis; 45 % have a diagnosis of arterial hypertension). ADT is associated with increased risk of CVD and cardiovascular complications (CVC) development. Patients with PCa die of 2 main causes: directly due to cancer or due to CVD. Previously, luteinizing hormone-releasing hormone (LHRH) antagonists were considered to have a better safety profile compared to LHRH agonists. Comparison of all LHRH agonists (leuprorelin, triptorelin, goserelin, buserelin) with LHRH antagonists in meta-analyses showed that the risk of serious CVCs during LHRH antagonist therapy was 43 % lower than during agonist therapy. However, comparison of leuprorelin with antagonists did not show a significant difference in CVC rate. Leuprorelin is a drug with the most favorable profile of cardiological safety among the ADT drugs and the most frequently used LHRH agonist in the world. Considering high risk of CVDs and CVCs in patients with PCa, along with treatment of the main disease, careful control and reduction of risks of CVD development from the moment of PCa diagnosis should be implemented, the patients must be informed on the necessity of healthy lifestyle, established CVDs should be treated with rational regimens of antihypertensive, hypolipidemic, and hypoglycemic drugs. Risk control and reduction, as well as CVD treatment, should be performed for the whole duration of ADT. The article proposes an algorithm of cardiometabolic risk stratification prior to ADT initiation and during ADT.
Collapse
Affiliation(s)
- B. Ya. Alekseev
- National Medical Research Radiological Center, Ministry of Health of Russia;
Medical Institute of Continuing Education, Russian Biotechnological University
| | - V. M. Perepukhov
- National Medical Research Radiological Center, Ministry of Health of Russia
| | - K. M. Nyushko
- National Medical Research Radiological Center, Ministry of Health of Russia;
Medical Institute of Continuing Education, Russian Biotechnological University
| | - M. G. Poltavskaya
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
| |
Collapse
|
4
|
Lanzi V, Indirli R, Tripodi A, Clerici M, Bonomi M, Cangiano B, Petria I, Arosio M, Mantovani G, Ferrante E. Testosterone Therapy Does Not Affect Coagulation in Male Hypogonadism: A Longitudinal Study Based on Thrombin Generation. J Clin Endocrinol Metab 2024; 109:3186-3195. [PMID: 38717871 PMCID: PMC11570389 DOI: 10.1210/clinem/dgae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 11/19/2024]
Abstract
CONTEXT Testosterone therapy has been variably associated with increased thrombotic risk but investigations of global coagulation in this setting are lacking. OBJECTIVE This work aimed to compare global coagulation of hypogonadal men before (T0) and 6 months after (T1) starting testosterone replacement therapy (TRT), and healthy controls (HCs). METHODS An observational prospective cohort study was conducted at 2 tertiary endocrinological ambulatory care centers. Patients included 38 men with hypogonadism (mean age 55 years, SD 13) and 38 age-matched HCs. Thrombin generation assay (TGA) was performed at T0 and T1 in hypogonadal men and in HCs. TGA is an in vitro procedure based on the continuous registration of thrombin generation and decay under conditions mimicking the process that occurs in vivo. The following TGA parameters were recorded: lag time; thrombin-peak concentration; time-to-reach peak, velocity index, and endogenous thrombin potential (ETP), the latter representing the total amount of thrombin generated under the driving forces of procoagulants opposed by the anticoagulants. Protein C, antithrombin, factor (F) VIII, and fibrinogen were assessed. RESULTS No changes in TGA parameters were observed between T0 and T1. Hypogonadal men displayed significantly higher ETP, fibrinogen, and significantly lower antithrombin levels both at T0 and T1 compared to HCs. Thrombin peak of hypogonadal men was significantly higher than HCs at T0 but not at T1. ETP and antithrombin were correlated with testosterone levels. CONCLUSION Hypogonadal men display a procoagulant imbalance detected by increased thrombin generation. Short-term TRT does not worsen global coagulation, suggesting that the treatment can be safely prescribed to men diagnosed with hypogonadism.
Collapse
Affiliation(s)
- Valeria Lanzi
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Rita Indirli
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Armando Tripodi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Fondazione Luigi Villa, 20122 Milan, Italy
| | - Marigrazia Clerici
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marco Bonomi
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Biagio Cangiano
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Iulia Petria
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
5
|
de Silva NL, Grant B, Minhas S, Jayasena CN. Cardiovascular disease and testosterone therapy in male hypogonadism. Ann N Y Acad Sci 2024; 1540:121-132. [PMID: 39243393 DOI: 10.1111/nyas.15211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
This review assesses the evidence of the physiological effects of testosterone on cardiovascular health, the association between male hypogonadism and cardiovascular health, and the effects of testosterone therapy on cardiovascular health in male hypogonadism. Preclinical studies suggest complex effects of testosterone on cardiovascular risk by acting on skeletal muscle, cardiomyocytes, vasculature, adipocytes, insulin action, and erythropoiesis. Furthermore, low testosterone has a bi-directional association with cardiometabolic risk. Observational studies have reported worse metabolic profiles in men with organic hypogonadism. However, a consistent association between major cardiovascular events and male hypogonadism has not been established. Hematocrit increases with testosterone therapy; however, most studies do not report an increase in venous thromboembolism risk. Although some observational studies and a small randomized controlled study reported an increased risk of cardiovascular disease, recent data confirm the medium-term cardiovascular safety of testosterone therapy in middle-aged and older men with low testosterone.
Collapse
Affiliation(s)
- Nipun Lakshitha de Silva
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Faculty of Medicine, General Sir John Kotelawala Defence University, Colombo, Sri Lanka
| | - Bonnie Grant
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Suks Minhas
- Department of Urology, Imperial College Healthcare NHS Trust, London, UK
| | - Channa N Jayasena
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
6
|
Fyksen TS, Seljeflot I, Vanberg P, Atar D, Halvorsen S. Platelet activity, coagulation, and fibrinolysis in long-term users of anabolic-androgenic steroids compared to strength-trained athletes. Thromb Res 2024; 238:60-66. [PMID: 38676967 DOI: 10.1016/j.thromres.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION Use of anabolic-androgenic steroids (AAS) is associated with adverse cardiovascular (CV) effects, including potential prothrombotic effects. This study aimed to assess platelet activation and aggregation, coagulation, and fibrinolysis, in long-term AAS users compared to non-using strength-trained athletes. MATERIALS AND METHODS Thirty-seven strength-trained men using AAS were compared to seventeen non-using professional strength-trained athletes at similar age (median 33 years). AAS use was verified by blood and urine analyses. Platelet Function Analyzer 100 (PFA-100) and whole blood impedance aggregometry with thrombin, arachidonic acid, and ADP as agonists, were performed to evaluate platelet aggregation. ELISA methods were used for markers of platelet activation. Fibrinogen, D-dimer, the coagulation inhibitors protein S and C activity, and antithrombin were measured by routine. Fibrinolysis was evaluated by Plasminogen Activator Inhibitor-1 (PAI-1) activity. RESULTS There were no significant differences in platelet aggregation between the two groups. Von Willebrand factor was lower among the AAS users (p < 0.01), and P-Selectin was slightly higher (p = 0.05), whereas CD40 Ligand, β-thromboglobulin, and thrombospondin did not differ significantly. No differences were found in the assessed coagulation inhibitors. Higher D-dimer levels (p < 0.01) and lower PAI-1 activity (p < 0.01) were found among the AAS users. CONCLUSIONS The investigated long-term users of AAS did not exhibit elevated platelet activity compared to strength-trained non-using athletes. However, AAS use was associated with higher D-dimer levels and lower PAI-1 activity. These findings suggest that any prothrombotic effect of long-term AAS use may predominantly involve other aspects of the hemostatic system than blood platelets.
Collapse
Affiliation(s)
- Tea Sætereng Fyksen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway.
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Paul Vanberg
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Dan Atar
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Sigrun Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
7
|
Kielb J, Saffak S, Weber J, Baensch L, Shahjerdi K, Celik A, Farahat N, Riek S, Chavez-Talavera O, Grandoch M, Polzin A, Kelm M, Dannenberg L. Transformation or replacement - Effects of hormone therapy on cardiovascular risk. Pharmacol Ther 2024; 254:108592. [PMID: 38286163 DOI: 10.1016/j.pharmthera.2024.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024]
Abstract
Hormone therapy (HT) is important and frequently used both regarding replacement therapy (HRT) and gender affirming therapy (GAHT). While HRT has been effective in addressing symptoms related to hormone shortage, several side effects have been described. In this context, there are some studies that show increased cardiovascular risk. However, there are also studies reporting protective aspects of HT. Nevertheless, the exact impact of HT on cardiovascular risk and the underlying mechanisms remain poorly understood. This article explores the relationship between diverse types of HT and cardiovascular risk, focusing on mechanistic insights of the underlying hormones on platelet and leukocyte function as well as on effects on endothelial and adipose tissue cells.
