1
|
Ou-Yang K, He Y, Yang H, Wang L, Zhang Q, Li D, Li L. Microcystin-LR induces fatty liver metabolic disease in zebrafish through the PPARα-NOD1 pathway: In vivo, in vitro, and in silico investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136813. [PMID: 39657491 DOI: 10.1016/j.jhazmat.2024.136813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Hepatic lipid metabolism dysfunction caused by cyanobacteria bloom-released microcystin-LR (MC-LR) contributes to the development of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH), thereby severely impacting the health and safety of animals and humans. In this study, the effects and mechanisms of different environmental concentrations of MC-LR (0, 0.1, 1, and 10 μg/L) on fatty liver metabolic disease in zebrafish were investigated using in vivo, in vitro, and in silico models. Exposure to 10 μg/L of MC-LR-induced NASH in zebrafish, characterized by hepatic steatosis, toxic saturated fatty acid (SFA) accumulation, and inflammation. Analyses of the liver transcriptome, molecular docking, molecular dynamics simulation, and in vitro experiments indicated that PPARα might be a key molecular target in MC-LR-induced steatosis and in toxic-SFA accumulation. The results obtained from molecular docking, molecular dynamics simulation, and NOD1-inhibitor experiments further revealed that MC-LR-derived SFAs, such as palmitic acid, could target the NOD1 protein to initiate hepatitis in zebrafish. The benchmark dose model identified palmitic acid as a sensitive indicator of MC-LR-induced NASH, and the point of departure value was estimated to be 1.634 μg/L. In conclusion, our findings offer new insights into the mechanism of MC-LR-induced NASH and aid in the prognosis and treatment of MC-LR-related liver metabolic diseases, as well as in assessing the health risks associated with cyanobacterial blooms.
Collapse
Affiliation(s)
- Kang Ou-Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qian Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
2
|
Gulzar F, Chhikara N, Kumar P, Ahmad S, Yadav S, Gayen JR, Tamrakar AK. ER stress aggravates NOD1-mediated inflammatory response leading to impaired nutrient metabolism in hepatoma cells. Biochem Biophys Res Commun 2024; 735:150827. [PMID: 39423570 DOI: 10.1016/j.bbrc.2024.150827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Nucleotide-binding Oligomerization Domain 1 (NOD1) is a cytosolic pattern recognition receptor that senses specific bacterial peptidoglycan moieties, leading to the induction of inflammatory response. Besides, sensing peptidoglycan, NOD1 has been reported to sense metabolic disturbances including the ER stress-induced unfolded protein response (UPR). However, the underpinning crosstalk between the NOD1 activating microbial ligands and the metabolic cues to alter metabolic response is not yet comprehensively defined. Here, we show that underlying ER stress aggravated peptidoglycan-induced NOD1-mediated inflammatory response in hepatoma cells. The HepG2 cells, undergoing ER stress induced by thapsigargin exhibited an amplified inflammatory response induced by peptidoglycan ligand of NOD1 (i.e. iE-DAP). This aggravated inflammatory response disrupted lipid and glucose metabolism, characterized by de novo lipogenic response, and increased gluconeogenesis in HepG2 cells. Further, we characterized that the aggravation of NOD1-induced inflammatory response was dependent on inositol-requiring enzyme 1-α (IRE1-α) and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) activation, in conjunction with calcium flux. Altogether, our findings suggest that differential UPR activation makes liver cells more sensitive towards bacterial-derived ligands to pronounce inflammatory response in a NOD1-dependent manner that impairs hepatic nutrient metabolism.
Collapse
Affiliation(s)
- Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Nikita Chhikara
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Shubhi Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India.
| |
Collapse
|
3
|
Zhang Y, Liang S, Deng Z, Zhao Z, Han X. High-glucose conditions attenuate the response of macrophages to Legionella pneumophila infection by inhibiting NOD1 and MAPK signaling. Int Immunopharmacol 2024; 134:112254. [PMID: 38749333 DOI: 10.1016/j.intimp.2024.112254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Patients with diabetes are particularly susceptible to Legionella pneumophila (LP) infection, but the exact pathogenesis of LP infection in diabetic patients is still not fully understood. Herein, we investigated the effect of diabetes on immune function during LP infection in vitro and in vivo. METHODS The time course of LP infection in macrophages under normal and high-glucose (HG) conditions was examined in vitro. Western blot was used to determine nucleotide-binding oligomerization domain 1 (NOD1), kinase 1/2 (ERK1/2), mitogen-activated protein kinase p38 (MAPK p38), and c-Jun N-terminal kinases (JNK). Enzyme-linked immunosorbent assay (ELISA) was used to assess the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Cell Counting Kit-8 (CCK8) assay assessed U937 cell viability after treating cells with different concentrations of high sugar medium and ML130 (NOD1 inhibitor). For the in vivo study, normal and streptozocin-induced diabetic guinea pigs were infected with LP for 6, 24, and 72 h, after which NOD1, MAPK-related signals, TNF-α, and IL-6 expression in lung tissues were assessed using immunohistochemistry, western blot, and RT-PCR. RESULTS HG attenuated the upregulation of NOD1 expression and reduced TNF-α and IL-6 secretion caused by LP compared with LP-infected cells exposed to normal glucose levels (all p < 0.05). In diabetic guinea pigs, HG inhibited the upregulation of NOD1 expression in lung tissues and the activation of p38, ERK1/2, and cJNK caused by LP infection compared to control pigs (all p < 0.05). CONCLUSION HG attenuates the response of macrophages to LP infection by inhibiting NOD1 upregulation and the activation of MAPK signaling.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China
| | - Sicong Liang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China
| | - Ze Deng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China
| | - Zirui Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China
| | - Xu Han
- Department of Emergency, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China.
| |
Collapse
|
4
|
Xing Y, Wang H, Chao C, Ding X, Li G. Gestational diabetes mellitus in the era of COVID-19: Challenges and opportunities. Diabetes Metab Syndr 2024; 18:102991. [PMID: 38569447 DOI: 10.1016/j.dsx.2024.102991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND AND AIMS The impact of the coronavirus disease 2019 (COVID-19) pandemic on pregnant women, especially those with gestational diabetes mellitus (GDM), has yet to be fully understood. This review aims to examine the interaction between GDM and COVID-19 and to elucidate the pathophysiological mechanisms underlying the comorbidity of these two conditions. METHODS We performed a systematic literature search using the databases of PubMed, Embase, and Web of Science with appropriate keywords and MeSH terms. Our analysis included studies published up to January 26, 2023. RESULTS Despite distinct clinical manifestations, GDM and COVID-19 share common pathophysiological characteristics, which involve complex interactions across multiple organs and systems. On the one hand, infection with severe acute respiratory syndrome coronavirus 2 may target the pancreas and placenta, resulting in β-cell dysfunction and insulin resistance in pregnant women. On the other hand, the hormonal and inflammatory changes that occur during pregnancy could also increase the risk of severe COVID-19 in mothers with GDM. Personalized management and close monitoring are crucial for treating pregnant women with both GDM and COVID-19. CONCLUSIONS A comprehensive understanding of the interactive mechanisms of GDM and COVID-19 would facilitate the initiation of more targeted preventive and therapeutic strategies. There is an urgent need to develop novel biomarkers and functional indicators for early identification and intervention of these conditions.
