1
|
Yuan L, Yao L, Ren X, Chen X, Li X, Xu Y, Jin T. Cartilage defect repair in a rat model via a nanocomposite hydrogel loaded with melatonin-loaded gelatin nanofibers and menstrual blood stem cells: an in vitro and in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:55. [PMID: 39347832 PMCID: PMC11442572 DOI: 10.1007/s10856-024-06820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024]
Abstract
Cartilage damage caused by injuries or degenerative diseases remains a major challenge in the field of regenerative medicine. In this study, we developed a composite hydrogel system for the delivery of melatonin and menstrual blood stem cells (MenSCs) to treat a rat model of cartilage defect. The composite delivery system was produced by incorporation of melatonin into the gelatin fibers and dispersing these fibers into calcium alginate hydrogels. Various characterization methods including cell viability assay, microstructure studies, degradation rate measurement, drug release, anti-inflammatory assay, and radical scavenging assay were used to characterize the hydrogel system. MenSCs were encapsulated within the nanocomposite hydrogel and implanted into a rat model of full-thickness cartilage defect. A 1.3 mm diameter drilled in the femoral trochlea and used for the in vivo study. Results showed that the healing potential of nanocomposite hydrogels containing melatonin and MenSCs was significantly higher than polymer-only hydrogels. Our study introduces a novel composite hydrogel system, combining melatonin and MenSCs, demonstrating enhanced cartilage repair efficacy, offering a promising avenue for regenerative medicine.
Collapse
Affiliation(s)
- Libo Yuan
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Ling Yao
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Xianzhen Ren
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Xusheng Chen
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Xu Li
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Yongqing Xu
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China.
| | - Tao Jin
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China.
| |
Collapse
|
2
|
Zhang L, Liu H, Zhang H, Yuan H, Ren D. Lemairamin (Wgx-50) Attenuates DSS-Induced Intestinal Inflammation in Zebrafish. Int J Mol Sci 2024; 25:9510. [PMID: 39273457 PMCID: PMC11395399 DOI: 10.3390/ijms25179510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic non-specific intestinal inflammatory disease that affects millions of people worldwide, and current treatment methods have certain limitations. This study aimed to explore the therapeutic potential and mechanism of action of lemairamin (Wgx-50) in inflammatory bowel disease (IBD). We used dextran sulfate sodium (DSS)-treated zebrafish as an inflammatory bowel disease model, and observed the effect of Wgx-50 on DSS-induced colitis inflammation. The results of the study showed that Wgx-50 could reduce the expression of pro-inflammatory cytokines induced by DSS and inhibit the recruitment of neutrophils to the site of intestinal injury. Further experiments revealed that Wgx-50 exerted its anti-inflammatory effect by regulating the activation of the Akt pathway. These research findings indicate that Wgx-50 possesses anti-inflammatory activity.
Collapse
Affiliation(s)
- Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huiru Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Haoyi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao Yuan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dalong Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Qiu CZ, Zhou R, Zhang HY, Zhang L, Yin ZJ, Ren DL. Histone lactylation-ROS loop contributes to light exposure-exacerbated neutrophil recruitment in zebrafish. Commun Biol 2024; 7:887. [PMID: 39033200 PMCID: PMC11271584 DOI: 10.1038/s42003-024-06543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Light serves as a crucial external zeitgeber for maintaining and restoring physiological homeostasis in most organisms. Disrupting of light rhythms often leads to abnormal immune function, characterized by excessive inflammatory responses. However, the underlying regulatory mechanisms behind this phenomenon remain unclear. To address this concern, we use in vivo imaging to establish inflammation models in zebrafish, allowing us to investigate the effects and underlying mechanisms of light disruption on neutrophil recruitment. Our findings reveal that under sustained light conditions (LL), neutrophil recruitment in response to caudal fin injury and otic vesicle inflammation is significantly increased. This is accompanied by elevated levels of histone (H3K18) lactylation and reactive oxygen species (ROS) content. Through ChIP-sequencing and ChIP‒qPCR analysis, we discover that H3K18 lactylation regulates the transcriptional activation of the duox gene, leading to ROS production. In turn, ROS further promote H3K18 lactylation, forming a positive feedback loop. This loop, driven by H3K18 lactylation-ROS, ultimately results in the over recruitment of neutrophils to inflammatory sites in LL conditions. Collectively, our study provides evidence of a mutual loop between histone lactylation and ROS, exacerbating neutrophil recruitment in light disorder conditions, emphasizing the significance of maintaining a proper light-dark cycle to optimize immune function.
Collapse
Affiliation(s)
- Cheng-Zeng Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Hao-Yi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zong-Jun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Abdelbaset-Ismail A, Brzezniakiewicz-Janus K, Thapa A, Ratajczak J, Kucia M, Ratajczak MZ. Pineal Gland Hormone Melatonin Inhibits Migration of Hematopoietic Stem/Progenitor Cells (HSPCs) by Downregulating Nlrp3 Inflammasome and Upregulating Heme Oxygenase-1 (HO-1) Activity. Stem Cell Rev Rep 2024; 20:237-246. [PMID: 37812364 DOI: 10.1007/s12015-023-10638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Hematopoietic stem progenitor cells (HSPCs) follow the diurnal circulation rhythm in peripheral blood (PB) with nadir during late night and peak at early morning hours. The level of these cells in PB correlates with activation of innate immunity pathways, including complement cascade (ComC) that drives activation of Nlrp3 inflammasome. To support this, mice both in defective ComC activation as well as Nlrp3 inflammasome do not show typical changes in the diurnal level of circulating HSPCs. Migration of HSPCs is also impaired at the intracellular level by the anti-inflammatory enzyme heme oxygenase-1 (HO-1) which is an inhibitor of Nlrp3 inflammasome. It is also well known that circadian rhythm mediates PB level of melatonin released from the pineal gland. Since trafficking of HSPCs is driven by innate immunity-induced sterile inflammation and melatonin has an anti-inflammatory effect, we hypothesized that melatonin could negatively impact the release of HSPCs from BM into PB by inhibiting Nlrp3 inflammasome activation. We provide an evidence that melatonin being a ''sleep regulating pineal hormone'' directly inhibits migration of HSPCs both in vitro migration assays and in vivo during pharmacological mobilization. This correlated with inhibition of cholesterol synthesis required for a proper membrane lipid raft (MLRs) formation and an increase in expression of HO-1-an inhibitor of Nlrp3 inflammasome. Since melatonin is a commonly used drug, this should be considered while preparing a patient for the procedure of HSPCs mobilization. More importantly, our studies shed more mechanistic light on a role of melatonin in the diurnal circulation of HSPCs.
Collapse
Affiliation(s)
- Ahmed Abdelbaset-Ismail
- Stem Cell Institute at Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
- Surgery, Anesthesiology, and Radiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Arjun Thapa
- Stem Cell Institute at Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Janina Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magda Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
- Department of Hematology, University of Zielona Gora, Multi-Specialist Hospital Gorzow Wlkp., Gorzow Wlkp., Poland.
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Tang LS, Qiu CZ, Zhang HY, Ren DL. Effects of 0.4 T, 3.0 T and 9.4 T static magnetic fields on development, behaviour and immune response in zebrafish (Danio rerio). Neuroimage 2023; 282:120398. [PMID: 37778420 DOI: 10.1016/j.neuroimage.2023.120398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) is widely applied in medical diagnosis due to its excellent non-invasiveness. With the increasing intensity of static magnetic field (SMF), the safety assessment of MRI has been ongoing. In this study, zebrafish larvae were exposed to SMFs of 0.4, 3.0, and 9.4 T for 2 h (h), and we found that there was no significant difference in the number of spontaneous tail swings, heart rate, and body length of zebrafish larvae in the treatment groups. The expression of development-related genes shha, pygo1, mylz3 and runx2b in the three SMF groups was almost not significantly different from the control group. Behavior tests unveiled a notable reduction in both the average speed and duration of high-speed movements in zebrafish larvae across all three SMF groups. In addition, the 0.4 and 3.0 T SMFs increased the migration of neutrophils in caudal fin injury, and the expression of pro-inflammatory cytokines was also increased. To explore the mechanism of SMFs on zebrafish immune function, this study utilized aanat2-/- mutant fish to demonstrate the effect of melatonin (MT) involvement in SMFs on zebrafish immune function. This study provides experimental data for understanding the effects of SMFs on organisms, and also provides a new insight for exploring the relationship between magnetic fields and immune function.