Collapse
Affiliation(s)
- Julia Kielb
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Süreyya Saffak
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Jessica Weber
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Leonard Baensch
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Khatereh Shahjerdi
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Aylin Celik
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Nora Farahat
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Sally Riek
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Oscar Chavez-Talavera
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Maria Grandoch
- Institute for Translational Pharmacology, Medical Faculty and University Hospital of Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany
| | - Lisa Dannenberg
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Germany.
| |
Collapse
|
8
|
Feng Y, Huang Z, Ma X, Zong X, Wu CY, Lee RH, Lin HW, Hamblin MR, Zhang Q. Activation of testosterone-androgen receptor mediates cerebrovascular protection by photobiomodulation treatment in photothrombosis-induced stroke rats. CNS Neurosci Ther 2024; 30:e14574. [PMID: 38421088 PMCID: PMC10851319 DOI: 10.1111/cns.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 03/02/2024] Open
Abstract
RATIONALE Numerous epidemiological studies have reported a link between low testosterone levels and an increased risk of cerebrovascular disease in men. However, there is ongoing controversy surrounding testosterone replacement therapy due to potential side effects. PBMT has been demonstrated to improve cerebrovascular function and promote testosterone synthesis in peripheral tissues. Despite this, the molecular mechanisms that could connect PBMT with testosterone and vascular function in the brain of photothrombosis (PT)-induced stroke rats remain largely unknown. METHODS We measured behavioral performance, cerebral blood flow (CBF), vascular permeability, and the expression of vascular-associated and apoptotic proteins in PT-induced stroke rats treated with flutamide and seven consecutive days of PBM treatment (350 mW, 808 nM, 2 min/day). To gain further insights into the mechanism of PBM on testosterone synthesis, we used testosterone synthesis inhibitors to study their effects on bEND.3 cells. RESULTS We showed that PT stroke caused a decrease in cerebrovascular testosterone concentration, which was significantly increased by 7-day PBMT (808 nm, 350 mW/cm2 , 42 J/cm2 ). Furthermore, PBMT significantly increased cerebral blood flow (CBF) and the expression of vascular-associated proteins, while inhibiting vascular permeability and reducing endothelial cell apoptosis. This ultimately mitigated behavioral deficits in PT stroke rats. Notably, treatment with the androgen receptor antagonist flutamide reversed the beneficial effects of PBMT. Cellular experiments confirmed that PBMT inhibited cell apoptosis and increased vascular-associated protein expression in brain endothelial cell line (bEnd.3) subjected to oxygen-glucose deprivation (OGD). However, these effects were inhibited by flutamide. Moreover, mechanistic studies revealed that PBMT-induced testosterone synthesis in bEnd.3 cells was partly mediated by 17β-hydroxysteroid dehydrogenase 5 (17β-HSD5). CONCLUSIONS Our study provides evidence that PBMT attenuates cerebrovascular injury and behavioral deficits associated with testosterone/AR following ischemic stroke. Our findings suggest that PBMT may be a promising alternative approach for managing cerebrovascular diseases.
Collapse
Affiliation(s)
- Yu Feng
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Zhihai Huang
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Xiaohui Ma
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Xuemei Zong
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Celeste Yin‐Chieh Wu
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Reggie Hui‐Chao Lee
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Hung Wen Lin
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Michael R. Hamblin
- Wellman Center for PhotomedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Quanguang Zhang
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| |
Collapse
|
9
|
Kim J, Freeman K, Ayala A, Mullen M, Sun Z, Rhee JW. Cardiovascular Impact of Androgen Deprivation Therapy: from Basic Biology to Clinical Practice. Curr Oncol Rep 2023; 25:965-977. [PMID: 37273124 PMCID: PMC10474986 DOI: 10.1007/s11912-023-01424-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE OF THE REVIEW There have been increasing reports of cardiovascular complications of androgen deprivation therapy (ADT) leading to worse outcomes among patients with prostate cancer. While this may result from the direct effects of androgen suppression in the cardiovascular systems, there are ADT-type-specific distinct cardiovascular complications suggestive of mechanisms beyond androgen-mediated. Thus, it is critical to understand the biological and clinical impact of ADT on the cardiovascular system. RECENT FINDINGS Gonadotropin-releasing hormone (GnRH) agonists cause increased cardiovascular events compared to GnRH antagonists. Androgen receptor antagonists are linked to an increased risk of long QT syndrome, torsades de pointes, and sudden cardiac death. Androgen synthesis inhibitors are associated with increased rates of hypertension, atrial tachyarrhythmia, and, in rare incidences, heart failure. ADT increases the risk of cardiovascular disease. The risk among ADT drugs differs and must be evaluated to develop a medically optimal plan for prostate cancer patients.
Collapse
Affiliation(s)
- Janice Kim
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Kendall Freeman
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Alyssa Ayala
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - McKay Mullen
- Stanford Cardiovascular Institute, Stanford, CA, 94305, USA
| | - Zijie Sun
- Department of Cancer Biology and Molecular Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| | - June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| |
Collapse
|
10
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
11
|
Karolczak K, Konieczna L, Soltysik B, Kostka T, Witas PJ, Kostanek J, Baczek T, Watala C. Plasma Concentration of Cortisol Negatively Associates with Platelet Reactivity in Older Subjects. Int J Mol Sci 2022; 24:ijms24010717. [PMID: 36614157 PMCID: PMC9820908 DOI: 10.3390/ijms24010717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 01/03/2023] Open
Abstract
The interaction of platelets with steroid hormones is poorly investigated. Age is one of the factors that increase the risk of pathological platelet reactivity and thrombosis. The aim of this study was to assess whether there were associations between platelet reactivity and plasma cortisol levels in volunteers aged 60-65 years. For this purpose, impedance aggregometry in whole blood measured after arachidonic acid, collagen, or ADP stimulation was used to estimate platelet reactivity and mass spectrometry was used to measure peripheral plasma cortisol concentration. Statistically significant negative correlations were observed between cortisol concentration and platelet reactivity in response to arachidonic acid and ADP, but not to collagen. The presented results suggest for the very first time that cortisol is a new endogenous modulator of platelet reactivity in the elderly population.
Collapse
Affiliation(s)
- Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland
- Correspondence:
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, ul. Hallera 107, 80-416 Gdańsk, Poland
| | - Bartlomiej Soltysik
- Department of Geriatrics, Healthy Aging Research Center (HARC), Medical University of Lodz, pl. Hallera 1, 90-647 Lodz, Poland
| | - Tomasz Kostka
- Department of Geriatrics, Healthy Aging Research Center (HARC), Medical University of Lodz, pl. Hallera 1, 90-647 Lodz, Poland
| | - Piotr Jakub Witas
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Joanna Kostanek
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Tomasz Baczek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, ul. Hallera 107, 80-416 Gdańsk, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
12
|
Hosseinpour H, Ahmadi-hamedani M, Masoudifard M, Shirani D, Narenj Sani R. Assessment of the utility of platelet indices to diagnose clinical benign prostatic hyperplasia in dogs. Front Vet Sci 2022; 9:1031292. [PMID: 36570512 PMCID: PMC9772470 DOI: 10.3389/fvets.2022.1031292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Platelet indices changes in severely ill people and in dogs with inflammation are compatible findings. This study aimed to compare platelet indices between dogs with clinical benign prostatic hyperplasia (BPH) and healthy controls. Additionally, to determine whether there is a correlation between the relative prostatic size (S rel) and the platelet indices in BPH dogs. Methods Thirty-five adult intact male dogs of different breeds were allocated to the experimental groups: dogs with clinical BPH (groups A; n = 24; median age of 6 years; the median weight of 8.50 kg) and healthy dogs (group B; n = 11; median age 5.50 years; the median weight of 7.00 kg) based on physical examination, clinical signs, and S rel detected by ultrasonographic findings. The individual prostatic volume (IPV) was divided by the expected prostatic volume (EPV) to determine the relative prostatic size in dogs over 4 years old. Platelet indices were compared between the two groups, and a correlation between S rel and these indices was calculated. Results The median S rel of dogs in group A was significantly higher (P = 0.001), and the mean plateletcrit (PCT) was significantly lower (P = 0.003) compared with those in group B. S rel showed a significant negative correlation with PLT and PCT (r = -0.388; P = 0.02 and r = -0.402; P = 0.01). Receiver operating characteristic (ROC) analysis showed PLT and PCT thresholds for estimating S rel > 1 with 75% and 87.5% sensitivity and 71.82 and 63.64% specificity. Discussion The findings of this study support the use of platelet indices like PLT and PCT to detect clinical BPH in dogs. However, more research is needed to confirm their utility in conjunction with other previously described diagnostic factors.
Collapse
Affiliation(s)
- Hediyeh Hosseinpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Mahmood Ahmadi-hamedani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran,*Correspondence: Mahmood Ahmadi-hamedani
| | - Majid Masoudifard
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Darush Shirani
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Narenj Sani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| |
Collapse
|
13
|
Rosato E, Sciarra F, Anastasiadou E, Lenzi A, Venneri MA. Revisiting the physiological role of androgens in women. Expert Rev Endocrinol Metab 2022; 17:547-561. [PMID: 36352537 DOI: 10.1080/17446651.2022.2144834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Extensive research underlines the critical functions of androgens in females. Nevertheless, the precise mechanisms of their action are poorly understood. Here, we review the existing literature regarding the physiological role of androgens in women throughout life. AREAS COVERED Several studies show that androgen receptors (ARs) are broadly expressed in numerous female tissues. They are essential for many physiological processes, including reproductive, sexual, cardiovascular, bone, muscle, and brain health. They are also involved in adipose tissue and liver function. Androgen levels change with the menstrual cycle and decrease in the first decades of life, independently of menopause. EXPERT OPINION To date, studies are limited by including small numbers of women, the difficulty of dosing androgens, and their cyclical variations. In particular, whether androgens play any significant role in regulating the establishment of pregnancy is poorly understood. The neural functions of ARs have also been investigated less thoroughly, although it is expressed at high levels in brain structures. Moreover, the mechanism underlying the decline of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) with age is unclear. Other factors, including estrogen's effect on adrenal androgen production, reciprocal regulation of ARs, and non-classical effects of androgens, remain to be determined.
Collapse
Affiliation(s)
- Elena Rosato
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
14
|
Schutte MH, Kleemann R, Nota NM, Wiepjes CM, Snabel JM, T’Sjoen G, Thijs A, den Heijer M. The effect of transdermal gender-affirming hormone therapy on markers of inflammation and hemostasis. PLoS One 2022; 17:e0261312. [PMID: 35290388 PMCID: PMC8923509 DOI: 10.1371/journal.pone.0261312] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Cardiovascular risk is increased in transgender persons using gender-affirming hormone therapy. To gain insight into the mechanism by which sex hormones affect cardiovascular risk in transgender persons, we investigated the effect of hormone therapy on markers of inflammation and hemostasis. Methods In this exploratory study, 48 trans women using estradiol patches plus cyproterone acetate (CPA) and 47 trans men using testosterone gel were included. They were between 18 and 50 years old and did not have a history of cardiovascular events. Measurements were performed before and after 3 and 12 months of hormone therapy. Results After 12 months, in trans women, systemic and endothelial inflammatory markers decreased (hs-CRP -66%, (95% CI -76; -53), VCAM-1–12%, (95% CI -16; -8)), while platelet activation markers increased (PF-4 +17%, (95% CI 4; 32), β-thromboglobulin +13%, (95% CI 2; 24)). The coagulation marker fibrinogen increased transiently, after 3 months (+15%, (95% CI 1; 32)). In trans men, hs-CRP increased (+71%, (95% CI 19; 145)); platelet activation and coagulation markers were not altered. In both trans women and trans men, leptin and adiponectin changed towards reference values of the experienced gender. Conclusions Platelet activation and coagulation marker concentrations increased in trans women using transdermal estradiol plus CPA, but not in trans men using testosterone. Also, concentrations of inflammatory markers decreased in trans women, while hs-CRP increased in trans men. Our results indicate that hormone therapy may affect hemostasis in transgender persons, which could be an underlying mechanism explaining the increased cardiovascular risk in this population.