Collapse
Affiliation(s)
- Yuhan Xing
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong Province, China
| | - Hong Wang
- Public Health School, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Cong Chao
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong Province, China
| | - Xueteng Ding
- Public Health School, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Guoju Li
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
5
|
Cho S, Ying F, Sweeney G. Sterile inflammation and the NLRP3 inflammasome in cardiometabolic disease. Biomed J 2023; 46:100624. [PMID: 37336361 PMCID: PMC10539878 DOI: 10.1016/j.bj.2023.100624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
Inflammation plays an important role in the pathophysiology of cardiometabolic diseases. Sterile inflammation, a non-infectious and damage-associated molecular pattern (DAMP)-induced innate response, is now well-established to be closely associated with development and progression of cardiometabolic diseases. The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is well-established as a major player in sterile inflammatory responses. It is a multimeric cytosolic protein complex which regulates the activation of caspase-1 and subsequently promotes cleavage and release of interleukin (IL)-1 family cytokines, which have a deleterious impact on the development of cardiometabolic diseases. Therefore, targeting NLRP3 itself or the downstream consequences of NLRP3 activation represent excellent potential therapeutic targets in inflammatory cardiometabolic diseases. Here, we review our current understanding of the role which NLRP3 inflammasome regulation plays in cardiometabolic diseases such as obesity, diabetes, non-alcoholic steatohepatitis (NASH), atherosclerosis, ischemic heart disease and cardiomyopathy. Finally, we highlight the potential of targeting NLPR3 or related signaling molecules as a therapeutic approach.
Collapse
Affiliation(s)
- Sungji Cho
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Fan Ying
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Rodrigues E-Lacerda R, Fang H, Robin N, Bhatwa A, Marko DM, Schertzer JD. Microbiota and Nod-like receptors balance inflammation and metabolism during obesity and diabetes. Biomed J 2023; 46:100610. [PMID: 37263539 PMCID: PMC10505681 DOI: 10.1016/j.bj.2023.100610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Gut microbiota influence host immunity and metabolism during obesity. Bacterial sensors of the innate immune system relay signals from specific bacterial components (i.e., postbiotics) that can have opposing outcomes on host metabolic inflammation. NOD-like receptors (NLRs) such as Nod1 and Nod2 both recruit receptor-interacting protein kinase 2 (RIPK2) but have opposite effects on blood glucose control. Nod1 connects bacterial cell wall-derived signals to metabolic inflammation and insulin resistance, whereas Nod2 can promote immune tolerance, insulin sensitivity, and better blood glucose control during obesity. NLR family pyrin domain containing (NLRP) inflammasomes can also generate divergent metabolic outcomes. NLRP1 protects against obesity and metabolic inflammation potentially because of a bias toward IL-18 regulation, whereas NLRP3 appears to have a bias toward IL-1β-mediated metabolic inflammation and insulin resistance. Targeting specific postbiotics that improve immunometabolism is a key goal. The Nod2 ligand, muramyl dipeptide (MDP) is a short-acting insulin sensitizer during obesity or during inflammatory lipopolysaccharide (LPS) stress. LPS with underacylated lipid-A antagonizes TLR4 and counteracts the metabolic effects of inflammatory LPS. Providing underacylated LPS derived from Rhodobacter sphaeroides improved insulin sensitivity in obese mice. Therefore, certain types of LPS can generate metabolically beneficial metabolic endotoxemia. Engaging protective adaptive immunoglobulin immune responses can also improve blood glucose during obesity. A bacterial vaccine approach using an extract of the entire bacterial community in the upper gut promotes protective adaptive immune response and long-lasting improvements in blood glucose control. A key future goal is to identify and combine postbiotics that cooperate to improve blood glucose control.
Collapse
Affiliation(s)
- Rodrigo Rodrigues E-Lacerda
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Han Fang
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Nazli Robin
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Arshpreet Bhatwa
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Daniel M Marko
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, And Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
7
|
Bauer S, Hezinger L, Rexhepi F, Ramanathan S, Kufer TA. NOD-like Receptors-Emerging Links to Obesity and Associated Morbidities. Int J Mol Sci 2023; 24:ijms24108595. [PMID: 37239938 DOI: 10.3390/ijms24108595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity and its associated metabolic morbidities have been and still are on the rise, posing a major challenge to health care systems worldwide. It has become evident over the last decades that a low-grade inflammatory response, primarily proceeding from the adipose tissue (AT), essentially contributes to adiposity-associated comorbidities, most prominently insulin resistance (IR), atherosclerosis and liver diseases. In mouse models, the release of pro-inflammatory cytokines such as TNF-alpha (TNF-α) and interleukin (IL)-1β and the imprinting of immune cells to a pro-inflammatory phenotype in AT play an important role. However, the underlying genetic and molecular determinants are not yet understood in detail. Recent evidence demonstrates that nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family proteins, a group of cytosolic pattern recognition receptors (PRR), contribute to the development and control of obesity and obesity-associated inflammatory responses. In this article, we review the current state of research on the role of NLR proteins in obesity and discuss the possible mechanisms leading to and the outcomes of NLR activation in the obesity-associated morbidities IR, type 2 diabetes mellitus (T2DM), atherosclerosis and non-alcoholic fatty liver disease (NAFLD) and discuss emerging ideas about possibilities for NLR-based therapeutic interventions of metabolic diseases.
Collapse
Affiliation(s)
- Sarah Bauer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lucy Hezinger
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Fjolla Rexhepi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
8
|
Almeida-da-Silva CLC, Savio LEB, Coutinho-Silva R, Ojcius DM. The role of NOD-like receptors in innate immunity. Front Immunol 2023; 14:1122586. [PMID: 37006312 PMCID: PMC10050748 DOI: 10.3389/fimmu.2023.1122586] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 03/17/2023] Open
Abstract
The innate immune system in vertebrates and invertebrates relies on conserved receptors and ligands, and pathways that can rapidly initiate the host response against microbial infection and other sources of stress and danger. Research into the family of NOD-like receptors (NLRs) has blossomed over the past two decades, with much being learned about the ligands and conditions that stimulate the NLRs and the outcomes of NLR activation in cells and animals. The NLRs play key roles in diverse functions, ranging from transcription of MHC molecules to initiation of inflammation. Some NLRs are activated directly by their ligands, while other ligands may have indirect effects on the NLRs. New findings in coming years will undoubtedly shed more light on molecular details involved in NLR activation, as well as the physiological and immunological outcomes of NLR ligation.
