1
|
Yurtcu E, Keyif B, Yilmaz G, Erkilinc S, Akkaya H, Ozgu-Erdinc AS. The role of incretins in gestational diabetes: a case-control study on the impact of obesity. Diabetol Metab Syndr 2024; 16:248. [PMID: 39420427 PMCID: PMC11487933 DOI: 10.1186/s13098-024-01483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the role of serum Glucagon-Like Peptide-1 (GLP-1), Glucagon-Like Peptide-2 (GLP-2), and Glucose-Dependent Insulinotropic Polypeptide (GIP) levels in relation to obesity and gestational diabetes mellitus (GDM) in pregnancy. METHODS A case-control study was conducted, including 96 pregnant women with singleton pregnancies who underwent the Oral Glucose Tolerance Test (OGTT) for GDM diagnosis during the 24th-28th weeks of gestation. Blood samples were collected for measuring GLP-1, GLP-2, GIP, and fasting glucose. Statistical analyses included receiver operating characteristic (ROC) curves and correlation analysis. RESULTS Among the 96 women, no significant difference in age was observed between the groups, but Body Mass Index (BMI) was significantly higher in GDM-O (Gestational Diabetes Mellitus-Obese) and non-GDM-O groups (p < 0.001). GLP-1 had an area under the curve (AUC) of 0.666 (95% CI: 0.553-0.778, p = 0.005) for diagnosing GDM. The optimal GLP-1 cutoff was 815.86 ng/mL, with 65% sensitivity and 77% specificity. A significant correlation was found between GLP-2 and GIP (r = 0.289, p = 0.004), but no significant correlations were observed between GLP-1 and other peptides or gestational age (p > 0.05). CONCLUSIONS Impaired secretion of GLP-1, GLP-2, and GIP likely contributes to the pathogenesis of GDM. GLP-1 may serve as a potential biomarker for diagnosing GDM.
Collapse
Affiliation(s)
- Engin Yurtcu
- Department of Gynecology and Obstetrics, Faculty of Medicine, Duzce University, Merkez/Düzce, 81620, Turkey.
| | - Betul Keyif
- Department of Gynecology and Obstetrics, Faculty of Medicine, Duzce University, Merkez/Düzce, 81620, Turkey
- Department of Gynecology and Obstetrics, Ankara Bilkent City Hospital, Ankara, Turkey
- Department of Gynecology and Obstetrics, Faculty of Medicine, Izmir Demokrasi University, İzmir, Turkey
| | - Gamze Yilmaz
- Department of Gynecology and Obstetrics, Faculty of Medicine, Duzce University, Merkez/Düzce, 81620, Turkey
- Department of Gynecology and Obstetrics, Ankara Bilkent City Hospital, Ankara, Turkey
- Department of Gynecology and Obstetrics, Faculty of Medicine, Izmir Demokrasi University, İzmir, Turkey
| | - Selcuk Erkilinc
- Department of Gynecology and Obstetrics, Faculty of Medicine, Duzce University, Merkez/Düzce, 81620, Turkey
- Department of Gynecology and Obstetrics, Ankara Bilkent City Hospital, Ankara, Turkey
- Department of Gynecology and Obstetrics, Faculty of Medicine, Izmir Demokrasi University, İzmir, Turkey
| | - Hatice Akkaya
- Department of Obstetrics and Gynecology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - A Seval Ozgu-Erdinc
- Department of Obstetrics and Gynecology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Beumer J, Geurts MH, Geurts V, Andersson-Rolf A, Akkerman N, Völlmy F, Krueger D, Busslinger GA, Martínez-Silgado A, Boot C, Yousef Yengej FA, Puschhof J, Van de Wetering WJ, Knoops K, López-Iglesias C, Peters PJ, Vivié JA, Mooijman D, van Es JH, Clevers H. Description and functional validation of human enteroendocrine cell sensors. Science 2024; 386:341-348. [PMID: 39418382 PMCID: PMC7616728 DOI: 10.1126/science.adl1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Enteroendocrine cells (EECs) are gut epithelial cells that respond to intestinal contents by secreting hormones, including the incretins glucagon-like peptide 1 (GLP-1) and gastric inhibitory protein (GIP), which regulate multiple physiological processes. Hormone release is controlled through metabolite-sensing proteins. Low expression, interspecies differences, and the existence of multiple EEC subtypes have posed challenges to the study of these sensors. We describe differentiation of stomach EECs to complement existing intestinal organoid protocols. CD200 emerged as a pan-EEC surface marker, allowing deep transcriptomic profiling from primary human tissue along the stomach-intestinal tract. We generated loss-of-function mutations in 22 receptors and subjected organoids to ligand-induced secretion experiments. We delineate the role of individual human EEC sensors in the secretion of hormones, including GLP-1. These represent potential pharmacological targets to influence appetite, bowel movement, insulin sensitivity, and mucosal immunity.
Collapse
Affiliation(s)
- Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Maarten H. Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Ninouk Akkerman
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Franziska Völlmy
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Daniel Krueger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Georg A. Busslinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Charelle Boot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CXUtrecht, the Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Wiline J. Van de Wetering
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Kevin Knoops
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | | | - Dylan Mooijman
- Single Cell Discoveries BV, 3584 BWUtrecht, The Netherlands
| | - Johan H. van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| |
Collapse
|
3
|
Martínez-García MÁ, Quintero-Tobar A, de Lope Quiñones S, Insenser M, Fernández-Durán E, Escobar-Morreale HF, Luque-Ramírez M. Obesity and polycystic ovary syndrome influence on intestinal permeability at fasting, and modify the effect of diverse macronutrients on the gut barrier. Food Res Int 2024; 186:114338. [PMID: 38729719 DOI: 10.1016/j.foodres.2024.114338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Women with the extremely prevalent polycystic ovary syndromegather multiple cardiovascular risk factors and chronic subclinical inflammation. Interactions between diet, adiposity, and gut microbiota modulate intestinal permeabilityand bacterial product translocation, and may contribute to the chronic inflammation process associated with the polycystic ovary syndrome. In the present study, we aimed to address the effects of obesity, functional hyperandrogenism, and diverse oral macronutrients on intestinal permeabilityby measuring circulating markers of gut barrier dysfunction and endotoxemia. Participants included 17 non-hyperandrogenic control women, 17 women with polycystic ovary syndrome, and 19 men that were submitted to glucose, lipid, and protein oral loads. Lipopolysaccharide-binding protein, plasma soluble CD14, succinate, zonulin family peptide, and glucagon-like peptide-2 were determined at fasting and after oral challenges. Macronutrient challenges induced diverse changes on circulating intestinal permeabilitybiomarkers in the acute postprancial period, with lipids and proteins showing the most unfavorable and favorable effects, respectively. Particularly, lipopolysaccharide-binding protein, zonulin family peptide, and glucagon-like peptide-2 responses were deregulated by the presence of obesity after glucose and lipid challenges. Obese subjects showed higher fasting intestinal permeabilitybiomarkers levels than non-obese individuals, except for plasma soluble CD14. The polycystic ovary syndromeexacerbated the effect of obesity further increasing fasting glucagon-like peptide-2, lipopolysaccharide-binding protein, and succinate concentrations. We observed specific interactions of the polycystic ovary syndromewith obesity in the postprandial response of succinate, zonulin family peptide, and glucagon-like peptide-2. In summary, obesity and polycystic ovary syndromemodify the effect of diverse macronutrients on the gut barrier, and alsoinfluence intestinal permeabilityat fasting,contributing to the morbidity of functional hyperandrogenism by inducing endotoxemia and subclinical chronic inflammation.
Collapse
Affiliation(s)
- M Ángeles Martínez-García
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Alejandra Quintero-Tobar
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Sara de Lope Quiñones
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - María Insenser
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Elena Fernández-Durán
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Héctor Francisco Escobar-Morreale
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Manuel Luque-Ramírez
- Diabetes, Obesity and Human Reproduction Research Group, Department of Endocrinology & Nutrition, Hospital Universitario Ramón y Cajal & Universidad de Alcalá & Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS & Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| |
Collapse
|
4
|
Mukherjee K, Xiao C. GLP-2 regulation of intestinal lipid handling. Front Physiol 2024; 15:1358625. [PMID: 38426205 PMCID: PMC10902918 DOI: 10.3389/fphys.2024.1358625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Lipid handling in the intestine is important for maintaining energy homeostasis and overall health. Mishandling of lipids in the intestine contributes to dyslipidemia and atherosclerotic cardiovascular diseases. Despite advances in this field over the past few decades, significant gaps remain. The gut hormone glucagon-like peptide-2 (GLP-2) has been shown to play pleotropic roles in the regulation of lipid handling in the intestine. Of note, GLP-2 exhibits unique actions on post-prandial lipid absorption and post-absorptive release of intestinally stored lipids. This review aims to summarize current knowledge in how GLP-2 regulates lipid processing in the intestine. Elucidating the mechanisms of GLP-2 regulation of intestinal lipid handling not only improves our understanding of GLP-2 biology, but also provides insights into how lipids are processed in the intestine, which offers opportunities for developing novel strategies towards prevention and treatment of dyslipidemia and atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Murthy MHS, Jasbi P, Lowe W, Kumar L, Olaosebikan M, Roger L, Yang J, Lewinski N, Daniels N, Cowen L, Klein-Seetharaman J. Insulin signaling and pharmacology in humans and in corals. PeerJ 2024; 12:e16804. [PMID: 38313028 PMCID: PMC10838073 DOI: 10.7717/peerj.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Once thought to be a unique capability of the Langerhans islets in the pancreas of mammals, insulin (INS) signaling is now recognized as an evolutionarily ancient function going back to prokaryotes. INS is ubiquitously present not only in humans but also in unicellular eukaryotes, fungi, worms, and Drosophila. Remote homologue identification also supports the presence of INS and INS receptor in corals where the availability of glucose is largely dependent on the photosynthetic activity of the symbiotic algae. The cnidarian animal host of corals operates together with a 20,000-sized microbiome, in direct analogy to the human gut microbiome. In humans, aberrant INS signaling is the hallmark of metabolic disease, and is thought to play a major role in aging, and age-related diseases, such as Alzheimer's disease. We here would like to argue that a broader view of INS beyond its human homeostasis function may help us understand other organisms, and in turn, studying those non-model organisms may enable a novel view of the human INS signaling system. To this end, we here review INS signaling from a new angle, by drawing analogies between humans and corals at the molecular level.