Collapse
Affiliation(s)
- Moya H. Schutte
- Department of Endocrinology and Center of Expertise on Gender Dysphoria, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Robert Kleemann
- Department Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke M. Nota
- Department of Endocrinology and Center of Expertise on Gender Dysphoria, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Chantal M. Wiepjes
- Department of Endocrinology and Center of Expertise on Gender Dysphoria, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jessica M. Snabel
- Department Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Guy T’Sjoen
- Center for Sexology and Gender, Ghent University Hospital, Ghent, Belgium
| | - Abel Thijs
- Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Martin den Heijer
- Department of Endocrinology and Center of Expertise on Gender Dysphoria, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
15
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Beatrice Daigle
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Amandine Hong-Minh
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada.
| |
Collapse
|
16
|
Moran CA, Collins LF, Beydoun N, Mehta PK, Fatade Y, Isiadinso I, Lewis TT, Weber B, Goldstein J, Ofotokun I, Quyyumi A, Choi MY, Titanji K, Lahiri CD. Cardiovascular Implications of Immune Disorders in Women. Circ Res 2022; 130:593-610. [PMID: 35175848 PMCID: PMC8869407 DOI: 10.1161/circresaha.121.319877] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune responses differ between men and women, with women at higher risk of developing chronic autoimmune diseases and having more robust immune responses to many viruses, including HIV and hepatitis C virus. Although immune dysregulation plays a prominent role in chronic systemic inflammation, a key driver in the development of atherosclerotic cardiovascular disease (ASCVD), standard ASCVD risk prediction scores underestimate risk in populations with immune disorders, particularly women. This review focuses on the ASCVD implications of immune dysregulation due to disorders with varying global prevalence by sex: autoimmune disorders (female predominant), HIV (male-female equivalent), and hepatitis C virus (male predominant). Factors contributing to ASCVD in women with immune disorders, including traditional risk factors, dysregulated innate and adaptive immunity, sex hormones, and treatment modalities, are discussed. Finally, the need to develop new ASCVD risk stratification tools that incorporate variables specific to populations with chronic immune disorders, particularly in women, is emphasized.
Collapse
Affiliation(s)
- Caitlin A. Moran
- Emory University School of Medicine, Department of Medicine, Division of Infectious Diseases, Atlanta, GA, USA
| | - Lauren F. Collins
- Emory University School of Medicine, Department of Medicine, Division of Infectious Diseases, Atlanta, GA, USA
| | - Nour Beydoun
- Emory University School of Medicine, Department of Medicine, Center for Heart Disease Prevention, Division of Cardiology and Emory Women’s Heart Center, Atlanta, GA, USA
| | - Puja K. Mehta
- Emory University School of Medicine, Department of Medicine, Center for Heart Disease Prevention, Division of Cardiology and Emory Women’s Heart Center, Atlanta, GA, USA
| | - Yetunde Fatade
- Emory University School of Medicine, Department of Medicine, Atlanta, GA, USA
| | - Ijeoma Isiadinso
- Emory University School of Medicine, Department of Medicine, Center for Heart Disease Prevention, Division of Cardiology and Emory Women’s Heart Center, Atlanta, GA, USA
| | - Tené T Lewis
- Emory University, Rollins School of Public Health, Department of Epidemiology, Atlanta, GA, USA
| | - Brittany Weber
- Harvard Medical School, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jill Goldstein
- Massachusetts General Hospital, Department of Psychiatry, and Harvard Medical School, Departments of Psychiatry and Medicine, Boston, MA, USA
| | - Igho Ofotokun
- Emory University School of Medicine, Department of Medicine, Division of Infectious Diseases, Atlanta, GA, USA
| | - Arshed Quyyumi
- Emory University School of Medicine, Department of Medicine, Center for Heart Disease Prevention, Division of Cardiology and Emory Women’s Heart Center, Atlanta, GA, USA
| | - May Y. Choi
- Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Kehmia Titanji
- Emory University, Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Atlanta, GA, USA
| | - Cecile D. Lahiri
- Emory University School of Medicine, Department of Medicine, Division of Infectious Diseases, Atlanta, GA, USA
| |
Collapse
|
17
|
Armeni E, Lambrinoudaki I. Menopause, androgens, and cardiovascular ageing: a narrative review. Ther Adv Endocrinol Metab 2022; 13:20420188221129946. [PMID: 36325501 PMCID: PMC9619256 DOI: 10.1177/20420188221129946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide; however, women tend to be less affected than men during their reproductive years. The female cardiovascular risk increases significantly around the time of the menopausal transition. The loss of the protective action of ovarian oestrogens and the circulating androgens has been implicated in possibly inducing subclinical and overt changes in the cardiovascular system after the menopausal transition. In vitro studies performed in human or animal cell lines demonstrate an adverse effect of testosterone on endothelial cell function and nitric oxide bioavailability. Cohort studies evaluating associations between testosterone and/or dehydroepiandrosterone and subclinical vascular disease and clinical cardiovascular events show an increased risk for women with more pronounced androgenicity. However, a mediating effect of insulin resistance is possible. Data on cardiovascular implications following low-dose testosterone treatment in middle-aged women or high-dose testosterone supplementation for gender affirmatory purposes remain primarily inconsistent. It is prudent to consider the possible adverse association between testosterone and endothelial function during the decision-making process of the most appropriate treatment for a postmenopausal woman.
Collapse
Affiliation(s)
| | - Irene Lambrinoudaki
- Second Department of Obstetrics and Gynecology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Phua TJ. The Etiology and Pathophysiology Genesis of Benign Prostatic Hyperplasia and Prostate Cancer: A New Perspective. MEDICINES 2021; 8:medicines8060030. [PMID: 34208086 PMCID: PMC8230771 DOI: 10.3390/medicines8060030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Background: The etiology of benign prostatic hyperplasia and prostate cancer are unknown, with ageing being the greatness risk factor. Methods: This new perspective evaluates the available interdisciplinary evidence regarding prostate ageing in terms of the cell biology of regulation and homeostasis, which could explain the timeline of evolutionary cancer biology as degenerative, inflammatory and neoplasm progressions in these multifactorial and heterogeneous prostatic diseases. Results: This prostate ageing degeneration hypothesis encompasses the testosterone-vascular-inflamm-ageing triad, along with the cell biology regulation of amyloidosis and autophagy within an evolutionary tumorigenesis microenvironment. Conclusions: An understanding of these biological processes of prostate ageing can provide potential strategies for early prevention and could contribute to maintaining quality of life for the ageing individual along with substantial medical cost savings.
Collapse
Affiliation(s)
- Teow J Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| |
Collapse
|
19
|
Gencer B, Bonomi M, Adorni MP, Sirtori CR, Mach F, Ruscica M. Cardiovascular risk and testosterone - from subclinical atherosclerosis to lipoprotein function to heart failure. Rev Endocr Metab Disord 2021; 22:257-274. [PMID: 33616800 PMCID: PMC8087565 DOI: 10.1007/s11154-021-09628-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
The cardiovascular (CV) benefit and safety of treating low testosterone conditions is a matter of debate. Although testosterone deficiency has been linked to a rise in major adverse CV events, most of the studies on testosterone replacement therapy were not designed to assess CV risk and thus excluded men with advanced heart failure or recent history of myocardial infarction or stroke. Besides considering observational, interventional and prospective studies, this review article evaluates the impact of testosterone on atherosclerosis process, including lipoprotein functionality, progression of carotid intima media thickness, inflammation, coagulation and thromboembolism, quantification of plaque volume and vascular calcification. Until adequately powered studies evaluating testosterone effects in hypogonadal men at increased CV risk are available (TRAVERSE trial), clinicians should ponder the use of testosterone in men with atherosclerotic cardiovascular disease and discuss benefit and harms with the patients.
Collapse
Affiliation(s)
- Baris Gencer
- Cardiology Division, Geneva University Hospitals, Geneva, Switzerland.
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
- Department of Endocrine and Metabolic Diseases & Lab. of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, Parma, Italy
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - François Mach
- Cardiology Division, Geneva University Hospitals, Geneva, Switzerland
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
20
|
Roşca AE, Vlădăreanu AM, Mititelu A, Popescu BO, Badiu C, Căruntu C, Voiculescu SE, Onisâi M, Gologan Ş, Mirica R, Zăgrean L. Effects of Exogenous Androgens on Platelet Activity and Their Thrombogenic Potential in Supraphysiological Administration: A Literature Review. J Clin Med 2021; 10:jcm10010147. [PMID: 33406783 PMCID: PMC7795962 DOI: 10.3390/jcm10010147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/04/2023] Open
Abstract
Anabolic androgenic steroids (AAS), simply called “androgens”, represent the most widespread drugs used to enhance performance and appearance in a sporting environment. High-dosage and/or long-term AAS administration has been associated frequently with significant alterations in the cardiovascular system, some of these with severe endpoints. The induction of a prothrombotic state is probably the most life-threatening consequence, suggested by numerous case reports in AAS-abusing athletes, and by a considerable number of human and animal studies assessing the influence of exogenous androgens on hemostasis. Despite over fifty years of research, data regarding the thrombogenic potential of exogenous androgens are still scarce. The main reason is the limited possibility of conducting human prospective studies. However, human observational studies conducted in athletes or patients, in vitro human studies, and animal experiments have pointed out that androgens in supraphysiological doses induce enhanced platelet activity and thrombopoiesis, leading to increased platelet aggregation. If this tendency overlaps previously existing coagulation and/or fibrinolysis dysfunctions, it may lead to a thrombotic diathesis, which could explain the multitude of thromboembolic events reported in the AAS-abusing population. The influence of androgen excess on the platelet activity and fluid–coagulant balance remains a subject of debate, urging for supplementary studies in order to clarify the effects on hemostasis, and to provide new compelling evidence for their claimed thrombogenic potential.