Collapse
Affiliation(s)
- Long-Sheng Tang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; School of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu Anhui 233030, China
| | - Cheng-Zeng Qiu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Hao-Yi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
6
|
Chen AQ, Xue M, Qiu CZ, Zhang HY, Zhou R, Zhang L, Yin ZJ, Ren DL. Circadian clock1a coordinates neutrophil recruitment via nfe212a/duox-reactive oxygen species pathway in zebrafish. Cell Rep 2023; 42:113179. [PMID: 37756160 DOI: 10.1016/j.celrep.2023.113179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neutrophil recruitment to inflammatory sites appears to be an evolutionarily conserved strategy to fight against exogenous insults. However, the rhythmic characteristics and underlying mechanisms of neutrophil migration on a 24-h timescale are largely unknown. Using the advantage of in vivo imaging of zebrafish, this study explored how the circadian gene clock1a dynamically regulates the rhythmic recruitment of neutrophils to inflammatory challenges. We generated a clock1a mutant and found that neutrophil migration is significantly increased in caudal fin injury and lipopolysaccharide (LPS) injection. Transcriptome sequencing, chromatin immunoprecipitation (ChIP), and dual-luciferase reporting experiments suggest that the clock1a gene regulates neutrophil migration by coordinating the rhythmic expression of nfe212a and duox genes to control the reactive oxygen species (ROS) level. This study ultimately provides a visual model to expand the understanding of the rhythmic mechanisms of neutrophil recruitment on a circadian timescale in a diurnal organism from the perspective of ROS.
Collapse
Affiliation(s)
- An-Qi Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Min Xue
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Cheng-Zeng Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao-Yi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zong-Jun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Anderson G. Melatonin, BAG-1 and cortisol circadian interactions in tumor pathogenesis and patterned immune responses. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:962-993. [PMID: 37970210 PMCID: PMC10645470 DOI: 10.37349/etat.2023.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 11/17/2023] Open
Abstract
A dysregulated circadian rhythm is significantly associated with cancer risk, as is aging. Both aging and circadian dysregulation show suppressed pineal melatonin, which is indicated in many studies to be linked to cancer risk and progression. Another independently investigated aspect of the circadian rhythm is the cortisol awakening response (CAR), which is linked to stress-associated hypothalamus-pituitary-adrenal (HPA) axis activation. CAR and HPA axis activity are primarily mediated via activation of the glucocorticoid receptor (GR), which drives patterned gene expression via binding to the promotors of glucocorticoid response element (GRE)-expressing genes. Recent data shows that the GR can be prevented from nuclear translocation by the B cell lymphoma-2 (Bcl-2)-associated athanogene 1 (BAG-1), which translocates the GR to mitochondria, where it can have diverse effects. Melatonin also suppresses GR nuclear translocation by maintaining the GR in a complex with heat shock protein 90 (Hsp90). Melatonin, directly and/or epigenetically, can upregulate BAG-1, suggesting that the dramatic 10-fold decrease in pineal melatonin from adolescence to the ninth decade of life will attenuate the capacity of night-time melatonin to modulate the effects of the early morning CAR. The interactions of pineal melatonin/BAG-1/Hsp90 with the CAR are proposed to underpin how aging and circadian dysregulation are associated with cancer risk. This may be mediated via differential effects of melatonin/BAG-1/Hsp90/GR in different cells of microenvironments across the body, from which tumors emerge. This provides a model of cancer pathogenesis that better integrates previously disparate bodies of data, including how immune cells are regulated by cancer cells in the tumor microenvironment, at least partly via the cancer cell regulation of the tryptophan-melatonin pathway. This has a number of future research and treatment implications.
Collapse
|
8
|
Zhu WZ, He QY, Feng DC, Wei Q, Yang L. Circadian rhythm in prostate cancer: time to take notice of the clock. Asian J Androl 2023; 25:184-191. [PMID: 36073562 PMCID: PMC10069698 DOI: 10.4103/aja202255] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The circadian clock is an evolutionary molecular product that is associated with better adaptation to changes in the external environment. Disruption of the circadian rhythm plays a critical role in tumorigenesis of many kinds of cancers, including prostate cancer (PCa). Integrating circadian rhythm into PCa research not only brings a closer understanding of the mechanisms of PCa but also provides new and effective options for the precise treatment of patients with PCa. This review begins with patterns of the circadian clock, highlights the role of the disruption of circadian rhythms in PCa at the epidemiological and molecular levels, and discusses possible new approaches to PCa therapy that target the circadian clock.
Collapse
Affiliation(s)
- Wei-Zhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi-Ying He
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - De-Chao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Psycho-Neuro-Endocrine-Immunology: A Role for Melatonin in This New Paradigm. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154888. [PMID: 35956837 PMCID: PMC9370109 DOI: 10.3390/molecules27154888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
Psychoneuroendocrinoimmunology is the area of study of the intimate relationship between immune, physical, emotional, and psychological aspects. This new way of studying the human body and its diseases was initiated in the last century’s first decades. However, the molecules that participate in the communication between the immune, endocrine, and neurological systems are still being discovered. This paper aims to describe the development of psychoneuroendocrinoimmunology, its scopes, limitations in actual medicine, and the extent of melatonin within it.
Collapse
|
10
|
Consalvo KM, Kirolos SA, Sestak CE, Gomer RH. Sex-Based Differences in Human Neutrophil Chemorepulsion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:354-367. [PMID: 35793910 PMCID: PMC9283293 DOI: 10.4049/jimmunol.2101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/02/2022] [Indexed: 05/25/2023]
Abstract
A considerable amount is known about how eukaryotic cells move toward an attractant, and the mechanisms are conserved from Dictyostelium discoideum to human neutrophils. Relatively little is known about chemorepulsion, where cells move away from a repellent signal. We previously identified pathways mediating chemorepulsion in Dictyostelium, and here we show that these pathways, including Ras, Rac, protein kinase C, PTEN, and ERK1 and 2, are required for human neutrophil chemorepulsion, and, as with Dictyostelium chemorepulsion, PI3K and phospholipase C are not necessary, suggesting that eukaryotic chemorepulsion mechanisms are conserved. Surprisingly, there were differences between male and female neutrophils. Inhibition of Rho-associated kinases or Cdc42 caused male neutrophils to be more repelled by a chemorepellent and female neutrophils to be attracted to the chemorepellent. In the presence of a chemorepellent, compared with male neutrophils, female neutrophils showed a reduced percentage of repelled neutrophils, greater persistence of movement, more adhesion, less accumulation of PI(3,4,5)P3, and less polymerization of actin. Five proteins associated with chemorepulsion pathways are differentially abundant, with three of the five showing sex dimorphism in protein localization in unstimulated male and female neutrophils. Together, this indicates a fundamental difference in a motility mechanism in the innate immune system in men and women.
Collapse
Affiliation(s)
| | - Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, TX
| | - Chelsea E Sestak
- Department of Biology, Texas A&M University, College Station, TX
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX
| |
Collapse
|
11
|
The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases. Int J Mol Sci 2022; 23:ijms23137438. [PMID: 35806441 PMCID: PMC9267299 DOI: 10.3390/ijms23137438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has become an excellent model for the study of human diseases because it offers many advantages over other vertebrate animal models. The pineal gland, as well as the biological clock and circadian rhythms, are highly conserved in zebrafish, and melatonin is produced in the pineal gland and in most organs and tissues of the body. Zebrafish have several copies of the clock genes and of aanat and asmt genes, the latter involved in melatonin synthesis. As in mammals, melatonin can act through its membrane receptors, as with zebrafish, and through mechanisms that are independent of receptors. Pineal melatonin regulates peripheral clocks and the circadian rhythms of the body, such as the sleep/wake rhythm, among others. Extrapineal melatonin functions include antioxidant activity, inducing the endogenous antioxidants enzymes, scavenging activity, removing free radicals, anti-inflammatory activity through the regulation of the NF-κB/NLRP3 inflammasome pathway, and a homeostatic role in mitochondria. In this review, we introduce the utility of zebrafish to analyze the mechanisms of action of melatonin. The data here presented showed that the zebrafish is a useful model to study human diseases and that melatonin exerts beneficial effects on many pathophysiological processes involved in these diseases.