Collapse
Affiliation(s)
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
| | - Whitney Lowe
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | - Lokender Kumar
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
| | | | - Liza Roger
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- School of Ocean Futures, Arizona State University, Tempe, AZ, United States of America
| | - Jinkyu Yang
- Department of Aeronautics & Astronautics, University of Washington, Seattle, WA, USA
| | - Nastassja Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Noah Daniels
- Department of Computer Science, University of Rhode Island, Kingston, RI, USA
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Judith Klein-Seetharaman
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA
- Departments of Chemistry & Physics, Colorado School of Mines, Golden, CO, United States
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| |
Collapse
|
6
|
Liu J, Wang X, Zhang W, Liao G, Shao Z, Brosius J, Deng C, Lai S, Long E. Evolution of GCGR family ligand-receptor extensive cross-interaction systems suggests a therapeutic direction for hyperglycemia in mammals. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1855-1863. [PMID: 37969012 PMCID: PMC10753361 DOI: 10.3724/abbs.2023133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 11/17/2023] Open
Abstract
Glucose is essential to the physiological processes of vertebrates. Mammalian physiological stability requires a relatively stable blood glucose level (~5 mM), whereas other vertebrates have greater flexibility in regulating blood glucose (0.5-25 mM). GCGR family receptors play an important role in vertebrate glucose regulation. Here, we examine the evolution of the GCGR family ligand-receptor systems in different species. Comparatively, we discover that the conserved sequences among GCG family ligands lead to the non-specific activation of ligands across species. In particular, we observe that glucagon-like peptide 1 receptor (GLP1R), glucagon-like peptide 2 receptor (GLP2R), and glucagon-like receptor (GCGLR, also called GCRPR) are arbitrarily activated by other members of the ligand family in birds. Moreover, we reveal that Gallus gallus GLP2 (gGLP2) effectively activates mammalian GLP1R and improves glucose tolerance in diabetic mice. Our study has important implications for understanding blood glucose stabilization in vertebrates and demonstrates that gGLP2 may be a potential drug for treating type 2 diabetes.
Collapse
Affiliation(s)
- Jian Liu
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
| | - Xue Wang
- for Systems GeneticsFrontiers Science Center for Disease-related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Wenli Zhang
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
| | - Guangneng Liao
- Sichuan University West China HospitalDepartment of Experimental Animal CenterWest China Hospital of Sichuan UniversityChengdu610041China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research InstituteState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Juergen Brosius
- for Systems GeneticsFrontiers Science Center for Disease-related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
- for Systems GeneticsFrontiers Science Center for Disease-related Molecular NetworkNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and BiotechnologyCollege of Life SciencesNanjing Normal UniversityNanjing210023China
| | - Enwu Long
- Drug Therapy Key Laboratory of Sichuan ProvinceDepartment of PharmacySichuan Provincial People’s HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
| |
Collapse
|
7
|
Bolognani F, Kruithof AC, Schulthess P, Machacek M, de Kam ML, Bergmann KR, van Gent M, Moerland M, Crenn P, Greig G, Gal P. Characterization of the Pharmacokinetic and Pharmacodynamic Profile of Apraglutide, a Glucagon-Like Peptide-2 Analog, in Healthy Volunteers. J Pharmacol Exp Ther 2023; 386:129-137. [PMID: 37316329 DOI: 10.1124/jpet.123.001582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023] Open
Abstract
Apraglutide (FE 203799) is a glucagon-like peptide-2 (GLP-2) analog under development for the treatment of intestinal failure associated with short bowel syndrome (SBS-IF) and graft-versus-host disease (GvHD). Compared with native GLP-2, apraglutide has slower absorption, reduced clearance, and higher protein binding, enabling once-weekly dosing. This study evaluated the pharmacokinetic (PK) and pharmacodynamic (PD) profile of apraglutide in healthy adults. Healthy volunteers were randomized to receive 6 weekly subcutaneous administrations of 1, 5, or 10 mg apraglutide or placebo. PK and citrulline (an enterocyte mass PD marker) samples were collected at multiple time points. Kinetic parameters of apraglutide and citrulline were calculated using noncompartmental analysis; repeated PD measures were analyzed with a mixed model of covariance. A population PK/PD model was developed that also included data from a previous phase 1 study in healthy volunteers. Twenty-four subjects were randomized; 23 received all study drug administrations. Mean estimated apraglutide clearance was 16.5-20.7 l/day, and mean volume of distribution was 55.4-105.0 liters. A dose-dependent increase in citrulline plasma concentration was observed, with 5-mg and 10-mg doses inducing higher citrulline levels than 1-mg doses and placebo. PK/PD analysis showed that weekly 5-mg apraglutide induced the maximal citrulline response. Increased plasma citrulline levels were sustained for 10-17 days after the final apraglutide administration. Apraglutide displays predictable dose-dependent PK and PD profiles, with a 5-mg dose showing significant PD effects. Results suggest that apraglutide has early and enduring effects on enterocyte mass and supports the continued development of weekly subcutaneous apraglutide for SBS-IF and GvHD patient populations. SIGNIFICANCE STATEMENT: Once-weekly subcutaneous apraglutide results in dose-dependent elevations of plasma citrulline (an enterocyte mass pharmacodynamic marker) with parameters suggesting that apraglutide has lasting effects on enterocyte mass and the potential to provide therapeutic benefits. This is the first report of a model relating glucagon-like peptide-2 (GLP-2) agonism and its effects in intestinal mucosa, affording not only the ability to predict pharmacologic effects of GLP-2 analogs but also the exploration of optimal dosing regimens for this drug class across populations with different body weights.
Collapse
Affiliation(s)
- Federico Bolognani
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Annelieke C Kruithof
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Pascal Schulthess
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Matthias Machacek
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Marieke L de Kam
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Kirsten R Bergmann
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Max van Gent
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Matthijs Moerland
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Pascal Crenn
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Gérard Greig
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| | - Pim Gal
- VectivBio AG, Basel, Switzerland (F.B.); Centre for Human Drug Research, Leiden, Netherlands (A.C.K., M.L.d.K., K.R.B., M.v.G., M.Mo., P.G.); LYO-X AG, Basel, Switzerland (P.S., M.Ma.); Leiden University Medical Center, Leiden, Netherlands (A.C.K., M.Mo., P.G.); University Paris-Saclay/APHP, Hospital Ambroise Pare, Nutrition Clinique, Boulogne-Billancourt, France (P.C.); and GreigG Consulting, Basel, Switzerland (G.G.)
| |
Collapse
|
8
|
Stefanakis K, Kokkinos A, Simati S, Argyrakopoulou G, Konstantinidou SK, Kouvari M, Kumar A, Kalra B, Mantzoros CS. Circulating levels of all proglucagon-derived peptides are differentially regulated postprandially by obesity status and in response to high-fat meals vs. high-carbohydrate meals. Clin Nutr 2023; 42:1369-1378. [PMID: 37418844 DOI: 10.1016/j.clnu.2023.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND & AIMS We measured all proglucagon-derived peptides (PGDPs) levels in response to administration of three mixed meal tolerance tests (MMTs), examining differences in postprandial PGDP responses in subjects with leanness and obesity or between high-fat vs. high carbohydrate meals. METHODS We designed three physiology interventional studies, administering MMTs over a 180-min period to individuals without diabetes after an overnight fast. In Study 1, a 450 kcal MMT was administered to n = 4 normal weight and n = 9 individuals with obesity. In Study 2, a 600 kcal high-fat MMT was administered to n = 15 normal-weight and n = 15 individuals with obesity. In Study 3, n = 32 participants with obesity were assigned to receive a 600-kcal high-fat (n = 15) or an isocaloric high-carbohydrate MMT (n = 17). Fasting and postprandial levels of c-peptide and PGDPs (proglucagon, GLP-1, GLP-2, glicentin, oxyntomodulin, glucagon, major proglucagon fragment [MPGF]) were assessed. RESULTS In study 1, individuals with normal weight displayed elevated glicentin postprandial secretion compared with people with obesity (p = 0.002). Following a high-fat MMT with 33% higher energy content in study 2, all postprandial PGDPs levels were elevated (p-time<0.001), irrespective of weight status. In study 3, a prolonged postprandial upregulation of PGDPs during the high-fat MMT was observed in contrast with the acute, short-term (max 60 min) PGDP responses to a high-carbohydrate MMT (p-time∗meal<0.001). Across both studies 2 and 3, the postprandial responses of glucagon and MPGF were higher in subjects with male sex whereas glicentin was higher in subjects with female sex. CONCLUSIONS Fat and carbohydrate content of a meal can substantially affect the postprandial levels of PGDPs. Circulating levels of PGDPs are influenced by the energy content of the meal, and additionally, the presence of leanness or obesity affects circulating levels of select PGDPs. These results, which are to be confirmed by additional studies, expand our understanding of PGDP physiology in leanness and obesity. CLINICALTRIALS GOV REGISTRATION NUMBERS: (NCT04170010, NCT04430946, NCT04575194).