Collapse
Affiliation(s)
- Adrian Eugen Roşca
- Division of Physiology and Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.E.V.); (L.Z.)
- Victor Babeş National Institute of Research-Development in the Pathology Domain, 050096 Bucharest, Romania;
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Ana-Maria Vlădăreanu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.)
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Alina Mititelu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.)
| | - Bogdan Ovidiu Popescu
- Victor Babeş National Institute of Research-Development in the Pathology Domain, 050096 Bucharest, Romania;
- Department of Neurology, Carol Davila University of Medicine and Pharmacy, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Corin Badiu
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, C.I. Parhon National Institute of Endocrinology, 11863 Bucharest, Romania;
| | - Constantin Căruntu
- Division of Physiology, Department of Fundamental Disciplines, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Suzana Elena Voiculescu
- Division of Physiology and Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.E.V.); (L.Z.)
| | - Minodora Onisâi
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.)
| | - Şerban Gologan
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, Elias Clinical Hospital, 011461 Bucharest, Romania;
| | - Radu Mirica
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, “Sf. Ioan” Clinical Hospital, 042122 Bucharest, Romania;
| | - Leon Zăgrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.E.V.); (L.Z.)
| |
Collapse
|
21
|
Ahmadpour D, Grange-Messent V. Involvement of Testosterone Signaling in the Integrity of the Neurovascular Unit in the Male: Review of Evidence, Contradictions, and Hypothesis. Neuroendocrinology 2021; 111:403-420. [PMID: 32512571 DOI: 10.1159/000509218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/08/2020] [Indexed: 11/19/2022]
Abstract
Age-related central nervous system function decline and increased susceptibility of females compared to males with respect to prevalence of several neurodegenerative and neuropsychiatric diseases are both based on the principle that hormonal factors could be involved. These cerebral disorders are characterized by an alteration of blood-brain barrier (BBB) properties and chronic neuroinflammation, which lead to disease progression. Neuroinflammation, in turn, contributes to BBB dysfunction. The BBB and its environment, called the neurovascular unit (NVU), are crucial for cerebral homeostasis and neuronal function. Interestingly, sex steroids influence BBB properties and modulate neuroinflammatory responses. To date however, the majority of work reported has focused on the effects of estrogens on BBB function and neuroinflammation in female mammals. In contrast, the effects of testosterone signaling on the NVU in males are still poorly studied. The aim of this review was to summarize and discuss the literature, providing insights and contradictions to highlight hypothesis and the need for further investigations.
Collapse
Affiliation(s)
- Delnia Ahmadpour
- Sorbonne Université, INSERM U1130, CNRS UMR 8246, Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, Paris, France
| | - Valérie Grange-Messent
- Sorbonne Université, INSERM U1130, CNRS UMR 8246, Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, Paris, France,
| |
Collapse
|
22
|
Challa AA, Calaway AC, Cullen J, Garcia J, Desai N, Weintraub NL, Deswal A, Kutty S, Vallakati A, Addison D, Baliga R, Campbell CM, Guha A. Cardiovascular Toxicities of Androgen Deprivation Therapy. Curr Treat Options Oncol 2021; 22:47. [PMID: 33866442 PMCID: PMC8053026 DOI: 10.1007/s11864-021-00846-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
OPINION STATEMENT Prostate cancer is the second leading cause of cancer death in men, and cardiovascular disease is the number one cause of death in patients with prostate cancer. Androgen deprivation therapy, the cornerstone of prostate cancer treatment, has been associated with adverse cardiovascular events. Emerging data supports decreased cardiovascular risk of gonadotropin releasing hormone (GnRH) antagonists compared to agonists. Ongoing clinical trials are assessing the relative safety of different modalities of androgen deprivation therapy. Racial disparities in cardiovascular outcomes in prostate cancer patients are starting to be explored. An intriguing inquiry connects androgen deprivation therapy with reduced risk of COVID-19 infection susceptibility and severity. Recognition of the cardiotoxicity of androgen deprivation therapy and aggressive risk factor modification are crucial for optimal patient care.
Collapse
Affiliation(s)
- Azariyas A. Challa
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Adam Christopher Calaway
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - Jennifer Cullen
- Department of Population and Quantitative Health Sciences, Case Comprehensive Cancer Center, Cleveland, OH USA
| | - Jorge Garcia
- Division of Solid Tumor Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - Nihar Desai
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT USA ,Center for Outcomes Research and Evaluation, New Haven, CT USA
| | - Neal L. Weintraub
- Vascular Biology Center, Augusta University, August, GA USA ,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Shelby Kutty
- The Helen B. Taussig Heart Center, The Johns Hopkins Hospital and Johns Hopkins University, Baltimore, MD USA
| | - Ajay Vallakati
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Ragavendra Baliga
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Courtney M. Campbell
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA
| | - Avirup Guha
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH USA ,Harrington Heart and Vascular Institute, UH Cleveland Medical Center, Cleveland, OH USA
| |
Collapse
|
23
|
Wilk M, Waśko-Grabowska A, Szmit S. Cardiovascular Complications of Prostate Cancer Treatment. Front Pharmacol 2020; 11:555475. [PMID: 33414715 PMCID: PMC7783464 DOI: 10.3389/fphar.2020.555475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
Treatment of prostate cancer (PC) is a rapidly evolving field of pharmacology research. In recent years, numerous novel therapeutics that improve survival and ameliorate disease control have been approved. Currently, the systemic treatment for prostate neoplasm consists of hormonal therapy, chemotherapy, immunotherapy, radiopharmaceuticals, targeted therapy, and supportive agents (e.g., related to bone health). Unfortunately, many of them carry a risk of cardiovascular complications, which occasionally pose a higher mortality threat than cancer itself. This article provides a unique and comprehensive overview of the prevalence and possible mechanisms of cardiovascular toxicities of all PC therapies, including state-of-the-art antineoplastic agents. Additionally, this article summarizes available recommendations regarding screening and prevention of the most common cardiac complications among patients with advanced cancer disease.
Collapse
Affiliation(s)
- Michał Wilk
- Department of Clinical Oncology, Centre of Postgraduate Medical Education, European Health Centre, Otwock, Poland
| | - Anna Waśko-Grabowska
- Department of Clinical Oncology, Centre of Postgraduate Medical Education, European Health Centre, Otwock, Poland
| | - Sebastian Szmit
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, European Health Centre, Otwock, Poland
| |
Collapse
|
24
|
Sesti F, Pofi R, Minnetti M, Tenuta M, Gianfrilli D, Isidori AM. Late-onset hypogonadism: Reductio ad absurdum of the cardiovascular risk-benefit of testosterone replacement therapy. Andrology 2020; 8:1614-1627. [PMID: 32737921 DOI: 10.1111/andr.12876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Low testosterone (T) level is considered a marker of poor cardiovascular health. Ten years ago, the Testosterone in Older Men with Mobility Limitations (TOM) trial was discontinued due to a higher number of adverse events in men receiving T compared with placebo. Since then, several studies have investigated the risks of T replacement therapy (TRT) in late-onset hypogonadism (LOH). OBJECTIVE To review the mechanism by which TRT could damage the cardiovascular system. MATERIALS AND METHODS Comprehensive literature search of recent clinical and experimental studies. RESULTS The mechanisms of T-mediated coronary vasodilation were reviewed with emphasis on calcium-activated and ATP-sensitive potassium ion channels. We showed how T regulates endothelial nitric oxide synthase (eNOS) and phosphoinositide 3-kinase/protein kinase B/eNOS signaling pathways in vessel walls and its direct effects on cardiomyocytes via β1-adrenergic and ryanodine receptors and provided data on myocardial infarction and heart failure. Vascular smooth muscle senescence could be explained by the modulation of growth factors, matrix metalloproteinase-2, and angiotensin II by T. Furthermore, leukocyte trafficking, facilitated by changes in TNF-α, could explain some of the effects of T on atheromatous plaques. Conflicting data on prothrombotic risk linked to platelet aggregation inhibition via NO-triggered arachidonate synthesis or increased aggregability due to enhanced thromboxane A in human platelets provide evidence regarding the hypotheses on plaque maturation and rupture risk. The effects of T on cardiac electrophysiology and oxygen delivery were also reviewed. DISCUSSION The effects of TRT on the cardiovascular system are complex. Although molecular studies suggest a potential benefit, several clinical observations reveal neutral or occasionally detrimental effects, mostly due to confounding factors. CONCLUSIONS Attempts to demonstrate that TRT damages the cardiovascular system via systematic analysis of the putative mechanisms led to the contradiction of the initial hypothesis. Current evidence indicates that TRT is safe once other comorbidities are addressed.
Collapse
Affiliation(s)
- Franz Sesti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Riccardo Pofi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Marianna Minnetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Marta Tenuta
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
25
|
Alves JV, da Costa RM, Pereira CA, Fedoce AG, Silva CAA, Carneiro FS, Lobato NS, Tostes RC. Supraphysiological Levels of Testosterone Induce Vascular Dysfunction via Activation of the NLRP3 Inflammasome. Front Immunol 2020; 11:1647. [PMID: 32849566 PMCID: PMC7411079 DOI: 10.3389/fimmu.2020.01647] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Both supraphysiological and subphysiological testosterone levels are associated with increased cardiovascular risk. Testosterone consumption at supraphysiological doses has been linked to increased blood pressure, left ventricular hypertrophy, vascular dysfunction, and increased levels of inflammatory markers. Activation of the NLRP3 inflammasome contributes to the production of proinflammatory cytokines, leading to cardiovascular dysfunction. We hypothesized that supraphysiological levels of testosterone, via generation of mitochondrial reactive oxygen species (mROS), activates the NLRP3 inflammasome and promotes vascular dysfunction. Methods: Male, 12 week-old C57Bl/6J (WT) and NLRP3 knockout (NLRP3-/-) mice were used. Mice were treated with testosterone propionate [TP (10 mg/kg) in vivo] or vehicle for 30 days. In addition, vessels were incubated with testosterone [Testo (10-6 M, 2 h) in vitro]. Testosterone levels, blood pressure, vascular function (thoracic aortic rings), pro-caspase-1/caspase-1 and interleukin-1β (IL-1β) expression, and generation of reactive oxygen species were determined. Results: Testosterone increased contractile responses and reduced endothelium-dependent vasodilation, both in vivo and in vitro. These effects were not observed in arteries from NLRP3-/- mice. Aortas of TP-treated WT mice (in vivo), as well as aortas from WT mice incubated with testo (in vitro), exhibited increased mROS levels and increased caspase-1 and IL-1β expression. These effects were not observed in arteries from NLRP3-/- mice. Flutamide [Flu, 10-5 M, androgen receptor (AR) antagonist], carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 10-6 M, mitochondrial uncoupler) and MCC950 (MCC950, 10-6 M, a NLRP3 receptor inhibitor) prevented testosterone-induced mROS generation. Conclusion: Supraphysiological levels of testosterone induce vascular dysfunction via mROS generation and NLRP3 inflammasome activation. These events may contribute to increased cardiovascular risk.