Collapse
|
12
|
Chen AQ, He SM, Lv SJ, Qiu CZ, Zhou R, Zhang L, Zhang SR, Zhang Z, Ren DL. Muscarinic acetylcholine receptors regulate inflammatory responses through arginases 1/2 in zebrafish. Biomed Pharmacother 2022; 153:113321. [PMID: 35759868 DOI: 10.1016/j.biopha.2022.113321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) are widely expressed in various effector cells and have been proved to play vital roles in smooth muscle contraction and digestive secretion. However, there are relatively few literatures revealing the roles of mAChRs in inflammatory processes, and its underlying regulatory mechanisms have not been elucidated. Taking the advantages of live imaging of zebrafish, we found that inhibition of mAChRs resulted in increased neutrophils recruitment and proinflammatory cytokines expression, whereas activation of mAChRs led to opposite outcome. Subsequently, we found that mAChRs regulated the expression of arginases (args), and pharmacological intervention of args level could reverse the effects of mAChRs on neutrophils migration and cytokines expression, suggesting that args are important downstream proteins of mAChRs that mediate the regulation of inflammatory response. In this study, we identified args as novel downstream proteins of mAChRs in inflammatory responses, providing additional evidence for system immune regulation of cholinergic receptors.
Collapse
Affiliation(s)
- An-Qi Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Min He
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Jie Lv
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Cheng-Zeng Qiu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ren Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shang-Rong Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
| | - Zijun Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Da-Long Ren
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
13
|
Merlo S, Caruso GI, Bonfili L, Spampinato SF, Costantino G, Eleuteri AM, Sortino MA. Microglial polarization differentially affects neuronal vulnerability to the β-amyloid protein: Modulation by melatonin. Biochem Pharmacol 2022; 202:115151. [PMID: 35750198 DOI: 10.1016/j.bcp.2022.115151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
Microglial cells play a central but yet debated role in neuroinflammatory events occurring in Alzheimer's disease (AD). We here explored how microglial features are modulated by melatonin following β-amyloid (Aβ42)-induced activation and examined the cross-talk with Aβ-challenged neuronal cells. Human microglial HMC3 cells were exposed to Aβ42 (200 nM) in the presence of melatonin (MEL; 1 μM) added since the beginning (MELco) or after a 72 h-exposure to Aβ42 (MELpost). In both conditions, MEL favored an anti-inflammatory activation and rescued SIRT1 and BDNF expression/release. Caspase-1 up-regulation and phospho-ERK induction following a prolonged exposure to Aβ42 were prevented by MEL. In addition, MEL partially restored proteasome functionality that was altered by long-term Aβ42 treatment, re-establishing both 20S and 26S chymotrypsin-like activity. Differentiated neuronal-like SH-SY5Y cells were exposed to Aβ42 (200 nM for 24 h) in basal medium or in the presence of conditioned medium (CM) collected from microglia exposed for different times to Aβ42 alone or in combination with MELco or MELpost. Aβ42 significantly reduced pre-synaptic proteins synaptophysin and VAMP2 and mean neuritic length. These effects were prevented by CM from anti-inflammatory microglia (Aβ42 for 6 h), or from MELco and MELpost microglia, but the reduction of neuritic length was not rescued when the SIRT1 inhibitor EX527 was added. In conclusion, our data add to the concept that melatonin shows a promising anti-inflammatory action on microglia that is retained even after pro-inflammatory activation, involving modulation of proteasome function and translating into neuroprotective microglial effects.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
| | - Grazia Ilaria Caruso
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Simona Federica Spampinato
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 13, Turin 10125, Italy.
| | - Giuseppe Costantino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
| |
Collapse
|
14
|
He SM, Sun S, Chen AQ, Lv SJ, Qiu CZ, Wei ML, Liu W, Liu HR, Zhang L, Ren DL. Hypoxia regulates cytokines expression and neutrophils migration by ERK signaling in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2022; 125:212-219. [PMID: 35569778 DOI: 10.1016/j.fsi.2022.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Normal dissolved oxygen in water is essential for maintaining the physiological functions of fish, but environmental pollution, such as eutrophication can lead to a decrease in oxygen content in water. How this reduction of dissolved oxygen in water affects the immune functions of fish and the potential regulatory mechanisms have not been thoroughly elucidated. In this study, we made full use of the aquatic model animal zebrafish to explore this question. In a model of LPS-induced inflammation, we found that hypoxia induced by infusing nitrogen into water increased the expression of pro-inflammatory cytokines, such as il-1β, il-6, and il-8. In vivo imaging also showed that hypoxia significantly increased neutrophil migration to the site of caudal fin injury in the transgenic line. Subsequently, we found that the phosphorylation level of ERK protein was significantly activated upon hypoxia and proved the roles of ERK signaling in the expression of pro-inflammatory cytokines and neutrophil migration in zebrafish. This study indicated that reduced water oxygen significantly increases the inflammatory response of the zebrafish.
Collapse
Affiliation(s)
- Shi-Min He
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Shuo Sun
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - An-Qi Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Shi-Jie Lv
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Cheng-Zeng Qiu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Mei-Li Wei
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Wei Liu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Hui-Ru Liu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China; Anhui Province Key Laboratory of Local Livestock, Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
15
|
Tan DX, Reiter RJ. Mechanisms and clinical evidence to support melatonin's use in severe COVID-19 patients to lower mortality. Life Sci 2022; 294:120368. [PMID: 35108568 PMCID: PMC8800937 DOI: 10.1016/j.lfs.2022.120368] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
The fear of SARS-CoV-2 infection is due to its high mortality related to seasonal flu. To date, few medicines have been developed to significantly reduce the mortality of the severe COVID-19 patients, especially those requiring tracheal intubation. The severity and mortality of SARS-CoV-2 infection not only depend on the viral virulence, but are primarily determined by the cytokine storm and the destructive inflammation driven by the host immune reaction. Thus, to target the host immune response might be a better strategy to combat this pandemic. Melatonin is a molecule with multiple activities on a virus infection. These include that it downregulates the overreaction of innate immune response to suppress inflammation, promotes the adaptive immune reaction to enhance antibody formation, inhibits the entrance of the virus into the cell as well as limits its replication. These render it a potentially excellent candidate for treatment of the severe COVID-19 cases. Several clinical trials have confirmed that melatonin when added to the conventional therapy significantly reduces the mortality of the severe COVID-19 patients. The cost of melatonin is a small fraction of those medications approved by FDA for emergency use to treat COVID-19. Because of its self-administered, low cost and high safety margin, melatonin could be made available to every country in the world at an affordable cost. We recommend melatonin be used to treat severe COVID-19 patients with the intent of reducing mortality. If successful, it would make the SARS-CoV-2 pandemic less fearful and help to return life back to normalcy.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
16
|
Gillies S, Verdon R, Stone V, Brown DM, Henry T, Tran L, Tucker C, Rossi AG, Tyler CR, Johnston HJ. Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology 2022; 16:333-354. [PMID: 35797989 DOI: 10.1080/17435390.2022.2088312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hazard studies for nanomaterials (NMs) commonly assess whether they activate an inflammatory response. Such assessments often rely on rodents, but alternative models are needed to support the implementation of the 3Rs principles. Zebrafish (Danio rerio) offer a viable alternative for screening NM toxicity by investigating inflammatory responses. Here, we used non-protected life stages of transgenic zebrafish (Tg(mpx:GFP)i114) with fluorescently-labeled neutrophils to assess inflammatory responses to silver (Ag) and zinc oxide (ZnO) NMs using two approaches. Zebrafish were exposed to NMs via water following a tail fin injury, or NMs were microinjected into the otic vesicle. Zebrafish were exposed to NMs at 3 days post-fertilization (dpf) and neutrophil accumulation at the injury or injection site was quantified at 0, 4, 6, 8, 24, and 48 h post-exposure. Zebrafish larvae were also exposed to fMLF, LTB4, CXCL-8, C5a, and LPS to identify a suitable positive control for inflammation induction. Aqueous exposure to Ag and ZnO NMs stimulated an enhanced and sustained neutrophilic inflammatory response in injured zebrafish larvae, with a greater response observed for Ag NMs. Following microinjection, Ag NMs stimulated a time-dependent neutrophil accumulation in the otic vesicle which peaked at 48 h. LTB4 was identified as a positive control for studies investigating inflammatory responses in injured zebrafish following aqueous exposure, and CXCL-8 for microinjection studies that assess responses in the otic vesicle. Our findings support the use of transgenic zebrafish to rapidly screen the pro-inflammatory effects of NMs, with potential for wider application in assessing chemical safety (e.g. pharmaceuticals).