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Boston VA Healthcare System and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; First Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens 11527, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens 11527, Greece
| | - Stamatia Simati
- First Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens 11527, Greece
| | | | - Sofia K Konstantinidou
- First Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens 11527, Greece; Diabetes and Obesity Unit, Athens Medical Center, Athens 15125, Greece
| | - Matina Kouvari
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Boston VA Healthcare System and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Boston VA Healthcare System and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
9
|
Gibadullin R, Cary BP, Gellman SH. Differential Responses of the GLP-1 and GLP-2 Receptors to N-Terminal Modification of a Dual Agonist. J Am Chem Soc 2023; 145:12105-12114. [PMID: 37235770 PMCID: PMC10335629 DOI: 10.1021/jacs.3c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Class B1 G protein-coupled receptors (GPCRs), collectively, respond to a diverse repertoire of extracellular polypeptide agonists and transmit the encoded messages to cytosolic partners. To fulfill these tasks, these highly mobile receptors must interconvert among conformational states in response to agonists. We recently showed that conformational mobility in polypeptide agonists themselves plays a role in activation of one class B1 GPCR, the receptor for glucagon-like peptide-1 (GLP-1). Exchange between helical and nonhelical conformations near the N-termini of agonists bound to the GLP-1R was revealed to be critical for receptor activation. Here, we ask whether agonist conformational mobility plays a role in the activation of a related receptor, the GLP-2R. Using variants of the hormone GLP-2 and the designed clinical agonist glepaglutide (GLE), we find that the GLP-2R is quite tolerant of variations in α-helical propensity near the agonist N-terminus, which contrasts with signaling at the GLP-1R. A fully α-helical conformation of the bound agonist may be sufficient for GLP-2R signal transduction. GLE is a GLP-2R/GLP-1R dual agonist, and the GLE system therefore enables direct comparison of the responses of these two GPCRs to a single set of agonist variants. This comparison supports the conclusion that the GLP-1R and GLP-2R differ in their response to variations in helical propensity near the agonist N-terminus. The data offer a basis for development of new hormone analogues with distinctive and potentially useful activity profiles; for example, one of the GLE analogues is a potent agonist of the GLP-2R but also a potent antagonist of the GLP-1R, a novel form of polypharmacology.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Brian P. Cary
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Sridhar A, Khan D, Elliott JA, Naughton V, Flatt PR, Irwin N, Moffett CR. RYGB surgery has modest effects on intestinal morphology and gut hormone populations in the bypassed biliopancreatic limb but causes reciprocal changes in GLP-2 and PYY in the alimentary limb. PLoS One 2023; 18:e0286062. [PMID: 37228045 DOI: 10.1371/journal.pone.0286062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Roux-en-Y gastric-bypass (RYGB) induced alterations in intestinal morphology and gut-cell hormone expression profile in the bypassed biliopancreatic-limb (BPL) versus the alimentary-limbs (AL) are poorly characterised. This pilot study has therefore explored effects following RYGB in high-fat-diet (HFD) and normal-diet (ND) rats. Female Wistar rats (4-week-old) were fed HFD or ND for 23-weeks prior to RYGB or sham surgeries. Immunohistochemical analysis of excised tissue was conducted three-weeks post-surgery. After RYGB, intestinal morphology of the BPL in both HFD and ND groups was unchanged with exception of a small decrease in villi width in the ND-RYGB and crypt depth in the HFD-RYGB group. However, in the AL, villi width was decreased in ND-RYGB rats but increased in the HFD-RYGB group. In addition, crypt depth decreased after RYGB in the AL of HFD rats. GIP positive cells in either limb of both groups of rats were unchanged by RYGB. Similarly, there was little change in GLP-1 positive cells, apart from a small decrease of numbers in the villi of the BPL in HFD rats. RYGB increased GLP-2 cell numbers in the AL of ND-RYGB rats, including in both crypts and villi. This was associated with decreased numbers of cells expressing PYY in the AL of ND-RYGB rats. The BPL appears to maintain normal morphology and unchanged enteroendocrine cell populations despite being bypassed in RYGB-surgery. In contrast, in the AL, villi area is generally enhanced post-RYGB in ND rats with increased numbers of GLP-2 positive cells and decreased expression of PYY.
Collapse
Affiliation(s)
- Ananyaa Sridhar
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, United Kingdom
| | - Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, United Kingdom
| | - Jessie A Elliott
- Department of Surgery, Trinity Centre for Health Sciences and St. James's Hospital, Dublin, Ireland
| | - Violetta Naughton
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, United Kingdom
| | - Peter R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, United Kingdom
| | - Nigel Irwin
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, United Kingdom
| | - Charlotte R Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, United Kingdom
| |
Collapse
|
11
|
Kapralou AN, Chrousos GP. Metabolic effects of truncal vagotomy when combined with bariatric-metabolic surgery. Metabolism 2022; 135:155263. [PMID: 35835160 DOI: 10.1016/j.metabol.2022.155263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Bariatric-metabolic surgery (BMS) in patients with obesity frequently leads to remission of concurrent type 2 diabetes mellitus (T2DM), even before body weight loss takes place. This is probably based on the correction of a dysmetabolic cycle in the gastrointestinal physiology of T2DM that includes increased vagus-dependent exocrine pancreatic secretion (EPS) and, hence, amplified digestion and nutrient absorption. The resultant chronic exposure of tissues to high plasma levels of glucose, fatty acids and amino acids causes tissue resistance to the actions of insulin and, at a later stage, β-cell dysfunction and reduction of insulin release. We hypothesize that the addition of a surgical truncal vagotomy (TV) may improve and solidify the beneficial results of BMS on T2DM by stably decreasing EPS, - hence reducing the digestion and absorption of nutrients -, and increasing incretin secretion as a result of increased delivery of unabsorbed nutrients to the distal intestine. This hypothesis is supported by surgical data from gastrointestinal malignancies and peptic ulcer operations that include TV, as well as by vagal blockade studies. We suggest that TV may result in a stable reduction of EPS, and that its combination with the appropriate type of BΜS, may enhance and sustain the salutary effects of the latter on T2DM.
Collapse
Affiliation(s)
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
12
|
Telle-Hansen VH, Gaundal L, Høgvard B, Ulven SM, Holven KB, Byfuglien MG, Måge I, Knutsen SH, Ballance S, Rieder A, Rud I, Myhrstad MCW. A Three-Day Intervention With Granola Containing Cereal Beta-Glucan Improves Glycemic Response and Changes the Gut Microbiota in Healthy Individuals: A Crossover Study. Front Nutr 2022; 9:796362. [PMID: 35578615 PMCID: PMC9106798 DOI: 10.3389/fnut.2022.796362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Intake of soluble fibers including beta-glucan, is known to improve post-prandial glycemic response. The mechanisms have been attributed to the viscous gel forming in the stomach and small intestine, giving a longer absorption time. However, recent evidence suggests a link between intake of beta-glucan and improved glycemic regulation at subsequent meals through the gut microbiota. We investigated the short-term effect of granola with different amounts of cereal beta-glucan on glycemic response and gut microbiota. After a two-week run-in period (baseline), fourteen healthy, normal weight adults completed a dose-response dietary crossover study. Different amounts of cereal beta-glucan (low: 0.8 g, medium: 3.2 g and high: 6.6 g) were provided in granola and eaten with 200 ml low-fat milk as an evening meal for three consecutive days. Blood glucose and insulin were measured fasted and after an oral glucose tolerance test (OGTT) the following day, in addition to peptide YY (PYY) and glucagon-like peptide (GLP-2), fasting short chain fatty acids (SCFA) in blood, breath H2, and gut microbiota in feces. Only the intervention with medium amounts of beta-glucan decreased blood glucose and insulin during OGTT compared to baseline. Fasting PYY increased with both medium and high beta-glucan meal compared to the low beta-glucan meal. The microbiota and SCFAs changed after all three interventions compared to baseline, where acetate and butyrate increased, while propionate was unchanged. Highest positive effect size after intake of beta-glucan was found with Haemophilus, followed by Veillonella and Sutterella. Furthermore, we found several correlations between different bacterial taxa and markers of glycemic response. In summary, intake of granola containing 3.2 g cereal beta-glucan as an evening meal for three consecutive days reduced the glycemic response after an OGTT 0-180 min and changed gut microbiota composition. Since we cannot rule out that other fiber types have contributed to the effect, more studies are needed to further explore the effect of cereal beta-glucan on glycemic regulation. Clinical Trial Registration [www.clinicaltrials.gov], identifier [NCT03293693].
Collapse
Affiliation(s)
- Vibeke H. Telle-Hansen
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Line Gaundal
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Benedicte Høgvard
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Stine M. Ulven
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kirsten B. Holven
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- The Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Ingrid Måge
- Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Svein Halvor Knutsen
- Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Simon Ballance
- Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Anne Rieder
- Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Ida Rud
- Nofima AS (Norwegian Institute of Food, Fisheries and Aquaculture Research), Ås, Norway
| | - Mari C. W. Myhrstad
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
13
|
Yang D, Hou X, Yang G, Li M, Zhang J, Han M, Zhang Y, Liu Y. Effects of the POMC System on Glucose Homeostasis and Potential Therapeutic Targets for Obesity and Diabetes. Diabetes Metab Syndr Obes 2022; 15:2939-2950. [PMID: 36186941 PMCID: PMC9521683 DOI: 10.2147/dmso.s380577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothalamus is indispensable in energy regulation and glucose homeostasis. Previous studies have shown that pro-opiomelanocortin neurons receive both central neuronal signals, such as α-melanocyte-stimulating hormone, β-endorphin, and adrenocorticotropic hormone, as well as sense peripheral signals such as leptin, insulin, adiponectin, glucagon-like peptide-1, and glucagon-like peptide-2, affecting glucose metabolism through their corresponding receptors and related signaling pathways. Abnormalities in these processes can lead to obesity, type 2 diabetes, and other metabolic diseases. However, the mechanisms by which these signal molecules fulfill their role remain unclear. Consequently, in this review, we explored the mechanisms of these hormones and signals on obesity and diabetes to suggest potential therapeutic targets for obesity-related metabolic diseases. Multi-drug combination therapy for obesity and diabetes is becoming a trend and requires further research to help patients to better control their blood glucose and improve their prognosis.