Collapse
MESH Headings
- Androgens/toxicity
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Caspase 1/metabolism
- Inflammasomes/agonists
- Inflammasomes/genetics
- Inflammasomes/metabolism
- Interleukin-1beta/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/drug effects
- Mitochondria/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/agonists
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, Androgen/drug effects
- Receptors, Androgen/metabolism
- Testosterone Propionate/toxicity
- Tissue Culture Techniques
- Vasoconstriction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Juliano Vilela Alves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rafael Menezes da Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Special Academic Unit of Health Sciences, Federal University of Jataí, Jataí, Brazil
| | - Camila André Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Aline Garcia Fedoce
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Fernando Silva Carneiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Núbia Souza Lobato
- Special Academic Unit of Health Sciences, Federal University of Jataí, Jataí, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Alhawiti NM, Alqahtani SA. Chronic testosterone administration improves cardiac contractility and has a beneficial effect on the haemostatic system by enhancing fibrinolytic activity and inducing hypocoagulation in healthy rats. Arch Physiol Biochem 2019; 125:311-320. [PMID: 29616829 DOI: 10.1080/13813455.2018.1458244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study investigated the effects of chronic supraphysiological dose of testosterone propionate administration cardiovascular function in rats from the perspective of haemostatic function including platelet functions, coagulation, and fibrinolysis. Testosterone significantly enhanced cardiac contractility by enhancing LVSP (10%), dp/dtmax (36.7%), dp/dtmin (14.6%) without altering heart rate, diastolic function, and serum lipid profile. While it has no effect on platelets count, thromboxane B2 levels, and platelet aggregation, testosterone significantly enhanced bleeding time and increased circulatory and thoracic aorta mRNA and protein levels of tPA (46.5%, 58.2%, and 74.3%, respectively) and significantly decreased those of PAI-1 (29.3%, 26.4%, and 32.8%, respectively). While there were no significant changes in PT and aPTT, mRNA and protein levels of prothrombin and factor VII were downregulated in the livers of the testosterone-treated rats (57.7% and 64.9%, respectively). Overall, chronic testosterone administration in rats may act as a cardio-protective agent by modulating haemostasis in rats.
Collapse
Affiliation(s)
- Naif M Alhawiti
- a College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences , Riyadh , KSA
- b Kind Abdullah International Medical Research Center (KAIMRC) , Riyadh , KSA
| | - Sultan A Alqahtani
- b Kind Abdullah International Medical Research Center (KAIMRC) , Riyadh , KSA
- c College of Medicine, King Saud bin Abdulaziz University for Health Science (KSAU-HS) , Riyadh , KSA
| |
Collapse
|
27
|
Karolczak K, Konieczna L, Kostka T, Witas PJ, Soltysik B, Baczek T, Watala C. Testosterone and dihydrotestosterone reduce platelet activation and reactivity in older men and women. Aging (Albany NY) 2019; 10:902-929. [PMID: 29723157 PMCID: PMC5990384 DOI: 10.18632/aging.101438] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/26/2018] [Indexed: 12/22/2022]
Abstract
The cardiovascular effects of testosterone and dihydrotestosterone are generally attributed to their modulatory action on lipid and glucose metabolism. However, no ex vivo studies suggest that circulating androgen levels influence the activation and reactivity of blood platelets - one of the main components of the haemostasis system directly involved in atherosclerosis. The levels of testosterone, dihydrotestosterone and oestradiol in plasma from men and women aged from 60 to 65 years were measured by LC-MS; the aim was to identify any potential relationships between sex steroid levels and the markers of platelet activation (surface membrane expression of GPII/IIIa complex and P-selectin) and platelet reactivity in response to arachidonate, collagen or ADP, monitored with whole blood aggregometry and flow cytometry. The results of the ex vivo part of the study indicate that the concentrations of testosterone and its reduced form, dihydrotestosterone are significantly negatively associated with platelet activation and reactivity. These observations were confirmed in an in vitro model: testosterone and dihydrotestosterone significantly inhibited platelet aggregation triggered by arachidonate or collagen. Our findings indicate that testosterone and dihydrotestosterone are significant haemostatic steroids with inhibitory action on blood platelets in older people.
Collapse
Affiliation(s)
- Kamil Karolczak
- Department of Haemostatic Disorders, Medical University, Lodz, Poland
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Kostka
- Department of Geriatrics, Healthy Ageing Research Centre (HARC), Medical University, Lodz, Poland
| | - Piotr J Witas
- Department of Haemostatic Disorders, Medical University, Lodz, Poland
| | - Bartlomiej Soltysik
- Department of Geriatrics, Healthy Ageing Research Centre (HARC), Medical University, Lodz, Poland
| | - Tomasz Baczek
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University, Lodz, Poland
| |
Collapse
|
28
|
Unsworth AJ, Flora GD, Gibbins JM. Non-genomic effects of nuclear receptors: insights from the anucleate platelet. Cardiovasc Res 2019; 114:645-655. [PMID: 29452349 PMCID: PMC5915957 DOI: 10.1093/cvr/cvy044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) have the ability to elicit two different kinds of responses, genomic and non-genomic. Although genomic responses control gene expression by influencing the rate of transcription, non-genomic effects occur rapidly and independently of transcriptional regulation. Due to their anucleate nature and mechanistically well-characterized and rapid responses, platelets provide a model system for the study of any non-genomic effects of the NRs. Several NRs have been found to be present in human platelets, and multiple NR agonists have been shown to elicit anti-platelet effects by a variety of mechanisms. The non-genomic functions of NRs vary, including the regulation of kinase and phosphatase activity, ion channel function, intracellular calcium levels, and production of second messengers. Recently, the characterization of mechanisms and identification of novel binding partners of NRs have further strengthened the prospects of developing their ligands into potential therapeutics that offer cardio-protective properties in addition to their other defined genomic effects.
Collapse
Affiliation(s)
- Amanda J Unsworth
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| | - Gagan D Flora
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| | - Jonathan M Gibbins
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| |
Collapse
|
29
|
Reiner AP, Johnson AD. Platelet Genomics. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Alqahtani SA, Alhawiti NM. Administration of testosterone improves the prothrombotic and antifibrinolytic parameters associated with its deficiency in an orchidectiomized rat model. Platelets 2018; 30:624-630. [DOI: 10.1080/09537104.2018.1499886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sultan A. Alqahtani
- College of Medicine, King Saud bin Abdulaziz University for Health Science (KSAU-HS), Riyadh, Kingdom of Saudi Arabia (KSA)
| | - Naif M. Alhawiti
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia (KSA)
| |
Collapse
|
31
|
Exercise training causes a partial improvement through increasing testosterone and eNOS for erectile function in middle-aged rats. Exp Gerontol 2018; 108:131-138. [PMID: 29627420 DOI: 10.1016/j.exger.2018.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE Aging changes the balance of sex hormones and causes endothelial dysfunction in the penis, both of which are important determinants of erectile dysfunction (ED). The purpose of this study was to evaluate whether exercise training could protect against erectile dysfunction by increasing serum testosterone and penile eNOS levels in aging rats. METHODS A total of 14 young (2-month-old) and 14 middle-aged (18-month-old) Sprague Dawley rats were randomly assigned to either untrained control (young control, [YC], middle-aged control, [MC]) or endurance exercise-trained (young exercise, [YE], middle-aged exercise, [ME]) groups with seven rats per group. The exercise groups trained with treadmill running for 6 weeks. Body composition parameters (body weight, heart mass, liver mass, and testicular mass), serum sex hormone levels (testosterone, luteinizing hormone, follicle-stimulating hormone, and prolactin), endothelial function-related parameters in the penis (endothelial nitric oxide synthase [eNOS], CD31, alpha smooth muscle actin [α-SMA]), and maximal intracavernous pressure measure (ICP) and total ICP were analyzed in middle-aged rats. RESULTS The middle-aged groups showed increased body weight, as compared with the young groups, but exercise training attenuated the aging-induced increase in body weight. The middle-aged groups had lower testicular mass compared with the young groups, but exercise training attenuated aging-induced decreases in testicular mass. Exercise training increased serum testosterone levels in both the young and middle-aged groups. However, there were no changes in the levels of luteinizing hormone, follicle-stimulating hormone, and prolactin among the groups. MC group showed decreased protein levels of p-eNOS, as compared with the YC group. However, exercise training protected against aging-induced decrease in eNOS and p-eNOS protein levels in the penis. Interestingly, exercise training also increased protein levels of α-SMA and maximal ICP in the middle-aged group. CONCLUSIONS Exercise training has beneficial effects on erectile function in aged rats through increased testosterone production from the testis and strengthening of the cavernous endothelium with activation of eNOS. Therefore, exercise training may be a therapeutic modality for improving erectile dysfunction associated with aging.