Collapse
Affiliation(s)
- Cássio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, United States
- *Correspondence: Cássio Luiz Coutinho Almeida-da-Silva, ; David M. Ojcius,
| | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - David M. Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, United States
- *Correspondence: Cássio Luiz Coutinho Almeida-da-Silva, ; David M. Ojcius,
| |
Collapse
|
9
|
Wang H, Zhang B, Shang Y, Chen F, Fan Y, Tan K. A novel risk score model based on pyroptosis-related genes for predicting survival and immunogenic landscape in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:1412-1444. [PMID: 36920176 PMCID: PMC10042690 DOI: 10.18632/aging.204544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer worldwide, with high incidence and mortality. Pyroptosis, a form of inflammatory-regulated cell death, is closely associated with oncogenesis. METHODS Expression profiles of HCC were downloaded from the TCGA database and validated using the ICGC and GEO databases. Consensus clustering analysis was used to determine distinct clusters. The pyroptosis-related genes (PRGs) included in the pyroptosis-related signature were selected by univariate Cox regression and LASSO regression analysis. Kaplan-Meier and receiver operating characteristic (ROC) analyses were performed to estimate the prognostic potential of the model. The characteristics of infiltration of immune cells between different groups of HCC were explored. RESULTS Two independent clusters were identified according to PRG expression. Cluster 2 showed upregulated expression, poor prognosis, increased immune cell infiltration and worse immunotherapy response than cluster 1. A prognostic risk signature consisting of five genes (GSDME, NOD1, PLCG1, NLRP6 and NLRC4) was identified. In the high-risk score group, HCC patients showed decreased survival rates. In particular, multiple clinicopathological characteristics and immune cell infiltration were significantly associated with the risk score. Notably, the 5 PRGs in the risk score have been implicated in carcinogenesis, immunological pathways and drug sensitivity. CONCLUSIONS A prognostic signature comprising five PRGs can be used as a potential prognostic factor for HCC. The PRG-related signature provides an in-depth understanding of the association between pyroptosis and chemotherapy or immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Hongyu Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Bo Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yanan Shang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Fei Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| |
Collapse
|
10
|
Sharma A, Singh S, Mishra A, Rai AK, Ahmad I, Ahmad S, Gulzar F, Schertzer JD, Shrivastava A, Tamrakar AK. Insulin resistance corresponds with a progressive increase in NOD1 in high fat diet-fed mice. Endocrine 2022; 76:282-293. [PMID: 35112215 DOI: 10.1007/s12020-022-02995-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE Innate immune components participate in obesity-induced inflammation, which can contribute to endocrine dysfunction during metabolic diseases. However, the chronological activation of specific immune proteins such as Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and relevance to cellular crosstalk during the progression of obesity-associated insulin resistance (IR) is not known. METHODS The NOD1 signaling in various insulin-sensitive metabolic tissues during the progression of diet-insulin resistance was assessed in C57BL/6J mice fed with 60% high-fat diet (HFD) for 4, 8, 12, and 16 weeks. Intestinal permeability was measured using FITC-dextran. NOD1 activating potential was analyzed using HEK-Blue mNOD1 cells. RESULTS HFD-fed mice showed progressive induction of glucose intolerance and impairment of insulin signaling in key metabolic tissues. We found a time-dependent increase in intestinal permeability coupled with transport and accumulation of NOD1 activating ligand in the serum of HFD-fed mice. We also observed a progressive accumulation of γ-D-glutamyl-meso-diaminopimelic acid (DAP), a microbial peptidoglycan ligand known to activate NOD1, in serum samples of the HFD-fed mice. There was also a progressive increase in transcripts levels of NOD1 in bone marrow-derived macrophages during HFD-feeding. In addition, skeletal muscle, adipose and liver, the key insulin sensitive metabolic tissues also had a time-dependent increase in transcripts of NOD1 and Rip2 and a corresponding activation of pro-inflammatory responses in these tissues. CONCLUSION These data highlight the correlation of inflammation and insulin resistance to NOD1 activation in the bone marrow derived macrophages and insulin responsive metabolic tissues during high fat diet feeding in mice.
Collapse
Affiliation(s)
- Aditya Sharma
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sushmita Singh
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Alok Mishra
- Center for advanced Research, King George Medical University, Lucknow, 220001, India
| | - Amit K Rai
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ishbal Ahmad
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shadab Ahmad
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Farah Gulzar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main St. W., Hamilton, ON, L8N 3Z5, Canada
| | - Ashutosh Shrivastava
- Center for advanced Research, King George Medical University, Lucknow, 220001, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Chatterjee B, Neelaveni K, Kenchey H, Thakur SS. An insight into major signaling pathways and protein-protein interaction networks involved in the pathogenesis of gestational diabetes mellitus. Proteomics 2022; 22:e2100200. [PMID: 35279034 DOI: 10.1002/pmic.202100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/11/2022]
Abstract
Gestational diabetes mellitus (GDM) is associated with the increase of glucose in the blood rather than being absorbed by the cells. A better understanding of the signaling pathways is necessary to understand the pathophysiology of GDM. This study provides details about a series of signaling pathways and protein-protein interactions involved in the pathogenesis of GDM and their evaluations in GDM development. Protein-protein interactions were found between proteins of several signaling pathways that suggest interlink between these signaling pathways. Protein-protein interactions were generated with high confidence interaction scores based on textmining, co-occurrence, coexpression, neighborhood, gene fusion, experiments and databases. The dysregulation of signaling pathways may also contribute to the increased risk of complications associated with GDM in the mother and child. Further, studies on signaling pathways involved in the pathogenesis of GDM would help in the development of an effective intervention to prevent GDM along with the identification of key targets for effective therapies in the future. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bhaswati Chatterjee
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | | | - Himaja Kenchey
- Institute of Diabetes, Endocrinology and Adiposity Clinics, Hyderabad, India
| | - Suman S Thakur
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| |
Collapse
|
12
|
Takayanagi S, Watanabe K, Maruyama T, Ogawa M, Morishita K, Soga M, Hatta T, Natsume T, Hirano T, Kagechika H, Hattori K, Naguro I, Ichijo H. ASKA technology-based pull-down method reveals a suppressive effect of ASK1 on the inflammatory NOD-RIPK2 pathway in brown adipocytes. Sci Rep 2021; 11:22009. [PMID: 34759307 PMCID: PMC8581049 DOI: 10.1038/s41598-021-01123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have shown that adipose tissue is an immunological organ. While inflammation in energy-storing white adipose tissues has been the focus of intense research, the regulatory mechanisms of inflammation in heat-producing brown adipose tissues remain largely unknown. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical regulator of brown adipocyte maturation; the PKA-ASK1-p38 axis facilitates uncoupling protein 1 (UCP1) induction cell-autonomously. Here, we show that ASK1 suppresses an innate immune pathway and contributes to maintenance of brown adipocytes. We report a novel chemical pull-down method for endogenous kinases using analog sensitive kinase allele (ASKA) technology and identify an ASK1 interactor in brown adipocytes, receptor-interacting serine/threonine-protein kinase 2 (RIPK2). ASK1 disrupts the RIPK2 signaling complex and inhibits the NOD-RIPK2 pathway to downregulate the production of inflammatory cytokines. As a potential biological significance, an in vitro model for intercellular regulation suggests that ASK1 facilitates the expression of UCP1 through the suppression of inflammatory cytokine production. In parallel to our previous report on the PKA-ASK1-p38 axis, our work raises the possibility of an auxiliary role of ASK1 in brown adipocyte maintenance through neutralizing the thermogenesis-suppressive effect of the NOD-RIPK2 pathway.
Collapse
Affiliation(s)
- Saki Takayanagi
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Takeshi Maruyama
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Motoyuki Ogawa
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Kazuhiro Morishita
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Mayumi Soga
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tomohisa Hatta
- grid.208504.b0000 0001 2230 7538Molecular Profiling Research Center for Drug Discovery, The National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064 Japan
| | - Tohru Natsume
- grid.208504.b0000 0001 2230 7538Cellular and Molecular Biotechnology Research Institute, The National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064 Japan
| | - Tomoya Hirano
- grid.265073.50000 0001 1014 9130Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062 Japan ,Present Address: Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 Japan
| | - Hiroyuki Kagechika
- grid.265073.50000 0001 1014 9130Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062 Japan
| | - Kazuki Hattori
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Isao Naguro
- grid.26999.3d0000 0001 2151 536XLaboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
13
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Laparra JM, Boscá L. NOD1-Targeted Immunonutrition Approaches: On the Way from Disease to Health. Biomedicines 2021; 9:biomedicines9050519. [PMID: 34066406 PMCID: PMC8148154 DOI: 10.3390/biomedicines9050519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Immunonutrition appears as a field with great potential in modern medicine. Since the immune system can trigger serious pathophysiological disorders, it is essential to study and implement a type of nutrition aimed at improving immune system functioning and reinforcing it individually for each patient. In this sense, the nucleotide-binding oligomerization domain-1 (NOD1), one of the members of the pattern recognition receptors (PRRs) family of innate immunity, has been related to numerous pathologies, such as cancer, diabetes, or cardiovascular diseases. NOD1, which is activated by bacterial-derived peptidoglycans, is known to be present in immune cells and to contribute to inflammation and other important pathways, such as fibrosis, upon recognition of its ligands. Since immunonutrition is a significant developing research area with much to discover, we propose NOD1 as a possible target to consider in this field. It is relevant to understand the cellular and molecular mechanisms that modulate the immune system and involve the activation of NOD1 in the context of immunonutrition and associated pathological conditions. Surgical or pharmacological treatments could clearly benefit from the synergy with specific and personalized nutrition that even considers the health status of each subject.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-91-497-2747 (L.B.)