Collapse
Affiliation(s)
- Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yi Zhang, Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China, Email
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Yunfeng Liu, Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China, Tel +86 18703416196, Email
| |
Collapse
|
14
|
Mohamed AB, Rémond D, Gual-Grau A, Bernalier-Donnadille A, Capel F, Michalski MC, Laugerette F, Cohade B, Hafnaoui N, Béchet D, Coudy-Gandilhon C, Gueugneau M, Salles J, Migné C, Dardevet D, David J, Polakof S, Savary-Auzeloux I. A Mix of Dietary Fibres Changes Interorgan Nutrients Exchanges and Muscle-Adipose Energy Handling in Overfed Mini-Pigs. Nutrients 2021; 13:nu13124202. [PMID: 34959754 PMCID: PMC8704711 DOI: 10.3390/nu13124202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.
Collapse
Affiliation(s)
- Ahmed Ben Mohamed
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Didier Rémond
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Andreu Gual-Grau
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Annick Bernalier-Donnadille
- Unité de Microbiologie Environnement Digestif et Santé, Unité Mixte de Recherches 0454, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France;
| | - Frédéric Capel
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Marie-Caroline Michalski
- CarMeN Laboratory, Unité Mixte de Recherches 1397, INRAE/Institut National de la Santé et de la Recherche Médicale (Inserm), Université Claude Bernard Lyon 1, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 69310 Pierre-Bénite, France; (M.-C.M.); (F.L.)
| | - Fabienne Laugerette
- CarMeN Laboratory, Unité Mixte de Recherches 1397, INRAE/Institut National de la Santé et de la Recherche Médicale (Inserm), Université Claude Bernard Lyon 1, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 69310 Pierre-Bénite, France; (M.-C.M.); (F.L.)
| | - Benoit Cohade
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Noureddine Hafnaoui
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Daniel Béchet
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Cécile Coudy-Gandilhon
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Marine Gueugneau
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Jerome Salles
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Carole Migné
- MetaboHUB Clermont, Plateforme d’Exploration du Métabolisme, Unité de Nutrition Humaine (UNH), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Dominique Dardevet
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Jérémie David
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Sergio Polakof
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
| | - Isabelle Savary-Auzeloux
- Unité de Nutrition Humaine (UNH), Unité Mixte de Recherches 1019, Université Clermont Auvergne, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 63000 Clermont-Ferrand, France; (A.B.M.); (D.R.); (A.G.-G.); (F.C.); (B.C.); (N.H.); (D.B.); (C.C.-G.); (M.G.); (J.S.); (D.D.); (J.D.); (S.P.)
- Correspondence:
| |
Collapse
|
15
|
Du L, Lei X, Wang J, Wang L, Zhong Q, Fang X, Li P, Du B, Wang Y, Liao Z. Lipopolysaccharides derived from gram-negative bacterial pool of human gut microbiota promote inflammation and obesity development. Int Rev Immunol 2021; 41:45-56. [PMID: 34726960 DOI: 10.1080/08830185.2021.1996573] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria. It is found from intestinal microbes in the circulatory system and considered a trigger factor for low-grade inflammation in obesity. High-fat diet intake and its related obesity can cause gut microbiota disorder, leading to increased gut permeability, paracellular absorption and transcellular transport of endogenous endotoxin in the cardiovascular system. High-fat diet intake can also increase plasma LPS levels, and causing chronic or "low-grade" inflammation. In this review article, we summarize the recent research advancements on the mechanism of low-grade inflammation and its related obesity. We also propose several approaches that can be used to reduce endogenous endotoxin absorption.Supplemental data for this article is available online at https://doi.org/10.1080/08830185.2021.1996573 .
Collapse
Affiliation(s)
- Liyu Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xi Lei
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yutao Wang
- College of Life and Geographic Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, China.,College of Life and Geographic Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
| |
Collapse
|
16
|
Fortea M, Albert-Bayo M, Abril-Gil M, Ganda Mall JP, Serra-Ruiz X, Henao-Paez A, Expósito E, González-Castro AM, Guagnozzi D, Lobo B, Alonso-Cotoner C, Santos J. Present and Future Therapeutic Approaches to Barrier Dysfunction. Front Nutr 2021; 8:718093. [PMID: 34778332 PMCID: PMC8582318 DOI: 10.3389/fnut.2021.718093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
There is converging and increasing evidence, but also uncertainty, for the role of abnormal intestinal epithelial barrier function in the origin and development of a growing number of human gastrointestinal and extraintestinal inflammatory disorders, and their related complaints. Despite a vast literature addressing factors and mechanisms underlying changes in intestinal permeability in humans, and its connection to the appearance and severity of clinical symptoms, the ultimate link remains to be established in many cases. Accordingly, there are no directives or clinical guidelines related to the therapeutic management of intestinal permeability disorders that allow health professionals involved in the management of these patients to carry out a consensus treatment based on clinical evidence. Instead, there are multiple pseudoscientific approaches and commercial propaganda scattered on the internet that confuse those affected and health professionals and that often lack scientific rigor. Therefore, in this review we aim to shed light on the different therapeutic options, which include, among others, dietary management, nutraceuticals and medical devices, microbiota and drugs, and epigenetic and exosomes-manipulation, through an objective evaluation of the scientific publications in this field. Advances in the knowledge and management of intestinal permeability will sure enable better options of dealing with this group of common disorders to enhance quality of life of those affected.
Collapse
Affiliation(s)
- Marina Fortea
- Laboratory for Enteric NeuroScience, Translational Research Center for GastroIntestinal Disorders, University of Leuven, Leuven, Belgium
| | - Mercé Albert-Bayo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Mar Abril-Gil
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - John-Peter Ganda Mall
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xavier Serra-Ruiz
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Alejandro Henao-Paez
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Ana María González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Danila Guagnozzi
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Hyun CK. Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22179139. [PMID: 34502047 PMCID: PMC8430512 DOI: 10.3390/ijms22179139] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
Despite considerable epidemiological evidence indicating comorbidity between metabolic disorders, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, and inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcerative colitis, as well as common pathophysiological features shared by these two categories of diseases, the relationship between their pathogenesis at molecular levels are not well described. Intestinal barrier dysfunction is a characteristic pathological feature of IBD, which also plays causal roles in the pathogenesis of chronic inflammatory metabolic disorders. Increased intestinal permeability is associated with a pro-inflammatory response of the intestinal immune system, possibly leading to the development of both diseases. In addition, dysregulated interactions between the gut microbiota and the host immunity have been found to contribute to immune-mediated disorders including the two diseases. In connection with disrupted gut microbial composition, alterations in gut microbiota-derived metabolites have also been shown to be closely related to the pathogeneses of both diseases. Focusing on these prominent pathophysiological features observed in both metabolic disorders and IBD, this review highlights and summarizes the molecular risk factors that may link between the pathogeneses of the two diseases, which is aimed at providing a comprehensive understanding of molecular mechanisms underlying their comorbidity.
Collapse
Affiliation(s)
- Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Korea
| |
Collapse
|
18
|
Radbakhsh S, Atkin SL, Simental-Mendia LE, Sahebkar A. The role of incretins and incretin-based drugs in autoimmune diseases. Int Immunopharmacol 2021; 98:107845. [PMID: 34126341 DOI: 10.1016/j.intimp.2021.107845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Incretin hormones, including glucagon-like peptide (GLP)-1, GLP-2 and glucose-dependent insulinotropic polypeptide (GIP), are gastrointestinal peptides secreted from enteroendocrine cells. These hormones play significant roles in many physiological processes via binding to G-protein coupled receptors (GPCRs) on different organs and tissues; one of them is the immunomodulatory effect on the immune system and its molecular components such as cytokines and chemokines. Anti-inflammatory effects of incretins and dependent molecules involving long-acting analogs and DPP4 inhibitors through regulation of T and B cell activation may attenuate autoimmune diseases caused by immune system disorders in mistakenly recognizing self as the foreign agent. In this review, we investigate incretin effects on the immune system response and the potential benefits of incretin-based therapy for treating autoimmune diseases.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Thottapillil A, Kouser S, Kukkupuni SK, Vishnuprasad CN. An 'Ayurveda-Biology' platform for integrative diabetes management. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113575. [PMID: 33181283 DOI: 10.1016/j.jep.2020.113575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a multifactorial disease with complex multi-organ-multi-target crosstalk in the body. Currently, the theoretical assumptions framing the diabetes management strategies are reductionist and largely focus on reducing hyperglycemia through targeted molecular drugs. While they effectively reduce hyperglycemia, they are inadequate to address the multifactorial etiopathology, chronicity and systemic complications of diabetes. Therefore, a holistic and systemic approach is essential for its successful management. We hypothesize an integrative diabetes management strategy, combining holistic principles of diabetes management with its molecular understandings, would be more appropriate to fill this gap. The holistic disease management principles of Ayurveda, the Indian system of medicine, can play a pivotal role in this context. This narrative review discusses the scope of a trans-disciplinary ' Ayurveda-Biology ' approach for deepening the holistic understanding of the pathophysiology of diabetes as well as designing novel integrative strategies for managing diabetes and restoring whole body glucose homeostasis. METHODOLOGY The article analyses the Ayurveda scheme of diabetes management and correlates it with the molecular understanding of its pathophysiology and management. The sources of information used in this article include classical texts of Ayurveda , medical books, published research articles and scientific databases like PubMed, Google Scholar, Science-Direct, etc. RESULTS: While Ayurveda and modern biomedicine uses different epistemology and ontology for describing diabetes, both the systems recognize the central role of gut and gut derived factors in postprandial glucose disposal and whole body glucose homeostasis. Essentially, the principles of both Ayurveda and modern biomedicine overlap at a gut centred view of diabetes management; and Gastro-intestinal mediated glucose disposal , a holistic concept of glucose metabolism, is emerging as a converging node for designing innovative integrative diabetes management strategies. CONCLUSIONS An integrative disease management strategy, combining holistic and reductionist perspectives of traditional medicine and biology respectively, would be the prerogative for successful management of diabetes. Creating an ' Ayurveda-Biology' knowledge framework integrating the patient centred holistic management principles of Ayurveda and the molecular approaches of modern biology can give better insights into the biology of whole body glucose homeostasis and offer novel strategies for cost effective, holistic and multi-targeted management of diabetes.