Collapse
|
32
|
Agotegaray MA, Campelo AE, Zysler RD, Gumilar F, Bras C, Gandini A, Minetti A, Massheimer VL, Lassalle VL. Magnetic nanoparticles for drug targeting: from design to insights into systemic toxicity. Preclinical evaluation of hematological, vascular and neurobehavioral toxicology. Biomater Sci 2018; 5:772-783. [PMID: 28256646 DOI: 10.1039/c6bm00954a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A simple two-step drug encapsulation method was developed to obtain biocompatible magnetic nanocarriers for the potential targeted treatment of diverse diseases. The nanodevice consists of a magnetite core coated with chitosan (Chit@MNPs) as a platform for diclofenac (Dic) loading as a model drug (Dic-Chit@MNPs). Mechanistic and experimental conditions related to drug incorporation and quantification are further addressed. This multi-disciplinary study aims to elucidate the toxicological impact of the MNPs at hematological, vascular, neurological and behavioral levels. Blood compatibility assays revealed that MNPs did not affect either erythrosedimentation rates or erythrocyte integrity at the evaluated doses (1, 10 and 100 μg mL-1). A microscopic evaluation of blood smears indicated that MNPs did not induce morphological changes in blood cells. Platelet aggregation was not affected by MNPs either and just a slight diminution was observed with Dic-Chit@MNPs, an effect possibly due to diclofenac. The examined formulations did not exert cytotoxicity on rat aortic endothelial cells and no changes in cell viability or their capacity to synthesize NO were observed. Behavioral and functional nervous system parameters in a functional observational battery were assessed after a subacute treatment of mice with Chit@MNPs. The urine pools of the exposed group were decreased. Nephritis and an increased number of megakaryocytes in the spleen were observed in the histopathological studies. Sub-acute exposure to Chit@MNPs did not produce significant changes in the parameters used to evaluate neurobehavioral toxicity. The aspects focused on within this manuscript are relevant at the pre-clinical level providing new and novel knowledge concerning the biocompatibility of magnetic nanodevices for biomedical applications.
Collapse
Affiliation(s)
- Mariela A Agotegaray
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
| | - Adrián E Campelo
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Roberto D Zysler
- CONICET - Centro Atómico Bariloche, Instituto Balseiro, S.C. de Bariloche, Argentina
| | - Fernanda Gumilar
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Cristina Bras
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Ariel Gandini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Alejandra Minetti
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Virginia L Massheimer
- Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS Dpto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Verónica L Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
33
|
Yin J, Guo YM, Chen P, Xiao H, Wang XH, DiSanto ME, Zhang XH. Testosterone regulates the expression and functional activity of sphingosine-1-phosphate receptors in the rat corpus cavernosum. J Cell Mol Med 2017; 22:1507-1516. [PMID: 29266713 PMCID: PMC5824404 DOI: 10.1111/jcmm.13416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 09/12/2017] [Indexed: 01/29/2023] Open
Abstract
The bioactive lipid sphingosine‐1‐phosphate (S1P) regulates smooth muscle (SM) contractility predominantly via three G protein‐coupled receptors. The S1P1 receptor is associated with nitric oxide (NO)‐mediated SM relaxation, while S1P2 & S1P3 receptors are linked to SM contraction via activation of the Rho‐kinase pathway. This study is to determine testosterone (T) modulating the expression and functional activity of S1P receptors in corpus cavernosum (CC). Adult male Sprague‐Dawley rats were randomly divided into three groups: sham‐operated controls, surgical castration and T supplemented group. Serum S1P levels were detected by high‐performance liquid chromatography. The expression of S1P1‐3 receptors and sphingosine kinases was detected by real‐time RT‐PCR. In vitro organ bath contractility and in vivo intracavernous pressure (ICP) measurement were also performed. T deprivation significantly decreased ICP rise. Meanwhile, surgical castration induced a significant increase in serum S1P level and the expression of S1P2‐3 receptors by twofold (P < 0.05) but a decrease in the expression of S1P1 receptor. Castration also augmented exogenous phenylephrine (PE), S1P, S1P1,3 receptor agonist FTY720‐P contractility and S1P2‐specific antagonist JTE013 relaxation effect. T supplemented could restore the aforementioned changes. We provide novel data that castration increased serum S1P concentration and up‐regulated the expression of S1P2‐3 receptors in CC. Consistently, agonizing S1P receptors induced CCSM contraction and antagonizing mediated relaxation were augmented. This provides the first clear evidence that S1P system dysregulation may contribute to hypogonadism‐related erectile dysfunction (ED), and S1P receptors may be expected as a potential target for treating ED.
Collapse
Affiliation(s)
- Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Ming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - He Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xin-Hua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Yin J, Guo YM, Chen P, Xiao H, Wang XH, DiSanto ME, Zhang XH. Testosterone regulates the expression and functional activity of sphingosine-1-phosphate receptors in the rat corpus cavernosum. J Cell Mol Med 2017. [DOI: 10.1111/jcmm.13416 29266713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jing Yin
- Department of Rehabilitation; Zhongnan Hospital of Wuhan University; Wuhan China
| | - Yu-ming Guo
- Department of Urology; Zhongnan Hospital of Wuhan University; Wuhan China
| | - Ping Chen
- Department of Urology; Zhongnan Hospital of Wuhan University; Wuhan China
| | - He Xiao
- Department of Urology; Zhongnan Hospital of Wuhan University; Wuhan China
| | - Xing-huan Wang
- Department of Urology; Zhongnan Hospital of Wuhan University; Wuhan China
| | - Michael E DiSanto
- Surgery and Biomedical Sciences; Cooper Medical School of Rowan University; Camden NJ USA
| | - Xin-hua Zhang
- Department of Urology; Zhongnan Hospital of Wuhan University; Wuhan China
| |
Collapse
|
35
|
Traish AM. Benefits and Health Implications of Testosterone Therapy in Men With Testosterone Deficiency. Sex Med Rev 2017; 6:86-105. [PMID: 29128268 DOI: 10.1016/j.sxmr.2017.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Testosterone (T) deficiency (TD; hypogonadism) has deleterious effects on men's health; negatively affects glycometabolic and cardiometabolic functions, body composition, and bone mineral density; contributes to anemia and sexual dysfunction; and lowers quality of life. T therapy (TTh) has been used for the past 8 decades to treat TD, with positive effects on signs and symptoms of TD. AIM To summarize the health benefits of TTh in men with TD. METHODS A comprehensive literature search was carried out using PubMed, articles relevant to TTh were accessed and evaluated, and a comprehensive summary was synthesized. MAIN OUTCOME MEASURES Improvements in signs and symptoms of TD reported in observational studies, registries, clinical trials, and meta-analyses were reviewed and summarized. RESULTS A large body of evidence provides significant valuable information pertaining to the therapeutic value of TTh in men with TD. TTh in men with TD provides real health benefits for bone mineral density, anemia, sexual function, glycometabolic and cardiometabolic function, and improvements in body composition, anthropometric parameters, and quality of life. CONCLUSION TTh in the physiologic range for men with TD is a safe and effective therapeutic modality and imparts great benefits on men's health and quality of life. Traish AM. Benefits and Health Implications of Testosterone Therapy in Men With Testosterone Deficiency. Sex Med Rev 2018;6:86-105.
Collapse
Affiliation(s)
- Abdulmaged M Traish
- Department of Urology, Boston University School of Medicine, Boson, MA, USA.
| |
Collapse
|
36
|
Cardiovascular Complications of Androgen Deprivation Therapy for Prostate Cancer. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:61. [PMID: 28653290 DOI: 10.1007/s11936-017-0563-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OPINION STATEMENT Prostate cancer is a common hormone-sensitive malignancy, and androgen deprivation therapy (ADT) is a cornerstone of therapy in advanced disease. The most important and controversial of ADT side effects is cardiovascular (CV) toxicity. Prospective trials have demonstrated that ADT increases CV risk by lowering insulin sensitivity, causing dyslipidemia, and causing weight gain thus mimicking metabolic syndrome. Retrospective data suggests that ADT increases CV risk; however, data on cardiovascular mortality is equivocal. This discrepancy can be explained by study design limitations and selection bias inherent to post hoc analysis of trials not designed to study CV outcomes. Despite the adverse CV and metabolic sequelae of ADT, little data is available for optimal cardiac screening or management in these patients. The short-term CV risk is higher in patients who have had CV events in the year prior to starting ADT. A careful discussion of risk and benefit of ADT must take place with patients with pre-existing CV disease prior to initiating hormonal therapy. The duration of ADT must be considered. We recommend diligent pretherapy screening and optimization of cardiac risk factors and close surveillance especially within the first year of ADT.
Collapse
|
37
|
Zhao Y, Wang L, He S, Wang X, Shi W. Nitric oxide synthesis-promoting effects of valsartan in human umbilical vein endothelial cells via the Akt/adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway. Bosn J Basic Med Sci 2017; 17:132-137. [PMID: 28178430 DOI: 10.17305/bjbms.2017.1319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/17/2023] Open
Abstract
Valsartan (VAL), an antagonist of angiotensin II receptor type 1, has antihypertensive and multiple cardiovascular protective effects. The pleiotropic functions of VAL are related to the increased synthesis and biological activity of intravascular nitric oxide (NO). In this study, the role and mechanisms of VAL in the synthesis of NO were examined in human umbilical vein endothelial cells (HUVECs). Ten µmol/L of VAL was used to treat EA.hy926 cells for 30 minutes, 1, 3, 6, 12, and 24 hours, and three concentrations of VAL (i.e., 10, 1, and 0.1 µmol/L) were used to treat EA.hy926 cells for 24 hours. The cells were divided into five groups: control, VAL, VAL + Compound C (adenosine monophosphate-activated protein kinase [AMPK] inhibitor, 1 µmol/L), VAL + LY294002 (Akt [protein kinase B] inhibitor, 10 µmol/L), and VAL + L-nitro-arginine methyl ester (L-NAME, endothelial NO synthase [eNOS] inhibitor, 500 µmol/L) groups. The NO content in the VAL-treated HUVEC line (EA.hy926) was detected using the nitrate reductase method, and western blot was used to detect the phosphorylation of Akt, AMPK, and eNOS, as well as the changes in total protein levels. VAL increased NO synthesis in EA.hy926 cells in time- and dose-dependent manners (p < 0.05) and the intracellular phosphorylation levels of Akt, AMPK, and eNOS at the corresponding time points. LY294002, Compound C, and L-NAME could inhibit the VAL-promoted NO synthesis. VAL activated Akt, AMPK, and eNOS, thus promoting NO synthesis and playing a protective role in endothelial cells. These results partially explained the mechanisms underlying the cardiovascular protective effects of VAL.