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas (CIBERehd), 28029 Madrid, Spain
| | - José M. Laparra
- Madrid Institute for Advanced studies in Food (IMDEA Food), Ctra. Cantoblanco 8, 28049 Madrid, Spain;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-91-497-2747 (L.B.)
| |
Collapse
|
14
|
Latorre J, Lluch A, Ortega FJ, Gavaldà-Navarro A, Comas F, Morón-Ros S, Rodríguez A, Becerril S, Villarroya F, Frühbeck G, Ricart W, Giralt M, Fernández-Real JM, Moreno-Navarrete JM. Adipose tissue knockdown of lysozyme reduces local inflammation and improves adipogenesis in high-fat diet-fed mice. Pharmacol Res 2021; 166:105486. [PMID: 33556481 DOI: 10.1016/j.phrs.2021.105486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022]
Abstract
Chronic systemic low-level inflammation in metabolic disease is known to affect adipose tissue biology. Lysozyme (LYZ) is a major innate immune protein but its role in adipose tissue has not been investigated. Here, we aimed to investigate LYZ in human and rodents fat depots, and its possible role in obesity-associated adipose tissue dysfunction. LYZ mRNA and protein were identified to be highly expressed in adipose tissue from subjects with obesity and linked to systemic chronic-low grade inflammation, adipose tissue inflammation and metabolic disturbances, including hyperglycemia, dyslipidemia and decreased markers of adipose tissue adipogenesis. These findings were confirmed in experimental models after a high-fat diet in mice and rats and also in ob/ob mice. Importantly, specific inguinal and perigonadal white adipose tissue lysozyme (Lyz2) gene knockdown in high-fat diet-fed mice resulted in improved adipose tissue inflammation in parallel to reduced lysozyme activity. Of note, Lyz2 gene knockdown restored adipogenesis and reduced weight gain in this model. In conclusion, altogether these observations point to lysozyme as a new actor in obesity-associated adipose tissue dysfunction. The therapeutic targeting of lysozyme production might contribute to improve adipose tissue metabolic homeostasis.
Collapse
Affiliation(s)
- Jèssica Latorre
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain
| | - Aina Lluch
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain
| | - Francisco J Ortega
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain
| | - Aleix Gavaldà-Navarro
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Ferran Comas
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain
| | - Samantha Morón-Ros
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Amaia Rodríguez
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra (IdiSNA), Pamplona, Spain
| | - Sara Becerril
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra (IdiSNA), Pamplona, Spain
| | - Francesc Villarroya
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Gema Frühbeck
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra (IdiSNA), Pamplona, Spain
| | - Wifredo Ricart
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain
| | - Marta Giralt
- CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - José Manuel Fernández-Real
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain; Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain.
| | - José María Moreno-Navarrete
- Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain; CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta", Girona, Spain; Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
15
|
Zangara MT, Johnston I, Johnson EE, McDonald C. Mediators of Metabolism: An Unconventional Role for NOD1 and NOD2. Int J Mol Sci 2021; 22:ijms22031156. [PMID: 33503814 PMCID: PMC7866072 DOI: 10.3390/ijms22031156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
In addition to their classical roles as bacterial sensors, NOD1 and NOD2 have been implicated as mediators of metabolic disease. Increased expression of NOD1 and/or NOD2 has been reported in a range of human metabolic diseases, including obesity, diabetes, non-alcoholic fatty liver disease, and metabolic syndrome. Although NOD1 and NOD2 share intracellular signaling pathway components, they are differentially upregulated on a cellular level and have opposing impacts on metabolic disease development in mouse models. These NOD-like receptors may directly mediate signaling downstream of cell stressors, such as endoplasmic reticulum stress and calcium influx, or in response to metabolic signals, such as fatty acids and glucose. Other studies suggest that stimulation of NOD1 or NOD2 by their bacterial ligands can result in inflammation, altered insulin responses, increased reactive oxygen signaling, and mitochondrial dysfunction. The activating stimuli for NOD1 and NOD2 in the context of metabolic disease are controversial and may be a combination of both metabolic and circulating bacterial ligands. In this review, we will summarize the current knowledge of how NOD1 and NOD2 may mediate metabolism in health and disease, as well as highlight areas of future investigation.
Collapse
Affiliation(s)
- Megan T. Zangara
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (M.T.Z.); (I.J.); (E.E.J.)
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isabel Johnston
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (M.T.Z.); (I.J.); (E.E.J.)
| | - Erin E. Johnson
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (M.T.Z.); (I.J.); (E.E.J.)
- Department of Biology, John Carroll University, University Heights, OH 44118, USA
| | - Christine McDonald
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (M.T.Z.); (I.J.); (E.E.J.)
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-445-7058
| |
Collapse
|
16
|
Rakner JJ, Silva GB, Mundal SB, Thaning AJ, Elschot M, Ostrop J, Thomsen LCV, Bjørge L, Gierman LM, Iversen AC. Decidual and placental NOD1 is associated with inflammation in normal and preeclamptic pregnancies. Placenta 2021; 105:23-31. [PMID: 33529885 DOI: 10.1016/j.placenta.2021.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Inflammation is a normal physiological process that increases to harmful levels in preeclampsia. It affects the interaction between maternal immune cells and fetal trophoblasts at both sites of the maternal-fetal interface; decidua and placenta. The pattern recognition receptor nucleotide-binding oligomerization domain-containing protein (NOD)1 is expressed at both sites. This study aimed to characterize the cellular expression and functionality of NOD1 at the maternal-fetal interface of normal and preeclamptic pregnancies. METHODS Women with normal or preeclamptic pregnancies delivered by caesarean section were included. Decidual (n = 90) and placental (n = 91) samples were analyzed for NOD1 expression by immunohistochemistry and an automated image-based quantification method. Decidual and placental explants were incubated with or without the NOD1-agonist iE-DAP and cytokine responses measured by ELISA. RESULTS NOD1 was markedly expressed by maternal cells in the decidua and by fetal trophoblasts in both decidua and placenta, with trophoblasts showing the highest NOD1 expression. Preeclampsia with normal fetal growth was associated with a trophoblast-dependent increase in decidual NOD1 expression density. Compared to normal pregnancies, preeclampsia demonstrated stronger correlation between decidual and placental NOD1 expression levels. Increased production of interleukin (IL)-6 or IL-8 after in vitro explant stimulation confirmed NOD1 functionality. DISCUSSION These findings suggest that NOD1 contributes to inflammation at the maternal-fetal interface in normal pregnancies and preeclampsia and indicate a role in direct maternal-fetal communication. The strong expression of NOD1 by all trophoblast types highlights the importance of combined assessment of decidua and placenta for overall understanding of pathophysiological processes at the maternal-fetal interface.