Collapse
Affiliation(s)
- Anjana Thottapillil
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Transdisciplinary Health Sciences and Technology (TDU), No.74/2, Jarakabande Kaval Post: Attur, Via Yelahanka, Bangalore, 560 106, India
| | - Sania Kouser
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Transdisciplinary Health Sciences and Technology (TDU), No.74/2, Jarakabande Kaval Post: Attur, Via Yelahanka, Bangalore, 560 106, India
| | - Subrahmanya Kumar Kukkupuni
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Transdisciplinary Health Sciences and Technology (TDU), No.74/2, Jarakabande Kaval Post: Attur, Via Yelahanka, Bangalore, 560 106, India
| | - Chethala N Vishnuprasad
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Transdisciplinary Health Sciences and Technology (TDU), No.74/2, Jarakabande Kaval Post: Attur, Via Yelahanka, Bangalore, 560 106, India.
| |
Collapse
|
20
|
Wang Y, Liu H, Zheng M, Yang Y, Ren H, Kong Y, Wang S, Wang J, Jiang Y, Yang J, Shan C. Berberine Slows the Progression of Prediabetes to Diabetes in Zucker Diabetic Fatty Rats by Enhancing Intestinal Secretion of Glucagon-Like Peptide-2 and Improving the Gut Microbiota. Front Endocrinol (Lausanne) 2021; 12:609134. [PMID: 34025574 PMCID: PMC8138858 DOI: 10.3389/fendo.2021.609134] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Berberine is a plant alkaloid that has multiple beneficial effects against intestine inflammation. In our previous study, we have found that berberine also possesses an antidiabetic effect. However, whether berberine is useful in the prevention of type 2 diabetes mellitus (T2DM) through its effect on intestine endocrine function and gut microbiota is unclear. AIM To investigate the effects of berberine in the prevention of T2DM, as well as its effects on intestine GLP-2 secretion and gut microbiota in ZDF rats. METHODS Twenty Zucker Diabetic Fatty (ZDF) rats were fed a high-energy diet until they exhibited impaired glucose tolerance (IGT). The rats were then divided into two groups to receive berberine (100 mg/kg/d; berberine group) or vehicle (IGT group) by gavage for 3 weeks. Five Zucker Lean (ZL) rats were used as controls. Fasting blood glucose (FBG) was measured, an oral glucose tolerance test was performed, and the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was calculated. Intestinal expression of TLR-4, NF-κB, TNF-α, mucin, zona occludens-1 (ZO-1) and occludin were assessed (immunohistochemistry). Plasma levels and glutamine-induced intestinal secretion of glucagon-like peptide-1 (GLP-1) and GLP-2 were measured (enzyme-linked immunosorbent assay). The plasma lipopolysaccharide (LPS) level was measured. Fecal DNA extraction, pyrosequencing, and bioinformatics analysis were performed. RESULTS After 3 weeks of intervention, diabetes developed in all rats in the IGT group, but only 30% of rats in the berberine group. Treatment with berberine was associated with reductions in food intake, FBG level, insulin resistance, and plasma LPS level, as well as increases in fasting plasma GLP-2 level and glutamine-induced intestinal GLP-2 secretion. Berberine could increase the goblet cell number and villi length, and also reverse the suppressed expressions of mucin, occludin, ZO-1 and the upregulated expressions of TLR-4, NF-κB and TNF-α induced in IGT rats (P<0.05). Berberine also improved the structure of the gut microbiota and restored species diversity. CONCLUSION Berberine may slow the progression of prediabetes to T2DM in ZDF rats by improving GLP-2 secretion, intestinal permeability, and the structure of the gut microbiota.
Collapse
Affiliation(s)
- Ying Wang
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Haiyi Liu
- Department of Pediatrics, Cangzhou People’s Hospital, Cangzhou, China
| | - Miaoyan Zheng
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yanhui Yang
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Huizhu Ren
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yan Kong
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shanshan Wang
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingyu Wang
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yingying Jiang
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Juhong Yang
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- *Correspondence: Juhong Yang, ; Chunyan Shan,
| | - Chunyan Shan
- National Health Council (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- *Correspondence: Juhong Yang, ; Chunyan Shan,
| |
Collapse
|
21
|
Butt S, Saleh M, Gagnon J. Impact of the Escherichia coli Heat-Stable Enterotoxin b (STb) on Gut Health and Function. Toxins (Basel) 2020; 12:E760. [PMID: 33276476 PMCID: PMC7761119 DOI: 10.3390/toxins12120760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) produces the heat-stable enterotoxin b (STb), which is responsible for secretory diarrhea in humans and animals. This toxin is secreted within the intestinal lumen of animals and humans following ETEC colonization, becoming active on enterocytes and altering fluid homeostasis. Several studies have outlined the nature of this toxin and its effects on gut health and the integrity of the intestinal epithelium. This review summarizes the mechanisms of how STb alters the gastrointestinal tract. These include the manipulation of mucosal tight junction protein integrity, the formation of enterocyte cellular pores and toxin internalization and the stimulation of programmed cell death. We conclude with insights into the potential link between STb intoxication and altered gut hormone regulation, and downstream physiology.
Collapse
Affiliation(s)
| | | | - Jeffrey Gagnon
- Department of Biology, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (S.B.); (M.S.)
| |
Collapse
|
22
|
A unique hormonal recognition feature of the human glucagon-like peptide-2 receptor. Cell Res 2020; 30:1098-1108. [PMID: 33239759 PMCID: PMC7785020 DOI: 10.1038/s41422-020-00442-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Glucagon-like peptides (GLP-1 and GLP-2) are two proglucagon-derived intestinal hormones that mediate distinct physiological functions through two related receptors (GLP-1R and GLP-2R) which are important drug targets for metabolic disorders and Crohn's disease, respectively. Despite great progress in GLP-1R structure determination, our understanding on the differences of peptide binding and signal transduction between these two receptors remains elusive. Here we report the electron microscopy structure of the human GLP-2R in complex with GLP-2 and a Gs heterotrimer. To accommodate GLP-2 rather than GLP-1, GLP-2R fine-tunes the conformations of the extracellular parts of transmembrane helices (TMs) 1, 5, 7 and extracellular loop 1 (ECL1). In contrast to GLP-1, the N-terminal histidine of GLP-2 penetrates into the receptor core with a unique orientation. The middle region of GLP-2 engages with TM1 and TM7 more extensively than with ECL2, and the GLP-2 C-terminus closely attaches to ECL1, which is the most protruded among 9 class B G protein-coupled receptors (GPCRs). Functional studies revealed that the above three segments of GLP-2 are essential for GLP-2 recognition and receptor activation, especially the middle region. These results provide new insights into the molecular basis of ligand specificity in class B GPCRs and may facilitate the development of more specific therapeutics.
Collapse
|
23
|
Ejarque M, Sabadell‐Basallote J, Beiroa D, Calvo E, Keiran N, Nuñez‐Roa C, Rodríguez MDM, Sabench F, Castillo D, Jimenez V, Bosch F, Nogueiras R, Vendrell J, Fernández‐Veledo S. Adipose tissue is a key organ for the beneficial effects of GLP‐2 metabolic function. Br J Pharmacol 2020; 178:2131-2145. [DOI: 10.1111/bph.15278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Miriam Ejarque
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| | - Joan Sabadell‐Basallote
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| | - Daniel Beiroa
- Department of Physiology, CIMUS University of Santiago de Compostela‐Instituto de Investigación Sanitaria Santiago de Compostela Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) Instituto de Salud Carlos III Madrid Spain
| | - Enrique Calvo
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| | - Noelia Keiran
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| | - Catalina Nuñez‐Roa
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| | - Maria del Mar Rodríguez
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| | - Fatima Sabench
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- Facultat de Medicina i Ciències de la Salut de Reus Universitat Rovira Virgili Tarragona Spain
- Surgery Service Hospital Sant Joan de Reus Reus Spain
| | - Daniel Castillo
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- Facultat de Medicina i Ciències de la Salut de Reus Universitat Rovira Virgili Tarragona Spain
- Surgery Service Hospital Sant Joan de Reus Reus Spain
| | - Veronica Jimenez
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine Universitat Autònoma de Barcelona Bellaterra Spain
| | - Fatima Bosch
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, School of Veterinary Medicine Universitat Autònoma de Barcelona Bellaterra Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS University of Santiago de Compostela‐Instituto de Investigación Sanitaria Santiago de Compostela Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) Instituto de Salud Carlos III Madrid Spain
| | - Joan Vendrell
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
- Facultat de Medicina i Ciències de la Salut de Reus Universitat Rovira Virgili Tarragona Spain
| | - Sonia Fernández‐Veledo
- Unitat de Recerca Hospital Universitari de Tarragona Joan XXIII. Institut d'Investigació Sanitària Pere Virgili Tarragona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
24
|
Su Y, Zhang Z, Li H, Ma J, Sun L, Shao S, Zhang Z, Hölscher C. A GLP-2 Analogue Protects SH-SY5Y and Neuro-2a Cells Against Mitochondrial Damage, Autophagy Impairments and Apoptosis in a Parkinson Model. Drug Res (Stuttg) 2020; 71:43-50. [PMID: 33022720 DOI: 10.1055/a-1266-3263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is a peptide hormone that belongs to the glucagon-derived peptide family. We have previously shown that analogues of the sister hormone Glucagon-like peptide-1 (GLP-1) showed neuroprotective effects. Here we investigated the effect of a GLP-2 agonist in a cell model of Parkinson's disease (PD) created by treating SH-SY5Y or Neuro-2a cells with 1-Methyl-4-phenyl-pyridine ion (MPP+). Cell viability and cell cytotoxicity was detected by MTT and LDH assays, respectively. The protein expression levels of mitochondrial, autophagy and apoptotic biomarkers including PGC-1α, Mfn2, IRE1, ATG7, LC3B, Beclin1 and Bcl-2 were detected by western blot. Mitochondrial superoxide was detected by MitoSOX Red. In addition, mitochondrial morphology, autophagosome and apoptotic corpuscles were observed by transmission electron microscope (TEM). We found that the GLP-1 and the GLP-2 agonists both protect cells against mitochondrial damage, autophagy impairments and apoptosis induced by MPP+both in SH-SY5Y and Neuro-2a cells. Cell signaling for mitogenesis was enhanced, and oxidative stress levels much reduced by the drugs. This demonstrates for the first time the neuroprotective effects of a GLP-2 analogue in PD cellular models, in which oxidative stress, autophagy and apoptosis play crucial roles. The protective effects were comparable to those seen with the GLP-1 analogue liraglutide. The results suggest that not only GLP-1, but also GLP-2 has neuroprotective properties and may be useful as a novel treatment of PD.