Collapse
Affiliation(s)
- Yingshuai Zhao
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of General Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | | | | | | | | |
Collapse
|
38
|
Ruamyod K, Watanapa WB, Shayakul C. Testosterone rapidly increases Ca 2+-activated K + currents causing hyperpolarization in human coronary artery endothelial cells. J Steroid Biochem Mol Biol 2017; 168:118-126. [PMID: 28223151 DOI: 10.1016/j.jsbmb.2017.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 12/20/2022]
Abstract
Testosterone has endothelium-dependent vasodilatory effects on the coronary artery, with some reports suggesting endothelial ion channel involvement. This study employed the whole-cell patch clamp technique to investigate the effect of testosterone on ion channels in human coronary artery endothelial cells (HCAECs) and the mechanisms involved. We found that 0.03-3μM testosterone significantly induced a rapid, concentration-dependent increase in total HCAEC current (EC50, 71.96±1.66nM; maximum increase, 59.13±8.37%; mean±SEM). The testosterone-enhanced currents consisted of small- and large-conductance Ca2+-activated K+ currents (SKCa and BKCa currents), but not Cl- and nonselective cation currents. Either a non-permeant testosterone conjugate or the non-aromatizable androgen dihydrotestosterone (DHT) could increase HCAEC currents as well. The androgen receptor antagonist flutamide prevented this testosterone, testosterone conjugate, and DHT effect, while the estrogen receptor antagonist fulvestrant did not. Incubating HCAECs with pertussis toxin or protein kinase A inhibitor H-89 largely inhibited the testosterone effect, while pre-incubation with phospholipase C inhibitor U-73122, prostacyclin inhibitor indomethacin, nitric oxide synthase inhibitor L-NAME or cytochrome P450 inhibitor MS-PPOH, did not. Finally, testosterone application induced HCAEC hyperpolarization within minutes; this effect was prevented by SKCa and BKCa current inhibitors apamin and iberiotoxin. This is the first electrophysiological demonstration of androgen-induced KCa current increase, leading to hyperpolarization, in any endothelial cell, and the first report of SKCa as a testosterone target. Our data show that testosterone rapidly increased whole-cell HCAEC SKCa and BKCa currents via a surface androgen receptor, Gi/o protein, and protein kinase A. This mechanism may explain rapid testosterone-induced coronary vasodilation seen in vivo.
Collapse
Affiliation(s)
- Katesirin Ruamyod
- Department of Physiology Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Wattana B Watanapa
- Department of Physiology Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Chairat Shayakul
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
39
|
Kunstreich M, Kummer S, Laws HJ, Borkhardt A, Kuhlen M. Osteonecrosis in children with acute lymphoblastic leukemia. Haematologica 2016; 101:1295-1305. [PMID: 27742768 DOI: 10.3324/haematol.2016.147595] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/23/2016] [Indexed: 11/09/2022] Open
Abstract
The morbidity and toxicity associated with current intensive treatment protocols for acute lymphoblastic leukemia in childhood become even more important as the vast majority of children can be cured and become long-term survivors. Osteonecrosis is one of the most common therapy-related and debilitating side effects of anti-leukemic treatment and can adversely affect long-term quality of life. Incidence and risk factors vary substantially between study groups and therapeutic regimens. We therefore analyzed 22 clinical trials of childhood acute lymphoblastic leukemia in terms of osteonecrosis incidence and risk factors. Adolescent age is the most significant risk factor, with patients >10 years old at the highest risk. Uncritical modification or even significant reduction of glucocorticoid dosage cannot be recommended at this stage. A novel and innovative approach to reduce osteonecrosis-associated morbidity might be systematic early screening for osteonecrosis by serial magnetic resonance images. However, discriminating patients at risk of functional impairment and debilitating progressive joint disease from asymptomatic patients still remains challenging.
Collapse
Affiliation(s)
- Marina Kunstreich
- University of Duesseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Center for Child and Adolescent Health, Germany
| | - Sebastian Kummer
- University of Duesseldorf, Medical Faculty, Department of General Pediatrics, Neonatology and Pediatric Cardiology, Center for Child and Adolescent Health, Germany
| | - Hans-Juergen Laws
- University of Duesseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Center for Child and Adolescent Health, Germany
| | - Arndt Borkhardt
- University of Duesseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Center for Child and Adolescent Health, Germany
| | - Michaela Kuhlen
- University of Duesseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology, and Clinical Immunology, Center for Child and Adolescent Health, Germany
| |
Collapse
|
40
|
Cutini PH, Rauschemberger MB, Sandoval MJ, Massheimer VL. Vascular action of bisphosphonates: In vitro effect of alendronate on the regulation of cellular events involved in vessel pathogenesis. J Mol Cell Cardiol 2016; 100:83-92. [PMID: 27705747 DOI: 10.1016/j.yjmcc.2016.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 11/28/2022]
Abstract
In this work we investigate whether, despite the procalcific action of alendronate on bone, the drug would be able to regulate in vitro the main cellular events that take part in atherosclerotic lesion generation. Using endothelial cell cultures we showed that Alendronate (1-50μM) acutely enhances nitric oxide production (10-30min). This stimulatory action of the bisphosphonate involves the participation of MAPK signaling transduction pathway. Under inflammatory stress, the drug reduces monocytes and platelets interactions with endothelial cells induced by lipopolysaccharide. Indeed the bisphophonate exhibits a significant inhibition of endothelial dependent platelet aggregation. The molecular mechanism of alendronate (ALN) on leukocyte adhesion depends on the regulation of the expression of cell adhesion related genes (VCAM-1; ICAM-1); meanwhile the antiplatelet activity is associated with the effect of the drug on nitric oxide production. On vascular smooth muscle cells, the drug exhibits ability to decrease osteogenic transdifferentiation and extracellular matrix mineralization. When vascular smooth muscle cells were cultured in osteogenic medium for 21days, they exhibited an upregulation of calcification markers (RUNX2 and TNAP), high alkaline phosphatase activity and a great amount of mineralization nodules. ALN treatment significantly down-regulates mRNA levels of osteoblasts markers; diminishes alkaline phosphatase activity and reduces the extracellular calcium deposition. The effect of ALN on vascular cells differs from its own bone action. On calvarial osteoblasts ALN induces cell proliferation, enhances alkaline phosphatase activity, and increases mineralization, but does not affect nitric oxide synthesis. Our results support the hypothesis that ALN is an active drug at vascular level that regulates key processes involved in vascular pathogenesis through a direct action on vessel cells.
Collapse
Affiliation(s)
- Pablo H Cutini
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología, Bioquímica y Farmacia, San Juan 670, B8000ICN, Bahía Blanca, Argentina.
| | - María B Rauschemberger
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología, Bioquímica y Farmacia, San Juan 670, B8000ICN, Bahía Blanca, Argentina.
| | - Marisa J Sandoval
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología, Bioquímica y Farmacia, San Juan 670, B8000ICN, Bahía Blanca, Argentina.
| | - Virginia L Massheimer
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología, Bioquímica y Farmacia, San Juan 670, B8000ICN, Bahía Blanca, Argentina.
| |
Collapse
|
41
|
Androgen actions on endothelium functions and cardiovascular diseases. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2016; 13:183-96. [PMID: 27168746 PMCID: PMC4854959 DOI: 10.11909/j.issn.1671-5411.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The roles of androgens on cardiovascular physiology and pathophysiology are controversial as both beneficial and detrimental effects have been reported. Although the reasons for this discrepancy are unclear, multiple factors such as genetic and epigenetic variation, sex-specificity, hormone interactions, drug preparation and route of administration may contribute. Recently, growing evidence suggests that androgens exhibit beneficial effects on cardiovascular function though the mechanism remains to be elucidated. Endothelial cells (ECs) which line the interior surface of blood vessels are distributed throughout the circulatory system, and play a crucial role in cardiovascular function. Endothelial progenitor cells (EPCs) are considered an indispensable element for the reconstitution and maintenance of an intact endothelial layer. Endothelial dysfunction is regarded as an initiating step in development of atherosclerosis and cardiovascular diseases. The modulation of endothelial functions by androgens through either genomic or nongenomic signal pathways is one possible mechanism by which androgens act on the cardiovascular system. Obtaining insight into the mechanisms by which androgens affect EC and EPC functions will allow us to determine whether androgens possess beneficial effects on the cardiovascular system. This in turn may be critical in the prevention and therapy of cardiovascular diseases. This article seeks to review recent progress in androgen regulation of endothelial function, the sex-specificity of androgen actions, and its clinical applications in the cardiovascular system.
Collapse
|
42
|
Musicki B, Bella AJ, Bivalacqua TJ, Davies KP, DiSanto ME, Gonzalez-Cadavid NF, Hannan JL, Kim NN, Podlasek CA, Wingard CJ, Burnett AL. Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction. J Sex Med 2015; 12:2233-55. [PMID: 26646025 DOI: 10.1111/jsm.13069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. AIM This study aims to provide scientific evidence for the link between CVMD and ED. METHODS In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. RESULTS A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). CONCLUSION Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions.
Collapse
Affiliation(s)
- Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anthony J Bella
- Division of Urology, Department of Surgery and Department of Neuroscience, Ottawa Hospital Research Institute at the University of Ottawa, Ottawa, ON, Canada
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kelvin P Davies
- Department of Urology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael E DiSanto
- Department of Surgery/Division of Urology, Cooper University Hospital, Camden, NJ, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA.,Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Noel N Kim
- Institute for Sexual Medicine, San Diego, CA, USA
| | - Carol A Podlasek
- Departments of Urology, Physiology, and Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
43
|
Zareba P, Duivenvoorden W, Leong DP, Pinthus JH. Androgen deprivation therapy and cardiovascular disease: what is the linking mechanism? Ther Adv Urol 2015; 8:118-29. [PMID: 27034724 DOI: 10.1177/1756287215617872] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The past decade has brought increased awareness of the potential adverse effects of androgen deprivation therapy (ADT) in men with prostate cancer. Arguably the most important and controversial of these is the increased risk of cardiovascular morbidity and mortality. Although multiple observational studies have shown that men treated with ADT are at increased risk of developing atherosclerotic cardiovascular disease, our understanding of the biological mechanisms that might underlie this phenomenon is still evolving. In this review, we discuss some of the mechanisms that have been proposed to date, including ADT-induced metabolic changes that promote the development and progression of atherosclerotic plaques as well as direct local effects of hormonal factors on plaque growth, rupture and thrombosis.