Collapse
Affiliation(s)
- Johanne Johnsen Rakner
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Gabriela Brettas Silva
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Siv Boon Mundal
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Astrid Josefin Thaning
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Mattijs Elschot
- Department of Circulation and Medical Imaging, NTNU, Trondheim and Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jenny Ostrop
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Liv Cecilie Vestrheim Thomsen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen and Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Line Bjørge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen and Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lobke Marijn Gierman
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ann-Charlotte Iversen
- Centre of Molecular Inflammation Research (CEMIR) and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Gynecology and Obstetrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
17
|
Rivers SL, Klip A, Giacca A. NOD1: An Interface Between Innate Immunity and Insulin Resistance. Endocrinology 2019; 160:1021-1030. [PMID: 30807635 PMCID: PMC6477778 DOI: 10.1210/en.2018-01061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/19/2019] [Indexed: 12/17/2022]
Abstract
Insulin resistance is driven, in part, by activation of the innate immune system. We have discussed the evidence linking nucleotide-binding oligomerization domain (NOD)1, an intracellular pattern recognition receptor, to the onset and progression of obesity-induced insulin resistance. On a molecular level, crosstalk between downstream NOD1 effectors and the insulin receptor pathway inhibits insulin signaling, potentially through reduced insulin receptor substrate action. In vivo studies have demonstrated that NOD1 activation induces peripheral, hepatic, and whole-body insulin resistance. Also, NOD1-deficient models are protected from high-fat diet (HFD)-induced insulin resistance. Moreover, hematopoietic NOD1 deficiency prevented HFD-induced changes in proinflammatory macrophage polarization status, thus protecting against the development of metabolic inflammation and insulin resistance. Serum from HFD-fed mice activated NOD1 signaling ex vivo; however, the molecular identity of the activating factors remains unclear. Many have proposed that an HFD changes the gut permeability, resulting in increased translocation of bacterial fragments and increased circulating NOD1 ligands. In contrast, others have suggested that NOD1 ligands are endogenous and potentially lipid-derived metabolites produced during states of nutrient overload. Nevertheless, that NOD1 contributes to the development of insulin resistance, and that NOD1-based therapy might provide benefit, is an exciting advancement in metabolic research.
Collapse
Affiliation(s)
- Sydney L Rivers
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Amira Klip
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Correspondence: Adria Giacca, MD, Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King’s College Circle, No. 3336, Toronto, Ontario M5S 1A8, Canada. E-mail:
| |
Collapse
|
18
|
Fang YX, Zou Y, Wang GT, Huang SH, Zhou YJ, Zhou YJ. lnc TINCR induced by NOD1 mediates inflammatory response in 3T3-L1 adipocytes. Gene 2019; 698:150-156. [PMID: 30851423 DOI: 10.1016/j.gene.2019.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/06/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Investigating the expression of the lnc RNAs screened above between normal and insulin resistant 3T3-L1 adipocytes. Addressing the mechanism underlying the regulation of inflammation response by lnc TINCR. METHODS 3T3-L1 preadipocytes were induced to differentiate into mature adipocytes. Oil red O staining was used to find the fat droplets in mature adipocytes. Mature adipocytes were randomized to normal control group and Tri-DAP (NOD1 ligand) group. After the establishment of insulin resistance model, we used deep RNA sequencing(RNA-Seq) to identify lncRNAs that are regulated during NODI activation in mouse adipocytes. Real-time PCR was used to analyze the expression of lnc TINCR, proinflammatory IL-6, TNF-α, Cxcl1 and RIPK2 in the presence or absence of Tri-DAP(10 μg/ml). We employed siRNA against lnc TINCR to confirm its effects in inflammatory response. RESULTS Deep RNA sequencing identified 81 lncRNAs and 167 coding genes that were significantly up-related while 78 lncRNAs and 82 coding genes that were significantly down-related greater than twofold during NOD1 activation in adipocytes. We discovered that lnc TINCR, termed lnc TINCR(Tri-DAP-inducible non-protein coding RNA) is greatly upregulated in Tri-DAP activated adipocytes. Moreover knockdown of lnc TINCR dampens the proinflammatory response (P < 0.05; in adipocytes). CONCLUSIONS lnc TINCR is a positive regulator of inflammation-induced insulin resistance presumably via activation of NOD1 signaling pathways.
Collapse
Affiliation(s)
- Ying-Xin Fang
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yun Zou
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Guang-Ting Wang
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Shao-Hua Huang
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yan-Jun Zhou
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yi-Jun Zhou
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
19
|
Wood LG, Li Q, Scott HA, Rutting S, Berthon BS, Gibson PG, Hansbro PM, Williams E, Horvat J, Simpson JL, Young P, Oliver BG, Baines KJ. Saturated fatty acids, obesity, and the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome in asthmatic patients. J Allergy Clin Immunol 2018; 143:305-315. [PMID: 29857009 DOI: 10.1016/j.jaci.2018.04.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Both obesity and high dietary fat intake activate the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome. OBJECTIVE We aimed to examine NLRP3 inflammasome activity in the airways of obese asthmatic patients after macronutrient overload and in immune cells challenged by inflammasome triggers. METHODS Study 1 was a cross-sectional observational study of nonobese (n = 51) and obese (n = 76) asthmatic adults. Study 2 was a randomized, crossover, acute feeding study in 23 asthmatic adults (n = 12 nonobese and n = 11 obese subjects). Subjects consumed 3 isocaloric meals on 3 separate occasions (ie, saturated fatty acid, n-6 polyunsaturated fatty acid, and carbohydrate) and were assessed at 0 and 4 hours. For Studies 1 and 2, airway inflammation was measured based on sputum differential cell counts, IL-1β protein levels (ELISA), and sputum cell gene expression (Nanostring nCounter). In Study 3 peripheral blood neutrophils and monocytes were isolated by using Ficoll density gradient and magnetic bead separation and incubated with or without palmitic acid, LPS, or TNF-α for 24 hours, and IL-1β release was measured (ELISA). RESULTS In Study 1 NLRP3 and nucleotide oligomerization domain 1 (NOD1) gene expression was upregulated, and sputum IL-1β protein levels were greater in obese versus nonobese asthmatic patients. In Study 2 the saturated fatty acid meal led to increases in sputum neutrophil percentages and sputum cell gene expression of Toll-like receptor 4 (TLR4) and NLRP3 at 4 hours in nonobese asthmatic patients. In Study 3 neutrophils and monocytes released IL-1β when challenged with a combination of palmitic acid and LPS or TNF-α. CONCLUSION The NLRP3 inflammasome is a potential therapeutic target in asthmatic patients. Behavioral interventions that reduce fatty acid exposure, such as weight loss and dietary saturated fat restriction, warrant further exploration.
Collapse
Affiliation(s)
- Lisa G Wood
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia.
| | - Qian Li
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Hayley A Scott
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Sandra Rutting
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia; Woolcock Institute of Medical Research, Sydney, Australia
| | - Bronwyn S Berthon
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Evan Williams
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Jay Horvat
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, Australia
| |
Collapse
|
20
|
Tarnowski M, Tkacz M, Dziedziejko V, Safranow K, Pawlik A. COX2 and NOS3 gene polymorphisms in women with gestational diabetes. J Gene Med 2018; 19. [PMID: 28474840 DOI: 10.1002/jgm.2959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/12/2017] [Accepted: 05/01/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Gestational diabetes (GDM) is carbohydrate intolerance occurring in pregnancy. Low-grade inflammation plays an important role in the pathogenesis of this disorder. The present study aimed to examine the association between COX2 (rs6681231) and NOS3 (rs1799983 and rs2070744) gene polymorphisms and GDM. METHODS The study included 204 pregnant women with GDM and 207 pregnant women with normal glucose tolerance. The diagnosis of GDM was based on a 75-g oral glucose tolerance test at 24-28 weeks of gestation. RESULTS We observed an increased frequency of COX2 rs6681231 CC and GC genotype carriers among women with GDM (CC + GC versus GG, odds ratio = 1.55, 95% confidence interval = 1.01-2.36, p = 0.043; C versus G, odds ratio = 1.59, 95% confidence interval = 1.10-2.30, p = 0.013). There were no statistically significant differences in the distribution of NOS3 rs1799983 and rs2070744 between GDM and healthy women. Moreover, among women treated with insulin, we observed an increased frequency of COX2 rs6681231 CC and NOS3 rs1799983 TT genotype carriers. CONCLUSIONS The results of the present study suggest that the CC genotype of the COX2 rs6681231 polymorphism is associated with an increased risk of GDM and the need for insulin therapy, whereas the TT genotype of the NOS3 rs1799983 polymorphism may be associated with the need for insulin therapy in women with GDM.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
21
|
Chan KL, Tam TH, Boroumand P, Prescott D, Costford SR, Escalante NK, Fine N, Tu Y, Robertson SJ, Prabaharan D, Liu Z, Bilan PJ, Salter MW, Glogauer M, Girardin SE, Philpott DJ, Klip A. Circulating NOD1 Activators and Hematopoietic NOD1 Contribute to Metabolic Inflammation and Insulin Resistance. Cell Rep 2017; 18:2415-2426. [PMID: 28273456 DOI: 10.1016/j.celrep.2017.02.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/09/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance is a chronic inflammatory condition accompanying obesity or high fat diets that leads to type 2 diabetes. It is hypothesized that lipids and gut bacterial compounds in particular contribute to metabolic inflammation by activating the immune system; however, the receptors detecting these "instigators" of inflammation remain largely undefined. Here, we show that circulating activators of NOD1, a receptor for bacterial peptidoglycan, increase with high fat feeding in mice, suggesting that NOD1 could be a critical sensor leading to metabolic inflammation. Hematopoietic depletion of NOD1 did not prevent weight gain but protected chimeric mice against diet-induced glucose and insulin intolerance. Mechanistically, while macrophage infiltration of adipose tissue persisted, notably these cells were less pro-inflammatory, had lower CXCL1 production, and consequently, lower neutrophil chemoattraction into the tissue. These findings reveal macrophage NOD1 as a cell-specific target to combat diet-induced inflammation past the step of macrophage infiltration, leading to insulin resistance.