Collapse
Affiliation(s)
| | - Zijuan Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Hao Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jinlian Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Limin Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Simai Shao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Neurology Department of the Second Associated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
25
|
Baldassano S, Amato A, Terzo S, Caldara GF, Lentini L, Mulè F. Glucagon-like peptide-2 analog and inflammatory state in obese mice. Endocrine 2020; 68:695-698. [PMID: 32172484 DOI: 10.1007/s12020-020-02261-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Simona Terzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- Department of Neuroscience and Cell Biology, University of Palermo, 90127, Palermo, Italy
| | - Gaetano Felice Caldara
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Laura Lentini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.
| |
Collapse
|
26
|
Mayo BJ, Secombe KR, Wignall AD, Bateman E, Thorpe D, Pietra C, Keefe DM, Bowen JM. The GLP-2 analogue elsiglutide reduces diarrhoea caused by the tyrosine kinase inhibitor lapatinib in rats. Cancer Chemother Pharmacol 2020; 85:793-803. [PMID: 32060615 DOI: 10.1007/s00280-020-04040-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Lapatinib is a small molecule tyrosine kinase inhibitor used to treat breast cancer, often in combination with chemotherapy. Diarrhoea commonly occurs in up to 78% of patients undertaking lapatinib treatment. The mechanism of this diarrhoea is currently unknown. Elsiglutide is a GLP-2 analogue known to increase cell proliferation and reduce apoptosis in the intestine. METHODS We used a previously developed rat model of lapatinib-induced diarrhoea to determine if co-treatment with elsiglutide was able to reduce diarrhoea caused by lapatinib. Additionally, we analysed the caecal microbiome of these rats to assess changes in the microbiome due to lapatinib. RESULTS Rats treated with lapatinib and elsiglutide had less severe diarrhoea than rats treated with lapatinib alone. Serum lapatinib levels, blood biochemistry, myeloperoxidase levels and serum limulus amebocyte lysate levels were not significantly different between groups. Rats treated with lapatinib alone had significantly higher histopathological damage in the ileum than vehicle controls. This increase was not seen in rats also receiving elsiglutide. Rats receiving lapatinib alone had lower microbial diversity than rats who also received elsiglutide. CONCLUSIONS Elsiglutide was able to reduce diarrhoea from lapatinib treatment. This does not appear to be via reduction in inflammation or barrier permeability, and may be due to thickening of mucosa, leading to increased surface area for fluid absorption in the distal small intestine. Microbial changes seen in this study require further research to fully elucidate their role in the development of diarrhoea.
Collapse
Affiliation(s)
- Bronwen J Mayo
- Division of Health Sciences, School of Pharmacy and Medical Sciences, University of South Australia, Level 4, Playford Building, Adelaide, South Australia, 5005, Australia.
| | - Kate R Secombe
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Anthony D Wignall
- Division of Health Sciences, School of Pharmacy and Medical Sciences, University of South Australia, Level 4, Playford Building, Adelaide, South Australia, 5005, Australia
| | - Emma Bateman
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Daniel Thorpe
- Division of Health Sciences, School of Pharmacy and Medical Sciences, University of South Australia, Level 4, Playford Building, Adelaide, South Australia, 5005, Australia
| | | | - Dorothy M Keefe
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Radbakhsh S, Sathyapalan T, Banach M, Sahebkar A. Incretins and microRNAs: Interactions and physiological relevance. Pharmacol Res 2020; 153:104662. [PMID: 31982487 DOI: 10.1016/j.phrs.2020.104662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNA) are one class of the small regulatory RNAs that can impact the expression of numerous genes including incretin hormones and their G protein-coupled receptors. Incretin peptides, including GLP-1, GLP-2, and GIP, are released from the gastrointestinal tract and have an crucial role in the glucose hemostasis and pancreatic beta-cell function. These hormones and their analogs with a longer half-life, glucagon like peptide-1 receptor agonists (GLP1RA), modify the expression of miRNAs. Dipeptidyl peptidase IV (DPP-4) is an enzyme that degrades the incretin hormones and is inactivated by DPP-4 inhibitors, which are a class of compounds used in the management of type 2 diabetes. DPP-4 inhibitors may also increase or reduce the expression of miRNAs. In this review, we describe the possible interactions between miRNAs and incretin hormones and the relevance of such interactions to physiological processes and diseases.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, UK
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Chen RM, Yuan X, Ouyang Q, Lin XQ, Ai ZZ, Zhang Y, Yang XH. Adropin and glucagon-like peptide-2 are associated with glucose metabolism in obese children. World J Pediatr 2019; 15:565-571. [PMID: 31598832 DOI: 10.1007/s12519-019-00296-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The interaction of adropin, glucagon-like peptide-2 (GLP2), angiopoietin-like protein 4 (ANGPTL4), and with childhood obesity and glucose metabolism is inconsistent. This study is to evaluate the association of the three cytokines and glucose homeostasis. METHODS This was a cross-sectional study of children with obesity ranging from 5 to 14 years compared to age- and sex-matched children of normal weight. Fasting plasma glucose (FPG), oral glucose tolerance test 2-hour plasma glucose (OGTT2hPG), and insulin (INS) were measured, and serum adropin, GLP2, and ANGPTL4 levels were measured by enzyme-linked immunosorbent assay. The body mass index (BMI), BMI-Z scores, waist-to-hip ratio (WHR), and homeostasis model assessment of insulin resistance (HOMA-IR) were calculated. RESULTS Thirty-nine children (9.70 ± 1.71 years, 18 females) with obesity and 29 normal weight children (8.98 ± 1.98 years, 16 females) were assessed. The levels of INS, HOMA-IR and GLP2 of the obesity group were significantly higher than the controls (P < 0.05). Pearson correlation analysis showed that serum GLP2 was positively associated with WHR, FPG, and OGTT2hPG, and adropin was negatively associated with BMI, BMI-Z, WHR, INS, and HOMA-IR (all P < 0.05). Furthermore, GLP2 were negatively associated with adropin and ANGPTL4 (both P < 0.05). By binary logistic regression, adropin and GLP2 were found to be independent markers of obesity. Multiple linear regression showed that GLP2 was associated with OGTT2hPG, and adropin was associated with INS and HOMA-IR (all P < 0.05). CONCLUSIONS Obese children had elevated GLP2 concentrations, and adropin and GLP2 associated with both childhood obesity and glucose homeostasis. Furthermore, there may be a physiologic interplay between adropin and GLP2 in obese children.
Collapse
Affiliation(s)
- Rui-Min Chen
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China.
| | - Xin Yuan
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Qian Ouyang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiang-Quan Lin
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Zhuan-Zhuan Ai
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Ying Zhang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| | - Xiao-Hong Yang
- Department of Endocrinology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University Teaching Hospital, No. 145, 817 Middle Road, Fuzhou, 350005, China
| |
Collapse
|
29
|
Epicardial adipose tissue GLP-1 receptor is associated with genes involved in fatty acid oxidation and white-to-brown fat differentiation: A target to modulate cardiovascular risk? Int J Cardiol 2019; 292:218-224. [DOI: 10.1016/j.ijcard.2019.04.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
|
30
|
Baldassano S, Gasbjerg LS, Kizilkaya HS, Rosenkilde MM, Holst JJ, Hartmann B. Increased Body Weight and Fat Mass After Subchronic GIP Receptor Antagonist, but Not GLP-2 Receptor Antagonist, Administration in Rats. Front Endocrinol (Lausanne) 2019; 10:492. [PMID: 31447774 PMCID: PMC6691063 DOI: 10.3389/fendo.2019.00492] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are hormones secreted from the enteroendocrine cells after a meal. They exert their actions through activation of G protein-coupled receptors (R), the GIPR and GLP-2R, respectively. Both have been reported to influence metabolism. The purpose of the study was to investigate the role of the hormones in the regulation of lipid and bone homeostasis by subchronic treatment with novel GIPR and GLP-2R antagonists. Rats were injected once daily with vehicle, GIPR, or GLP-2R antagonists for 3 weeks. Body weight, food intake, body composition, plasma lipoprotein lipase (LPL), adipokines, triglycerides and the marker of bone resorption carboxy-terminal collagen crosslinks (CTX), were examined. In rats, subchronic treatment with GIPR antagonist, rat GIP (3-30)NH2, did not modify food intake and bone resorption, but significantly increased body weight, body fat mass, triglycerides, LPL, and leptin levels compared with vehicle treated rats. Subchronic (Pro3)GIP (a partial GIPR agonist), GLP-2(11-33), and GLP-2(3-33) (GLP-2R antagonists) treatment did not affect any parameter. The present results would be consistent with a role for GIP, but not GLP-2, in the maintenance of lipid homeostasis in rats, while neither GIPR nor GLP-2R antagonism appeared to influence bone resorption in rats.