Collapse
Affiliation(s)
| | | | | | | | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
17
|
Zhang L, Yao LN, Liu W, Chen AQ, He SM, Wei ML, Fan ZX, Ren DL. N-acetylcholine receptors regulate cytokines expression and neutrophils recruitment via MAPK/ERK signaling in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104328. [PMID: 34883109 DOI: 10.1016/j.dci.2021.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
N-acetylcholine receptors (AChRs) are mainly distributed in the postsynaptic membrane and have been widely studied for their control of muscle contraction by regulating neural action potentials. However, the influences of AChRs on immune responses and potential mechanisms remain unclear. Here, we used the advantages of live imaging of zebrafish to explore the regulation process of AChRs on inflammatory responses. Pharmacologically activating of the receptor, we found that the expression of pro-inflammatory cytokines il-1β, il-6, tnf-α and il-8 was significantly up-regulated and neutrophil migration to injury sites was also significantly increased. However, these phenomena were reversed under antagonism of the receptor activity. Results showed that interfering with nAChRs functions did not significantly affect zebrafish motion behavior. Results also showed that activation and antagonism of nAChRs function could regulate the phosphorylation of ERK protein respectively. We further demonstrated that ERK participated in the regulation of AChRs in cytokines expression and neutrophils migration in zebrafish. This study preliminarily revealed the roles of AChRs in inflammatory processes and their potential mechanism, providing additional evidence of peripheral immune regulation by cholinergic receptors.
Collapse
Affiliation(s)
- Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Li-Na Yao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - An-Qi Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Shi-Min He
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mei-Li Wei
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zi-Xuan Fan
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Da-Long Ren
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
18
|
Ni X, Wu X, Zhu XX, Li JH, Yin XY, Lu L. Carabin Deficiency Aggravates Hepatic Ischemia-Reperfusion Injury Through Promoting Neutrophil Trafficking via Ras and Calcineurin Signaling. Front Immunol 2022; 13:773291. [PMID: 35265067 PMCID: PMC8898835 DOI: 10.3389/fimmu.2022.773291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Neutrophil infiltration plays an important role in the initial phase of hepatic ischemia and reperfusion injury (HIRI). Despite many different key molecules that have been reported to meditate neutrophil trafficking in HIRI, the mechanism of this process has not been fully elucidated. In this study, we found that Carabin deficiency in myeloid cells (LysMCre : Carabinfl/fl) aggravated IRI-induced hepatic injury and apoptosis through increasing the infiltration of CD11b+Ly6G+ neutrophils. ImmGen Datasets further revealed that Carabin was expressed in bone marrow neutrophils (GM.BM) but was significantly downregulated in thio-induced peripheral neutrophils (GN.Thio.PC), which was consistently verified by comparing GM.BM and liver-infiltrating neutrophils induced by IRI. Mechanistically, up-regulation of Carabin in GM.BM in vitro reduced the expression levels of P-selectin, E-selectin, and αvβ3 integrin through inhibiting Ras-ERK and Calcineurin-NFAT signaling. Furthermore, blocking P-selectin, E-selectin, and αvβ3 integrin in LysMCre : Carabinfl/fl mice decreased the frequency and number of CD11b+Ly6G+ neutrophils and reversed hepatic ischemia−reperfusion damage. In conclusion, our results provide a new understanding of Carabin, such that it is expressed and functions not only in adaptive immune cells (T and B cells) but also in innate immune cells (neutrophils), contributing to the migration of neutrophils. These findings provide novel and promising therapeutic targets for the prevention of HIRI during liver transplantation or hepatic surgery.
Collapse
Affiliation(s)
- Xuhao Ni
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao Wu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Xu Zhu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Hui Li
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiao-Yu Yin, ; Ling Lu,
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xiao-Yu Yin, ; Ling Lu,
| |
Collapse
|
19
|
Liu W, Zhang L, Sun S, Tang LS, He SM, Chen AQ, Yao LN, Ren DL. Cordycepin inhibits inflammatory responses through suppression of ERK activation in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104178. [PMID: 34157317 DOI: 10.1016/j.dci.2021.104178] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
As a natural extract, cordycepin has been shown to play important regulatory roles in many life activities. In the study, the effects of cordycepin on inflammatory responses and the underlying mechanisms was explored using a zebrafish model. In the model of LPS-induced inflammation, cordycepin was found to significantly inhibited the expression of pro-inflammatory cytokines such as tnf-α, il-1β, il-6, and il-8. Using in vivo imaging model, cordycepin significantly inhibited fluorescent-labeled neutrophils migrating towards injury sites. Furthermore, results showed that the phosphorylation level of ERK protein dramatically decreased after cordycepin treatment. Meanwhile, the ERK inhibitor, PD0325901, significantly inhibited the expression of pro-inflammatory cytokines in LPS-induced inflammatory model and neutrophils migration in the caudal fin injury model. This study indicated the important roles of cordycepin in inhibiting LPS and injury-induced inflammation and preliminarily explained the role of ERK protein in this process.
Collapse
Affiliation(s)
- Wei Liu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Shuo Sun
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Long-Sheng Tang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Shi-Min He
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - An-Qi Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Li-Na Yao
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
20
|
Liao G, Wang P, Zhu J, Weng X, Lin S, Huang J, Xu Y, Zhou F, Zhang H, Tse LA, Zou F, Meng X. Joint toxicity of lead and cadmium on the behavior of zebrafish larvae: An antagonism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105912. [PMID: 34303158 DOI: 10.1016/j.aquatox.2021.105912] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Although the individual toxicity of lead (Pb) and cadmium (Cd) was intensively studied, little is known about their joint toxicity on the development of circadian behavioral rhythm. Therefore, we co-exposed zebrafish to Pb and Cd to investigate the alterations of behavioral rhythm and the potential mechanism. Inductively coupled plasma mass spectrometry analysis was used to detect the internal exposure level of heavy metals. The behavioral rhythm was monitored by a video-track tracking system. The changes of gene expression regarding melatonin-related molecules and clock genes were analyzed by quantitative polymerase chain reaction and JTK-Cycle analysis. The results showed that the level of Pb2+ and Cd2+ accumulated in the co-exposure group were significantly lower than that in the Pb or Cd group. Exposed to Pb reduced the locomotor activity; the behavioral rhythms were disrupted by Cd, while the pattern in the co-exposure group showed an antagonistic effect on locomotor activity and behavioral rhythm. The expression rhythm of aanat1 was disturbed and the expression levels of mtnr1aa and mtnr1bb were decreased by co-exposure treatment, but mtnr1c was increased in Pb and Cd group, respectively. Exposure to Cd caused the disruption of expression rhythm in clock genes, like clock1b, clock2, and cry1b, while only the rhythm of clock2 was disrupted in the co-exposure group. The results suggest that the behavioral rhythm disruption caused by Cd exposure is associated with the disturbance of certain circadian genes, whereas Pb exposure only abates the locomotor activity; an antagonistic effect on the behavioral pattern when co-exposed zebrafish larvae to Pb and Cd.