Collapse
Affiliation(s)
- Kenny L Chan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Theresa H Tam
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David Prescott
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sheila R Costford
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nichole K Escalante
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Noah Fine
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - YuShan Tu
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Susan J Robertson
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dilshaayee Prabaharan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Zhi Liu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Michael W Salter
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Stephen E Girardin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
22
|
Tran HT, Liong S, Lim R, Barker G, Lappas M. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle. PLoS One 2017; 12:e0173373. [PMID: 28278187 PMCID: PMC5344491 DOI: 10.1371/journal.pone.0173373] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/20/2017] [Indexed: 01/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM), which complicates up to 20% of all pregnancies, is associated with low-grade maternal inflammation and peripheral insulin resistance. Sterile inflammation and infection are key mediators of this inflammation and peripheral insulin resistance. Resveratrol, a stilbene-type phytophenol, has been implicated to exert beneficial properties including potent anti-inflammatory and antidiabetic effects in non-pregnant humans and experimental animal models of GDM. However, studies showing the effects of resveratrol on inflammation and insulin resistance associated with GDM in human tissues have been limited. In this study, human placenta, adipose (omental and subcutaneous) tissue and skeletal muscle were stimulated with pro-inflammatory cytokines TNF-α and IL-1β, the bacterial product lipopolysaccharide (LPS) and the synthetic viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) to induce a GDM-like model. Treatment with resveratrol significantly reduced the expression and secretion of pro-inflammatory cytokines IL-6, IL-1α, IL-1β and pro-inflammatory chemokines IL-8 and MCP-1 in human placenta and omental and subcutaneous adipose tissue. Resveratrol also significantly restored the defects in the insulin signalling pathway and glucose uptake induced by TNF-α, LPS and poly(I:C). Collectively, these findings suggest that resveratrol reduces inflammation and insulin resistance induced by chemical and microbial products. Resveratrol may be a useful preventative therapeutic for pregnancies complicated by inflammation and insulin resistance, like GDM.
Collapse
Affiliation(s)
- Ha T. Tran
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Stella Liong
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- * E-mail:
| |
Collapse
|
23
|
Ozbayer C, Kurt H, Kebapci MN, Gunes HV, Colak E, Degirmenci I. Effects of genetic variations in the genes encoding NOD1 and NOD2 on type 2 diabetes mellitus and insulin resistance. J Clin Pharm Ther 2016; 42:98-102. [PMID: 27885704 DOI: 10.1111/jcpt.12482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Nucleotide-binding oligomerization domain (NOD) 1 and NOD 2 are members of the NOD-like receptor (NLR) family and contain a caspase recruitment domain. NLRs are located in the cytosol, bind bacterial and viral ligands and play a key role in the realization of innate and adaptive immune response, inflammation, apoptosis and reactive oxygen species generation. Insulin resistance (IR) is a leading cause of type 2 diabetes mellitus (T2DM) and associated with obesity, inflammation and pro-inflammatory responses. NOD1 and NOD2 gene variants may affect the risk of chronic inflammation, insulin resistance and T2DM by shifting the balance between pro- and anti-inflammatory cytokines. The aim of our study was to determine whether the NOD1/2 gene variants might contribute to the risk of T2DM and IR. METHODS The rs5743336 variant of NOD1 and rs2066847 variant of NOD2 were analysed by PCR-RFLP analysis in 200 subjects (T2DM: n = 100; healthy controls: n = 100) of Turkish origin. PCR products were digested with the AvaI and ApaI restriction enzymes. For the NOD1 site, the presence of the G allele was indicated by cleavage of the 379 bp amplified PCR product that yielded 209-bp and 170-bp fragments. For the NOD2 site, 151-bp PCR products were cleaved and yielded 130-bp and 21-bp fragments when the WT-insC mutation was present. Comparisons of the genotypes between controls and patients were performed by chi-square tests. RESULTS AND DISCUSSION The genotypes of the rs5743336 variant of NOD1 and the rs2066847 variant of NOD2 are presented, and no significant differences were observed in the genotype frequencies of the NOD1 and NOD2 variants between the healthy controls and T2DM patients (P > 0·05). According to our preliminary data, NOD1/2 gene variants are not linked with T2DM and IR. WHAT IS NEW AND CONCLUSION This study is the first to look for possible association of the genotype frequencies of NOD1 and NOD2 genes with T2DM and IR. The significant finding of this report is that the rs5743336 and rs2066847 variations in the NOD1/2 gene are not associated with T2DM and IR risk in patients of Turkish origin.
Collapse
Affiliation(s)
- C Ozbayer
- School of Health Sciences, Dumlupinar University, Kutahya, Turkey
| | - H Kurt
- Department of Medical Biology, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - M N Kebapci
- Department of Endocrinology, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - H V Gunes
- Department of Medical Biology, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - E Colak
- Department of Biostatistics, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - I Degirmenci
- Department of Medical Biology, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
24
|
Feerick CL, McKernan DP. Understanding the regulation of pattern recognition receptors in inflammatory diseases - a 'Nod' in the right direction. Immunology 2016; 150:237-247. [PMID: 27706808 DOI: 10.1111/imm.12677] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs) are a family of 23 receptors known as pattern recognition receptors; they are expressed in many cell types and play a key role in the innate immune response. The NLRs are activated by pathogen-associated molecular patterns, which include structurally conserved molecules present on the surfaces of bacteria. The activation of these NLRs by pathogens results in the downstream activation of signalling kinases and transcription factors, culminating in the transcription of genes coding for pro-inflammatory factors. Expression of NLR is altered in many cellular, physiological and disease states. There is a lack of understanding of the mechanisms by which NLR expression is regulated, particularly in chronic inflammatory states. Genetic polymorphisms and protein interactions are included in such mechanisms. This review seeks to examine the current knowledge regarding the regulation of this family of receptors and their signalling pathways as well as how their expression changes in disease states with particular focus on NOD1 and NOD2 in inflammatory bowel diseases among others.