Collapse
Affiliation(s)
- Sara Baldassano
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Bolette Hartmann
| |
Collapse
|
31
|
Jaghutriz BA, Heni M, Lutz SZ, Fritsche L, Machicao F, Staiger H, Peter A, Häring HU, Fritsche A, Wagner R. Gene x Gene Interactions Highlight the Role of Incretin Resistance for Insulin Secretion. Front Endocrinol (Lausanne) 2019; 10:72. [PMID: 30846969 PMCID: PMC6393347 DOI: 10.3389/fendo.2019.00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction: Genetic polymorphisms in TCF7L2 are the strongest common risk variants for type 2 diabetes mellitus (T2D). We and others have shown that genetic variation in TCF7L2 and WFS1 affect incretin-stimulated insulin secretion. A recent genome-wide association study discovered genetic variants associated with incretin levels. We hypothesized that these SNPs (single nucleotide polymorphisms) interact with the well-known TCF7L2 variant rs7903146 on insulin secretion due to their incretin altering effect. Methods: In this retrospective analysis, we used data from the cross-sectional TUEF-cohort (n = 2929) and a hyperglycemic clamp study using additional GLP-1 infusion at the end of the clamp (n = 76). Insulin secretion was measured by evaluating OGTT-derived indexes of insulin secretion and insulin/C-peptide levels during clamp. We genotyped rs7903146 in TCF7L2, rs10010131 in WFS1, and six SNPs associated with GLP-1 and GIP levels. Results: One of the six incretin-associated SNPs, rs17681684 in GLP2R, exhibited significant SNP x SNP interactions with rs7903146 in TCF7L2 on insulin secretion (p = 0.0024) after correction for multiple testing. Three further SNP's showed nominally significant interactions (p < 0.05). In the hyperglycemic clamp study, rs7903146 in TCF7L2 also interacted with rs17681684 on AUC C-peptide during the GLP-1 stimulation phase, thereby replicating the above finding. Conclusion: The findings exemplify the role of SNP x SNP interactions in the genetics of type 2 diabetes mellitus and corroborate the existence of clinically relevant differences in incretin sensitivity.
Collapse
Affiliation(s)
- Benjamin Assad Jaghutriz
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- *Correspondence: Martin Heni
| | - Stefan Zoltán Lutz
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Fausto Machicao
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Róbert Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Nuzzo D, Baldassano S, Amato A, Picone P, Galizzi G, Caldara GF, Di Carlo M, Mulè F. Glucagon-like peptide-2 reduces the obesity-associated inflammation in the brain. Neurobiol Dis 2018; 121:296-304. [PMID: 30347266 DOI: 10.1016/j.nbd.2018.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/12/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023] Open
Abstract
Growing evidence suggests a link between obesity and neurodegeneration. The purpose of the present study was to explore the neuroprotective potential of glucagon-like peptide-2 (GLP-2) in the brain of high fat diet (HFD)-fed mice. Markers of inflammation and oxidative stress were analysed in the brains of obese mice chronically treated with [Gly2]-GLP-2 (teduglutide), the stable analogue of the GLP-2, and they were compared to age-matched untreated obese and lean animals. Neurodegeneration was examined by TUNEL assay. HFD feeding increased the expression of pro-inflammatory mediators (NF-kB, IL-8, TNF-α, IL-1β and IL-6), glial fibrillary acidic protein (GFAP), index of gliosis and neurodegeneration, stress marker proteins (p-ERK, Hsp60 and i-NOS), amyloid-β precursor protein (APP). [Gly2]-GLP-2 treatment significantly attenuated the HFD-induced increased expression of the various markers, as well as the higher levels of reactive oxygen species found in brains of untreated-HFD mice. Immunofluorescence confirmed that the increase of GFAP or APP in the brain cortex of HFD mice were less prominent in the [Gly2]-GLP-2 treated group. TUNEL-positive cell number in brain sections of [Gly2]-GLP-2-treated HFD-fed mice was significantly lesser in comparison with untreated-HFD animals and similar to STD fed mice. In conclusion, the results of the present study suggest that GLP-2 stable analogue improves the obesity-associated neuroinflammation and the central stress conditions, it reduces the neuronal apoptotic death, providing evidence for a neuroprotective role of the peptide.
Collapse
Affiliation(s)
- Domenico Nuzzo
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy
| | - Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Italy
| | - Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Italy
| | - Pasquale Picone
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy
| | - Giacoma Galizzi
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy
| | - Gaetano Felice Caldara
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Italy
| | - Marta Di Carlo
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy" (IBIM), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy
| | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Italy.
| |
Collapse
|
33
|
Eugenosedin-A improves glucose metabolism and inhibits MAPKs expression in streptozotocin/nicotinamide-induced diabetic rats. Kaohsiung J Med Sci 2018; 34:142-149. [DOI: 10.1016/j.kjms.2017.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 11/22/2022] Open
|
34
|
Lu Y, Lu D, Hu Y. Glucagon-like peptide 2 decreases osteoclasts by stimulating apoptosis dependent on nitric oxide synthase. Cell Prolif 2018; 51:e12443. [PMID: 29457300 DOI: 10.1111/cpr.12443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Glucagon-like peptide 2 (GLP2) is involved in the regulation of energy absorption and metabolism. Despite the importance of the GLP2 signalling mechanisms on osteoclast, little has been studied on how GLP2 works during osteoclastogenesis. MATERIALS AND METHODS RAW264.7 cells were infected with rLV-Green-GLP2. The induction of osteoclasts was performed by RANKL. TRAP were detected by RT-PCR, Western blotting and staining. Total nitric oxide and total NOS activity were measured. Cells apoptosis was detected by Hoest33258 and Annix V staining. Animal test, chromatin immunoprecipitation (CHIP), co-immunoprecipitation(IP) and luciferase reporter assay were also performed. RESULTS We indicate that GLP2 is associated with osteoporosis-related factors in aged rats, including BALP, TRAP, IL6, TNFα, Nitric Oxide (NO), iNOS, calcitonin and occludin. Moreover, GLP2 is demonstrated to result in negative action during proliferation of tartrate-resistant acid phosphatase-positive (TRAP+) osteoclasts. Furthermore, GLP2 decreases osteoclasts induced from monocyte/macrophage cells RAW264.7 as well as the serum TRAP activity in aged rats. Mechanistic investigations reveal GLP2 enhances the expression of iNOS through stimulating the activity of TGFβ-Smad2/3 signalling in osteoclasts. In particular, inhibition of TGFβ fully abrogates this function of GLP2 in osteoclasts. Strikingly, overexpression of GLP2 significantly increases the product of nitric oxide via iNOS which promotes apoptosis of osteoclasts by decreasing bcl2 or increasing caspase3. Thereby, the ability of GLP2 to regulate apoptosis depends on TGFβ-Smad2/3-iNOS-NO signalling pathway since total NOS inhibitor L-NMMA specifically inhibits the actions by GLP2. CONCLUSIONS GLP2 induces apoptosis via TGFβ-Smad2/3 signalling, which contributes to the inhibition of the proliferation of osteoclasts and which may provide potential therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yi Lu
- Departments of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongdong Lu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yu Hu
- Departments of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
35
|
GLP2 Promotes Directed Differentiation from Osteosarcoma Cells to Osteoblasts and Inhibits Growth of Osteosarcoma Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:292-303. [PMID: 29499942 PMCID: PMC5862135 DOI: 10.1016/j.omtn.2017.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022]
Abstract
Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide that is involved in the regulation of energy absorption and exerts beneficial effects on glucose metabolism. However, the exact mechanisms underlying the GLP2 during osteogenic differentiation has not been illustrated. Herein, we indicated that GLP2 was demonstrated to result in positive action during the osteogenic differentiation of human osteosarcoma cells. Our findings demonstrate that GLP2 inhibis the growth of osteosarcoma cells in vivo and in vitro. Mechanistic investigations reveal GLP2 inhibits the expression and activity of nuclear factor κB (NF-κB), triggering the decrease of c-Myc, PKM2, and CyclinD1 in osteosarcoma cells. In particular, rescued NF-κB abrogates the functions of GLP2 in osteosarcoma cells. Strikingly, GLP2 overexpression significantly increased the expression of osteogenesis-associated genes (e.g., Ocn and PICP) dependent on c-Fos-BMP signaling, which promotes directed differentiation from osteosarcoma cells to osteoblasts with higher alkaline phosphatase activity. Taken together, our results suggested that GLP2 could be a valuable drug to promote directed differentiation from osteosarcoma cells to osteoblasts, which may provide potential therapeutic targets for the treatment of osteosarcoma.