Collapse
Affiliation(s)
- Gengze Liao
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Peijun Wang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zhu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xueqiong Weng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanshan Lin
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingwen Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongnan Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lap Ah Tse
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; CUHK Shenzhen Research Institute, Shenzhen, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Way H, Williams G, Hausman-Cohen S, Reeder J. Genomics as a Clinical Decision Support Tool: Successful Proof of Concept for Improved ASD Outcomes. J Pers Med 2021; 11:jpm11070596. [PMID: 34202628 PMCID: PMC8305264 DOI: 10.3390/jpm11070596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023] Open
Abstract
Considerable evidence is emerging that Autism Spectrum Disorder (ASD) is most often triggered by a range of different genetic variants that interact with environmental factors such as exposures to toxicants and changes to the food supply. Up to 80% of genetic variations that contribute to ASD found to date are neither extremely rare nor classified as pathogenic. Rather, they are less common single nucleotide polymorphisms (SNPs), found in 1-15% or more of the population, that by themselves are not disease-causing. These genomic variants contribute to ASD by interacting with each other, along with nutritional and environmental factors. Examples of pathways affected or triggered include those related to brain inflammation, mitochondrial dysfunction, neuronal connectivity, synapse formation, impaired detoxification, methylation, and neurotransmitter-related effects. This article presents information on four case study patients that are part of a larger ongoing pilot study. A genomic clinical decision support (CDS) tool that specifically focuses on variants and pathways that have been associated with neurodevelopmental disorders was used in this pilot study to help develop a targeted, personalized prevention and intervention strategy for each child. In addition to an individual's genetic makeup, each patient's personal history, diet, and environmental factors were considered. The CDS tool also looked at genomic SNPs associated with secondary comorbid ASD conditions including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, and pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections/pediatric acute-onset neuropsychiatric syndrome (PANDAS/PANS). The interpreted genomics tool helped the treating clinician identify and develop personalized, genomically targeted treatment plans. Utilization of this treatment approach was associated with significant improvements in socialization and verbal skills, academic milestones and intelligence quotient (IQ), and overall increased ability to function in these children, as measured by autism treatment evaluation checklist (ATEC) scores and parent interviews.
Collapse
Affiliation(s)
- Heather Way
- The Australian Centre for Genomic Analysis, Brisbane, QLD 4069, Australia;
| | | | - Sharon Hausman-Cohen
- IntellxxDNA™, Austin, TX 78731, USA; (G.W.); (J.R.)
- Correspondence: ; Tel.: +1-512-717-3300
| | | |
Collapse
|
22
|
Mendivil CO. Dietary Fish, Fish Nutrients, and Immune Function: A Review. Front Nutr 2021; 7:617652. [PMID: 33553231 PMCID: PMC7855848 DOI: 10.3389/fnut.2020.617652] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary habits have a major impact on the development and function of the immune system. This impact is mediated both by the intrinsic nutritional and biochemical qualities of the diet, and by its influence on the intestinal microbiota. Fish as a food is rich in compounds with immunoregulatory properties, among them omega-3 fatty acids, melatonin, tryptophan, taurine and polyamines. In addition, regular fish consumption favors the proliferation of beneficial members of the intestinal microbiota, like short-chain fatty acid-producing bacteria. By substituting arachidonic acid in the eicosanoid biosynthesis pathway, long-chain omega-3 fatty acids from fish change the type of prostaglandins, leukotrienes and thromboxanes being produced, resulting in anti-inflammatory properties. Further, they also are substrates for the production of specialized pro-resolving mediators (SPMs) (resolvins, protectins, and maresins), lipid compounds that constitute the physiological feedback signal to stop inflammation and give way to tissue reparation. Evidence from human observational and interventional studies shows that regular fish consumption is associated with reduced incidence of chronic inflammatory conditions like rheumatoid arthritis, and that continuous infusion of fish oil to tube-fed, critically ill patients may improve important outcomes in the ICU. There is also evidence from animal models showing that larger systemic concentrations of omega-3 fatty acids may counter the pathophysiological cascade that leads to psoriasis. The knowledge gained over the last few decades merits future exploration of the potential role of fish and its components in other conditions characterized by deregulated activation of immune cells and a cytokine storm like viral sepsis or COVID-19.
Collapse
Affiliation(s)
- Carlos O Mendivil
- School of Medicine, Universidad de los Andes, Bogotá, Colombia.,Section of Endocrinology, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| |
Collapse
|
23
|
Zhang L, Chen J, Liao H, Li C, Chen M. Anti-inflammatory effect of lipophilic grape seed proanthocyanidin in RAW 264.7 cells and a zebrafish model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
24
|
Zhang W, Liu X, Piao L. Chlorogenic acid-enriched extract of Ilex kudingcha C.J. Tseng tea inhibits neutrophil recruitment in injured zebrafish by promoting reverse migration via the focal adhesion pathway. J Food Biochem 2020; 44:e13279. [PMID: 32686853 DOI: 10.1111/jfbc.13279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Neutrophil-regulated inflammation plays crucial roles in tissue damage and repair. Dysregulation of the neutrophil response system can contribute to diseases such as cancer. Clearance of excessive neutrophils at the site of inflammation by reverse migration provides a promising strategy to mitigate the negative effects. Chlorogenic acid treatment of injured zebrafish embryos showed low-developmental toxicity. Using a transgenic zebrafish Tg (mpx: egfp) model, chlorogenic acid-enriched kudingcha extract promoted neutrophil reverse migration via phosphorylation of ERK and AKT. Using i-TRAQ analysis, differentially expressed proteins involved in focal adhesion were identified, such as: Cdc42, SRC, MLC, ITGA, and Calpain. In support of this, ERK and AKT proteins are involved in the focal adhesion pathway. Real time qPCR determined that CGA downregulates genes associated with cancer metastasis, such as: HSPA5, YWHAZ, RP17, and ITGAV. Together, these results suggest that CGA-enriched Kudingcha extract may have potential as an anticancer or anti-inflammatory therapeutic agent. PRACTICAL APPLICATIONS: Ilex kudingcha C.J Tseng, commonly referred to as the large-leaved kudingcha, is a tea variety naturally rich in chlorogenic acid. Chlorogenic acid, the ester of caffeic and quinic acids, has antioxidant, antibacterial, anticancer, and anti-inflammatory, activities. Kudingcha has several known biological functions, including: anticancer, anti-inflammatory, antidiabetic, and hypolipidemic effects. Treatment with kudingcha extract reduces the recruitment of neutrophils, potentially by inhibiting focal adhesion, and activation of cancer metastasis-related genes. Importantly, kudingcha extract could be used as an alternative nutritional supplement for anticancer or anti-inflammation via its ability to suppress neutrophil recruitment.
Collapse
Affiliation(s)
- Weihao Zhang
- School of Life and Pharmaceutical Science, Hainan University, Haikou, China
| | - Xiande Liu
- School of Life and Pharmaceutical Science, Hainan University, Haikou, China
| | - Linghua Piao
- Department of Physiology, Hainan Medical University, Haikou, China
| |
Collapse
|
25
|
Chen M, Cecon E, Karamitri A, Gao W, Gerbier R, Ahmad R, Jockers R. Melatonin MT 1 and MT 2 receptor ERK signaling is differentially dependent on G i/o and G q/11 proteins. J Pineal Res 2020; 68:e12641. [PMID: 32080899 DOI: 10.1111/jpi.12641] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) transmit extracellular signals into cells by activating G protein- and β-arrestin-dependent pathways. Extracellular signal-regulated kinases (ERKs) play a central role in integrating these different linear inputs coming from a variety of GPCRs to regulate cellular functions. Here, we investigated human melatonin MT1 and MT2 receptors signaling through the ERK1/2 cascade by employing different biochemical techniques together with pharmacological inhibitors and siRNA molecules. We show that ERK1/2 activation by both receptors is exclusively G protein-dependent, without any participation of β-arrestin1/2 in HEK293 cells. ERK1/2 activation by MT1 is only mediated though Gi/o proteins, while MT2 is dependent on the cooperative activation of Gi/o and Gq/11 proteins. In the absence of Gq/11 proteins, however, MT2 -induced ERK1/2 activation switches to a β-arrestin1/2-dependent mode. The signaling cascade downstream of G proteins is the same for both receptors and involves activation of the PI3K/PKCζ/c-Raf/MEK/ERK cascade. The differential G protein dependency of MT1 - and MT2 -mediated ERK activation was confirmed at the level of EGR1 and FOS gene expression, two ERK1/2 target genes. Gi/o /Gq/11 cooperativity was also observed in Neuroscreen-1 cells expressing endogenous MT2 , whereas in the mouse retina, where MT2 is engaged into MT1 /MT2 heterodimers, ERK1/2 signaling is exclusively Gi/o -dependent. Collectively, our data reveal differential signaling modes of MT1 and MT2 in terms of ERK1/2 activation, with an unexpected Gi/o /Gq/11 cooperativity exclusively for MT2 . The plasticity of ERK activation by MT2 is highlighted by the switch to a β-arrestin1/2-dependent mode in the absence of Gq/11 proteins and by the switch to a Gi/o mode when engaged into MT1 /MT2 heterodimers, revealing a new mechanism underlying tissue-specific responses to melatonin.