Collapse
Affiliation(s)
- Claire L Feerick
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland
| | - Declan P McKernan
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland
| |
Collapse
|
25
|
Liong S, Lappas M. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women. Mol Cell Endocrinol 2016; 425:11-25. [PMID: 26902174 DOI: 10.1016/j.mce.2016.02.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
Sterile inflammation and infection are key mediators of inflammation and peripheral insulin resistance associated with gestational diabetes mellitus (GDM). Studies have shown endoplasmic reticulum (ER) stress to induce inflammation and insulin resistance associated with obesity and type 2 diabetes, however is paucity of studies investigating the effects of ER stress in skeletal muscle on inflammation and insulin resistance associated with GDM. ER stress proteins IRE1α, GRP78 and XBP-1s were upregulated in skeletal muscle of obese pregnant women, whereas IRE1α was increased in GDM women. Suppression of ER stress, using ER stress inhibitor tauroursodeoxycholic acid (TUDCA) or siRNA knockdown of IRE1α and GRP78, significantly downregulated LPS-, poly(I:C)- or IL-1β-induced production of IL-6, IL-8, IL-1β and MCP-1. Furthermore, LPS-, poly(I:C)- or TNF-α-induced insulin resistance was improved following suppression of ER stress, by increasing insulin-stimulated phosphorylation of IR-β, IRS-1, GLUT-4 expression and glucose uptake. In summary, our inducible obesity and GDM-like models suggests that the development of GDM may be involved in activating ER stress-induced inflammation and insulin resistance in human skeletal muscle.
Collapse
Affiliation(s)
- Stella Liong
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
26
|
Sobrevia L, Salsoso R, Fuenzalida B, Barros E, Toledo L, Silva L, Pizarro C, Subiabre M, Villalobos R, Araos J, Toledo F, González M, Gutiérrez J, Farías M, Chiarello DI, Pardo F, Leiva A. Insulin Is a Key Modulator of Fetoplacental Endothelium Metabolic Disturbances in Gestational Diabetes Mellitus. Front Physiol 2016; 7:119. [PMID: 27065887 PMCID: PMC4815008 DOI: 10.3389/fphys.2016.00119] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/15/2016] [Indexed: 12/11/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a disease of the mother that associates with altered fetoplacental vascular function. GDM-associated maternal hyperglycaemia result in fetal hyperglycaemia, a condition that leads to fetal hyperinsulinemia and altered L-arginine transport and synthesis of nitric oxide, i.e., endothelial dysfunction. These alterations in the fetoplacental endothelial function are present in women with GDM that were under diet or insulin therapy. Since these women and their newborn show normal glycaemia at term, other factors or conditions could be altered and/or not resolved by restoring normal level of circulating D-glucose. GDM associates with metabolic disturbances, such as abnormal handling of the locally released vasodilator adenosine, and biosynthesis and metabolism of cholesterol lipoproteins, or metabolic diseases resulting in endoplasmic reticulum stress and altered angiogenesis. Insulin acts as a potent modulator of all these phenomena under normal conditions as reported in primary cultures of cells obtained from the human placenta; however, GDM and the role of insulin regarding these alterations in this disease are poorly understood. This review focuses on the potential link between insulin and endoplasmic reticulum stress, hypercholesterolemia, and angiogenesis in GDM in the human fetoplacental vasculature. Based in reports in primary culture placental endothelium we propose that insulin is a factor restoring endothelial function in GDM by reversing ERS, hypercholesterolaemia and angiogenesis to a physiological state involving insulin activation of insulin receptor isoforms and adenosine receptors and metabolism in the human placenta from GDM pregnancies.
Collapse
Affiliation(s)
- Luis Sobrevia
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research, University of QueenslandHerston, QLD, Australia; Department of Physiology, Faculty of Pharmacy, Universidad de SevillaSeville, Spain
| | - Rocío Salsoso
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de SevillaSeville, Spain
| | - Bárbara Fuenzalida
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Eric Barros
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Lilian Toledo
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Luis Silva
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Carolina Pizarro
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Roberto Villalobos
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Joaquín Araos
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío Chillán, Chile
| | - Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS-Health)Chillán, Chile
| | - Jaime Gutiérrez
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Cellular Signaling and Differentiation Laboratory, Health Sciences Faculty, Universidad San SebastiánSantiago, Chile
| | - Marcelo Farías
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Delia I Chiarello
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
27
|
Copy number variation-based genome wide association study reveals additional variants contributing to meat quality in Swine. Sci Rep 2015; 5:12535. [PMID: 26234186 PMCID: PMC4522650 DOI: 10.1038/srep12535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/02/2015] [Indexed: 01/26/2023] Open
Abstract
Pork quality is important both to the meat processing industry and consumers' purchasing attitude. Copy number variation (CNV) is a burgeoning kind of variants that may influence meat quality. In this study, a genome-wide association study (GWAS) was performed between CNVs and meat quality traits in swine. After false discovery rate (FDR) correction, a total of 8 CNVs on 6 chromosomes were identified to be significantly associated with at least one meat quality trait. All of the 8 CNVs were verified by next generation sequencing and six of them were verified by qPCR. Only the haplotype block containing CNV12 is adjacent to significant SNPs associated with meat quality, suggesting the effects of those CNVs were not likely captured by tag SNPs. The DNA dosage and EST expression of CNV12, which overlap with an obesity related gene Netrin-1 (Ntn1), were consistent with Ntn1 RNA expression, suggesting the CNV12 might be involved in the expression regulation of Ntn1 and finally influence meat quality. We concluded that CNVs may contribute to the genetic variations of meat quality beyond SNPs, and several candidate CNVs were worth further exploration.
Collapse
|
28
|
Zhou YJ, Liu C, Li CL, Song YL, Tang YS, Zhou H, Li A, Li Y, Weng Y, Zheng FP. Increased NOD1, but not NOD2, activity in subcutaneous adipose tissue from patients with metabolic syndrome. Obesity (Silver Spring) 2015; 23:1394-400. [PMID: 26052894 DOI: 10.1002/oby.21113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/03/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Nucleotide-binding oligomerization domain (NOD) protein, as cytoplasmic receptor of the innate immune response, plays an important role in adipose inflammation and insulin resistance in obesity. Our objective was to examine adipose tissue (AT) NOD in nascent metabolic syndrome (MetS) patients and to investigate its association with MetS features. METHODS Thirty-four MetS subjects and 31 controls were recruited. Fasting blood was collected, and abdominal subcutaneous AT was obtained by biopsy for NOD1/NOD2 expression and activity. RESULTS MetS subjects showed significantly increased expression for NOD1 on adipose depots as compared to controls. In addition to increased expression of downstream signaling mediators RIPK2 and NF-κB p65 nuclear translocation, there was remarkably higher release of monocyte chemotactic protein1 (MCP-1), interleukin (IL)-6, and IL-8 in MetS versus controls following priming of the isolated adipocytes with NOD1 ligand iE-DAP. With regard to NOD2, the differences between the two groups were not significant in either basal state or after activation. Increased NOD1 positively correlated with waist circumference. NOD1 was also correlated with HbA1c and HOMA-IR. NOD1 positively correlated with serum levels of IL-6, MCP-1, and NF-κB activity. CONCLUSIONS Activation of the innate immune pathway via NOD1 may be partially responsible for the increased systemic inflammation and insulin resistance in MetS.