Collapse
|
36
|
Almgren P, Lindqvist A, Krus U, Hakaste L, Ottosson-Laakso E, Asplund O, Sonestedt E, Prasad RB, Laurila E, Orho-Melander M, Melander O, Tuomi T, Holst JJ, Nilsson PM, Wierup N, Groop L, Ahlqvist E. Genetic determinants of circulating GIP and GLP-1 concentrations. JCI Insight 2017; 2:93306. [PMID: 29093273 DOI: 10.1172/jci.insight.93306] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022] Open
Abstract
The secretion of insulin and glucagon from the pancreas and the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) from the gastrointestinal tract is essential for glucose homeostasis. Several novel treatment strategies for type 2 diabetes (T2D) mimic GLP-1 actions or inhibit incretin degradation (DPP4 inhibitors), but none is thus far aimed at increasing the secretion of endogenous incretins. In order to identify new potential therapeutic targets for treatment of T2D, we performed a meta-analysis of a GWAS and an exome-wide association study of circulating insulin, glucagon, GIP, and GLP-1 concentrations measured during an oral glucose tolerance test in up to 7,828 individuals. We identified 6 genome-wide significant functional loci associated with plasma incretin concentrations in or near the SLC5A1 (encoding SGLT1), GIPR, ABO, GLP2R, F13A1, and HOXD1 genes and studied the effect of these variants on mRNA expression in pancreatic islet and on metabolic phenotypes. Immunohistochemistry showed expression of GIPR, ABO, and HOXD1 in human enteroendocrine cells and expression of ABO in pancreatic islets, supporting a role in hormone secretion. This study thus provides candidate genes and insight into mechanisms by which secretion and breakdown of GIP and GLP-1 are regulated.
Collapse
Affiliation(s)
- Peter Almgren
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Andreas Lindqvist
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ulrika Krus
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Liisa Hakaste
- Endocrinology, Abdominal Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Diabetes and Obesity Research Program, University of Helsinki and Folkhälsan Research Center, Helsinki, Finland
| | - Emilia Ottosson-Laakso
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Olof Asplund
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Emily Sonestedt
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Rashmi B Prasad
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Esa Laurila
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Marju Orho-Melander
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Olle Melander
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Tiinamaija Tuomi
- Endocrinology, Abdominal Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Diabetes and Obesity Research Program, University of Helsinki and Folkhälsan Research Center, Helsinki, Finland.,Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter M Nilsson
- Clinical Research Unit Medicine, Department of Internal Medicine, and Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Nils Wierup
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Leif Groop
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden.,Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Emma Ahlqvist
- Lund University Diabetes Centre, Department of Clinical Sciences, Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
37
|
Peck BCE, Shanahan MT, Singh AP, Sethupathy P. Gut Microbial Influences on the Mammalian Intestinal Stem Cell Niche. Stem Cells Int 2017; 2017:5604727. [PMID: 28904533 PMCID: PMC5585682 DOI: 10.1155/2017/5604727] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
The mammalian intestinal epithelial stem cell (IESC) niche is comprised of diverse epithelial, immune, and stromal cells, which together respond to environmental changes within the lumen and exert coordinated regulation of IESC behavior. There is growing appreciation for the role of the gut microbiota in modulating intestinal proliferation and differentiation, as well as other aspects of intestinal physiology. In this review, we evaluate the diverse roles of known niche cells in responding to gut microbiota and supporting IESCs. Furthermore, we discuss the potential mechanisms by which microbiota may exert their influence on niche cells and possibly on IESCs directly. Finally, we present an overview of the benefits and limitations of available tools to study niche-microbe interactions and provide our recommendations regarding their use and standardization. The study of host-microbe interactions in the gut is a rapidly growing field, and the IESC niche is at the forefront of host-microbe activity to control nutrient absorption, endocrine signaling, energy homeostasis, immune response, and systemic health.
Collapse
Affiliation(s)
- Bailey C. E. Peck
- Department of Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michael T. Shanahan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ajeet P. Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
38
|
Iacobellis G, Camarena V, Sant DW, Wang G. Human Epicardial Fat Expresses Glucagon-Like Peptide 1 and 2 Receptors Genes. Horm Metab Res 2017; 49:625-630. [PMID: 28514806 PMCID: PMC7430146 DOI: 10.1055/s-0043-109563] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epicardial adipose tissue (EAT) is an easily measurable visceral fat of the heart with unique anatomy, functionality, and transcriptome. EAT can serve as a therapeutic target for pharmaceutical agents targeting the fat. Glucagon-like peptide-1 (GLP-1) and GLP-2 analogues are newer drugs showing beneficial cardiovascular and metabolic effects. Whether EAT expresses GLP- 1 and 2 receptors (GLP-1R and GLP-2R) is unknown. RNA-seq analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to evaluate the presence of GLP-1R and GLP-2R in EAT and subcutaneous fat (SAT) obtained from 8 subjects with coronary artery disease and type 2 diabetes mellitus undergoing elective cardiac surgery. Immunofluorescence was also performed on EAT and SAT samples using Mab3f52 against GLP-1R. Our RNA-sequencing (RNA-seq) analysis showed that EAT expresses both GLP-1R and GLP-2R genes. qRT-PCR analysis confirmed that GLP-1R expression was low but detected by 2 different sets of intron-spanning primers. GLP-2R expression was detected in all patients and was found to be 5-fold higher than GLP-1R. The combination of accurately spliced reads from RNA-seq and successful amplification using intron-spanning primers indicates that both GLP-1R and GLP-2R are expressed in EAT. Immunofluorescence clearly showed that GLP-1R is present and more abundant in EAT than SAT. This is the first time that human EAT is found to express both GLP-1R and GLP-2R genes. Pharmacologically targeting EAT may induce beneficial cardiovascular and metabolic effects.
Collapse
Affiliation(s)
- Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, USA
| | - Vladimir Camarena
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, USA
| | - David W Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
39
|
Amato A, Baldassano S, Caldara GF, Mulè F. Pancreatic polypeptide stimulates mouse gastric motor activity through peripheral neural mechanisms. Neurogastroenterol Motil 2017; 29. [PMID: 27381051 DOI: 10.1111/nmo.12901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/10/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pancreatic polypeptide (PP) is supposed to be one of the major endogenous agonists of the neuropeptide Y4 receptor. Pancreatic polypeptide can influence gastrointestinal motility, acting mainly through vagal mechanisms, but whether PP acts directly on the stomach has not been explored yet. The aims of this study were to investigate the effects of PP on mouse gastric emptying, on spontaneous tone of whole stomach in vitro and to examine the mechanism of action. METHODS Gastric emptying was measured by red phenol method after i.p. PP administration (1-3 nmol per mouse). Responses induced by PP (1-300 mmol L-1 ) on gastric endoluminal pressure were analyzed in vitro in the presence of different drugs. Gastric genic expression of Y4 receptor was verified by RT-PCR. KEY RESULTS Pancreatic polypeptide dose-dependently increased non-nutrient liquid gastric emptying rate. In vitro, PP produced a concentration-dependent contraction that was abolished by tetrodotoxin, a neural blocker of Na+ voltage-dependent channels. The contractile response was significantly reduced by atropine, a muscarinic receptor antagonist, and by SR48968, an NK2 receptor antagonist, while it was potentiated by neostigmine, an inhibitor of acetylcholinesterase. The joint application of atropine and SR48968 fully abolished PP contractile effect. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of Y4 receptor mRNA in mouse stomach with a greater expression in antrum than in fundus. CONCLUSIONS & INFERENCES The present findings demonstrate that exogenous PP stimulates mouse gastric motor activity, by acting directly on the stomach. This effect appears due to the activation of enteric excitatory neurons releasing acetylcholine and tachykinins.
Collapse
Affiliation(s)
- A Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - S Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - G F Caldara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - F Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| |
Collapse
|
40
|
Intestinal Incretins and the Regulation of Bone Physiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1033:13-33. [PMID: 29101649 DOI: 10.1007/978-3-319-66653-2_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although originally identified as modulators of nutrient absorption, the gut hormones gastric inhibitory polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and glucagon-like peptide-2 (GLP-2) have also been found to play an important role in the regulation of bone turnover. These "incretin" hormones promote bone anabolism by stimulating osteoblast differentiation as well as increasing osteoblast longevity. In addition, GIP and perhaps GLP-2 attenuate the activity of osteoclastic cells, leading to a net increase in bone deposition and ultimately increasing bone mass. Studies have demonstrated that these hormones are important for bone mineralization and overall bone quality and function evolutionarily as important nutritional links signaling nutrient availability for skeletal anabolic functions. Accordingly, these entero-osseous hormones (EOH) have therapeutic potential for the management of osteoporosis. Although this chapter primarily focuses on skeletal effects of these incretin hormones, the GIP, GLP-1, and GLP-2 receptors are actually widely expressed throughout the body. Therefore, we will also briefly discuss these extraosseous receptors/effects and how they may indirectly impact the skeleton.
Collapse
|
41
|
Baldassano S, Amato A, Mulè F. Influence of glucagon-like peptide 2 on energy homeostasis. Peptides 2016; 86:1-5. [PMID: 27664588 DOI: 10.1016/j.peptides.2016.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
Glucagon like peptide-2 (GLP-2) is a gastrointestinal hormone released from enteroendocrine L-type cells together with glucagon like peptide-1 in response to dietary nutrients. GLP-2 acts through a specific receptor, the GLP-2 receptor, mainly located in the gut and in the brain. Classically, GLP-2 is considered a trophic hormone involved in the maintenance of intestinal epithelial morphology and function. This role has been targeted for therapies promoting repair and adaptive growth of the intestinal mucosa. Recently, GLP-2 has been shown to exert beneficial effects on glucose metabolism specially in conditions related to increased uptake of energy, such as obesity. Several actions of GLP-2 are related to a positive energy balance: GLP-2 increases not only the absorptive surface, but also expression and activity of epithelial brush-border nutrient transporters and digestive enzymes, intestinal blood flow, postprandial chylomicron secretion and it inhibits gastrointestinal motility, providing the opportunity to increase absorption of nutrients. Other actions, including anorexigenic effects, appear in opposition to the energy intake. In this review, we discuss the GLP-2 functions related to energy homeostasis. GLP-2 could be considered an hormone causing positive energy balance, which, however has the role to mitigate the metabolic dysfunctions associated with hyper-adiposity.
Collapse
Affiliation(s)
- Sara Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128, Italy
| | - Antonella Amato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128, Italy
| | - Flavia Mulè
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128, Italy.
| |
Collapse
|