Collapse
Affiliation(s)
- Min Chen
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Erika Cecon
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | | | - Wenwen Gao
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Romain Gerbier
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Raise Ahmad
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Ralf Jockers
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| |
Collapse
|
26
|
Zhang P, Fu Y, Ju J, Wan D, Su H, Wang Z, Rui H, Jin Q, Le Y, Hou R. Estradiol inhibits fMLP-induced neutrophil migration and superoxide production by upregulating MKP-2 and dephosphorylating ERK. Int Immunopharmacol 2019; 75:105787. [PMID: 31401382 DOI: 10.1016/j.intimp.2019.105787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023]
Abstract
Estrogen has been reported to inhibit neutrophil infiltration related inflammation and suppress neutrophils migration in vitro, but the underlying mechanism is not fully understood. By using HL-60 differentiated neutrophil-like cells (dHL-60) and human neutrophils, we examined the effect of 17-β estradiol (E2) on cell migration and superoxide production in response to chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) and explored the mechanisms involved. We found that fMLP significantly induced dHL-60 cell and neutrophil migration and superoxide production, which was inhibited by ERK inhibitor PD98059. E2 significantly inhibited fMLP-induced dHL-60 cell and neutrophil migration and superoxide production at both physiological and pharmacological concentrations. Mechanistic studies showed that pretreatment of these cells with E2 rapidly elevated the protein level of mitogen-activated protein kinase phosphatase 2 (MKP-2) and inhibited fMLP-induced ERK phosphorylation. Pretreatment of these cells with estrogen receptor (ER) antagonist ICI 182780 reversed the inhibition of fMP-induced cell migration and superoxide production, and the induction of MKP-2 expression and the suppression of fMP-induced ERK phosphorylation by E2. However, pretreatment of cells with G-protein coupled ER antagonist G15 had no such effect. Collectively, these results demonstrate that fMLP stimulates neutrophil chemotaxis and superoxide production through activating ERK, and indicate that ER-mediated upregulation of MKP-2 may dephosphorylate ERK and contribute to the inhibitory effect of E2 on neutrophil activation by fMLP. Our study reveals new mechanisms involved in the anti-inflammatory activity of estrogen.
Collapse
Affiliation(s)
- Ping Zhang
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215007, China
| | - Jihui Ju
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Dapeng Wan
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Hao Su
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Zhaodong Wang
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Huajuan Rui
- Department of Clinical Laboratory, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Qianheng Jin
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruixing Hou
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China; Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China.
| |
Collapse
|
27
|
Zhao CN, Wang P, Mao YM, Dan YL, Wu Q, Li XM, Wang DG, Davis C, Hu W, Pan HF. Potential role of melatonin in autoimmune diseases. Cytokine Growth Factor Rev 2019; 48:1-10. [DOI: 10.1016/j.cytogfr.2019.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022]
|
28
|
The Mystery behind the Pineal Gland: Melatonin Affects the Metabolism of Cholesterol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4531865. [PMID: 31360294 PMCID: PMC6652030 DOI: 10.1155/2019/4531865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/20/2019] [Accepted: 06/23/2019] [Indexed: 12/17/2022]
Abstract
Melatonin may be considered a cardioprotective agent. Since atherogenesis is partly associated with the metabolism of lipoproteins, it seems plausible that melatonin affects cardiovascular risk by modulating the metabolism of cholesterol and its subfractions. Moreover, cholesterol-driven atherogenesis can be hypothetically reduced by melatonin, mainly due to the minimalization of harmful reactions triggered in the cardiovascular system by the reactive oxygen species-induced toxic derivatives of cholesterol. In this review, we attempted to summarize the available data on the hypolipemizing effects of melatonin, with some emphasis on the molecular mechanisms underlying these reactions. We aimed to attract readers' attention to the numerous gaps of knowledge present in the reviewed field and the essential irrelevance between the findings originating from different sources: clinical observations and in vitro mechanistic and molecular studies, as well as preclinical experiments involving animal models. Overall, such inconsistencies make it currently impossible to give a reliable opinion on the action of melatonin on the metabolism of lipoproteins.
Collapse
|
29
|
Wang Y, Kong X, Wang M, Li J, Chen W, Jiang D. Luteolin Partially Inhibits LFA-1 Expression in Neutrophils Through the ERK Pathway. Inflammation 2019; 42:365-374. [PMID: 30255285 DOI: 10.1007/s10753-018-0900-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Luteolin inhibits the adhesion of neutrophils to microvascular endothelial cells and plays an important anti-inflammatory role, owing to its mechanism of suppressing the expression of lymphocyte function-associated antigen-1 (LFA-1) in the neutrophils. Our study deals with the different signaling pathways participating in LFA-1 expression in neutrophils along with the regulation of luteolin in order to elucidate new anti-inflammatory targets of luteolin, thus providing a basis for clinical applications. In our study, neutrophils were separated using density gradient centrifugation and the cAMP levels were determined using ELISA. Additionally, phosphorylation levels of p38 mitogen-activated protein kinase (MAPK), extracellular regulated protein kinase (ERK), phosphatidylinositol-3-kinase (PI3K), and Janus kinase (JAK) were also detected by Western blotting. LFA-1 expression was estimated using flow cytometry. The results showed that inhibiting agents used against p38 MAPK, ERK, PI3K, and JAK could significantly inhibit LFA-1 expression on neutrophils (p < 0.05, p < 0.01). Luteolin also induced a noteworthy elevation of cAMP in neutrophil supernatants (p < 0.01). It could also significantly inhibit ERK phosphorylation (p < 0.05, p < 0.01), and had no obvious effect on p38 MAPK phosphorylation in neutrophils (p > 0.05). However, phosphorylation of PI3K and JAK was not detected in neutrophils. To conclude, the p38 MAPK, ERK, PI3K, and JAK pathways are involved in the regulation of LFA-1 expression in neutrophils, and luteolin partially inhibits LFA-1 expression by increasing cAMP levels and suppressing ERK phosphorylation.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Xueli Kong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Mengjie Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Jia Li
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Wu Chen
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Daixun Jiang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China.
| |
Collapse
|
30
|
Li HY, Leu YL, Wu YC, Wang SH. Melatonin Inhibits in Vitro Smooth Muscle Cell Inflammation and Proliferation and Atherosclerosis in Apolipoprotein E-Deficient Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1889-1901. [PMID: 30661353 DOI: 10.1021/acs.jafc.8b06217] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chronic inflammation and proliferation play important roles in atherosclerosis progression. This study aimed to identify the mechanisms responsible for the anti-inflammatory and antiproliferative effects of melatonin on tumor necrosis factor-α (TNF-α)- and platelet-derived growth factor-BB (PDGF-BB)-treated rat aortic smooth muscle cells (RASMCs). Melatonin reduced TNF-α-induced RASMC inflammation by decreasing vascular cell adhesion molecule-1 (VCAM-1) expression and nuclear factor-kappa B (NF-κB) P65 activity by inhibiting P38 mitogen-activated protein kinase phosphorylation ( P < 0.05). Additionally, melatonin inhibited PDGF-BB-induced RASMC proliferation by reducing mammalian target of rapamycin (mTOR) phosphorylation ( P < 0.05) but not migration in vitro. Melatonin also reduced TNF-α- and PDGF-BB-induced reactive oxygen species (ROS) production ( P < 0.05). Furthermore, melatonin treatment (prevention and treatment groups) significantly repressed high cholesterol diet-stimulated atherosclerotic lesions in vivo (19.59 ± 4.11%, 20.28 ± 5.63%, 32.26 ± 12.06%, respectively, P < 0.05). Taken together, the present study demonstrated that melatonin attenuated TNF-α-induced RASMC inflammation and PDGF-BB-induced RASMC proliferation in cells and reduced atherosclerotic lesions in mice. These results showed that melatonin has anti-inflammatory and antiproliferative properties and may be a novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Hung-Yuan Li
- Department of Internal Medicine , National Taiwan University Hospital , Taipei , Taiwan
| | - Yann-Lii Leu
- Center for Traditional Chinese Medicine , Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Ya-Chieh Wu
- Department of Nursing , Ching-Kuo Institute of Management and Health , Keelung , Taiwan
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology , College of Medicine, National Taiwan University , Taipei , Taiwan
| |
Collapse
|
31
|
Ren DL, Wang XB, Hu B. Circadian gene period1b regulates proinflammatory cytokine expression through NF-κB signalling in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 80:528-533. [PMID: 29958979 DOI: 10.1016/j.fsi.2018.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock plays a critical role in regulating the immune system. Our previous publication revealed that a mutation in the circadian gene period1b (per1b) in zebrafish significantly decreased proinflammatory gene expression, particularly under constant darkness (DD) conditions; however, the underlying mechanisms remain unclear. In this study, using per1b-null mutant zebrafish and a larval tail fin injury model, we observed that the loss of per1b resulted in the downregulation expression of proinflammatory cytokines, such as IL-6 and TNF-α, at protein level. Furthermore, the loss of per1b downregulated ERK phosphorylation and inhibited p65 phosphorylation, leading to reduced NF-κB activation, which could downregulate the expression of proinflammatory cytokines, such as IL-6 and TNF-α, in zebrafish. These results provided insight into the communication between the circadian clock and immune functions.