Collapse
Affiliation(s)
- Yi-Jun Zhou
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Cong Liu
- Department of Endocrinology and Metabolism, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Chun-Li Li
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yu-Ling Song
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yin-Si Tang
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Hui Zhou
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Ai Li
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yan Li
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yang Weng
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Fang-Ping Zheng
- Department of Endocrinology and Metabolism, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
29
|
Lappas M. Double stranded viral RNA induces inflammation and insulin resistance in skeletal muscle from pregnant women in vitro. Metabolism 2015; 64:642-53. [PMID: 25707553 DOI: 10.1016/j.metabol.2015.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Maternal peripheral insulin resistance and increased inflammation are two features of pregnancies complicated by pre-existing maternal obesity and gestational diabetes mellitus (GDM). There is now increasing evidence that activation of Toll-like receptor (TLR) signalling pathways by viral products may play a role in the pathophysiology of diabetes. Thus, the aim of this study was to assess the effect of the TLR3 ligand and viral dsRNA analogue polyinosinic polycytidilic acid (poly(I:C)) on inflammation and the insulin signalling pathway in skeletal muscle from pregnant women. MATERIALS/METHODS Human skeletal muscle tissue explants were performed to determine the effect of poly(I:C) on the expression and secretion of markers of inflammation, and the insulin signalling pathway and glucose uptake. RESULTS Poly(I:C) significantly increased the expression of a number of inflammatory markers in skeletal muscle from pregnant women. Specifically, there was an increase in the expression and/or secretion of the pro-inflammatory cytokines TNF-α, and IL-6 and the pro-inflammatory chemokines IL-8 and MCP-1. These effect of poly(I:C) appear to mediated via a number of signalling molecules including the pro-inflammatory transcription factor NF-κB, and the serine threonine kinases GSK3 and AMPKα. Additionally, poly(I:C) decreased insulin stimulated GLUT-4 expression and glucose uptake in skeletal muscle from pregnant women. CONCLUSIONS The in vitro data presented in this study suggests that viral infection may contribute to the pathophysiology of pregnancies complicated by pre-existing maternal obesity and/or GDM. It should be noted that the in vitro studies cannot be directly used to infer the same outcomes in the intact subject.
Collapse
Affiliation(s)
- Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
30
|
Liong S, Lappas M. Endoplasmic reticulum stress is increased in adipose tissue of women with gestational diabetes. PLoS One 2015; 10:e0122633. [PMID: 25849717 PMCID: PMC4388824 DOI: 10.1371/journal.pone.0122633] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/23/2015] [Indexed: 01/02/2023] Open
Abstract
Maternal obesity and gestational diabetes mellitus (GDM) are two increasingly common and important obstetric complications that are associated with severe long-term health risks to mothers and babies. IL-1β, which is increased in obese and GDM pregnancies, plays an important role in the pathophysiology of these two pregnancy complications. In non-pregnant tissues, endoplasmic (ER) stress is increased in diabetes and can induce IL-1β via inflammasome activation. The aim of this study was to determine whether ER stress is increased in omental adipose tissue of women with GDM, and if ER stress can also upregulate inflammasome-dependent secretion of IL-1β. ER stress markers IRE1α, GRP78 and XBP-1s were significantly increased in adipose tissue of obese compared to lean pregnant women. ER stress was also increased in adipose tissue of women with GDM compared to BMI-matched normal glucose tolerant (NGT) women. Thapsigargin, an ER stress activator, induced upregulated secretion of mature IL-1α and IL-1β in human omental adipose tissue explants primed with bacterial endotoxin LPS, the viral dsRNA analogue poly(I:C) or the pro-inflammatory cytokine TNF-α. Inhibition of capase-1 with Ac-YVAD-CHO resulted in decreased IL-1α and IL-1β secretion, whereas inhibition of pannexin-1 with carbenoxolone suppressed IL-1β secretion only. Treatment with anti-diabetic drugs metformin and glibenclamide also reduced IL-1α and IL-1β secretion in infection and cytokine-primed adipose tissue. In conclusion, this study has demonstrated ER stress to activate the inflammasome in pregnant adipose tissue. Therefore, increased ER stress may contribute towards the pathophysiology of obesity in pregnancy and GDM.
Collapse
Affiliation(s)
- Stella Liong
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- * E-mail:
| |
Collapse
|
31
|
Sobrevia L, Salsoso R, Sáez T, Sanhueza C, Pardo F, Leiva A. Insulin therapy and fetoplacental vascular function in gestational diabetes mellitus. Exp Physiol 2015; 100:231-8. [PMID: 25581778 DOI: 10.1113/expphysiol.2014.082743] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/06/2015] [Indexed: 01/08/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review focuses on the effects of insulin therapy on fetoplacental vasculature in gestational diabetes mellitus and the potentiating effects of adenosine on this therapy. What advances does it highlight? This review highlights recent studies exploring a potential functional link between insulin receptors and their dependence on adenosine receptor activation (insulin-adenosine axis) to restore placental endothelial function in gestational diabetes mellitus. Gestational diabetes mellitus (GDM) is a disease that occurs during pregnancy and is associated with maternal and fetal hyperglycaemia. Women with GDM are treated via diet to control their glycaemia; however, a proportion of these patients do not achieve the recommended values of glycaemia and are subjected to insulin therapy until delivery. Even if a diet-treated GDM pregnancy leads to normal maternal and newborn glucose levels, fetoplacental vascular dysfunction remains evident. Thus, control of glycaemia via diet does not prevent GDM-associated fetoplacental vascular and metabolic alterations. We review the available information regarding insulin therapy in the context of its potential consequences for fetoplacental vascular function in GDM. We propose the possibility that insulin therapy to produce normoglycaemia in the mother and newborn may require additional therapeutic measures to restore the normal metabolic condition of the vascular network in GDM. A role for A1 and A2A adenosine receptors and insulin receptors A and B as well as a potential functional link in the cell signalling associated with the activation of these receptors is proposed. This possibility could be helpful for the planning of strategies, including adenosine receptor-improved insulin therapy, for the treatment of GDM patients, thereby promoting the wellbeing of the growing fetus, newborn and mother.
Collapse
Affiliation(s)
- Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Lappas M. GSK3β is increased in adipose tissue and skeletal muscle from women with gestational diabetes where it regulates the inflammatory response. PLoS One 2014; 9:e115854. [PMID: 25541965 PMCID: PMC4277409 DOI: 10.1371/journal.pone.0115854] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/27/2014] [Indexed: 11/22/2022] Open
Abstract
Infection and inflammation, through their ability to increase pro-inflammatory cytokines and chemokines and adhesion molecules, are thought to play a central role in the pathophysiology of insulin resistance and type 2 diabetes. Recent studies have shown that glycogen synthase kinase 3 (GSK3) plays a central role in regulating this inflammation. There are, however, no studies on the role of GSK3 in pregnancies complicated by gestational diabetes mellitus (GDM). Thus, the aims of this study were (i) to determine whether GSK3 is increased in adipose tissue and skeletal muscle from women with GDM; and (ii) to investigate the effect of GSK3 inhibition on inflammation in the presence of inflammation induced by bacterial endotoxin lipopolysaccharide (LPS) or the pro-inflammatory cytokine IL-1β. Human omental adipose tissue and skeletal muscle were obtained from normal glucose tolerant (NGT) women and BMI-matched women with diet-control GDM at the time of Caesarean section. Western blotting was performed to determine GSK3 protein expression. Tissue explants were performed to determine the effect of the GSK3 inhibitor CHIR99021 on markers of inflammation. When compared to women with NGT, omental adipose tissue and skeletal muscle obtained from women with diet-controlled GDM had significantly higher GSK3β activity as evidenced by a decrease in the expression of GSK3β phosphorylated at serine 9. The GSK3 inhibitor CHIR99021 significantly reduced the gene expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β and IL-6; the pro-inflammatory chemokines IL-8 and MCP-1; and the adhesion molecules ICAM-1 and VCAM-1 in tissues stimulated with LPS or IL-1β. In conclusion, GSK3 activity is increased in GDM adipose tissue and skeletal muscle and regulates infection- and inflammation-induced pro-inflammatory mediators.
Collapse
Affiliation(s)
- Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- * E-mail:
| |
Collapse
|
33
|
The interplay between glucose and fatty acids on tube formation and fatty acid uptake in the first trimester trophoblast cells, HTR8/SVneo. Mol Cell Biochem 2014; 401:11-9. [DOI: 10.1007/s11010-014-2287-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
|