Collapse
Affiliation(s)
- Piotr Zareba
- Division of Urology, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Wilhelmina Duivenvoorden
- Division of Urology, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Darryl P Leong
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Jehonathan H Pinthus
- Department of Surgery, Juravinski Hospital and Cancer Centre, 711 Concession St, Hamilton, Ontario L8V 1C3, Canada
| |
Collapse
|
44
|
Bušić Ž, Čulić V. Central and peripheral testosterone effects in men with heart failure: An approach for cardiovascular research. World J Cardiol 2015; 7:504-510. [PMID: 26413227 PMCID: PMC4577677 DOI: 10.4330/wjc.v7.i9.504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/23/2015] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a syndrome recognized as a health problem worldwide. Despite advances in treatment, patients with HF still have increased morbidity and mortality. Testosterone is one of the most researched hormones in the course of HF. Growing interest regarding the effect of testosterone, on a variety of body systems, has increased the knowledge about its mechanisms of action. The terms central and peripheral effects are used to distinguish the effects of testosterone on cardiac and extracardiac structures. Central effects include influences on cardiomyocytes and electrophysiology. Peripheral effects include influences on blood vessels, baroreceptor reactivity, skeletal muscles and erythropoesis. Current knowledge about peripheral effects of testosterone may explain much about beneficiary effects in the pathophysiology of HF syndrome. However, central, i.e., cardiac effects of testosterone are to be further explored.
Collapse
|
45
|
Di Minno MND, Esposito D, Di Minno A, Accardo G, Lupoli G, Cittadini A, Giugliano D, Pasquali D. Increased platelet reactivity in Klinefelter men: something new to consider. Andrology 2015. [DOI: 10.1111/andr.12080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M. N. D. Di Minno
- Department of Clinical Medicine and Surgery; University Federico II; Naples Italy
- Unit of Cell and Molecular Biology in Cardiovascular Diseases; Centro Cardiologico Monzino; IRCCS; Milan Italy
| | - D. Esposito
- Department of Cardiothoracic and Respiratory Sciences; Endocrine Unit; Second University of Naples; Naples Italy
| | - A. Di Minno
- Unit of Cell and Molecular Biology in Cardiovascular Diseases; Centro Cardiologico Monzino; IRCCS; Milan Italy
| | - G. Accardo
- Department of Cardiothoracic and Respiratory Sciences; Endocrine Unit; Second University of Naples; Naples Italy
| | - G. Lupoli
- Department of Clinical Medicine and Surgery; University Federico II; Naples Italy
| | - A. Cittadini
- Department of Medical Traslational Sciences; University Federico II; Naples Italy
| | - D. Giugliano
- Department of Medical, Surgical, Neurological, Metabolic Sciences and Geriatrics; Second University of Naples; Naples Italy
| | - D. Pasquali
- Department of Cardiothoracic and Respiratory Sciences; Endocrine Unit; Second University of Naples; Naples Italy
| |
Collapse
|
46
|
Age-related changes in platelet function are more profound in women than in men. Sci Rep 2015; 5:12235. [PMID: 26179119 PMCID: PMC4503960 DOI: 10.1038/srep12235] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/22/2015] [Indexed: 12/02/2022] Open
Abstract
Age is a risk factor for cardiovascular disease (CVD), however the effect of age on platelet function remains unclear. Ideally, platelet function should be assayed under flow and shear conditions that occur in vivo. Our study aimed to characterise the effect of age on platelet translocation behaviour using a novel flow-based assay that measures platelet function in less than 200 μl of blood under conditions of arterial shear. Blood from males (n = 53) and females (n = 56), ranging in age from 19–82 and 21–70 respectively were perfused through custom-made parallel plate flow chambers coated with immobilised human von Willebrand Factor (VWF) under arterial shear (1,500s−1). Platelet translocation behaviour on VWF was recorded by digital-image microscopy and analysed. The study showed that aging resulted in a significant decrease in the number of platelet tracks, translocating platelets and unstable platelet interactions with VWF. These age related changes in platelet function were more profound in women than in men indicating that age and gender significantly impacts on platelet interactions with VWF.
Collapse
|
47
|
Traish AM. Adverse health effects of testosterone deficiency (TD) in men. Steroids 2014; 88:106-16. [PMID: 24942084 DOI: 10.1016/j.steroids.2014.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/05/2014] [Accepted: 05/21/2014] [Indexed: 12/20/2022]
Abstract
Testosterone and its metabolite, 5α-dihydrotestosterone are critical metabolic and vascular hormones, which regulate a host of biochemical pathways including carbohydrate, lipid and protein metabolism and modulate vascular function. Testosterone deficiency (TD) is a well-recognized medical condition with important health implications. TD is associated with a number of co-morbidities including increased body weight, adiposity and increased waist circumference, insulin resistance (IR) and type 2 diabetes mellitus (T2DM), hypertension, inflammation, atherosclerosis and cardiovascular disease, erectile dysfunction (ED) and increased incidence of mortality. In this review, we summarize the data in the literature on the prevalence of TD and its association with the various co-morbidities and suggest that T therapy is necessary to improve health outcomes in men with TD.
Collapse
|
48
|
Niccoli G, Milardi D, D’Amario D, Fracassi F, Grande G, Panico RA, Roberto M, Mirizzi AM, Canu G, De Marinis L, Carrozza C, Pontecorvi A, Crea F. Hypotestosteronemia is frequent in ST-elevation myocardial infarction patients and is associated with coronary microvascular obstruction. Eur J Prev Cardiol 2014; 22:855-63. [DOI: 10.1177/2047487314533084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/03/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Giampaolo Niccoli
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Domenico Milardi
- Unit of Endocrinology, Catholic University of the Sacred Heart, Rome, Italy
| | - Domenico D’Amario
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Fracassi
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Grande
- Unit of Endocrinology, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Marco Roberto
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Giulia Canu
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, Rome, Italy
| | - Laura De Marinis
- Unit of Endocrinology, Catholic University of the Sacred Heart, Rome, Italy
| | - Cinzia Carrozza
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, Rome, Italy
| | - Alfredo Pontecorvi
- Unit of Endocrinology, Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Crea
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
49
|
Chen S, Wu R, Huang Y, Zheng F, Ou Y, Tu X, Zhang Y, Gao Y, Chen X, Zheng T, Yang Q, Wan Z, Zhang Y, Sun X, Liu G, Deng C. Insulin resistance is an independent determinate of ED in young adult men. PLoS One 2013; 8:e83951. [PMID: 24391852 PMCID: PMC3877124 DOI: 10.1371/journal.pone.0083951] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023] Open
Abstract
Background Insulin resistance (IR) triggers endothelial dysfunction, which contributes to erectile dysfunction (ED) and cardiovascular disease. Aim To evaluate whether IR was related to ED in young adult patients. Methods A total of 283 consecutive men complaining of ED at least six months were enrolled, with a full medical history, physical examination, and laboratory tests collected. Quantitative Insulin Sensitivity Check Index (QUICKI) was used to determine IR. The severity of ED was assessed by IIEF-5 questionnaire. Endothelial function was assessed by ultrasonographic examination of brachial artery flow mediated dilation (FMD). Results IR was detected in 52% patients. Subjects with IR had significant higher total cholesterol, triglycerides, low density lipoprotein-cholesterol (LDL-c), glycated haemoglobin (HBA1c), high sensitivity C-reactive protein (hs-CRP) and body mass index (BMI), but showed significant lower IIEF-5 score, FMD%, high density lipoprotein -cholesterol (HDL-c), testosterone, sex hormone binding globulin (SHBG) levels than patients without IR. Multiple regression analysis showed QUICKI and testosterone were independent predictors of IIEF-5 score. Furthermore, the incidence of IR was correlated with the severity of ED. Conclusions Compared with other CVFs, IR was found as the most prevalent in our subjects. Besides, IR was independently associated with ED and its severity, suggesting an adverse effect of insulin resistance on erectile function.
Collapse
Affiliation(s)
- Shengfu Chen
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Rongpei Wu
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yanping Huang
- Department of Urology, Shanghai Institute of Andrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fufu Zheng
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yangbin Ou
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiangan Tu
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yadong Zhang
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yong Gao
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xin Chen
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Tao Zheng
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qiyun Yang
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zi Wan
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yuanyuan Zhang
- Wake Forest University, Institute for Regenerative Medicine, Winston-Salem, North Carolina, United States of America
| | - Xiangzhou Sun
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- * E-mail: (XS); (GL); (CD)
| | - Guihua Liu
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Wake Forest University, Institute for Regenerative Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail: (XS); (GL); (CD)
| | - Chunhua Deng
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- * E-mail: (XS); (GL); (CD)
| |
Collapse
|
50
|
Saldanha PA, Cairrão E, Maia CJ, Verde I. Long- and short-term effects of androgens in human umbilical artery smooth muscle. Clin Exp Pharmacol Physiol 2013; 40:181-9. [PMID: 23278339 DOI: 10.1111/1440-1681.12047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/25/2012] [Accepted: 12/12/2012] [Indexed: 12/19/2022]
Abstract
The aim of the present study was to determine the effects of androgens in the regulation of human umbilical artery (HUA) contractility. The short-term effects of testosterone on the tone of the HUA were investigated, as were the long-term effects of dihydrotestosterone (DHT) on the expression of some proteins involved in the contractile process. Endothelium-denuded HUA were treated for 24 h with DHT (2 μmol/L) or the vehicle control (ethanol) to analyse the genomic effects of androgens. Twenty-four hour treatment of HUA with DHT increased the mRNA expression of the β(1)-subunit of the large-conductance Ca(2+)-activated (BK(Ca)) channel and decreased expression of the α-subunit of L-type calcium channels. In organ bath studies, testosterone (1-100 μmol/L) produced similar relaxant responses in DHT- and vehicle-treated HUA rings precontracted with 5-HT, histamine and KCl. However, the relaxation response obtained by the combined application of testosterone (100 μmol/L) and nifedipine (10 μmol/L) was significantly greater in DHT- compared with vehicle-treated HUA. The results indicate that the rapid vasorelaxant effects of testosterone that are dependent on both BK(Ca) and voltage-sensitive potassium (K(V)) channel activity in control arteries become dependent solely on K(V) channel activity in DHT-treated HUA. Thus, the present study reveals the importance of the investigation of both the short- and long-term effects of androgens in human arteries.
Collapse
Affiliation(s)
- Paulo A Saldanha
- Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | |
Collapse
|