Collapse
Affiliation(s)
- Da-Long Ren
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| | - Xiao-Bo Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| |
Collapse
|
32
|
Ren DL, Zhang JL, Yang LQ, Wang XB, Wang ZY, Huang DF, Tian C, Hu B. Circadian genes period1b and period2 differentially regulate inflammatory responses in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 77:139-146. [PMID: 29605504 DOI: 10.1016/j.fsi.2018.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock has been shown to regulate various immune processes in different animals. Our previous report demonstrated that the innate immune responses in zebrafish show significant rhythmicity that could be regulated by melatonin. Here, we used diurnal zebrafish to determine the role of circadian genes in the inflammatory responses. Our results indicate that circadian genes exhibit rhythmic oscillations in zebrafish leukocytes, and mutations of the clock genes period1b (per1b) and period2 (per2) considerably affect these oscillations. Using a wounded zebrafish inflammation model, we found that under constant dark conditions (DD), the expression of pro-inflammatory cytokines is significantly downregulated in per1b gene mutant zebrafish and significantly upregulated in the per2 gene mutant zebrafish. Furthermore, using real-time imaging technology, we found that the per1b gene markedly disturbs the rhythmic recruitment of neutrophils toward the injury, whereas the per2 gene does not show a significant effect. Taken together, our results reveal differential functions of the circadian genes per1b and per2 in the inflammatory responses, serving as evidence that circadian rhythms play a vital role in immune processes.
Collapse
Affiliation(s)
- Da-Long Ren
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| | - Jun-Long Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Lei-Qing Yang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Xiao-Bo Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Zong-Yi Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Deng-Feng Huang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Chen Tian
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No.96 Jinzhai Road, Hefei, Anhui Province, 230026, PR China.
| |
Collapse
|
33
|
Yoshioka E, Chelakkot VS, Licursi M, Rutihinda SG, Som J, Derwish L, King JJ, Pongnopparat T, Mearow K, Larijani M, Dorward AM, Hirasawa K. Enhancement of Cancer-Specific Protoporphyrin IX Fluorescence by Targeting Oncogenic Ras/MEK Pathway. Am J Cancer Res 2018; 8:2134-2146. [PMID: 29721068 PMCID: PMC5928876 DOI: 10.7150/thno.22641] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Protoporphyrin IX (PpIX) is an endogenous fluorescent molecule that selectively accumulates in cancer cells treated with the heme precursor 5-aminolevulinic acid (5-ALA). This cancer-specific accumulation of PpIX is used to distinguish tumor from normal tissues in fluorescence-guided surgery (FGS) and to destroy cancer cells by photodynamic therapy (PDT). In this study, we demonstrate that oncogenic Ras/mitogen-activated protein kinase kinase (MEK) pathway can modulate PpIX accumulation in cancer cells. Methods: To identify Ras downstream elements involved in PpIX accumulation, chemical inhibitors were used. To demonstrate the increase of PpIX accumulation by MEK inhibition, different human normal and cancer cell lines, BALB/c mice bearing mammary 4T1 tumors and athymic nude mice bearing human tumors were used. To identify the mechanisms of PpIX regulation by MEK, biochemical and molecular biological experiments were conducted. Results: Inhibition of one of the Ras downstream elements, MEK, promoted PpIX accumulation in cancer cells treated with 5-ALA, while inhibitors against other Ras downstream elements did not. Increased PpIX accumulation with MEK inhibition was observed in different types of human cancer cell lines, but not in normal cell lines. We identified two independent cellular mechanisms that underlie this effect in cancer cells. MEK inhibition reduced PpIX efflux from cancer cells by decreasing the expression level of ATP binding cassette subfamily B member 1 (ABCB1) transporter. In addition, the activity of ferrochelatase (FECH), the enzyme responsible for converting PpIX to heme, was reduced by MEK inhibition. Finally, we found that in vivo treatment with MEK inhibitors increased PpIX accumulation (2.2- to 2.4-fold) within mammary 4T1 tumors in BALB/c mice injected with 5-ALA without any change in normal organs. Similar results were also observed in a human tumor xenograft model. Conclusion: Our study demonstrates that inhibition of oncogenic Ras/MEK significantly enhances PpIX accumulation in vitro and in vivo in a cancer-specific manner. Thus, suppressing the Ras/MEK pathway may be a viable strategy to selectively intensify PpIX fluorescence in cancer cells and improve its clinical applications in FGS.
Collapse
|
34
|
Ye B, Xiong X, Deng X, Gu L, Wang Q, Zeng Z, Gao X, Gao Q, Wang Y. Meisoindigo, but not its core chemical structure indirubin, inhibits zebrafish interstitial leukocyte chemotactic migration. PHARMACEUTICAL BIOLOGY 2017; 55:673-679. [PMID: 27981893 PMCID: PMC6130669 DOI: 10.1080/13880209.2016.1238949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/16/2016] [Indexed: 06/01/2023]
Abstract
CONTEXT Inflammatory disease is a big threat to human health. Leukocyte chemotactic migration is required for efficient inflammatory response. Inhibition of leukocyte chemotactic migration to the inflammatory site has been shown to provide therapeutic targets for treating inflammatory diseases. OBJECTIVE Our study was designed to discover effective and safe compounds that can inhibit leukocyte chemotactic migration, thus providing possible novel therapeutic strategy for treating inflammatory diseases. MATERIALS AND METHODS In this study, we used transgenic zebrafish model (Tg:zlyz-EGFP line) to visualize the process of leukocyte chemotactic migration. Then, we used this model to screen the hit compound and evaluate its biological activity on leukocyte chemotactic migration. Furthermore, western blot analysis was performed to evaluate the effect of the hit compound on the AKT or ERK-mediated pathway, which plays an important role in leukocyte chemotactic migration. RESULTS In this study, using zebrafish-based chemical screening, we identified that the hit compound meisoindigo (25 μM, 50 μM, 75 μM) can significantly inhibit zebrafish leukocyte chemotactic migration in a dose-dependent manner (p = 0.01, p = 0.0006, p < 0.0001). Also, we found that meisoindigo did not affect the process of leukocyte reverse migration (p = 0.43). Furthermore, our results unexpectedly showed that indirubin, the core structure of meisoindigo, had no significant effect on zebrafish leukocyte chemotactic migration (p = 0.6001). Additionally, our results revealed that meisoindigo exerts no effect on the Akt or Erk-mediated signalling pathway. DISCUSSION AND CONCLUSION Our results suggest that meisoindigo, but not indirubin, is effective for inhibiting leukocyte chemotactic migration, thus providing a potential therapeutic agent for treating inflammatory diseases.
Collapse
Affiliation(s)
- Baixin Ye
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xu Deng
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiongyu Wang
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingping Gao
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yueying Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Nie K, Wang K, Huang DF, Huang YB, Yin W, Ren DL, Wang H, Hu B. Effects of circadian clock protein Per1b on zebrafish visual functions. Chronobiol Int 2017; 35:160-168. [DOI: 10.1080/07420528.2017.1391276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ke Nie
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Kun Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Deng-feng Huang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Yu-bin Huang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Wu Yin
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Da-long Ren
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, P. R. China
| |
Collapse
|
36
|
Kurhaluk N, Sliuta A, Kyriienko S, Winklewski PJ. Melatonin Restores White Blood Cell Count, Diminishes Glycated Haemoglobin Level and Prevents Liver, Kidney and Muscle Oxidative Stress in Mice Exposed to Acute Ethanol Intoxication. Alcohol Alcohol 2017; 52:521-528. [DOI: 10.1093/alcalc/agx045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
|
37
|
Ren DL, Ji C, Wang XB, Wang H, Hu B. Endogenous melatonin promotes rhythmic recruitment of neutrophils toward an injury in zebrafish. Sci Rep 2017; 7:4696. [PMID: 28680128 PMCID: PMC5498597 DOI: 10.1038/s41598-017-05074-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/24/2017] [Indexed: 12/28/2022] Open
Abstract
Neutrophil recruitment to injured tissue appears to be an evolutionarily conserved strategy for organisms to fight against exogenous insults. Recent studies have shown rhythmic migration of neutrophils and several factors, including melatonin, have been implicated in regulating this rhythmic migration. The mechanisms underlying how endogenous melatonin regulates rhythmic neutrophils migration, however, are unclear. Here we generated a zebrafish annat2 mutant that lacks endogenous melatonin and, subsequently, a Tg(lyz:EGFP);aanat2−/− transgenic line that allows for monitoring neutrophils migration visually in live zebrafish. We observed that migrating neutrophils are significantly reduced in aanat2−/− mutant zebrafish under a light/dark condition, and the disrupted migrating rhythmicity of neutrophils in aanat2−/− zebrafish is independent of the circadian clock. Further, we also found that endogenous melatonin enhances neutrophils migration likely by inducing the expression of cytokines such as interleukin-8 and interleukin-1β. Together, our findings provide evidence that endogenous melatonin promotes rhythmic migration of neutrophils through cytokines in zebrafish.
Collapse
Affiliation(s)
- Da-Long Ren
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.
| | - Cheng Ji
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, Jiangsu, China.,School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiao-Bo Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, Jiangsu, China. .,School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.
| |
Collapse
|
38
|
Melatonin and Metformin Diminish Oxidative Stress in Heart Tissue in a Rat Model of High Fat Diet and Mammary Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1047:7-19. [PMID: 29151256 DOI: 10.1007/5584_2017_128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this study was to determine the effects of long-term administration of the oral antidiabetic metformin or the pineal hormone melatonin, and a combination thereof, in preventing oxidative stress in the heart tissue of female Sprague-Dawley rats with mammary tumors induced by N-methyl-N-nitrosourea (NMU) (50 mg/kg) given on the 42nd postnatal day. Metformin and melatonin were administered 12 days before and 16 weeks after the carcinogen. During the experiment, all animals were fed a high fat diet (10% total fat, 2.5% from lard, and 7.5% from palm oil). The findings are that mammary carcinogenesis generated oxidative stress. Reactive oxygen species (ROS) content, estimated from thiobarbituric acid reactive substances (TBARS), oxidatively modified protein content (aldehyde and ketone derivatives), and the activity of the antioxidant enzymes superoxide dismutase, glutathione reductase, and glutathione peroxidase were all augmented. Metformin caused a decrease in oxidative stress in the heart, accompanied by a decrease in diene conjugates, the elimination of ROS (stable total antioxidant status), and the activation of catalase and glutathione reductase. Melatonin caused an increase in total antioxidant status and a substantial reduction in ROS as estimated from aldehyde and ketone derivatives, lipid peroxidation at the initial (diene conjugates) and terminal stages (TBARS), and increased catalase and glutathione peroxidase activities. Metformin and melatonin combined reversed the effects of NMU on oxidative stress. In conclusion, melatonin reduces the level of oxidative stress in the heart tissue, caused by NMU carcinogenesis and a high fat diet, significantly stronger than metformin.
Collapse
|
39
|
Zhang ER, Liu S, Wu LF, Altschuler SJ, Cobb MH. Chemoattractant concentration-dependent tuning of ERK signaling dynamics in migrating neutrophils. Sci Signal 2016; 9:ra122. [PMID: 27965424 DOI: 10.1126/scisignal.aag0486] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The directed migration (chemotaxis) of neutrophils toward the bacterial peptide N-formyl-Met-Leu-Phe (fMLP) is a crucial process in immune defense against invading bacteria. While navigating through a gradient of increasing concentrations of fMLP, neutrophils and neutrophil-like HL-60 cells switch from exhibiting directional migration at low fMLP concentrations to exhibiting circuitous migration at high fMLP concentrations. The extracellular signal-regulated kinase (ERK) pathway is implicated in balancing this fMLP concentration-dependent switch in migration modes. We investigated the role and regulation of ERK signaling through single-cell analysis of neutrophil migration in response to different fMLP concentrations over time. We found that ERK exhibited gradated, rather than all-or-none, responses to fMLP concentration. Maximal ERK activation occurred in response to about 100 nM fMLP, and ERK inactivation was promoted by p38. Furthermore, we found that directional migration of neutrophils reached a maximal extent at about 100 nM fMLP and that ERK, but not p38, was required for neutrophil migration. Thus, our data suggest that, in chemotactic neutrophils responding to fMLP, ERK displays gradated activation and p38-dependent inhibition and that these ERK dynamics promote neutrophil migration.
Collapse
Affiliation(s)
- Elizabeth R Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shanshan Liu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lani F Wu
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven J Altschuler
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
40
|
Ben-Moshe Livne Z, Alon S, Vallone D, Bayleyen Y, Tovin A, Shainer I, Nisembaum LG, Aviram I, Smadja-Storz S, Fuentes M, Falcón J, Eisenberg E, Klein DC, Burgess HA, Foulkes NS, Gothilf Y. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior. PLoS Genet 2016; 12:e1006445. [PMID: 27870848 PMCID: PMC5147766 DOI: 10.1371/journal.pgen.1006445] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/24/2016] [Indexed: 01/10/2023] Open
Abstract
The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.
Collapse
Affiliation(s)
- Zohar Ben-Moshe Livne
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shahar Alon
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniela Vallone
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Yared Bayleyen
- Unit on Behavioral Neurogenetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adi Tovin
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Inbal Shainer
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Laura G. Nisembaum
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
| | - Idit Aviram
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sima Smadja-Storz
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Fuentes
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
| | - Jack Falcón
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
| | - Eli Eisenberg
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel
| | - David C. Klein
- Section on Neuroendocrinology and Office of the Scientific Directory, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Harold A. Burgess
- Unit on Behavioral Neurogenetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicholas S. Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
41
|
Cavalcante-Silva LHA, Galvão JGFM, da Silva JSDF, de Sales-Neto JM, Rodrigues-Mascarenhas S. Obesity-Driven Gut Microbiota Inflammatory Pathways to Metabolic Syndrome. Front Physiol 2015; 6:341. [PMID: 26635627 PMCID: PMC4652019 DOI: 10.3389/fphys.2015.00341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022] Open
Abstract
The intimate interplay between immune system, metabolism, and gut microbiota plays an important role in controlling metabolic homeostasis and possible obesity development. Obesity involves impairment of immune response affecting both innate and adaptive immunity. The main factors involved in the relationship of obesity with inflammation have not been completely elucidated. On the other hand, gut microbiota, via innate immune receptors, has emerged as one of the key factors regulating events triggering acute inflammation associated with obesity and metabolic syndrome. Inflammatory disorders lead to several signaling transduction pathways activation, inflammatory cytokine, chemokine production and cell migration, which in turn cause metabolic dysfunction. Inflamed adipose tissue, with increased macrophages infiltration, is associated with impaired preadipocyte development and differentiation to mature adipose cells, leading to ectopic lipid accumulation and insulin resistance. This review focuses on the relationship between obesity and inflammation, which is essential to understand the pathological mechanisms governing metabolic syndrome.
Collapse
Affiliation(s)
- Luiz H A Cavalcante-Silva
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| | - José G F M Galvão
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| | - Juliane Santos de França da Silva
- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brasil
| | - José M de Sales-Neto
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| | - Sandra Rodrigues-Mascarenhas
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil ; Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Laboratório de Imunofarmacologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba João Pessoa, Brasil ; Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunofarmacologia, Centro de Biotecnologia, Universidade Federal da Paraíba João Pessoa, Brasil
| |
Collapse
|